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FINAL REPORT ON CERMET HIGH-LEVEL WASTE FORMS 

E. H. Kobisk, T. C. Quinby, W. S. Aaron 

ABS TRACT 

Cermets a r e  b e i n g  developed as an a l t e r n a t e  method f o r  

t h e  f i x a t i o n  o f  defense and commercial h i g h  l e v e  r a d i o a c t i v e  

waste i n  a t e r m i n a l  d i s p o s a l  form. F o l l o w i n g  i n  t i a l  f e a s i -  

b i l i t y  assessments o f  t h i s  waste form, c o n s i s t i n g  o f  ceramic 

p a r t i c l e s  d ispersed i n  an i r o n - n i c k e l  base a l l o y ,  s i g n i f -  

i c a n t l y  improved process ing  methods were developed, 

c h a r a c t e r i z a t i o n  o f  cermets has cont inued th rough p r o p e r t y  

d e t e r m i n a t i o n s  on samples prepared by v a r i o u s  methods f r o m  a 

v a r i e t y  o f  s imu la ted  and a c t u a l  h i g h - l e v e l  wastes. T h i s  

The 

r e p o r t  descr ibes  t h e  s t a t u s  o f  development o f  t h e  cermet 

waste f o r m  as i t  has evolved s i n c e  1977. 

I NTRODUCTI ON 

I n  August o f  1977, a program was undertaken by t h e  I s o t o p e  Research 

M a t e r i a l s  Labora tory  (IRML) o f  t h e  Oak Ridge Nat iona l  L a b o r a t o r y  t o  

develop a cermet process f o r  h i g h - l e v e l  waste s o l i d i f i c a t i o n  and t o  

e v a l u a t e  t h e  r e s u l t i n g  cermet waste form. The cermet waste f o r m  i s  

designed t o  p r o v i d e  f i x a t i o n  o f  h i g h - l e v e l  wastes as m u l t i m i c r o n - s i z e  

o x i d e  p a r t i c l e s  o r  t a i l o r e d ,  c r y s t a l 1  i n e  compound p a r t i c l e s  u n i f o r m l y  

d ispersed i n  a c o r r o s i o n - r e s i s t a n t ,  t h e r m a l l y  conduct ive,  metal a l l o y  

m a t r i x .  T h i s  process has been s u c c e s s f u l l y  a p p l i e d  t o  bo th  commercial 

and DOE defense wastes, The process used t o  f o r m  cermets f rom h i g h - l e v e l  



2 

wastes possesses many unique and advantageous featlures , as does the 

cermet i t s e l f .  During processing, significant waste  volume reductions 

a n d  high waste loadings are achievable, while vo la t i l i ty  losses o f  

radioisotopes, such as Cs, R u ,  and S r  are  kept very low. Resulting 

cermets have been shown t o  possess high thermal condricti vity, leach 

resistance, excel 1 ent durabil i ty under high ~~ressure-tcmperature 

conditions and good mechanical strength. 

Developmentdl work was performed iisi ng simul ated wastes 

radiotracer-contai n i  ng simulated wastes and actual Nuclear Fuel Services 

(NFS) Acid Thorex, Savannah River Plant (SRP) dried sludge and fresh, 

unneiitral ized SRP acid wastes. 

processing o f  these various wastes into cermets, substantial sample 

characterization work was performed. Thermal conductivity determinations, 

calorimetry ( f o r  actual wastes only) , optical and scanni rig electron 

metallography, x-ray energy spectroscopy and,  in some cases, x-ray 

diffraction were among the methods used t o  characterize t h e  cermets. 

Leach tes ts  and high temperature-pressure durability tes ts  have been 

performed a t  Battelle-Pacific No~thwest Laboratories i n  addition t o  the 

work done a t  ORNL.  Engineering, economic, and safety analyses o f  bo th  

the cermet process and t h e  product were conducted on a preliminary 

basis; however, additional development effor t  would be required before 

a def ini t ive analysis could be completed. 

F o l l  owing the control led and moni tored 

In th i s  report, the cermet process a n d  resulting waste form(s) w i l l  

be described and the progress of the program, previously reported 111, 

wi 11 be updated. 



BACKGROUND TECHNOLOGY 

Since 1971, IRML has been involved i n  the development and prepara- 

t ion  o f  neutron dosimeter materials using a process which was l a t e r  

adapted t o  the preparation o f  cermets [2,3]. 

prepare these dosimeter materials will be described br ief ly  to  c la r i fy  

The process used t o  

process steps similar t o  those used for the preparation o f  waste- 

containing cermets. The same basic process has a l s o  been used for  a 

wide variety of other special materials preparations. 

Neutron dosimeters referred t o  i n  t h i s  discussion consist o f  a wide 

variety o f  pure and diluted oxides i n  the form o f  ceramic wires which are 

loaded i n t o  small ,  h i g h - p u r i t y  vanadium capsules and sealed by welding. 

Dosimeters are then placed i n  a reactor core and  irradiated for  varying 

times. Post-irradiation analysis i n  combination w i t h  very accurate pre- 

i r radiat ion characterization permits the calculation of the neutron f l u x  

and energy dis t r ibut ion throughout the reactor core. F i s s i l e  and s table  

materials i n  e i ther  the pure form or diluted i n  an inert  car r ie r  

material, such as MgO or A1 203, have been prepared as ceramic wires. 

I n  the case o f  target oxide dilutions,  a prime requirement i s  the u n i -  

formity of distribution o f  the target  nuclides i n  the d i l u e n t .  A typical 

uniformity tolerance f o r  such dilutions i s  a less t h a n  1% variance 

from the mean concentration of the target oxide composition, r a n g i n g  as 

low as 0.1 w t .  % 9  over a batch length o f  610 m (2,000 f t . )  o f  0.05 cm 

(0.020 i n . )  diameter wire. A flowsheet for  the preparation o f  ceramic 

shown i n  F ig .  1. The desired components i n  t he i r  

rst dissolved i n  n i t r i c  acid t o  

i s  then heated t o  concentrate the 

oxide wires i s  

appropriate re 

obtain a mixed 

at ive quantit ies are f 

n i t r a t e  solution which 
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ORNL-DWL 77.15811 

DISSOL.UTION OF 
COMPONENT CATIONS 

EXIHUSION TO 

SINTERING CYCLE I-1 (145O"CI 

F ig .  1. Flowsheet o f  t h e  urea-based process f o r  p r e p a r a t i o n  o f  ceramic 
dos imeter  wi res.  

s o l u t i o n .  Urea i s  then added t o  t h e  solutiofs and heated; i n  this  prs- 

cess s t e p  r e s i d u a l  water, i n c l u d i n g  water. o f  hydt*at ion, i s  removed 

th rough  r e a c t i o n  w i t h  t h e  u r s  o r  d i r e c t  v o l a t i l i z a t i o n .  D e n i t r a t i o n  

o f  t h e  s o l u t i o n  occurs s imu l taneous ly  and, as h e a t i n g  cont inues,  i t  i s  

p o s t u l a t e d  that. some o f  the urea polymer izes th rough t h e  l i n k i n g  o f  

-NH? groups and simultaneous evo lu t - ion  o f  NH3. Homogeneously mixed com- 

ponent catr 'ons are  e v i d e n t l y  i nco rpo ra ted  i n t h e  poly i i ier i  zed mater i  a1 . 
The r e s u l t i n g  polymer o r  urea coprec i  p i t a t e  i s  subsequently c a l c i n e d  t o  

remove v o l a t i l e  spec ies a n d  t o  conver t  t h e  des i red  components t o  t h e i r  

ox ides,  which, because of t h e  urea c o p r e c i p i t a t i o n  s tep,  are i n t i m a t e l y  

and homogeneously mixed. Because t h i s  process y i e l d s  submicron sSme 
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part ic les  in a controllable manner, the chemical precipitation process 

enhances the s in te rab i l i ty  o f  many d i f f icu l t - to-s in te r  oxides without 

introducing chemical impurities as might occur when mechanical par t ic le  

s i ze  reduction methods are employed. 

be generally detrimental t o  subsequent use i n  neutron dosimetry. 

Introduction of impurities would 

Following calcination, the oxide powder i s  mixed w i t h  a binder, 

typical ly  a wax, and extruded t o  form a wire which, a f t e r  sintering and 

shrinkage of approximately 25%, will be o f  the desired f ina l  size. The 

"green" extruded wire i s  sintered a t  temperatures of u p  t o  1 4 5 O O C .  

The s inter ing cycle usually includes a slow heat-up procedure during which 

the binder i s  volati l ized and typically includes an 8-12 hour holding 

period a t  the maximum temperature so as t o  permit sintering t o  densit ies 

o f  u p  t o  96% o f  theoretical  density for  many materials. 

micrographs shown in Fig. 2 i l l u s t r a t e  typical structures of several 

Scanning electron 

sintered ceramic wires. 

Other materials applications employing a l l  or parts o f  t h i s  

processing technology include preparation o f  catalyst  supports  and 

coprocessing of the catalyst  with the suppor t ,  the fabrication o f  

244Cm203 rectangular bars for  materials compatability studies,  and t he  

preparation of MgO crucibles used in uranium fluorescence analyses (as 

a subst i tute  fo r  P t  crucibles w h i c h  require one crucible per analysis 

and are not reusable). Investigations t o  determine the appl icabi l i ty  o f  

t h i s  process t o  the preparation o f  mixed oxides, including reactor fuels ,  

and  a wide range of cermets are a l s o  being conducted. A solid solution 

alloy o f  50 w t .  % C u  - 50 w t .  416 N i  wds prepared by coprecipitation froin 

urea, calcination of the precipi ta te  t o  the oxides and hydrogen reduction 
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ORNL-PHOTO 4467-81 

Fig. 2. SEM micrographs o f  ceramic wires produced by the extrusion 
and sintering o f  submicron calcine powder. 

a) Pure Tho2 showing extrusion artifact 
b) 0.13 wt. % Sc as scandium oxide in MgO 
c) 5.5 wt. % Th as Tho2 in MgO 
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o f  t h e  ox ides t o  meta ls  a t  800°C. X-ray d i f f r a c t i o n  conf i rmed t h e  forma- 

t i o n  o f  a complete ly  u n i  orm, s o l i d  s o l u t i o n  a l l o y  o f  t h e  Cu and N i  which 

i s  evidence o f  t h e  excel  e n t  homogeneity o f  m i x i n g  ob ta ined f rom t h e  

mol t e n  urea coprec i  p i  t a t  on process. 

A p p l i c a t i o n  o f  t h i s  technology t o  r a d i o a c t i v e  wastes was i n i t i a t e d  

a f t e r  t h e  successfu l  p rocess ing  o f  a v a r i e t y  o f  chemical elements and 

m i x t u r e s  o f  elements. It was a l s o  r e a l i z e d  t h a t  s e l e c t i v e  r e d u c t i o n  

o f  metal  ox ides i n  an o x i d e  m i x t u r e  ob ta ined th rough urea p r e c i p i t a t i o n  

and c a l c i n a t i o n  would y i e l d  an i n t i m a t e  m i x t u r e  o f  t h e  ceramic and 

meta l  phases. Upon d e n s i f i c a t i o n  o f  these oxide-metal  mix tures,  cermets 

c o u l d  be ob ta ined w i t h  a wide v a r i e t y  o f  c o n t r o l l e d  composi t ions and 

p r o p e r t i e s .  

components added; however, p rocess ing  methods, p a r t i c u l a r l y  changes 

i n  parameters assoc ia ted  w i t h  t h e  r e d u c t i o n  and d e n s i f i c a t i o n  

procedures can have s i g n i f i c a n t  e f f e c t s  as we1 1. 

ox ides  ( m i n e r a l  compound forms) and a l l o y s  a r e  p o s s i b l e  u s i n g  t h i s  process, 

and it i s  t h e  f e a t u r e s  which a r e  be ing  e x p l o i t e d  f o r  t h e  f i x a t i o n  o f  h igh-  

l e v e l  r a d i o a c t i v e  wastes i n  a cermet waste form. 

Cermet p r o p e r t i e s  a r e  determined p r i m a r i l y  by t h e  chemical 

Syntheses o f  t a i l o r e d  

CERMET FORMULATIONS 

Cermets a r e  designed t o  o f f e r  two b a r r i e r s  t o  t h e  r e l e a s e  o f  r a d i o -  

a c t i v e  wastes, whether it be by leaching,  impact, o r  h i g h  temperature 

degradat ion.  

i n s o l u b l e  ceramic phases and an i n e r t  a l l o y  m a t r i x  which microencap- 

s u l a t e s  t h e  ceramic p a r t i c l e s .  Whi le  i t  would be r e p e t i t i v e  t o  rev iew 

a l l  t h e  waste composi t ions t h a t  have been i n v e s t i g a t e d ,  t h e  d i s c u s s i o n  

o f  one such example w i l l  i l l u s t r a t e  t h e  method by which t h e  f o r m u l a t i o n  

T h i s  i s  achieved by t h e  f o r m a t i o n  o f  s tab le ,  h i g h l y  
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of the cermet is  derived. 

t o  be discussed has not been chosen as being optimum. 

sat isfactory a t  the level of development achieved t o  date. 

general, are grossly inhomogeneous and only i n  a few instances have they 

been thoroughly characterized. For these reasons, careful monitor! ng of 

waste compositions as they enter the process must be performed (as  w i t h  

other candidate processes) t o  accommodate compositional changes w i t h i n  

reasonable limits. 

I t  shou ld  be noted tha t  the cermet formulation 

I t  simply appears 

Wastes, i n  

I n  1978 a sample of NFS acid Thorex waste was drawn from the tankage 

a t  the West Valley, New York, s i t e  and transported t o  ORNL fo r  analysis 

and subsequent conversion t o  cermet. 

waste is  shown i n  Table 1 i n  terms of both the elemental concentrations 

i n  the  waste and the expected form and weight of these elements as they 

would exis t  i n  a cermet formed from a volume of 31 m l  of this acid waste. 

The additives required t o  formulate the desired cermet are also shown. 

I n  general, i t  i s  desirable t o  form a cermet having approximately 

50% by volume metal t o  main ta in  the thermal conductivity and mechanical 

strength of the body. 

bases, and Fe-Ni-Cu-Co (Mo) alloys. The choice o f  the alloy composition 

i s  ultimately dependent upon required compatibility w i t h  the proposed 

storage environment specific t o  a particular repository or di  sposal 

method and the avai labi l i ty  of reducible metals e i ther  already i n  the 

waste or  added a t  the head-end of the process. The metal alloy will con- 

t a i n  reducible fission products from the waste which will vary i n  quantity 

and type depending on the waste being considered. 

example, this  cermet has an alloy phase composition of 70-Fe, 20-Ni, 5-Cu, 

S-Co, and small amounts of miscellaneous reducible f iss ion products. 

The chemical composition of this  

Cermets have been formed using pure Ni, Fe-Ni alloy 

A s  shown i n  the 
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Table 1. Chemical Analysis o f  NFS Acid Thorex Waste 
and Resulting Cermet Formulat ion 

Waste 

Metal Fe 
Formers : 

Ni 

RU 

Mo 

Zn 

cu 
CO 

a- 
49 

7.18 

0.57 

0.55 

0.18 

0.06 

0.03 

Ceramic @r 1.07 
Formers : 

K 1.66 

Na 6.4 

Th 228 

A 1  10 

Rare Earths 1.9 

CS 0.70 

Ba 8.58 

Mn 0.85 

Zr 0.12 

S r= 0.18 

Desi red 
Form 

Metal 

Metal 

Metal 

Met a 1 

Metal 

Metal 

Desired Form 
Weight (9) 

1.519 

0.223 

0.018 

0.017 

0,005 

0.801 

0.485 

0.288 

1.745 

8.052 

Idndetemi ned 

6.072 

0,121 

0 c 026 

8.834 

0,805 

8.012 

Rb 0.08 RbAl  S i  $6 8.018 
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Table 1. (Cont 'd)  

A d d i t i v e s :  

Meta l  Formers 

Elemental  
€1  ement Weight 

Fe 18.08 

N i  5.38 

cu 1.40 

c o  1.40 

Ceramic Formers A1 0.10 

S i  0.86 

T i  0.44 

The a1 1 oy composi t i on can be eas i  l y  modi f i  ed s i  nce 

Form 

Metal 

Metal  

Metal 

Metal  

i t  can be made f rom any 

m i x t u r e  o f  r e d u c i b l e  meta ls  added t o  t h e  waste t o  o b t a i n  a p p r o p r i a t e  metal 

phase p r o p e r t i e s .  

The amount o f  a d d i t i v e s  r e q u i r e d  t o  f i x  s p e c i f i c  f i s s i o n  products  and 

i n e r t  nuc l ides  i n  t h e  waste as i n s o l u b l e  ceramics must be determined. 

Aluminum and s i l i c o n  a r e  added t o  f i x  t h e  Na, K, Rb, and Cs, i n  t h e  waste 

a s  (Na, K, Rb, Cs) AlSi206 ( p o l l u c i t e ) .  A d d i t i o n s  o f  aluminum and s i l i c o n  

a r e  made, when requi red,  t o  supplement t h e  amount of these m a t e r i a l s  a l ready  

i n  t h e  waste, i n  o r d e r  t o  p rov ide  a 50% s t o i c h i o m e t r i c  excess o f  aluminum 

and s i l i c o n .  T h i s  i s  done t o  ensure compound fo rmat ion  and t o  p r o v i d e  

f o r  v a r i a b i l i t y  i n  t h e  composi t ion o f  t h e  waste. 

a d d i t i o n s  a l s o  ensure t h a t  i f  any segregat ion o f  Na, K, Rb, and Cs 

occurs d u r i n g  process ing p r i o r  t o  t h e  f o r m a t i o n  of t h e  p o l l u c i t e  compound, 

Excess m a t e r i a l  
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t h e r e  w i l l  be s u f f i c i e n t  aluminum and s i l i c o n  present  t o  p e r m i t  t h e  f o r -  

m a t i o n  o f  t h e  minera l  i n  l o c a l i z e d  areas. It i s  expected t h a t  lower  

excess a d d i t i o n s  probab ly  would p r o v i d e  s a t i s f a c t o r y  r e s u l t s .  

t i t a n i u m  a d d i t i o n s  a r e  made i n  excess o f  t h e  amount r e q u i r e d  t o  fo rm t i t a -  

na tes  f rom t h e  Ba and S r  p resent  .in t h e  waste, w i t h  t h e  remainder- fo rming  

TiO2. 

ach ieve  t o t a l  f i x a t i o n .  

L ikewise,  

It should be necessary t o  add o n l y  a 10-50% excess o f  t i t a n i u m  t o  

The above f o r m u l a t i o n  r e s u l t e d  i n  a cermet hav ing  a t o t a l  waste 

l o a d i n g  o f  approx imate ly  28 w t .  %. 

6 9  w t .  X o f  t h e  f i n a l  cermet, w h i l e  31  w t .  % c o n s i s t e d  o f  mixed ceramic 

phases. 

The metal  phase was approx imate ly  

T h i s  example i l l u s t r a t e s  t h e  general  c o n s i d e r a t i o n s  used t o  f o r m u l a t e  

waste cermet composi t ions.  S ince p o r t i o n s  o f  t h e  waste a r e  used t o  f o r m  t h e  

metal  m a t r i x  o f  t h e  cemiet (as compared w i t h  t h e  t o t a l l y  independent metal 

m a t r i x  used i n  t h e  m u l t i b a r r i e r  waste concept) ,  t h e  f o r m u l a t i o n  o f  t h e  cer -  

met i s  dependent on t h e  compos i t ion  of t h e  s p e c i f i c  wastes. 

p o s i t i o n a l  changes a r e  e a s i l y  accommodated by t h e  cermet waste form. 

t h e  case of PW-4b waste, on which l a b o r a t o r y - s c a l e  i n v e s t i g a t i o n s  have been 

i n i t i a t e d  o n l y  r e c e n t l y ,  t h e  meta l  phase c o n t a i n s  a l a r g e r  amount o f  f i s s i o n  

Minor  com- 

I n  

p roduc t  meta ls  and a s i g n i f i c a n t l y  d i f f e r e n t  m i x t u r e  o f  ceramic phases. 

S ince  t h e  cermet metal  a l l o y  m a t r i x  composi t ion v a r i e s  w i t h  each t y p e  o f  

waste, t h e s e  v a r i o u s  m a t r i c e s  must be eva lua ted  t o  a s c e r t a i n  t h e i r  

i n t e g r i t y ,  e s p e c i a l l y  w i t h  respec t  t o  leach res is tance.  Whi le  n o t  con- 

s i d e r e d  i n  t h i s  example, it has been shown t h a t  w i t h  a d d i t i o n s  o f  phosphate 

i o n ,  monazi tes can be formed as a hos t  ceramic phase. Monazi tes a re  

c u r r e n t l y  be ing  prepared u s i n g  t h e  urea process f o r  i n v e s t i g a t i o n s  con- 

ducted by Boatner  and co-workers a t  ORNL [4l. Likewise,  t he  urea process 
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has also been applied t o  Synroc preparation a t  LLL LSJ. T h i s  process 

therefore provides great f lexi  b i  1 i t y  i n  the sel ect i  on of ceramic phases 

f o r  waste f i x a t i o n  l imi t ed  only by the thermodynamic s t a b i l i t y  of the 

various phases coexisting d u r i n g  l a t e  stages of processing and i n  the 

f inal  waste form. 

PROCESSING DEVELOPMENTS 

Processing steps required for the preparation of  cermets are similar 

t o  those previously described for  ceramic wire and related materials. 

The basic process was presented ea r l i e r  [XI b u t  has since undergone 

appreciable development. Significant improvement and simplification of 

the  batch-type cermet process has been achieved and,  more recently, 

e f for t s  have been concentrated on dekelopment o f  a continuous process 

sui t a b 1  e for  engineering scale-up. 

A flowsheet o f  the  batch process fo r  cermet preparation i s  shown i n  

F i g .  3 along w i t h  materials a d d i t i o n s  as are required i n  the process and 

the  products generated d u r i n g  the process. The f i r s t  step of t h i s  process 

involves the dissolution o f  a l l  components in nitric acid, including the  

waste material and specif ic  additives as required for  the formation of 

desired crystal l ine compounds, such as aluminosilicates and t i t ana tes .  

Formulation of the desired composition fo r  the  metal alloy phase i n  the 

f i n a ?  cermet is  a l so  performed i n  this dissolution step. The solution i s  

then concentrated by heating and urea i s  added, 

the molten urea solution undergoes reactions which produce a solid pre- 

W i t h  continued heating, 

c i p i t a t e  and the gaseous products shown on the  flowsheet. 

precipi ta te  is then calcined t o  decompose metastable compounds and con- 

T h i s  solid 

vert a l l  species t o  oxides. Variaus methods have been used t o  convert 
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the reducible metal oxides t o  metal and densify the material into the 

f inal  cermet waste form. 

D u r i n g  the course of developmental studies,  a number o f  improvements 

were made t o  the batch flowsheet and many advantageous features, unique 

t o  urea processing, were recognized. 

t e s  and additives may be dissolved direct ly  i n  molten urea and,  therefore, 

n i t r i c  acid need not be added. 

t h e  metal additives must be i n  a soluble form, e.¶., n i t ra tes  or other 

I t  was found tha t  most waster, zeoli- 

When the n i t r i c  acid s tep is  eliminated, 

MATERIALS IN 

WASTE AND ADDITIVES 
(Ni, 

HNO3 

OWNL.DWC 78-15'308 

PRODUCTS OUT 

t + H2O. HNQ3 
SO LUT IO N 

CO N CE NT RAT IO N 
I 

(HEATING) N2 or CCJ 0.5%. 
H2 <0.1%, 0 2  Q.1'76, HzQ 1.6%. 

(PRECIPITATION AT 1W'C) 
H2 1%. 02 0.5%. H2O 7%, CO2 1%. 
N2 or CO 33%. NH3 57% 

N2 or CO 65.4%, 0 2  9.6%. H2Q 0.5%. 
CO2 18.5%. WCN 5.3% 

1120 

MIXING WITH ORGANIC 
BINDER WAX 

I 1 
I EXTRUSION TO FORM RODS I 

BINDER VOLATILES 

SINTERED WASTE 
CERMET RODS 

F i g .  3 .  Original laboratory-scale operations used t o  produce cermet 
waste form samples, 
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salts,  since most of metals are insoluble o r  have a low dissolution 

r a t e  i n  molten urea. 

varying the re la t ive  amount of urea used fo r  the precipitation process. 

The exothermic nature of the precipitation reactions requires a minimum 5 : l  

molar r a t io  of urea-to-nitrate ion i n  order t o  control the reaction i n  the 

batch process. The to ta l  n i t ra te  ion  concentration of the s o l u t i o n  ar ises  

from both the waste and the additives. Lower urea rat ios  result  i n  the 

b o i l  over of material from i t s  container (beaker). A dependence o f  pro- 

duct par t ic le  s ize  on the urea-to-nitrate r a t i o  was found t o  exist  as t h a t  

r a t io  was varied from 5:l t o  45:l. As the r a t io  i s  increased, the s ize  

o f  the result ing precipitate and subsequent calcine par t ic les  i s  reduced. 

I t  i s  postulated t h a t  the exothermic reaction provides the heat necessary t o  

i n i t i a t e  reaction of adjacent volumes i n  the molten urea. As the re lat ive 

urea content i s  increased, t h i s  exothermic reaction is  "diluted" w i t h  more 

and smaller volumes of s o l u t i o n  being reacted t o  form finer precipitating 

particles.  I n  t h i s  case, the exothermic heat i s  expended, i n  part ,  

t o  heat up  adjacent volumes of urea and i s  therefore not available t o  

t r igger  the reaction between the urea and n i t r a t e  ions i n  large volumes o f  

the  solution. The control offered by h igh  urea-to-nitrate ion rat ios ,  

while necessary i n  batch processing, i s  not  required or even desirable i n  

the spray calcination of molten urea solutions (as discussed below). 

All  products o f  the precipitation and calcination processes are 

Investigations have been conducted on the effects  of 

e i ther  gases o r  solids w i t h  no l i q u i d  effluents except those generated 

by off-gas hand1 i ng equipment (scrubbers). A1 1 gaseous products 

generated d u r i n g  batch processing are  innocuous except fo r  small amounts 

o f  HCN produced d u r i n g  calcination, as shown i n  the  r i g h t  column o f  the 
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flowsheet ( F i g .  3 ) .  Reaction gases may also contain very small amounts 

o f  volati l ized radioisotopes, such as  Cs and R u ,  the volume o f  which i s  

minimized by 

d u r i n g  early 

observed d u r  

below i n  gre 

the reducing environment produced and maintained by the urea 

stages of the process. Low vo la t i l i t y  losses are also 

ng the various densif i cation methods t h a t  wi 11 be di scussed 

te r  detai 1. Experimental resul ts  concerning volati 1 i t y  

losses are presented i n  a separate section. 

Reactive Spray Calcination 

Transformation o f  the 1 aboratory-scal e, batch cermet process into one 

which incorporates re l iable  unit operations amenable t o  remote operation 

and  engineering scale-up has been studied. 

i l l u s t r a t ed  in Fig. 4 ,  i s  suggested fo r  the ful l -scale  processing o f  

A continuous-type process, as 

radioactive waste. One of the key unit operations for  successful con- 

t inuous  processing appears t o  be associated with the precipitation and 

calcination steps. Experimentally i t  was found t h a t  these two operatio 

could be combined t h r o u g h  the use o f  a heated-wall rotary calciner into 

ORNL-DWG 79-11096 

1 
Fig .  4. Improved flowsheet for  cermet preparation developed t o  per 

simpler and scalable operations. 
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which the molten urea solution was fed. 

t ion processes take place i n  this single operation, result ing i n  an oxide 

powder calcine. The calcine was somewhat agglomerated, however; t o  a1 le- 

viate  this problem, a "reactive" spray calciner was designed and fabricated 

i n  an e f for t  t o  form a more finely divided product which would f a c i l i t a t e  

subsequent densification. The term, "reactive", i s  applicable since spray 

calcination of urea-containing so lu t ions ,  and the associated chemical 

reactions which occur, i s  significantly different t h a n  conventional spray 

calcination, although the equipment required i s  very similar. 

Both precipitation and calcina- 

A reactive spray calciner having a 10-cm i .d.  was operated success- 

As expected, the spray fu l ly  us ing  simulated waste-urea feed solutions. 

calciner produced a powder consisting o f  generally spherical par t ic les  up 

t o  approximately 10 vrn i n  diameter when a urea-to-nitrate mole ra t io  of 

1:l was used. Urea-to-nitrate ion rat ios  were lowered from 5:l t o  1:l t o  

reduce material a d d i t  

reaction rate control 

batch processing) was 

batch processing, par 

ons and the quant i ty  o f  off-gas genekated, since the 

provided by the higher ra t ios  (as  required fo r  

not needed or desired for  spray calcination. As i n  

i c l e  s ize  resulting from spray calcination was 

dependent on the amount o f  urea added per u n i t  of  waste. 

for  this par t ic le  s ize  dependence i s  different however from t h a t  

described previously for batch processing. As the amount of urea 

increases, the resulting par t ic le  s ize  decreases, since, for  a given s ize  

spray droplet, the amount o f  the solid-forming material i n  the droplet 

decreases. 

The mechanism 
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I n  addition t o  simplifying the cermet preparative flowsheet by com- 

bining two process steps into one, an even more significant advantage o f  

spray calcining i s  the reduction i n  the amount of urea required as com- 

pared t o  b a t c h  processing. 

required t o  slow the exothermic urea-nitrate reaction t o  a controllable 

ra te ,  in the spray calciner i t  i s  desirable t o  have the reaction proceed 

very rapidly so t h a t  "precipitation and ca?cination" occurs during the 

short residence time of the  material in the calciner. 

the exothermic reaction in t h e  spray calciner also minimizes the heat 

which must be supplied t o  the calciner walls. Using a urea-ta-nitrate 

mole r a t io  of 1:1, centerline temperatures in the calciner can be main- 

tained a t  o r  s l igh t ly  below the wall temperature. I t  has also been found 

t h a t  calcination occurs so rapidly that  the material i s  converted t o  dry 

powder before i t  comes i n  contact with the calciner walls. Therefore, no 

material buildup occurs on the walls of the calciner such as occiir's i n  

spray calciners using waste solutions not containing urea; such deposits 

must then be loosened by an  air-operated v i b r a t o r  mounted on the calciner 

wall  [SI. 

Whereas i n  batch processing, excess urea was 

Heat provided by 

Another significant difference in using reactive spray calcination was 

noted when resultant off-gases were analyzed. 

yielded off-gases of varying compositions as the precipitation and 

calcination stages proceeded, the off-gas from the spray calciner reached 

and maintained a steady s t a t e  composition, since precipitation and calci-  

n a t i o n  steps take place essent ia l ly  instantaneously and continuously. 

The actual spray calciner off-gas composition resulting from inn analysis 

o f  gases generated during a t e s t  using simulated NFS acid Thorex waste 

with a 1:l urea-to-nitrate mole r a t io  is  shown i n  Table 2. I t  can be 

While batch processing 
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seen t h a t  the species generated d u r i n g  spray calcination are s ignif i -  

cantly different and even more innocuous t h a n  those resulting from 

equivalent batch-type operations. 

ammonia was essentially nonexistent. 

and NO, were found t o  be present. 

Notably, no HCN was detected and 

Only insignificant amounts of  H2 

A 20-cm i.d. reactive spray calciner was installed t o  permit more 

f l ex ib i l i t y  in operation and a more thorough evaluation of operating 

parameters. 

the small diameter resulted in very l i t t l e  f l ex ib i l i t y  for parametric 

studies such as the influences of feed ra te  and spray pattern. N o  

radiotracer studies were performed t o  determine possible losses of 

radioactive species i n  th is  process. 

During tes t ing of the 10-cm i . d .  calciner, i t  was found t h a t  

Table 2. Reactive Spray Calciner Off-Gas Analysis 

Species 

N2 and/or CO 

H20 + NH3 

C02 and/or N20 

02 

NO 

H 2 

NO2 

Concentration 

75.09% ( i  n separate analysis 
CO <0.43%) 

11.95% (no  evidence of  
N H 3  d u r i n g  
processing) 

2.56% 

9.39% 

0.77% 

0.17% 

<o .09% 
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I t  appears t h a t  the  reactive spray calciner can be operated i n  

e i t he r  of two modes depending on the type of calcine needed f o r  

subsequent densification. In some cases, i t  i s  desirable t o  start  

with a calcine i n  which the reducible metal species are  present as 

the respecti ve el ement s ,  t h u s  yi el d i  ng a f i ne, homogeneous powder m i  xture 

of metal and oxide sui table  f o r  subsequent densification. There i s  

evidence t o  indicate t h i s  may be accomplished by operating the calciner 

as a closed system w i t h  an inert injection gas. 

i t  appears possible t o  maintain a suff ic ient ly  reducing atmosphere t o  

produce the  mixed rnetal-oxide powder. 

not  complete, reduction was achieved through the use of argon as the 

injection gas. For other methods of densification, an oxide powder 

i s  the preferred form of s ta r t ing  material. 

been used with the calciner being operated a s  an "open" system, w i t h  a i r  

being used as the injection gas. 

Under these conditions, 

I n  preliminary t e s t s ,  par t ia l ,  i f  

This mode of operation has 

The reactive spray calciner i s  shown in Fig. 5. The liquid waste 

feed i s  composed o f  the  waste and additives dissolved i n  the appropriate 

amount o f  urea. T h i s  feed solution i s  formed i n  a heated dissolution 

vessel where dissolution and homogenization of the waste and additives 

in urea take place. The feed solution must generally be heated since the 

melting point of urea i s  405 K. The melting point i s  lowered with 

increasing water content and i t  has been the practice t o  maintain a disso- 

lution vessel temperature of 340-360 K w i t h  the wastes that  have been con- 

sidered in these investigations. 

into the calciner a t  a ra te  of 2-3 l / h r  with preheated a i r  a r  an iner t  gas 

The heated waste solution was injected 
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OFF GAS 

BAFFLED 
COLLECTION 

CHAMBER - 

ORNL-DWG 80-1 1383RCO 
SPRAY NOZZLE 

LlQUJD WASTE FEED 

INJECTION AIR 

FURNACE LINEA 
~INCCBNELI i’ 

Fig. 5. Seheniatic diagram of the reactive spray ealciner including one 
o f  the optional methods for calcine collection. 

using the spray nozzle shown in Fig .  6 ,  

vide effective atomization of t h e  mo l ten  urea solution and  produce the 

narrow spray pattern shown in Fig. 7. 

t h i s  nozzle were typically 3-5 cubic fee t  per minute a t  770 K. 

in droplet s ize  produced by t h e  nozzle had t o  be achieved t o  pravide maxi- 

ilium droplet sizes and  subsequent par t ic le  sizes f o r  ease of collection 

while maintaining a small enough droplet t o  permit complete and  rapid 

calcination. 

physical properties of the feed solution. 

density o f  1.33 g/cc was shown t o  have a viscosity OF 0.75 mPa s a t  333 K 

and a surface tension of 7.6 x 10-3 ~ / m  at. 347 K. 

coupled with the existing feed stream a n d  injection gas flow rate ranges 

This nozzle was designed t o  pro- 

The injection gas flow mates fo r  

A balance 

The droplet s i r e  i s  a function of the nozzle design a n d  the 

A typical f e e d  solution with a 

T R ~ S ~  properties 
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R a D  4 FI r W  J 
C17l-IF 141 
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F i g .  6. Schematic representation o f  t h e  nozzle used for- t h e  spray 
‘ calcination o f  fiolten urea s o l u t i o n s .  

F ig .  7. The narrow, well atomized spray pattern provided by t h e  
nozzle (Fig.  6 )  p e r m i t s  e f f e c t i v e  c a l c i n a t i o n  o f  molten urea 

s o l u t i o n s .  
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yielded calculated droplet sizes of 8-56 pm. When calcined, this range of 

droplet sizes produced particles w i t h  measured diameters ranging from 

0.3 pm t o  agglomerates exceeding 500 pm. 

par t ic les  produced w i t h  a waste stream feed rate  of 2.3 l/min and an 

injection gas flow rate  o f  3.7 cubic fee t  per minute a t  770 K i s  shown i n  

Table 3 .  

The s ize  distribution of calcine 

I n  the t e s t s  t h a t  were conducted with the reactive spray calciner, 

wall temperatures were i n i t i a l l y  maintained a t  1270 K and successively 

reduced t o  1070 K in l a t e r  t e s t s .  

were maintained a t  or s l igh t ly  below the wall temperature by the exother- 

mic heat of the calcination reactions. 

1070 K was the lowest operating temperature tes ted,  i t  i s  f e l t  t h a t  s a t i s -  

factory calcination may be achieved a t  lower temperatures since these 

exothermic reactions, once in i t ia ted ,  may be able t o  provide sufficient 

heat t o  the particles t o  produce complete calcination. 

temperature range tested,  no build-up of material on the calciner walls 

was observed. 

n i t ra tes  i n  the powder and an equillibrium pH o f  6.5 fo r  calcine slurried 

in water are further indications of the successful calcination of waste 

and additives i n  molten urea solutions us ing  the reactive spray calcina- 

t i  on process. 

I n  a l l  cases, centerline temperatures 

Although a wall temperature of 

Throughou t  the 

Tests of calcine powder showing the absence of residual 

After calcination, the next major t a sk  t o  be performed was the 

separation of the powder from the off-gas and i t s  collection. The calcine 

collection system, shown i n  Fig. 5, provided fo r  the separation of greater 

than 98% of the material w i t h  less t h a n  2% escaping the unfiltered collec- 

t i o n  system as f ines  requiring f i l t e r ing  or some other final separation 

process. The coarse par t ic les  and agglomerates are collected i n  the pot 
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Table 3. T y p i c a l  C a l c i n e  P a r t i c l e  S i z e  D i s t r i b u t i o n  

_I S i z e  Mi crons* W t .  % 

+500 2.4 

1-300 

4-212 

-t 180 

t 1 5 0  

t90 

+63 

t 4 5  

0.6 

4.3 

2.9 

6.5 

16.3 

25.1 

18.1 

- 45" 23.7 

* P a r t i c l e s  +SO0 urn were agglomerates o f  smal le r  p a r t i c l e s .  

+- Minimum-sized p a r t i c l e s  observed Mere 0.3 pin. 

a t  t h e  bottom o f  t h e  c a l c i n e r  body. 

n f f - g a s  stream and e n t e r  t h e  cyc lane separa tor  a t  a v e l o c i t y  o f  6-21 m/s. 

The cyclone separa tor  was designed t o  reinow p a r t i c l e s  w i t h  diameters o f  

5 prn and l a r g e r  f rom gas streams i n  t h i s  v e l o c i t y  range. The o f f -gas  i s  

next  r o u t e d  t o  a b a f f l e d  c o l l e c t i o n  o r  s e t t l i n g  chamber where i t s  v e l o c i t y  

i s  reduced t o  less than  1.5 m/s. It was i n  t h i s  chamber t h a t  the mayne- 

t i c  p r o p e r t i e s  a f  t h e  c a l c i n e  powder were used t o  advantage t o  improve 

t h e  s e p a r a t i o n  of t h e  re i i ia in ing f i n e s  from t h e  o f f -gas .  

c a l l y  enhanced s e p a r a t i o n  techniques were be ing  i n v e s t i g a t e d  t o  o p t i m i z e  

t h e  s e p a r a t i o n  o f  sol i d s  f rom the  off-gas, thereby  simp1 i fy i  ng subsequent 

o f f - g a s  hand1 i n g  r e q u i  rements. F i n a l l y ,  i t  was found t h a t  th rough c o n t r o l  

of t h e  o f f - g a s  temperature i n  t h e  system, water  vapor c o u l d  be condensed a t  

F i n e r  p a r t i c l e s  a r e  c a r r i e d  i n  the 

Var ious magneti- 
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a desired location, for  example, i n  the se t t l i ng  chamber. T h i s  condensed 

water vapor effectively "scrubbed" the off-gas, removing a considerable 

amount of the fines t h a t  escaped separation i n  the  preceding s tep(§) .  

Examples of the calcine particles are shown i n  Fig. 8. As evidenced 

by the duc t i l i ty  of the mechanically deformed par t ic le  shown i n  the higher 

magnification micrograph, the use o f  an iner t  injection gas results in 

p a r t i a l ,  i f  no t  complete, reduction of the metal species i n  the waste. 

A1 t hough no radi otracer vol a t  i 1 i t y  t e s t s  could be performed on the reac- 

t i v e  spray calciner because of radioactivity l imitations of the f a c i l i t y ,  

there are strong indications t h a t  the  low radioisotope vo la t i l i t y  losses 

observed in batch processing (discussed i n  a l a t e r  section) would be 

lower using the reactive spray calcination process w i t h  e i ther  an inert  

gas or a i r  for  the injection of the waste stream into the calciner as 

compared t o  the batch process (described above). 

Cermet Densification Methods 

Significant changes and improvements have been made in  the flowsheet 

regarding the densification process. In i t i a l ly ,  calcine powder, i n  the 

form of iiiixed oxide, was reduced t o  yield a mixed metal-oxide powder. 

A "green" compact was formed by mix ing  t h i s  material w i t h  a wax binder and 

subjecting the  mixture t o  cold compaction by pressing o r  extrusion. 

Subsequently, the green compact was sintered a t  temperatures from 1470 t o  

1670 K in a non-oxidizing atmosphere. 

compact was required t o  permit quiescent volat i l izat ion and removal o f  the 

wax binder w i t h o u t  d is tor t ion o f  the cermet body. 

continued beyond th i s  point with a heating rate  of 100 K/hr  up t o  the 

desired temperature, which was typically maintained fo r  10-12 hours 

Slow i n i t i a l  heating of the green 

The  sintering cycle 
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r 

Fig .  8. ( a )  SEM micrograph of typical calcine par t ic les .  

F i g .  8. 

indicated by the d u c t i l i t y  of this  mechanically deformed pa r t i c l e  (bar  
length represents 50 urn). 

( b )  
r e s u l t s  i n  p a r t i a l ,  i f  not complete, reduction of metal species as  

Reactive spray calcinat ion using an inert inject ion gas 
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fo l lowed by fu rnace coo l ing .  

l e a s t  24 hours t o  complete. 

I n  t o t a l ,  t h i s  s i n t e r i n g  c y c l e  r e q u i r e d  a t  

A l t e r n a t i v e l y ,  reduced c a l c i n e  powder was loaded i n t o  a g r a p h i t e  

d i e  and vacuum h o t  pressed t o  y i e l d  a dense cermet body. Hot p r e s s i n g  

was t y p i c a l l y  performed a t  a pressure o f  27.6 MPa (4000 p s i )  a t  temper- 

a t u r e s  r a n g i n g  f rom 1320-1420 K.  

temperatures produced a laminar  m i c r o s t r u c t u r e  w i t h  a l t e r n a t i n g  metal and 

c e r a m i c - r i c h  layers .  T h i s  nonuni form d i s t r i b u t i o n  o f  t h e  ceramic par-  

t i c l e s  i n  t h e  metal  m a t r i x  i s  n o t  d e s i r a b l e  i n  t h a t  microencapsulat ion o f  

t h e  ceramic p a r t i c l e s  and t h e  thermal c o n d u c t i v i t y  o f  t h e  b u l k  cermet body 

a r e  degraded. 

p rocess ing  a r e  complex and e s s e n t i a l l y  ba tch  type,  e s p e c i a l l y  on t h e  l a r g e  

s c a l e  r e q u i r e d  f o r  waste a p p l i c a t i o n s ,  h o t  p r e s s i n g  i s  considered f e a s i b l e  

o n l y  f o r  f a b r i c a t i o n  o f  b a s e - l i n e  samples a g a i n s t  which cermets produced 

by o t h e r  d e n s i f i c a t i o n  techniques can be compared. 

It was found t h a t  h o t  p r e s s i n g  a t  h i g h e r  

Because h o t  p r e s s i n g  techniques a p p l i c a b l e  t o  remote 

S i m i l a r  t o  improvements made i n  t h e  chemical p rocess ing  p o r t i o n  o f  

t h e  f lowsheet ,  d e n s i f i c a t i o n  developments should s i m p l i f y  t h e  process 

and be compat ib le  w i t h  eng ineer ing  scale-up. 

i m p o r t a n t  improvements was t h e  s u b s t i t u t i o n  o f  water  f o r  t h e  wax b i n d e r  

when c o l d  compaction of t h e  c a l c i n e  was performed. Water lends  s a t i s -  

f a c t o r y  s t r e n g t h  t o  t h e  c o l d  compact and prov ides  s u f f i c i e n t  l u b r i c a t i o n  

necessary f o r  c o l d - f o r m i n g  w h i l e  b e i n g  much e a s i e r  t o  remove f rom t h e  

r e s u l t a n t  compact. 

c a r e f u l l y  c o n t r o l l e d ,  s low h e a t i n g  i n  t h e  s i n t e r i n g  cyc le ;  t h e  process 

can be c a r r i e d  ou t  more r a p i d l y ,  and t h e  p o r o s i t y  o f  t h e  produc t  cermet 

i s  s i g n i f i c a n t l y  reduced. 

One o f  t h e  f i r s t  

Use of water  as a b i n d e r  e l i m i n a t e s  t h e  need f o r  
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Combination o f  t h e  reduc t ion  and s i n t e r i n g  processes i n t o  one 

opera t ion  was performed successful ly.  

ox ide  powder was formed and s i n t e r e d  i n  a reducing atmosphere which reduced 

dppropr ia te  ca t i ons  t o  metals forming t h e  a l l o y  matr ix ;  as t h e  temperature 

increased, t h e  cermet body d e n s i f i e d  by convent ional  s in te r i ng .  

A c o l d  compact of t h e  ca l c ine  

An a l t e r n a t i v e ,  low-temperature method f o r  d e n s i f i c a t i o n  was i n v e s t i -  

gated b r i e f l y .  

approx imate ly  1070 K i n  an atmosphere con ta in ing  hydrogen o r  carbon monoxide 

and subsequently compacted by c o l d  i s o s t a t i c  pressing. The f i n e  metal 

p a r t i c l e s  i n  t h e  reduced powder were e f f e c t i v e l y  cold-welded t o  y i e l d  a 

strong, dense cermet body. 

heat t reatment  of t h i s  compact i s  requ i red  t o  improve t h e  q u a l i t y  o f  t h i s  

cold-compacted cermet. For t h i s  method o f  dens i f i ca t i on ,  a reduced c a l c i n e  

powder i s  requ i red  as t h e  s t a r t i n g  ma te r ia l ,  and, as mentioned prev ious ly ,  

ope ra t i on  o f  t h e  spray c a l c i n e r  as a c losed system can r e s u l t  i n  such a 

I n  t h i s  case, t h e  c a l c i n e  ox ide powder was reduced a t  

It remains t o  be determined whether subsequent 

reduced c a l c i n e  powder s u i t a b l e  f o r  i s o s t a t i c  p ress ing  wi thout  f u r t h e r  

t reatment.  A major concern associated w i t h  t h i s  d e n s i f i c a t i o n  method i s  

whether t h e  des i red  ceramic phases are s u i t a b l y  formed a t  t h e  reduced 

process temperature. It i s  expected t h a t  t he  exothermic u r e a - n i t r a t e  

r e a c t i o n  would heat t h e  i n d i v i d u a l  powder p a r t i c l e s  t o  temperatures we l l  

beyond t h e  1070 K c a l c i n e r  wa l l  temperature and thus  t h e  format ion o f  t h e  

des i red  ceramic phases should occur. Proo f  o f  at ta inment o f  s u i t a b l e  

ceramic phases and the  determi nat  i an of whet her  heat t reatment subsequent 

t o  i s o s t a t i c  p ress ing  i s  requ i red  and a re  t h e  key f a c t o r s  determin ing t h e  

a c c e p t a b i l i t y  of t h i s  d e n s i f i c a t i o n  process. 

t o  be su i tab le ,  s i g n i f i c a n t  reduc t i on  o f  processing temperatures cou ld  

I f  t h i s  method i s  determined 
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% OXYGEN - 
of cermets. 

f i g .  9, Schematic illustration o f  mechanism f o r  liquid phase s i n t e r i n g  

ORNL-BWG 79-1971 1 A  
1800 I I I 1 P 

140 

I 

Y - 
+ 1000 

600 

CONVENTiONAL 
LlQU1D PHASE SINTERING 

29% RT 

F i g .  l a .  Typical temperature-time profile. ;  f a r  conventional and 1 i q u i d  
phase sintering show some o f  the advantages o f  the l a t t e r .  
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ORNL-PHOTO 4469-81 

Fig .  11. Comparison of microstructures of actual waste cermet samples 
prepared by different sintering techniques. 
NFS Acid Thorex Waste - conventional sintering 
SRP Acid Waste - liquid phase sintering 

( a )  
(b)  
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VOLATILITY LOSS STUDIES 

A major concern dur ing  processing o f  h igh- leve l  rad ioac t i ve  wastes 

i n t o  cermet o r  any o ther  s o l i d  s to rab le  form i s  t h e  v o l a t i l i z a t i o n  o f  

rad io iso topes  contained i n  t h e  waste. V o l a t i l i t y  loss  data have been 

determined f o r  Cs, Ru and S r  i n  r a d i o t r a c e r  cermet processing t e s t s  and 

f o r  Cs and Ru i n  actual  waste processing tes ts .  D a t a  were obtained from 

analyses o f  s o l u t i o n  samples taken f rom three-column scrubbers through 

which a l l  processing off-gases were passed. These v o l a t i l i t y  losses were 

determined f o r  t h e  small labora tory -sca le  cermet process beginning w i t h  

t h e  urea p r e c i p i t a t i o n  step through the  s i n t e r i n g  operation. Fig. 12 

shows a scrubber attached t o  t h e  c a l c i n e r  furnace t h a t  was i n s t a l l e d  i n  a 

ho t  c e l l  f o r  t h e  ac tua l  waste experiments. The f i t t i n g  i n  the  lower 

r i g h t  corner was connected t o  t h e  c e l l  o f f -gas system t o  prov ide constant 

suc t i on  du r ing  processing and t o  minimize contamination o f  t h e  c e l l  by 

en t ra ined powder and/or gaseous products. A smal ler  scrubber was used 

f o r  rad io t race r  v o l a t i l i t y  studies. I n  both cases, t h e  scrubbers were 

f i r s t  attached t o  the  p r e c i p i t a t i o n  vessel, sampled and flushed; then 

at tached t o  the  c a l c i n i n g  furnace, sampled and f lushed again; and f i n a l l y  

a t tached t o  the  s i n t e r i n g  furnace. 

experiments represent maximum losses which may overstate the  ac tua l  

losses caused by v o l a t i l i z a t i o n .  

i n s t a l l  p a r t i c u l a t e  f i l t e r s  between t h e  processing equipment and the  o f f -  

gas scrubbers; therefore, f i n e  p a r t i c l e s  could be ent ra ined i n  t h e  o f f -  

gas and t ranspor ted  t o  t h e  scrubbers. Entrainment would increase the  

concent ra t ion  o f  rad ioac t i ve  species i n  t h e  scrubber samples and r e f l e c t  

a h igher  v o l a t i l i t y  l oss  than had a c t u a l l y  occurred. 

Data obtained from these scrubber 

It was n e i t h e r  p r a c t i c a l  nor des i rab le  t o  
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Fig.  12. Scrubber columns at tached t o  c a l c i n a t i o n  furnace which were 
i n s t a l l e d  i n  a hot  c e l l  f o r  ac tua l  waste v o l a t i l i t y  studies.  

I n  t h e  r a d i o t r a c e r  v o l a t i l i t y  experiments, losses du r ing  the  p r e c i p i -  

t a t i o n  and c a l c i n a t i o n  steps were found t o  be 0.014% Cs, 0.18% Ru and 

0.0001% S r .  

0.055% f o r  Ru and 0.000006% f o r  S r .  

d u r i n g  t h e  e n t i r e  process are  t h e  sums o f  these two sets  o f  data, i.e., 

0.016% Cs, 0.23% Ru and 0.0001% S r .  

man i fo ld  between the  processing equipment and the  scrubber system showed 

n e g l i g i b l e  sur face a c t i v i t y ,  thus p r o v i d i n g  co r robo ra t i on  t h a t  t he  observed 

Dur ing  s in te r i ng ,  these losses t o t a l e d  0.0023% f o r  Cs, 

To ta l  maximum v o l a t i l i t y  losses 

Smearing f o r  r a d i o a c t i v i t y  i n  the  
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r e s u l t s  were probab ly  r e p r e s e n t a t i v e  o f  v o l a t i l i t y  losses and t h a t  

r a d i o a c t i v e  species had no t  condensed i n  t h e  mani fo ld .  These r e s u l t s  

represent  very 1 ow process vo l  a t  i 1 i t y  1 osses. 

U n f o r t u n a t e l y ,  f a i l u r e  o f  t h e  h o t  c e l l  o f f -gas  system t h a t  powered 

t h e  scrubbers prevented a c q u i r i n g  v o l a t i  1 i t y  l o s s  data dur  ng process ing 

o f  a c t u a l  NFS a c i d  Thorex waste. However, data f rom proce s i n g  a c t u a l  

u n t r e a t e d  SRP a c i d  waste were obtained. These da ta  a re  shown i n  Table 4. 

A l though t h e s e  r e s u l t s  d i f f e r  s l i g h t l y  f rom t h o s e  ob ta ined d u r i n g  

r a d i o t r a c e r  t e s t s ,  t h e y  t o o  represent  very  low v o l a t i l i t y  losses d u r i n g  

cermet processing. 

t h e  scrubber  columns i n  t h e  c e l l ,  t h e  p o s s i b i l i t y  o f  e x t e r n a l  con- 

t a m i n a t i o n  o f  these samples e x i s t s ,  which, a long w i t h  p o s s i b l e  p a r t i c l e  

ent ra inment  e f f e c t s ,  would exaggerate t h e  t r u e  v o l a t i l i t y  losses. 

S ince  t h e  samples i n  t h i s  l a t t e r  t e s t  were drawn from 

L i m i t e d  t e s t s  were conducted t o  determine t h e  v o l a t i l i t y  losses  o f  

technet ium d u r i n g  processing. Us ing  t h e  ba tch  process s teps o f  p r e c i p i -  

t a t i o n  c a l c i n a t i o n ,  r e d u c t i o n  and s i n t e r i n g  i n  a reduc ing  atmosphere, 

approx imate ly  h a l f  o f  t h e  technet ium i n  t h e  s imu la ted  waste samples was 

v o l a t i l i z e d .  The c a l c i n a t i o n  step, which c o n s i s t s  o f  a severa l  hour  

exposure t o  a i r  a t  e l e v a t e d  temperatures,  was p r i m a r i l y  r e s p o n s i b l e  f o r  

t h e s e  h i g h  losses. It i s  f e l t  t h a t  t h e  use o f  r e a c t i v e  spray c a l c i n a t i o n  

r a t h e r  t h a n  ba tch  p r e c i p i t a t i o n  and c a l c i n a t i o n  would s i g n i f i c a n t l y  

reduce t h e  v o l a t i l i z a t i o n  o f  technet ium s i n c e  exposure t imes t o  h i g h  tem- 

p e r a t u r e s  i n  combinat ion w i t h  an o x i d i z i n g  atmosphere would be reduced o r  

e l im ina ted .  Again, because of r a d i o a c t i v i t y  l i m i t s  on t h e  spray c a l c i n e r  

f a c i l i t y ,  t h e  behav io r  of technet ium d u r i n g  spray c a l c i n a t i o n  c o u l d  no t  

be evaluated. 
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Table 4. Volat i l i ty  Losses of Cs and R u  d u r i n g  Processing 
of  Fresh SRP Acid Waste 

Precipitation Cal ci n a t i o n  S i  nteri ng Total 

cs (% Lost) 0.0029 0.1006 0.1653 0.2688 

Ru (% Lost) 0.0022 0.0007 0.0004 0.0033 

I n  summary, radioisotope vo la t i l i t y  d a t a  clearly show t h a t  very 

The l o w  vo losses occur d u r i n g  processing of wastes t o  cermet form. 

i t y  losses experienced in the cermet process are  a t t r ibuted t o  two d 

ferent  factors. F i r s t ,  urea provides a basic, chemically reducing 

1 ow 

a t i l -  

f- 

environment which maintains elements such as ruthenium, i n  a nonvolatile 

s t a t e  (elemental or dioxide). Second, formation of specific ceramic 

niineral phases effectively traps specific nuclides in low vapor pressure 

forms--cesium a s  pollucite and  strontium as t i t ana te .  Recause vola t i l i ty  

losses during cermet processing appear quite low, minimal demands on an 

nff-gas handling system should resul t  for  cermet processing and the 

generation o f  additional wastes requiring subsequent treatment could be 

much less than fo r  other waste form preparative processes. 

CERMET LEACHABILITY 

One of the primary requirements placed upon a solid high-level waste 

form i s  i t s  resistance t o  leaching of the various contained radioactive 

species under a variety o f  conditions l ikely t o  be encountered during 

transportation and storage. Cermet i s  designed t o  meet t h i s  requirement a t  

two levels. F i r s t ,  the cermet form i s  made t o  f i x  leachable species in the 

forms of s table  insoluble crystal l ine ceramics such as oxides, alumino- 

s i l i c a t e s  and t i tanates .  A second level of fixation i s  provided by the alloy 
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matrix, which essent ia l  'By nricroencapsul a tes  the rriultiniicron s ze ceramic 

p a r t i c l e s  and which i t s e l f  contains SOIW radioisotopc? species 

Coy e tc .  Additions, when required t o  supplement quant i t ies  o f  materials 

already i n  the waste, a re  made s o  as t o  formulate the desired chemical corn- 

posit ions o f  the ceramfc phases and  the al loy matrix. These additions are 

made in the urea dissolution process a t  t h e  head end o f  the  flowsheet. 

such as, R u ,  

While much o f  the ceramic portion o f  the  cermet consis ts  o f  oxides4 

additions are  made t o  permit the foriuation o f  aluminosil icates,  such as 

po l luc i te  for cesium f ixa t ion ,  and t i t a n a t e s  f o r  strontium f ixat ion.  

Generally, t hese  additions are made i n  amounts which when summed w i t h  

those elements already in the waste  yie ld  a 50% excess of  the airiount 

required t o  compound the Fission products. 

t h e  highly leachable sodium content of the was te  must be isolated in a 

leach r e s i s t a n t  ceramic phase, i.e.,  an aluminosil icate,  t o  preserve the 

physical in tegr i ty  o f  t h e  cermet body i n  contact w i t h  a leachant. 

Although not a f i s s i o n  product, 

The al loy matrix o f  cermets 

species present in t h e  waste w i t h  

having h i g h  corrosion resistance.  

been undertaken t o  optimize the  a 

s pr imari  ly  deri ved from rediici bl e metal 

minor additions t o  formulate an alloy 

While extensive s tudies  have n o t  

loy matrix composition, an a l loy 

h a v i n g  70 w t .  % Fe, 70 wt* % N i ,  5 wt. % C u  arid 5 w t .  % miscellaneous 

metals was used primarily. 

composition based on metal species occurring in a variety o f  wastes and 

the general economic a v a i l a b i l i t y  o f  alloying additives.  Cerriiets having 

an  essent ia l ly  pure nickel m a t r i x  and a 50 wt. % Fe - 50 w t .  % N i  mat r ix  

have been prepared. 

which i s  reducible under the par t icu lar  processing parameters used, f o r  

This formulation i s  considered t o  be a typical 

The matrix can bc composed o f  any metal o r  al loy,  
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optimum performance during transportation and disposal 

however, also contain those iner t  and f iss ion product cations already i n  

This matrix wil l ,  

the  waste tha t  are reducible. 

Qualitative and quantitative leach tes t ing of cermets under a variety 

s f  conditions have been performed a t  O R N E  and Rattelle Pacific Northwest 

Laboratory (PNL). Experimental d i f f i cu l t i e s  were encountered in some of 

these t e s t s ,  and therefore,  available leach d a t a  i s  only of a preliminary 

nature. 

formulated which should have eliminated the d i f f i cu l t i e s  experienced in 

t e s t s  a t  ORNL and PNL; however, i t  was not implemented because of the t e r -  

mination o f  the program. T h i s  program included the tes t ing of a variety 

of simulated wastes ( w i t h  and without radiotracers) and samples o f  actual 

h i  gh-1 eve1 wastes which have been converted t o  the cermet. form. 

Preliminary leach behavior of cermets, as summarized below, was t o  have 

A program fo r  quantitative leacR test ing of cerniets was being 

been quantified and the cermet leaching mechanisms delineated. 

As reported previously [ I J ,  early qual i ta t ive leach t e s t s  were per- 

f ornied on a si mu1 ated SRP waste hat-pressed pel 1 e t  and an extruded-si ntered 

rod. B o t h  samples were exposed t o  boiling, saturated NaCl s o l u t i o n s  for 

168 hours a t  atrnospheric pressure. 

leachant showed no detectable leaching of the cermet samples; the only 

ionic species observed t o  increase in the leachant were s i l icon and boron, 

presumably from the Pyrex beakers used in the t e s t s .  

Mass spectrographic analyses of the 

No corrosive attack 

o f  t h e  extruded-sintered rod was vis ible  and only spotty discolorations 

were observed on hot-pressed samples, which were at t r ibuted t o  surface 

carbide tha t  had formed during hot-pressing i n  a graphite die. 

A qual i ta t ive autoclave t e s t  was performed on a hot-pressed pel le t  

containing simulated SRP waste having a high manganese oxide content. 
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A f t e r  f o u r  days a t  490 K and 2.1 MPa i n  t h e  s tandard Nas te  I s o l a t i o n  

P i l o t  P l a n t  (MIPP) "B"  b r i n e  s o l u t i o n ,  s l i g h t  s u r f a c e  a t t a c k  resembl ing a 

t a r i l  

t h a t  

t o  a 

met a 

sh was v i s i b l e .  Mass spec t rog raph ic  a n a l y s i s  o f  t h e  leachant  showed 

t h e  manganese o x i d e  i n  t h e  cermet was be ing  p r e f e r e n t i a l l y  a t t a c k e d  

smal l  degree. T h i s  was supported by o p t i c a l  and SEM/XES 

1 ographi  c analyses showi ng a t t a c k  o f  t h e  manganese o x i  de p a r t i  c l  es 

on t h e  s u r f a c e  o f  t h e  p e l l e t .  

ceramic phases was d e t e c t a b l e  e i t h e r  by mass spec t rog raph ic  o r  

meta l  1 ographi  c analyses. 

No a t t a c k  o f  t h e  metal  phase o r  o t h e r  

A s e r i e s  o f  r a d i o t r a c e r - c o n t a i  n i  ng ceriiiet samples w@re prepared f r o m  

s i m u l a t e d  NFS a c i d  i h o r e x  waste i n  an at tempt  t o  determine q u a n t i t a t i v e  

l e a c h  r a t e s  f o r  t hese  cermets i n  d i s t i l l e d  wa te r  and b r i n e s .  Each sample 

c o n t a i n e d  t r a c e r  q u a n t i t i e s  o f  137Cs3 89Sr, lo6Ru o r  G°Co. The 137Cs and 

89Sr t r a c e r s  were used t o  m o n i t o r  t h e i r  r e s p e c t i v e  ceramic phase leach  

b e h a v i o r  w h i l e  t h e  lo6Ru and 

o f  t h e  a l l o y  m a t r i x  d u r i n g  leaching,  

were used t o  p r o v i d e  data an t h e  behav io r  

The apparatus used i n  t h e s e  leach  t e s t s ,  shown i n  F ig .  13, was 

designed t o  t e s t  cermet p e l l e t s  i n  d r ' s t i l l e d  water  o r  a v a r i e t y  o f  b r i n e s  

a t  temperatures up t o  t h e  leachant  b o i l i n g  p o i n t  a t  atmospher ic ps-essure. 

The leachan t  was c i  r c u l  a t e d  around t h e  submerged pe l  1 e t  by t h e  p e r c o l a t o r  

a s  shown i n  F ig .  14. 

T h i s  f i r s t  s e r i e s  o f  cermet l e a c h  t e s t s ,  conducted a t  ORNL, was 

s u b j e c t  t o  exper imenta l  d i f f i c u l t i e s  which compromised t h e  v a l i d i t y  OF t h e  

r e s u l t i n g  data.  

e v a p o r a t i v e  l osses  which subsequent ly r e q u i r e d  r e p e t i t i v e  a d d i t i o n s  o f  

makeup water.  Secondly, t h e  v i b r a t i n g  a c t i o n  o f  t h e  p e l l e t s  caused by 

p e r c o l a t i o n  o f  t h e  leachants r e s u l t e d  i n  minor  ab ras ion  o f  m a t e r i a l  f r o m  

Among t h e  problems exper ienced i n  t h i s  t e s t  s e r i e s  were 
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the samples. Finally, analytical resul ts  obtained from counting the 

leachant samples were found t o  be inconsistent. 

inconsistencies appeared t o  be related t o  the analytical technique i t s e l f  

while others were attr i tubed to  leachate sampling methods and sample 

s t  orage. 

In some cases, these 

F i g .  13. Leaching apparatus f o r  early radiotra leach tests at (JRNL. 
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C E N T i M E T E R S  
0 2 4 6 0 

F i g .  14. Percolator used for leachant c i r c u l a t i o n  i n  early radiotracer 
leach tes ts  a t  ORNL. Resulting abrasion of sample surface proved 

unsatisfactory. 

A second set of cermet samples was prepared from simulated NFS acid 

Thorex waste; each sample contained 137Cs and l o 6 R u  radiotracers. These 

samples were sent t o  PNL for leach testing. These cermets were composed 

of 37 w t .  % mixed ceramic phase and 67 w t .  % metal alloy matrix having a 

nominal composition of 70% Fe-20% Ni-5% Cu-5% Co on a weight basis. One 

cermet sample was used i n  each of the following tests: 

a )  72 hour, Soxhlet test;  

b )  31 hour, 298 K, pH 4 acetate buffer t e s t ;  

c )  31 hour ,  298 K, pH 9 amonium hydroxide-HC1 buffer tes t ;  

d )  long-term modified I A E A  leach tes t  a t  298 K i n  dist i l led 

water w i t h  decreasing sampling frequencies; 
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e )  

f )  7 day, 620 K, 10.7 MPa, s a t u r a t e d  brine au toc lave  test .  

Unfor tuna te ly ,  i n  a l l  b u t  the Soxhlet  tes t  and l a t e  s t ages  of the long- 

7 day, 620 K, 16.5 MPa d i s t i l l e d  water  au toc lave  tes t ;  and 

term, modified I A E A  tes t ,  cermet samples were placed i n  d i rect  con tac t  w i t h  

var ious  meta ls  i n  the test  appara tus ,  r e s u l t i n g  i n  ga lvanic  coupling. T h e  

r o l e  of ga lvanic  coupl ing  i n  these tests and i t s  a f f e c t  on the r e s u l t i n g  

d a t a  have not been f u l l y  determined. 

dry weight changes and r ad io i so tope  ana lyses  of the leachant ,  u s i n g  the 

geometr ical  s u r f a c e  a r e a s  o f  the cermet samples, as  shown below: 

Leach r a t e s  were c a l c u l a t e d  from 

(wei gh t  b a s i s  ) 

+ (SA x T )  = g / c d  d ( i s o t o p i c  b a s i s )  
w o  (k) 

A, = o r i g i n a l  r ad io i so tope  a c t i v i t y  i n  samples 

A = a c t i v i t y  leached 

W, = o r i g i n a l  dry  weight 

W = dry  weight a f t e r  tes t  

SA = geometric su r face  a rea  

T = incremental  o r  t o t a l  tes t  per iod i n  days 

*Some samples exh ib i t ed  a we igh t  gain caused by oxida t ion  o f  the matr ix  
and depos i t i on  of r e a c t i o n  products  a s  caused by ga lvanic  coupling. 
T h i s  mathematical express ion  was not a p p l i c a b l e  i n  these s i t u a t i o n s  and 
f o r  s i m i l a r  reasons ,  was ques t ionable  i n  o t h e r  tests.  
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The percentage o f  each r a d i o i s o t o p e  t r a c e r  re leased over  t h e  d u r a t i o n  

o f  t h e  t e s t s  was a l s o  ca lcu la ted .  Whi le  t h e  r e s u l t s  o f  these t e s t  c a l c u l a -  

t i o n s  may n o t  be comparable t o  those determined f o r  o t h e r  waste forms under 

s i m i l a r  cond i t ions ,  in tercompar ison o f  t h e  cermets l e a c h a b i l i t y  under these 

v a r i e d  leach c o n d i t i o n s  would seem t o  be a v a l i d  opt ion.  

R e s u l t s  o f  t h e  Soxhlet ,  pH 4, and pH 9 t e s t s  are shown i n  Table 5. 

O f  these t h r e e  t e s t s ,  o n l y  t h e  Soxhlet  t e s t  was performed i n  t h e  absence 

o f  ga lvan ic  coupl ing.  Therefore,  t h i s  i s  t h e  o n l y  t e s t  i n  t h e  PNL 

s e r i e s  i n  which i d e n t i c a l  t e s t  c o n d i t i o n s  p r o v i d e  a bas is  f o r  comparison 

between t h e  cermet waste fo rm and g lass waste forms t e s t e d  a t  PNL. 

D u r i n g  Soxh le t  leach t e s t i n g  o f  a 78-68 s o l i d  g lass  sample a t  PNL, a leach 

r a t e  o f  9 x 

t h i s  value i s  t o  be compared w i t h  7.1 x 

sample. 

were a v a i l a b l e  f r o m  PNL. Therefore,  comparison o f  r e s u l t s  f r o m  these 

leach t e s t s  i s  s t i l l  somewhat amb guous. The sur face  appearance o f  t h e  

cermet sample a f t e r  Soxh le t  leach t e s t i n g  i s  shown i n  Fig.  15. I n  bo th  

t h e  pH 4 and pH 9 t e s t s ,  t h e  samp es were suspended i n  b u f f e r e d  leachants 

i n  Type 304L s t a i n l e s s  s t e e l  mesh baskets. V i s u a l  examinat ions revealed 

obvious ga lvan ic  c o u p l i n g  e f f e c t s  as evidenced by a brown s t a i n  o r  r e a c t i o n  

produc t  d e p o s i t i o n  l a y e r  on t h e  cermet samples and t h e  mesh baskets a t  

c o n t a c t  areas. The r e s u l t s  f rom t h e  long-term, m o d i f i e d  I A E A  leach t e s t  

showed sporad ic  v a r i a t i o n s  i n  incrementa l  leach r a t e s  o f  a magnitude o f  

g/cm2 d was determined as based on weight  l o s s  [SI; 

g/cm2 d f o r  t h e  cermet 

No g lass  leach data based on cesium o r  o t h e r  r a d i o t r a c e r  analyses 

g/cm* d when based on cesium analyses. As noted above, t h e  sample 

was suspended i n  t h e  leachant  u s i n g  a Type 304L s t a i n l e s s  s t e e l  basket 

which r e s u l t e d  i n  ga lvan ic  coupl ing.  L a t e  i n  t h e  t e s t ,  wh,ich l a s t e d  
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Tab le  5. R e s u l t s  o f  PNL Leach Tests  A, B, C. 

(C) PH 9 
31  hour  

( A )  S o x h l e t  t e s t  (B) PH 4 
72 hour  31 hour  

C s  a n a l y s i s  bas is  
% Cs r e l e a s e  
g / c d  d 

Ru a n a l y s i s  b a s i s  
% R u  r e l e a s e  
g/cm2 d 

0.002 
7.1 x 

0.024 
7.18 10-5 

* N.D. 
N.D. 

N.D. - N o  R u  detec ted  i n  leachant .  * 

0.11 
7.4 10-4 

0.072 
4.75 x 10-4 

0.0016 
1.02 10-5 

0,0024 
1.6 10-5 

0.015 
2.43 10-4 

0.003 
1.72 x 

F i g .  15. Macrograph of cermet sample s u r f a c e  f o l l o w i n g  Soxh le t  leach 
t e s t i n g  shows e s s e n t i a l l y  no change i n  appearance as a r e s u l t  

o f  t h e  t e s t .  



44 

146 days, a p l a s t i c  basket was subs t i t u ted  f o r  t h e  s t a i n l e s s  s tee l  basket. 

F igures 16 and 1 7  show t h e  sample sur face w i t h  i t s  sur face deposit r e s u l t i n g  

f r o m  galvanic  coupling, and t h e  cross sec t i ona l  area a t  t h a t  sur face where 

some l o c a l  r e a c t i o n  had occurred. The penet ra t ion  depths o f  reac t i on  layers  

d i d  not exceed f i v e  microns and these areas o f  penet ra t ion  were ev ident  on ly  

a t  those ocat ions where sur face deposi t ions had formed. 

sporadic each behavior, t e s t i n g  compl icat ions and t h e  lack  o f  r e p e t i t i v e  

t e s t s  f o r  comparative purposes, no conclus ion i s  drawn from t h i s  t e s t  

regard ing  t h e  extended-term leach behavior o f  cermets. 

Because o f  t h e  

Two high-pressure, elevated-temperature autoclave leach t e s t s  (e, f )  

were performed a t  PNL on rad io t race r -con ta in ing  cermet samples. One samp 

was exposed t o  d i s t i l l e d  water f o r  seven days a t  620 K and 16.5 MPa wh i l e  

t h e  o ther  sample was t e s t e d  i n  sa tura ted  b r i n e  f o r  seven days a t  620 K an 

approximately 10.7 MPa. 

t e s t s  s ince  t h e  samples were h e l d  i n  Inconel  600 beakers i n s i d e  Has ta l l oy  

Galvanic coup l ing  again was present i n  these 

' IC"  autoclaves. I n  t h e  d i s t i l l e d  water t e s t ,  a weight ga in o f  0.0025% was 

observed, w h i l e  ana lys is  o f  t h e  c l e a r  leachant showed a cesium re lease o f  

12% corresponding t o  a ca l cu la ted  leach r a t e  o f  1.5 x 

gray adherent coa t ing  o r  t a r n i s h  formed on t h e  cermet i n  t h i s  t e s t ;  

however, no ?oca1 a t tack  o r  p i t t i n g  was apparent by v i sua l  examination. 

The sample exposed t o  hydrothermal cond i t ions  i n  sa tura ted  b r i n e  deve- 

loped a th i cke r ,  black, adherent coa t ing  and showed a weight ga in o f  

2.82%. Analys is  o f  t h e  leachant i n d i c a t e d  a 38% Cesium release, 

corresponding t o  a ca l cu la ted  leach r a t e  o f  3.9 x 

bo th  tes ts ,  t h e  cermet samples t o t a l l y  maintained t h e i r  phys ica l  

i n t e g r i  ty  . 

g / c d  d. A 

g/cm2 d.  I n  

e 
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Meta l lograph ic  examinations o f  these samples confirmed t h a t  fo rmat ion  

o f  l a y e r s  on t h e  surfaces o f  these samples, as i l l u s t r a t e d  i n  Fig. 18, had 

occurred w i t h  t h e  l a y e r  formed du r ing  t h e  b r i n e  t e s t  being t h i c k e r  than 

t h a t  formed i n  t h e  d i s t i l l e d  water t e s t .  A few cracks up t o  approximately 

100 rn i n  depth were observed; however, i t  i s  unc lear  whether these cracks 

formed as a r e s u l t  o f  t h e  hydrothermal t e s t  cond i t i ons  o r  as a consequence 

(more l i k e l y )  o f  t h e  p repara t i ve  methods employed f o r  these samples. 

Deposits o f  an i ron -con ta in ing  cor ros ion  product were observed a t  various 

l o c a t i o n s  w i t h i n  these cracks. The presence o f  o ther  a l l o y i n g  elements 

these deposi ts  were not  detected. 

cesium re leases i n d i c a t e d  by leachant analyses (12% and 38%), no s i g n i f  

F i n a l l y ,  i n  s p i t e  o f  t he  apparently 

i n  

arge 

cant - 
deple t ions  i n  cesium content o f  t h e  surface o r  near sur face a lum inos i l i ca te  

p a r t i c l e s  was found as determined by energy d i spe rs i ve  x-ray analyses. 

F ig .  16. Macrograph o f  cermet sample sur face f o l l o w i n g  146-day leach t e s t .  
Apparent ga lvan ic  coup l ing  wi th  s t a i n l e s s  s tee l  mesh basket r e s u l t e d  i n  

sur face deposi ts  on the  cermet sample. 



46 

ORNL-PHOTO 4470-81 

Fig .  17. 
sample shows minimal attack 

SEM micrograph of the cross section of the 146 
n in areas whe 

I' ru s t I' rred as a r 

. SEM micrograph of the cross section of the hydrothermal brine 
t e s t  sample sho the t h i n ,  adherent reaction layer which 

devel on the cermet surface. 
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The corrosion resistance of the metal matr ix  can be enhanced f i r s t ,  by 

compositional selection and  control and secondly, by simple application o f  

galvanic coupling principles. 

the  ranking o f  degree of nobili ty of two cermet alloy formulations relat ive 

t o  a variety of metals in WIPP "B" s a l t  solutions. The selection of a 

The galvanic ser ies  shown in Table 6 gives 

corrosion resis tant  metal t o  be i n  contact with the cermet waste form, as 

p a r t  o f  the containment package, t h a t  i s  also anodic with respect t o  the 

cermet mat r ix ,  could significantly delay any corrosion of the mat r ix  metal 

t h a t  might otherwise occur i n  a particular environment. 

Table 6. Preliminary Galvanic Series Results i n  WIPP "B" Solution 

Material Potential ( V )  vs. P t  

Noble o r  P t  - 
Cat hodi c Ti -0.190 

304 SS* -0.350 (passive) 

-0.500 (act ive)  

Cermet (50 Fe-50 N i )  -0.580 

cu -0 600 

Cermet (70 Fe-20 Ni- -0.720 
5 Cu-5 Misc.) 

Pb -0 860 

Active or Zn -1.375 

Anodic 

*304 s ta in less  occasionally suddenly becomes activated a f t e r  which 
there i s  an  exponential decay t o  the passive potential. 
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It i s  c l e a r  from these r e s u l t s  t h a t  t h e  leach r a t e  o f  cermets i s  

very  low, bu t  f o r  more q u a n t i t a t i v e  r e s u l t s ,  more r e f i n e d  leach t e s t i n g  of 

cermets would be requi red.  

m a t r i x  composi t ion i s  r e l a t i v e l y  u n c o n t r o l l e d  w i t h  probable f o r m a t i o n  o f  

l o c a l  c o r r o s i o n  c e l l s  l e a d i n g  t o  t h e  r a p i d  d i s s o l u t i o n  o f  t h e  m a t r i x  w i t h  

subsequent r a p i d  l e a c h i n g  and d i s p e r s i o n  o f  t h e  ceramic phases i n  t h e  cer-  

met [ l O J .  

metal  m a t r i x  can be bo th  c o n t r o l l e d  and t a i l o r e d  t o  p r o v i d e  optimum per- 

formance f o r  p a r t i c u l a r  d isposa l  environments. There i s  no exper imental  

evidence t o  i n d i c a t e  t h a t  t h e  composi t ional  homogeneity p rov ided by t h e  

urea d i s s o l u t i o n  process i s  a l t e r e d  d u r i n g  subsequent process ing t o  t h e  

e x t e n t  t h a t  l o c a l  c o r r o s i o n  c e l l s  w i l l  develop and hasten t h e  degradat ion 

o f  t h e  cermet waste forms. F i n a l l y ,  i n  t e s t s  where c o r r o s i o n  o f  t h e  metal 

m a t r i x  d i d  occur, an adherent ox ide  c o a t i n g  developed which mainta ined t h e  

i s o l a t i o n  o f  t h e  ceramic phase p a r t i c l e s  and prevented t h e  r a p i d  l e a c h i n g  

and d i s p e r s i o n  o f  these ceramic p a r t i c l e s .  

Concerns have been expressed t h a t  t h e  a l l o y  

I n  response t o  these concerns, i t  should be noted t h a t  t h e  

PROCESSING CHARACTERISTICS AND VARIOUS CERMET PROPERTIES 

Those process ing  c h a r a c t e r i s t i c s  and cermet p r o p e r t i e s  which have no t  

been discussed i n  separate d e t a i l  a r e  summarized below. 

Waste L o a d i n g  

The waste l o a d i n g  l e v e l s  f o r  cermets can vary over  a wide range f rom 

2-75 w t .  %. I n  general,  as t h e  sodium content  o f  t h e  waste increases, t h e  

waste l o a d i n g  decreases s i n c e  g r e a t e r  amounts o f  ceramic- forming a d d i t i v e s  

a r e  r e q u i r e d  t o  compound and f i x  t h e  sodium ions. Less waste, t h e r e f o r e ,  



49 

can be accommodated i n  t h i s  case i f  t h e  d e s i r e d  ceramic-to-metal  r a t i o  i n  

t h e  cermet i s  preserved. Conversely, as t h e  r e d u c i b l e  metal  con ten t  o f  t h e  

waste increases,  waste l o a d i n g  l e v e l s  can be increased, s i n c e  t h i s  metal  

i n  t h e  waste i s  i n c o r p o r a t e d  i n  t h e  m e t a l  m a t r i x  d u r i n g  processing. The 

sodium and meta l  con ten ts  o f  t h e  waste have t h e  most s i g n i f i c a n t  e f f e c t  on 

b l e  heat  genera t ion  or  t h e  maximum waste l o a d  

r a d i a t i o n  l i m i t s  be ing  

Waste Volume Reduct ion  

ng l e v e l ,  a s i d e  f r o m  poss 

p laced on waste packages. 

The valume o f  waste, as i t  i s  now stored,  can be reduced s i g n i f i c a n t l y  

d u r i n g  i t s  convers on t o  t h e  f i n a l  cermet s to rage form. T h i s  volume reduc- 

t i o n  r e l i e s  main ly  on t h e  waste l o a d i n g  l e v e l  and d e n s i t y  o f  t h e  cermets, 

which a r e  bo th  r e l a t i v e l y  high. 

t h e  f i n a l  cermet host,  waste volume r e d u c t i o n  f a c t o r s  o f  Prom 1:l t o  

10O:l have been demonstrated. 

Meta l  -to-Cerami c Rat  i os 

I n  c o n v e r t i n g  t h e  waste as dry c a l c i n e  t o  

No s i n g l e  r a t i o  o f  metal  phase t o  ceramic phase can be considered 

optimum s i n c e  p r o p e r t y  requirements vary w i t h  t h e  d i f f e r e n t  wastes be ing  

t r e a t e d  and t h e  subsequent d isposa l  op t ions .  Cermets w i t h  metal  phase 

l o a d i n g s  f rom 50 t o  80 w t .  X metal  (balance i s  mixed ceramics)  have been 

i n v e s t i g a t e d .  The meta l - to-ceramic r a t i o  must be chosen by consider ing,  

among o t h e r  t h i n g s ,  t h e  metal  con ten t  o f  t h e  waste and a v a i l a b i l i t y  o f  

a d d i t i v e s ,  d e s i r e d  thermal  and mechanical p r o p e r t i e s ,  and var ious  p h y s i c a l  

p r o p e r t i e s  t h a t  a r e  deemed t o  be o f  importance t o  t h e  performance o f  t h e  

o v e r a l l  waste d isposa l  system. 
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D e n s i t y  

The d e n s i t y  o f  cermets i s  determined by t h e  f o r m u l a t i o n  chosen f o r  a 

p a r t i c u l a r  a p p l i c a t i o n  and t h e  e f fec t i veness  o f  t h e  d e n s i f i c a t i o n  process. 

Over a wide range o f  f o r m u l a t i o n s  and d e n s i f i c a t i o n  methods, cermet den- 

s i t i e s  have been found t o  range between 6.0 and 8.2 g/cc. The dens i ty ,  

as may be a f f e c t e d  by p o r o s i t y ,  p lays  a s i g n i f i c a n t  r o l e  i n  de termin ing  

o t h e r  cermet p r o p e r t i e s ,  i .e., leach res is tance,  thermal condi ic t i  v i t y ,  e tc .  

Thermal C o n d u c t i v i t y  

Measurements on both s imu la ted  and r e a l  waste cermets w i t h  d i f f e r e n t  

f o r m u l a t i o n s  and d e n s i t i e s ,  have y i e l d e d  thermal c o n d u c t i v i t y  values bet -  

ween 3 and 20 W / m K  w i t h  a value o f  15 W/mK b e i n g  t y p i c a l .  I n  general ,  

as t h e  d e n s i t y  o r  t h e  r e l a t i v e  metal  phase conten t  i s  increased, t h e  

thermal  c o n d u c t i v i t y  of t h e  cermet i s  increased. 

Decay Heat Loading 

No l i m i t  f o r  decay heat l o a d i n g  has been determined f o r  cermets. 

Due t o  t h e  h i g h  thermal c o n d u c t i v i t y  o f  cermets, t h e  i n t e r n a l  temperature 

g r a d i e n t  caused by decay heat i s  minimal. I t  i s  l i k e l y  t h a t  t h e  decay 

heat  l i m i t  f o r  t h e  waste s to rage system w i l l  o v e r r i d e  any l i m i t a t i o n  

imposed by t h e  cermet waste form i t s e l f .  D u r i n g  very l i m i t e d  t e s t i n g  

w i t h  a c t u a l  h i g h - l e v e l  wastes, samples were prepared hav ing decay heat  

l o a d i n g s  of 0.02 and 0.2 W/cc f o r  NFS a c i d  Thorex and f r e s h  SRP a c i d  

wastes, r e s p e c t i v e l y .  

O x i d a t i o n  Behavior  

P r e l i m i n a r y  t e s t s  on t h e  o x i d a t i o n  behavior  of cermets have been 

performed. Upon an 8-hour exposure a t  770 K i n  a i r ,  a u n i f o r m  ox ide f i l m  
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approximately 2 p m  i n  th ickness  formed on t h e  surfaces. 

exposure t o  a i r  a t  1070 K r e s u l t e d  i n  an ox ide l a y e r  approximately 5-7 urn 

t h i c k .  

dent upon t h e  metal m a t r i x  composition, which i n  these cases was 70 w t .  % 

Fe, 20 w t .  % N i ,  5 w t .  % Cu, and 5 w t .  'x, Co. 

Thermal Shock Resistance 

A 2-hour 

As expected, t h e  ox ida t i on  behavior o f  cermets i s  p r i m a r i l y  depen- 

Throughout 1 aboratory  hand1 i ng o f  sarnpl es, cermets have shown no 

s u s c e p t i b i l i t y  t o  damage caused by thermal shock. In a b r i e f  quant i ta -  

t i v e  t e s t  ser ies ,  cermet samples were cyc led  th ree  t imes between 1200 K 

and a water quench. 

ox ide  f i l m  formed on t h e  surface; however, meta l lographic  examination o f  

t h e  samples revealed no damage o r  a l t e r a t i o n  o f  t he  cermets as a r e s u l t  

o f  t h i s  severe thermal shock. 

Since t h e  1200 K heat ing  was performed i n  a i r ,  an 

APPLICATION OF CERMETS TO SPACE DISPOSAL OF NUCLEAR WASTES 

B a t t e l l  e Columbus Labora tor i  es (BCL) , under con t rac t  t o  NASA 

Marshal 1 Space F l i g h t  Center has been conduct ing a t echn ica l  eva lua t ion  

o f  space d isposal  o f  r a d i o a c t i v e  wastes 1111. U n t i l  recent ly ,  these 

s tud ies  were const ra ined t o  waste forms f o r  which i n d u s t r i a l  sca le pra- 

cess ing would be developed by t h e  e a r l y  1980's. 

p r e c l  uded cons ide ra t i  on o f  any a1 t e r n a t i  ve waste forms except ca l c ine  and 

glass. 

t h i s  purpose s ince  they  f a i l  t o  meet requirements s p e c i f i c  t o  t h e  space 

d isposal  concept. New s tud ies  have been i n i t i a t e d  t h a t  a re  ta rge ted  t o  

i n c l u d e  those commercial and/or defense h igh - l  eve1 waste forms whose 

Th is  e s s e n t i a l l y  

These l a t t e r  waste forms a re  considered t o  be unsa t i s fac to ry  f o r  
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r e l a t e d  techno log ies  a r e  expected t o  be a v a i l a b l e  i n  t h e  mid 1990's.. 

T h i s  d e c i s i o n  permi ts  c o n s i d e r a t i o n  o f  a wide v a r i e t y  o f  waste forms, 

many o f  which are  o n l y  i n  e a r l y  stages o f  development. Recent ly ,  a t  a 

peer  rev iew meet ing o f  r e p r e s e n t a t i v e s  f rom a v a r i e t y  o f  s i t e s "  t h e  cer -  

met s o l i d  waste f o r m  was se lected,  by consensus, as t h e  most p r a c t i c a l  

cand ida te  f o r  t h e  space d isposa l  opt ion.  O u t l i n e d  below a r e  d e s i r a b l e  

waste form f e a t u r e s  and t h e i r  w e i g h t i n g  by r e l a t i v e  importance by which 

t h e  a l t e r n a t i v e  forms were evaluated. 

1. High waste l o a d i n g  h i g h e r  waste load ings  reduce t h e  

number o f  launches r e q u i r e d  f o r  a g iven amount o f  waste 

w i t h  r e s u l t a n t  cos t  reduct ion.  Rat ing :  p r i m a r y  importance. 

2. H igh  thermal c o n d u c t i v i t y  - good heat t r a n s f e r  a b i l i t y  i s  

r e q u i r e d  bo th  t o  prevent  e x c e s s i v e l y  h i g h  c e n t e r l i n e  temper- 

a t u r e s  r e s u l t i n g  f r o m  h i g h  heat -genera t ing  c h a r a c t e r i s t i c s  

o f  commercial waste and t o  r a p i d l y  conduct heat away f rom 

t h e  waste form s u r f a c e  i n  t h e  event o f  unplanned r e e n t r y  o f  

an unpro tec ted  waste package. Rat ing :  p r i m a r y  importance. 

3. Resis tance t o  thermal  shock - r e s i s t a n c e  t o  f r a c t u r e  under 

thermal  shock i s  t h e  key t o  a c h i e v i n g  low d i s p e r s i b i l i t y  

o f  waste under a b o r t i v e  c o n d i t i o n s .  Rat ing :  secondary importance. 

4. Thermochemical s t a b i l i t y  - c o n s i d e r i n g  d i s p e r s i o n  under 

a b o r t i v e  c o n d i t i o n s ,  t h e  waste form must possess thermo- 

chemical  s t a b i l i t y .  Rat ing :  p r i m a r y  importance. 

I n c l u d e d  were r e p r e s e n t a t i v e s  f r o m  ONWI, DOE, NASA, BCL, INEL, ORNL, 
PNL, and Sandia. 

* 



53 

5. Resis tance t o  l e a c h i n g  - w h i l e  leach r e s i s t a n c e  i s  impor tan t ,  

i t  i s  n o t  as c r i t i c a l  as i n  t h e  case a f  t e r r e s t r i a l  d isposa l .  

I n  t h e  event o f  an acc ident ,  t h e  unpro tec ted  waste f o r m  

package c o u l d  impact i n  water, thus  r e q u i r i n g  some r e s i s t a n c e  

t o  leaching.  I n  many r e e n t r y  scenar ios,  however, t h e  waste 

f o r m  w i l l  remain p r o t e c t e d  by a r e e n t r y  package and f l o t a t i o n  

co1 1 ar .  Rat ing :  secondary importance. 

Toughness - t h e  waste f o r m  should absorb impact w i t h o u t  

s h a t t e r i n g  so as t o  f a c i l i t a t e  r e t r i e v a l  and r e s i s t  

d i s p e r s i o n  o f  t h e  waste. Rat ing :  p r i m a r y  importance. 

6. 

7. A p p l i c a b i l i t y  t o  bo th  cainrnercial and defense HLW mixes - 
f o r  t h e  purpose o f  t h i s  study, t h e  waste fo rm should be 

a p p l i c a b l e  t o  "c lean"  wastes f rom commercial and defense 

sources. Rat ing :  p r i m a r y  importance. 

F a b r i c a t i o n  technology - t h e  a b i l i t y  t o  f o r m  l a r g e  

shapes (spheres o r  c y l i n d e r s ,  l - m e t e r  d iameter)  

b y  remote process ing  i n  a r e l i a b l e  f a s h i o n  by t h e  

t h e  mid 1990's.  Rat ing :  p r i m a r y  importance. 

Economics - waste f o r m  i n a t e r i a l s  and process ing  

s h o u l d  n o t  be p r o h i b i t i v e l y  expensive; however, i n  

r e l a t i o n  t o  t h e  c o s t  o f  a s i n g l e  launch, t h i s  w i l l  

n o t  be a c o n t r o l l i n g  f a c t o r .  Rat ing :  secondary importance. 

8.  

9. 

10. Res is tance t o  o x i d a t i o n  - i n  t h e  event o f  unplanned 

r e e n t r y  o f  an unsh ie lded waste package, t h e  waste fo rm 

s u r f a c e  should n o t  r a p i d l y  o x i d i z e  n o r  break away f rom 

t h e  main body o f  t h e  waste package causing d ispers ion .  



While waste forms containing metal are  susceptible t o  

oxidation, t he i r  h i g h  thermal conductivity minimizes 

surface temperature by conducting heat away and thus 

reduces oxidation and fragmenting of the main body of 

the waste package. Rating: secondary importance. 

Waste forms evaluated under t h i s  set  o f  c r i t e r  a were the O R N L  cermet, 

I C P P  glass ceramic, Sandia t i t ana te  ceramic, borosi icate  glass, metal 

matrix (coated par t ic le)  and pressed supercalcine. Because o f  density 

and  waste loading requirements, concrete and Synroc waste forms were 

n o t  included in this review. Of the waste forms l i s ted ,  the ORNL cermet 

possessed the optimum rating for  the overall l i s t  o f  requirements for 

space disposal C12-I. A detailed engineering evaluation of the application 

of the cermet waste form t o  the disposal of HLW in space i s  currently in 

progress by NASA and i t s  subcontractor, Battel l e  Columbus Laboratories. 
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