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THE QUASI-STATIONARY APPROXIMATION FOR THE STEFAN PROBLEM WITH A
CONVECTIVE BOUNDARY CONDITION

A. D. Solomon

D. G. Wilson
V. Alexiades

ABSTRACT

We show that the solution to the Stefan problem with a convective
boundary condition tends to the quasi-stationary approximation as the
specific heat tends to zero. Additional properties of the approxi-

mation are given, and some examples are presented.






1. Introduction

Consider the following problem:
Problem I. Find T(x,t), X(t) for t > 0, xe[0,X(t)] for which
X(t) is continous for all t » 0,
X'(t) is continuous on t > 03

T(x,t) Tx(x,t) are continuous for t > 0, 0 < x < X(t);
Tt(x,t), Txx(x,t) are continuous for t > 0, 0 < x < X(t);

-2 < 1im inf T(x,t), lim sup T(x,t) < =

coT, (x,t) = K T, (x,t), for t >0, xe(0,X(t));

T(x,t) = Top for t >0, x > X(t);
pHX' (L) = —KTX(X(t),t) for t > 0;
X(0) = 0;

-K TX(O,t) = h[TL—T(O,t)], t > 0.

.8a)

.8b)



In the context of melting the slab x » 0 with convective heat transfer

from a fluid at x = 0, the symbols used are:

T(x,t) is the temperature at a point x and time t; (°C);
X(t) is the melt front location at time t (m);

c is the material specific heat (KJ/kg-°C);

p is the material density (Kg/m3);

K is the material thermal conductivity (KJ/m-s-°C)

h is the heat transfer coefficient from the
fluid to the material wall at x = 0 (KJ/m?-s-°C),

Top is the material melting temperature (°C);

Tl is the ambient transfer fluid temperature (°C).

We will also use
a = K/{(ce), the material thermal diffusivity (m?/s);
AT = TL ~ Tcr (°C).

The existence of a solution to Problem I has been proved in {2].
Recently [8] [10], we have studied the relationship of this solution to

that of the following “1imiting" problem for h = e,

Problem II. Find Y(t), U(x,t) satisfying all of the conditions on

X(t), T(x,t) of Problem I except for (1.9). In its place we require

U(0,t) = TL, £t >0. (1.10)

Problem Il is the classical Stefan problem having the explicit

solution [1]:

Y(t) = 2Wat, (1.11a)



Ulx,t) = T - aT erf(x/27at)/erfx, where X is the (unique) (1.11b)
root of the equation

2
Aex erfi = St/Vn; where St is the "Stefan" number (1.11c)

St = cAT/H. (1.12)

In the quest for approximate solutions of problems such as the
above, a third problem is of interest. This is formulated by replacing

the heat equation (1.6) with its steady state relation

KTXX(x,t) =0 (1.13)

and is thus referred to as the "quasi-stationary" problem.
Specifically, we have

Problem I111. Find a pair X o (t), T9%%(x,t), corresponding to the

s
phase front X(t) and temperature T(x,t), satisfying all of the

conditions (1.1} - (1.9) with the exception of the heat equation (1.6).
In its stead we demand that qus(x,t) satisfy the steady state equation

(1.13) for Xe[O,XqSS(t)].
We will refer to qus(t) and qus(t) as the "quasi-stationary"

approximations to X(t), T(x,t). Indeed the quasi-stationary
approximation is often used as the simplest "effective" approximate

solution for a large variety of moving boundary problems (see, e.g.



[9], and the references therein). This is based on the assumption that
as ¢ + 0 the solution to Problem I converges to that of Problem III.
It is our aim in the present paper to prove this. Indeed one might
consider this result to be a small first step towards the very needed
analysis of the error arising in a family of analytical approximation
techniques used in engineering heat transfer and of untested accuracy
[11].

Qur discussion begins in Section 2 with the derivation and some
properties of the quasi-stationary approximation. In Section 3 we
prove the asserted convergence result. We close in Section 4 with some

additional remarks concerning the approximation.

2. The Quasi-stationary Approximation

In melting and solidification processes modeled by Problem I when
the Stefan number St = cAT/H is small the spatial temperature
dependence is for all purposes linear. Hence we may attempt to

approximate T(x,t) by a linear function

T(x,t) = a(t)x + b(t). (2.1)



Substitution into (1.7), (1.8) and (1.9) yields the quasi-

stationary approximation

Xgss(t) = (K/n){[1 + 2n2taT/(KeH) /2 - 1} (2.2a)

T95%(x,t) = T - haT(x=X)/(K + nx(t)) (2.2b)

In a similar way we find the quasi-stationary approximation for

Problem II to be

qus(t) = {2KtaT/(pH) }17/2, (2.3a)

u9%%(x,t) = T - X(AT)/X(t). (2.3b)

Some idea of how accurate these approximations are may be gained
by comparing qus(t), qus(x,t) with Y(t) and U(x,t) of (1.1la, b) for
a typical melting problem related to latent heat thermal enerqgy storage

[9].

Example 1. A slab x > 0 of N-Octadecane paraffin wax is to be melted

via an imposed surface temperature of TL = 100°C at x = 0. The

relevant properties of the wax are given in Table 1.

Table 1. Properties of N-Octadecane Wax [3]

o = 814 Kg/md

K =1.5 x 10-% KJ/m-s-°C
C = 2.16 KJ/Kg-°C

H o = 243 KJ/Kg

T.. = 28°C

cr



A short calculation shows us that St = .64 whence the root X of
(1.11c) is found to be A = .515 to the nearest three decimal places.
This in turn yields the front Y(t) = 3.0085 x 10~* ¥t. On the other
hand from (2.3) we obtain qus(t) = 3.3045 x 10-* vt, which has a
relative error below 10%. In heat transfer processes such as that of
this example an error of this size is acceptable, particularly since

the thermal parameters (K, ¢, p, H) are themselves not precisely known.

Example 2. The slab of Example 1 is now to be melted via convective

heat transfer from a transfer fluid at temperature T, = 100°C. The

conditions are to be such that h = .02 KJ/m?~s-°C, which is a
reasonable value for heat storage applications [4].
Using a computer program for simulating the process of Problem I,
we have calculated the front X(t) for a simulated process of 30 hours.
In Table 2 and Figure 1 we compare the hourly values of the

calculated front, denoted by X (t), the quasi~-stationary

comp

approximation X t) of (2.2a), and the front Y(t) of Example 1

qss(

corresponding to h = <, We note that X t) exceeds X t) by about

qss( comp(

10%. On the other hand Y(t) > X t) in agreement with the results

comp(

of [8]. However qus(t) > Y(t) for t beyond 16 hours, a fact to which

we will return in Section 4. As in Example 1, the quasi-stationary
approximation yields an effective estimation tool for X(t). Similar

agreement is observed for the surface temperature at x = 0.
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Figure 1. Comparison of X(t), qus(t) and Y(t) for Example 2.



Table 2. Xcomp(t), qus(t) and Y(t) For Example 2
£ (hr) comp't) (M) gss' M vy )

0 0 0 0

1 .0124 .0137 .0181
2 .0194 .0215 .0255
3 .0251 .0277 .0313
4 .0297 .0329 .0361
5 0339 .0374 0404
6 .0378 .0416 .0447
7 .0413 .0455 .0478
8 .0445 .0491 L0511
9 0476 .0525 0547
10 0504 .0556 .0571
11 .0531 .0587 0599
12 0558 .0616 .0625
13 0584 0644 .0651
14 0608 .0671 .0675
15 .0631 .0697 .0699
16 .0654 .0722 0722
17 .0677 0746 0744
18 0698 .0770 0766
19 .0719 .0792 .0787
20 0740 .0815 .0807
21 0759 .0837 .0827
22 0779 .0858 .0847
23 .0797 .0879 .0866
24 .0817 .0899 .0884
25 .0834 .0919 .0903
26 .0852 .0939 .0920
27 .0870 .0958 0938
28 .0887 .0977 .0955
29 .0904 .0995 .0972
30 .0920 .1014 .0989




For many applications the quantity of greatest interest for

Problem I is the total heat stored in the melting material as a
function of time.‘ An approximation to this quantity can be derived

from (2.2), (2.3) as

t
QF(t) = -k [ T (0,t")dt" (2.4)
0

it

(KeH/h){[1 + (2h2taT/(KeH))]1/2}

pH qus(t).

It has been shown in [8], that the total energy Q(t) for Problem 1,

t
Q(t) = hof [T, - T(0,t')]dt"

is bounded from below by Q¥%%(t).

Example 2 (continued). For the 30 hour simulation of Example 2 we may

calculate the total energy Qcomp(t) in the system. In Table 3 we

compare Qcomp(t) with Qqss(t) of (2.4). As we see the approximation

Qqss(t) constitutes a reasonable close lower bound to Qcomp(t).
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Table 3. Q“O™P(t) And Q955(t) For Fxample 2

t (hr) Q2™ (t) (kJ/m?) Q¥ (t) (ka/m2)
0 0 0
1 2922 2709
2 4687 4253
3 6089 5469
4 7292 6499
5 8360 7411
6 9331 8237
7 10,227 8998
8 11,064 9708
9 11,852 10,375
10 12,598 11,007
11 13,308 11,608
12 13,988 12,183
13 14,641 12,735
14 15,269 13,266
15 15,876 13,778
16 16,463 14,274
17 17,033 14,755
18 17,586 15,222
19 18,124 15,676
20 18,650 16,118
21 19,162 16,550
22 19,662 16,971
23 20,151 17,384
24 20,630 17,787
25 21,099 18,182
26 21,559 18,569
27 22,009 18,949
28 22,452 19,322
29 22,887 19,688
30 23,314 20,049
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3. Convergence To the Quasi-Stationary Approximation For Problem I.

In [8] we derived a number of properties of the solution to

Problem I. OQur results can be summarized as:

Theorem 1. Let X(t), T(x,t) be a solution to Problem I. Then

a) T(x,t) X(t) are unigue;
b) T(x,t) is increasing in t for xe[0,X(t)];

c) T(x,t) and -Tx(x,t) are decreasing in x for each t > 0;

d) T{x,t) » T __ as x,t » 0;

cr

e) T(0,t) » T ast » e

Moreover,

T < T(x,t) €T

cr t >0, 0<x <X(t); (3.1)

L’

0 < ~KTX(x,t) € hAT for t > 0, 0 € x € X(t); (3.2)

f) If Q(t) is the total stored energy in the time (0,t) then
Fo(t) < Q(t) < Fl(t) (3.3)
where

Fo(t) = (KeH/n) {[1 + 2th2aT/(KeH)]1/2 - 1} (3.4a)

Fr(t) = (KeH/h)(1 + 5 St)2 {1+ 26aTh2/(KeH(1 + 3 5t)2)]1/2 - 1}(3.4b)
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By d) we may consider T(x,t) to be defined for t > 0, xe[0,X(t)].

The solution to Problem I depends on the choice of the specific
heat c¢c. We will denote this dependence by writing the solution as Xc(t)
and Tc(x,t).

From (3.4a), (2.4) we note that the total heat stored, Qc(t), for
¢ > 0, is bounded below by Q1°(t) = Fy(t).

Moreover, St » 0 as ¢ » 0, so Fy(t) of (3.4b) tends to

Folt) = qSS(t) and thus from (3.3) we have
Theorem 2. As c » 0, QS(t) » Q955(t).

Corollary 1. For an t > 0, the surface temperature TC(O,t) obeys the

relation

£ t
Tim, | TE(0,t")dt' = [ TI%(0,t')dt. (3.5)
>0y 0

Proof. Since

Q955(t) = n f (1, - T%%(0,t")dt’
and

t
Q°(t) = h [ (T - TE(0,t))dt,
0

(3.5) follows directly from Theorem 1. Indeed, since t is arbitrary in

(3.5), we conclude that
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Corollary 2. For any ty, t;, with t5 < t;,

ty t

mg [ T0,t)dtt = [ T%3(0,t1)dt . (3.6)

c+0 t t
0 0

From Theorem 1 we know that for any c > 0, TC(O,t) is an increasing and

continuous function, bounded by TL' Let t > 0 be any value, and let
{cj} be any sequence of specific heats converging to zero, cj + 0.

Consider the sequence F of surface temperatures {TJ(O,t)}

corresponding to the {cj}.

Theorem 3. F contains a subsequence which converges pointwise to an

increasing function ¢(t) for ts[O,t*]. Moreover Tcr < ¢(t) < TL.

Proof. The assertion is an immediate consequence of a corollary to

Helly's principle ([6], p. 221).

Theorem 4. The limit ¢(t) coincides with T955(0,t) for all te[0,t”]:

o(t) = T9°%(0,t). (3.7)

Proof. Since ¢(t) E[Tcr’ TL]’ the Lebesgue dominated convergence

theorem tells us that for any tg, t;,

. tl
o, t )t = [ (' )dt.
t

0



14
Hence from (3.6),

t
[ (19%0,t) - q(t'))dt' = 0, (3.8)
to

and so ([7], p. 87) we must have
T95%(0,t) = o(t)
almost everywhere on [O,t*]. However T9%5(0,t) is continuous and ¢(t)

is increasing whence Q(t) must be continuous and the theorem is proved.

*
The arbitrariness of the choice of {cj} and t implies

Theorem 5. For all te[0,«),
7¢(0,t) > T9%%(0,t) as ¢ » 0. (3.9)

We now assert that convergence holds for xe[0, X455(t)]. The first step

in showing this is the following.
Theorem 6. For all te[0,«=),

Xc(t) > qus(t) as ¢ » 0, (3.10)

with convergence uniform on any finite time interval.
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Proof. The proof is a direct application of the heat balance relation

X ()

Q°(t) = co Of (TE(x,t) = T )dx + pHX (t) (3.11)

derived in [8]. Indeed, subtracting (2.4) from (3.11) we find

Q°(t) - Q¥%(t) = o H X () - X g

(t)]

(1)

+ cpof (Tc(x,t) Jdx.

- Ter
Now, by (3.1), the integral is bounded by cpAT Xc(t) and thus it tends

to zero as ¢ » 0, because Xc(t) is bounded independently of ¢ by
Xc(t) < KtaT/(pH),

as shown in [8]. Then, by Theorem 3, Q°(t) + Q9°%(t) and the result

follows.

We now assert that Tc(x,t) converges to qus(x,t) as ¢ » 0.

Specifically,

Theorem 7. As ¢ + 0 the temperature Tc(x,t) converges to qus(t) for

all t > 0, 0 < x < x955(¢).
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To prove this we make use of a series of lemmas. The first

describes the implication of a global heat balance for our material.

Lemma 1. Let £ > 0 be any fixed value. Then

Jimg [ Tix(x,t)dxdt =0 (3.12)

Proof. Since Ti(x,t) is continuous on [O,Xc(t)] for any t > 0,

X (t)

Oj o (60 dx = TE(X (t),t) = T(0,t).

However Tix(x,t) > 0 for all x,t while Ti(xc(t),t) = ~pHXC'(t)/K

and T5(0,t) = -h(T - T°(0,t)/K, whence we have

L

X ()

0 < O] Tix(x,t)dx = n(T, - 7¢(0,t))/K - pHX ' (£) /K.

Integrating with respect to t over [O,t*] yields

t Xc(t)
0 < Oj of Tix(x,t)dx = [Q%(t) - pHX(t) I/K.

But now as ¢ + O the right hand side tends to (QU°%(t) - oHX __(t))/K

gss
and our assertion is proved.

0
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X.(t)
c
Let Fc(t) = | Tix(x,t) dx. Then as we know Fc(t) 7 0 while by
0
*
the above lemma /| F-(t')dx' » 0 as ¢ » 0, for any t > 0. Let {cj} be

0

any sequence of specific heats converging to zero: cj + 0. Then

*

t C.
[ IF3(t)|dt + 0 as j » =.
0

C.
Hence F J(t) converges to zero in the mean on [O,t*]. However ([5],
C.
Theorem 38.7) this implies that F J(t) converges in measure to zero on
this interval. Hence by a theorem of Riesz ([6], p. 98) there is a
C.
subsequence {cj} of {cj} for which F J(t) converges to zero almost

*
everywhere on [0,t ]. We can summarize this in

Lemma 2. There exists a subsequence {cj} of {cj} for which
] ‘] *
FY(t) = J Txx(x,t)dx + 0 a.e. on [0,t ]J. (3.13)

Let t be any time for which (3.13) holds, and consider the

C. C.
temperature distributions T J(x,t). As proved in [8], T J(x,t) is

monotonically decreasing in x and is bounded between Tcr and TL;

C.
similarly —TXJ(x,t) is monotonically decreasing in x, and
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C .
0 < -TXJ(x,t) < hAT/K. Since for all Cj’ XC (t) < haT/{pH) we can
J

C. C.
define the functions T J(x,t) and -TXJ(x,t) on [0,hAT/(pH)] by setting

them equal to Tcr and 0 respectively, on [Xc(t), haT/pH]. Since the

C.
derivatives TXJ(x,t) are uniformly bounded, we may apply the Arzcla-

Ascoli lemma to the uniformly bounded and equicontinuous family of

C.
functions (T J(x,t)} for xe[0,hAT/(pH)], and hence find a subsequence

C.,
{cj'} of {Cj} for which T 9 (x,t) » Q(xt), uniformly on [0, hAT/{eH)].

Furthermore ¢(x) is monotonically decreasing and

0(0) = T9%(0,1), (3.14a)

s(XIP>(t)) = T_ . (3.14b)
cr

C.,
Similarly the corresponding derivatives TXJ (x,t) are uniformly

bounded and increasing, whence, by Helly's theorem [6] a subsequence {cg}

*

of {cj'} can be found for which TXJ(x,t) converges to a monotonically
increasing and bounded (by hAT/K) limit ¥(x) almost everywhere on

[0, haT/eH].

Lemma 3. The limit ¥(x) is a constant on [0, X9°5(t)].

X
Proof. For any Cy xe[0, haT/(pH)], t > O

* * *
C. c

. X C
TI06Gt) = T30, + [ T 3k, t)dx!
0
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Letting j + = and using the dominated converge theorem implies.

X
¢(x) = ¢(0) + of ¥(x")dx' (3.15)

Similary, integrating by parts implies

* * * *
c

C. . C. X C
TI(x,t) = T9(0,t) + xT, Jix,t) - f x'Txi(x,t)dx (3.16)
0

However
N X 4 (t) &
X C. cj C.
0 <[ x'T3(x',t)dx' < haT/(eH) J T 3(x',t)dx"
0 XX 0 XX

and by the choice of t (for which (3.13) holds) we know that the right

hand side tends to zero as c; > 0. Hence taking the limit in (3.16) as
*

* Cs;
cj > 0 for those points x for which TXJ(x,t) + ¥(x) we conclude that for

almost all x on [O,qus(t)], we have

x¥(x) = [ ¥(x")dx"'. (3.17)
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which in turn implies that ¥(x) is continuous and constant for

xe[O,XqSS(t)], i.e.

¥(x) = M on [O,qus(t)].

But then from (3.15),

o(x) = ¢(0) + Mx

i

T955(0,t) + mx,

and since ¢[qus(t)) = T..» we conclude that

o(x) = T9%(x,t), for xe[0,X o (€)].

By the arbitrariness of the choice of the original sequence {cj} we

conclude that

Jimg T5(x,t) = T93%(x, 1),

for almost all t in [O,t*].
Consider now Tc(x,t) as a function of t for fixed x, with
t oz Xcel(x). From [8], each Tc(x,t) is increasing in t, and since
the family {TC} converges almost everywhere to the continuous
increasing function qus(x,t) as ¢ + 0, we conclude that the convergence

occurs for every t » 0. We have thus proved Theorem 7 in its entirety.
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4., Additional Remarks

Remark 1. On the behavior of the solution to Problem II as ¢ » 0. The

convergence of the solution to the quasi-stationary solution as ¢ + 0

can be easily seen for Problem II. Here the stream temperature T, is

imposed directly at x = 0, and the solution is given by (1.11 a-c).

Indeed, from (1.11a),
Y(t) = 2WKt/ce].
But from (1.1llc),
c = (H/FVAT)A exp (A2)erfa,
whence
Y(t) = 2{KtaT/[pH/m1}1/2 {X/[exp(AZ)erfr]}l/2,
However as ¢ + O we have A » 0 and
xexp(-12)/erfr » v /2
whence

Y(t) » {2KtaT/[pH]}}/2 = qus(t).
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Similarly, for any x, t, the expression (1.11b) for the temperature

depends on

erf(x/2/Tat])/erfr = erf(x/Tcol/2/[Kt])/erfA

= erf((x/2/KEAT]) erf(x[HovT A exp(A2)erfall’2,
which, as A = 0, tends to

x|pH/[2KtAT] M2 = x/Y ___(t).

qss
Hence

U(x,t) + T - xaT/Y )

qss(t

= U3 (x,t)

and we have proved that as ¢ » 0 the solution to Problem Il converges to

its quasi-stationary approximation.

Remark 2. A Criterion For Assessing the Error In Using The Quasi-

Stationary Approximation. We have seen [8] that at any time t > 0, Y(t)

of (1.11a) is greater than the interface location X(t) for any finite h

Y(t) > X(t). (4.1)
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It is natural for us to expect that this condition hold when X(t) is

replaced by the quasi-stationary front location X___(t); for if this

qss

were not so, X___(t) would predict a front location which is less

qss
accurate than Y{t), and physically impossible to attain.

The time needéd for the quasi-stationary front to reach a point x
is t9%% = (pH/(KaT)){(x2/2) + (Kx/n)}.

Similarly Y(t) gives us the time t" = x2/(4ax?) that would be

needed by the front to reach x for infinite h, Clearly (4.1) requires
that £t~ < t95° or, after some manipulation,

(£955/¢%) = (2a2/st)[1 + 2K/ (hx)] > 1. (4.2)

Let us examine if this can be expected to hold.

By (1.11c),
St/vVm = A exp{A2)erfa

However

A
exp(A2)erfr = (2/Vn) [ exp(A% - s2) ds > 2A/V7
0

whence

2x32/St < 1.
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Thus (4.2) will not hold unless the Biot number
Bi = hx/K

*
is sufficiently small. Indeed, we must have Bi < Bi with

Bi- = 2/([St/(2)32)] - 1}.

*
In Table 4 we see the values of Bi over a range of values of St.
*
If Bi » Bi then the quasi-stationary approximation will yield results

that are

a) Physically impossible
and

b) Less accurate than X_.

As an example of this result consider the following.

Example 3. A slab of N-Octadecane paraffin wax is melted via the flow
of a heat transfer fluid across the face at x = 0. We assume the

ambient temperature of the fluid is T, = 106°C while the heat transfer

coefficient is h = .02 KJ/m?-s-°C. Initially the wax is solid at
Tcr = 28°C.

From the data of Table 1 we find that St = .64 whence Bi* = 10.
This implies that if x > .075m = 10K/h, the quasi-stationary

approximation will be qualitatively in error and exceed Y(t). That this

indeed occurs has been seen in Table 2 of Section 2 for this process.



25

TABLE 4
Bi* For Given St

w
=y

|

-
o)

OB D W W NN P e e e e
O O U O ;1 © O © 0 O H NN O W 0 N O O B W N =

A 222/St
.220 .9680
.306 .9364
.370 .9127
.420 .8820
.465 .8649
.502 .8400
.535 .8178
.567 .8037
.595 .7867
.620 .7688
.665 .7370
.705 .7100
.740 .6845
771 .6605
.800 .6400
.862 .5944
.915 .5582
.957 .5233
.995 .4950
1.030 L4715
1.060 .4494
1.257 .3160

Bi*

k= = N3N O
o N o v O

o = NN N WWw s ROy N0

.50
.45
91
.95
.80
.50
.98
.19
.38
.65
.60
.90
.34
.89
.56
.93
.53
.20
.96
.78
.63
.92
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Remark 3. An Example With Varying T (t). It is of great interest to

study the effect of variability of TL in time on the solution of

Problem I. To illustrate the broad utility of the guasi-stationary

approximation we will apply it to such a process.

Example 4. Consider the process of Example 3 with TL now given as the

function

T, (t) = 100 - (50/7200)t.

L

The ambient fluid temperature is initially 100°C, but over a period of
7200 seconds declines linearly to 50°C.
If we apply the guasi-stationary technique to this problem we

obtain

Xgss(t) = (K/HI{(1 + (2n2taT/[KeH][1 - (25t/[7200aT]])1/2 - 1}

qss -
T2(0,8) = To o+ X ()T (t) - T..d/(K + hX

gss(t))

where AT = 100 - 28 = 72°C. A comparison of these approximations with
those obtained via a computer simulation [12] over a 7200 second time
interval is summarized in Table 5. We note that there is good
agreement over the entire period. Most appealing is the fact that
T455(0,t) peaks at roughly the same time as the computed surface

temperature,
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TABLE

5

COMPARISON OF QUASI-STATIONARY AND COMPUTED PREDICTIONS FOR VARYING

T, (1)
¢ () TLE®CO)

0 100

600 95.83
1200 91.67
1800 87.50
2400 83.33
3000 79.17
3600 75.00
4200 70.83
4800 66.67
5400 62.50
6000 58.33
6600 54.17
7200 50

Computed

X (t) T (0,t)

0 28.00
00320 48.49
00543 54.62
00725 56.17
00887 56.88
01006 57.30
01121 55.76
01222 54.87
01312 52.70
01387 51.15
01462 48.83
01519 46.32
01570 44 .11

Quasi-stationary

qus (t) Td5S (0,t)

0 28.00
.00345 49,37
.00591 56.06
.00785 58.43
.00947 58.88
.01084 58.24
.01202 56.94
.01304 55.19
.01393 53.14
.01469 50.84
.01534 48 .37
.01590 45,78
.01636 43.08
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