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STEEPEST DESCENT FOR SYSTEMS OF NONLINEAR

PARTIAL DIFFERENTIAL EQUATIONS

J. W. Neuberger

ABSTRACT

This report describes a steepest descent method
for numerical solution of nonlinear partial differ
ential equations. The method is independent of type
and is applicable to a wide variety of flow problems.

I. INTRODUCTION

This report describes a general iterative numerical method for

systems of nonlinear partial differential equations. It has been used

for a variety of problems including transonic flow, Navier-Stokes, non

linear wave motion, minimal surfaces. It is a type-independent method

which has been especially effective in cases where type is determined by

nonlinearities and may change from one subregion to another.

II. STEEPEST DESCENT METHOD - SINGLE EQUATION

In order to illustrate the general method, it is first applied to

a single nonlinear partial differential equation on the square region

ft = [0,1] X [0,1].-

F[8u/3x, du/dy, u(x,y), x,y] = 0, (x,y) eft

(1.1)

u(x,y) = oj(x,y), x, y e r ,

where r is a designated curve in ft, oj is a given continuously differen

tiable function on ft, and F is a continuously differentiable function of

its arguments.
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The numerical approximation to the problem is as follows: If n is a

positive integer, denote by G the rectangular grid obtained by dividing

each side of ft into n equal pieces. Denote by K the collection of all

functions z on G. Define

V z(x,y)2

(x,y)eG

, zeK .

Define difference operators Di and D2 approximating 3/9x, 3/3y> respect

ively: for zeK, (x,y)eG,

r

[z(x+l/n,y) - z(x-l/n,y)]n/2 if x = i/n, i=l,...,n-l

(Diz) (x,y) =<[z(x+l/n,y) - z(x,y)]n if x=0

[z(x-l/n,y) - z(x,y)]n if x=l .

Define D2 similarly.

To obtain a finite difference approximation to Eq. (1.1), consider

the problem of finding zeK so that

F[(Diz)(x,y), (D2z)(x,y), z(x,y), x,y] = 0, (x,y)eG

z(x,y) = r{x,y), (x,y)er ,

where r' is a subset of G approximating r and reK such that r(x,y) =

w(x,y), (x,y)el".

As an initial step in developing a method for solving Eq. (2.1),

define a real-valued <j> on K0 = (veK|v(x,y) = 0, (x,y)er'}:

(2.1)

4>(v) =(l/2)\^ F[(Di(v+r))(x,y), (D2(v+r))(x,y) ,(v+r)(x,y), x,y]2
^ (2.2)

(x,y)eG



for veK0. Note that if veK0 is found so that ctp(v) = 0, then z = v+r

satisfies Eq. (2.1). The problem then becomes one of minimizing cj).

Although a minimum of <)> is not necessarily a zero of <)>, we hope that it

yields a sufficiently close approximation to Eq. (2.1).

Since the grid G has (n+1)2 points, K has dimension (n+1)2. The

problem of minimizing 4> becomes an unconstrained optimization problem on

the space K0, which has dimension less than (n+1)2.

The manner in which a minimization of <f> is attempted is of critical

importance. A method is described in two steps. The first step yields

a plausible method which does not, however, work very well in practice.

The second step is based upon the first step and yields a modification

which produces much better results. The second step makes use of the

calculations in the first step. The first step has also the purpose of

motivating the second step. Most of the new material of this report

centers around this second step. Some numerical results are given in

Refs. [4] and [6].

The first step proceeds as follows: For veK0 define Tv so that

T (x,y) = [D1(v+r)(x,y), D2(v+r)(x,y), (v+r)(x,y),(x,y)],x,yeG. (2.3)

Then Eq. (2.2) may be expressed as

*(v) = l|F(Tv)||2/2 . (2.4)

Now take a Frechet derivative of cf>, i.e., calculate a Jacobian matrix

for <j>:

<T(v)h =<Fi(Tv)Dxh +F2(Tv)D2h +F3(Tv)h, F(Tv)>,heK0 • (2-5)



where Fl5 F2, F3 denote partial derivatives of F in the first, second

and third arguments of F, respectively, and where for q, seK, <q,s>

is the inner product

V^ q(x,y)s(x,y) .

(x,y)eG

In order to obtain a first gradient for <}>, rewrite Eq. (2.5):

<T(v)h = <D1h,F1(Tv)F(Tv)> + <D2h,F2(Tv)F(Tv)>

+ <h,F3(Tv)F(Tv)>

=<h,TT(Dt(F1(Tv)F(Tv)) +D*(F2(Tv)F(Tv))

+ F3(Tv)F(Tv))>, heK0 ,

where tt is the orthogonal projection of K onto K0;

( 0 (x,y)er
(irz)(x,y) = <

Iz(x,y) (x,y)eG/r, (x,y)eG .

Hence, the gradient v<j> is given by

(V<D)(v) = ir(Dt(F1(Tv)F(Tv)) + D*(F2(Tv)F(Tv)) + F3(Tv)F(Ty)) ,veK0. (2.6)

Here Di is regarded as a matrix on the vector space K with the natural

basis; D* is then the transpose matrix of Di.

A steepest descent scheme based upon Eq. (2.6) is the problem of

finding g on [0,°°) to K such that

g(0) = r, g'(t) = - (V<t>)(g(t)), t > 0, (2.7)



This steepest descent method, however, has difficulties since the

gradient, Eq. (2.6), approximates a differential operator and is likely

to be unstable numerically. We now proceed with step 2 which produces

a second gradient which is a modification of Eq. (2.6).

The key element of the construction of a second gradient is the

introduction of a second norm for K. For veK, define

IMIS =(||v||2 + ||Div||2 + ||D2v||2)V2 . (2.8)

To this norm corresponds the inner product

<v,z>s = <v,z> + <Dj,v,DiZ> + <D2ViD2>, v,zeK.

In order to derive an expression for the gradient of Q relative

to the norm II II , some additional notation will be useful. Denote
s

the space KxKxK by H and denote by HJ the subspace of H consisting of

all elements of the form Dz =[Diz)such that zeK0. Denote by P the
VD2z/

orthogonal projection of H onto Ho- Now P has the explicit form

P=D(ttD*D|r(it))_1ttD* , (2.9)

where tt is the orthogonal projection of K onto K0 (this fact is a special

case of a proposition in the next section). In Eq. (2.9), D is from

the (n+1)2 dimensional space K into the 3(n+l)2 dimensional space H. It

may be regarded as a (n+1)2 x 3(n+l)2 matrix; D* then represents the

transpose of D.

Denote by tt0 the transformation from H to K so that

TT0( 9 1= f for ! g leH



Details on the numerical calculation of P are given in Section IV. We

are now in a position to calculate a gradient for q> regarded as a func

tion from K (under the norm ||-|ls) t0 R- We start from Eq- (2-5):

<T(v)h =<F1(Tv)D1h + F2(Tv)D2h, + F3(Tv)h, F(Ty)>

J h \ /F3(TV)F(TV)\
= < Dih , FidvJFdvJD;

\D2h/ \F2(Tv)F(Tv)yrH

' h \ /F3(TV)F(TV)\
Dih , P FX(TV)F(TV) >

kD2h/ \F2(TV)F(TV)//H

= <h,q> , h,veK0, where

, F3(TV)F(TV)\

F2(TV)F(TV)'

Hence the gradient V 4>, calculated according to the inner product < , >s

on K, is given by

/F3(TV)F(TV)\
(VJ)(v) = P FxdvJFdv) •

s Vf2(tv)f(tv)/

Using Eq. (2.9),

F3(TV)F(TV)(Vs*)(v)MirD*D|RU))-WlFx|TvJF|Ty)
),



Observe that Eq. (2.6) may be rewritten

so that

,F3(TV)F(TV)V
(V<j>)(v) = ttD* Fl(Tv)F(Tv)

,F2(Tv)F(Tv)j

(Vs4.)(v) =(ttD*D|r(7t))"1(V(J))(v), veK0 . (2.10)

Relative to the gradient function V d> we have in place of Eq. (2.7) the

steepest descent process g:

9(0) = r,g'(t) = (Vs4>)(g(t)), t >0 . (2.7')

The effect of the term rrrD*D|rw \V1 connecting the two gradients is to

smooth v<l> in a particularly natural way. Typically in the literature1

smoothing is introduced in steepest descent methods. Sometimes, in this

writer's opinion, such smoothing alters the basic problem unacceptably.

The smoothing introduced in going from the gradient, Eq. (2.6) to the

gradient, Eq. (2.10) is natural to the problem since it arises from a

widely accepted measure (i.e., || || ) of a function and its derivatives.

It has produced good results numerically in all problems on which it has

been used.

III. A STEEPEST DESCENT METHOD - GENERAL CASE

We now broaden our development to a much more general case. Suppose

that each of m and n is a positive integer and ft is a bounded region

in Rm. Denote by Fa C^2) function with domain (Rn)m x Rn x ft. We



seek solutions u:ft -> Rn to

F(3u/3xi,...,3u/3x ,u(x),x) = 0, xeft (3.1)

where, in addition, u satisfies linear inhomogeneous boundary conditions.

As in the scalar-valued case, pick a C1 function oj on ft. We want

to require our solution u to agree with to in certain respects. To this

end, pick a space C of functions on ft and require as boundary conditions

u — oj e C . (3.2)

Examples are given in Section V concerning how to choose, in the numer

ical analogue of Eq (3.1), such subspaces in order to meet concrete

boundary conditions.

The numerical approximation to this general problem is obtained in

much the same way as the special one in Section II. Pick a rectangular

grid G' (with even mesh spacing 6>0) which covers Tl. Denote by G the

intersection of G' and ft. Denote by K the space of all R — valued

functions u on G with

IMI =/£||u(P)
\peG

where u(p) eR and ||u(p)|| denotes the ordinary Euclidean norm of u(p),

peG. For ueK, define D.u such that if peG,

(u(p+6ei) - u(p-6ei))/(26) if p+ 6ei£G
(Diu)(p) ={ (u(p+6ei) -u(p))/6 if p-6ei ^G

(u(p) - u(p-6ei))/6 if p+6ei #3, i=l,...,m



For ueK define

ML =(IMI2 + MMll2 +••+ MVll2)1'2

and define Du to be (u,Di.u,... ,D u). Take K0 to be a finite dimensional

approximation to the space C of functions used in Eq. (3.2). Define rek

to approximate on G the function oj.

Define

T (p) =[Di(v+r)(p),...,Dm(v+r)(p), (v+r)(p), p], peG, veK0 .

Our finite difference approximation to the system defined by Eqs.

(3.1) and (3.2) becomes the problem of finding veK0 such that

F[D1(v+r))(p),...,(Dm(v+r))(p),(v+r)(p), p] =0 (3.3)

i.e., F(Tv(p)) = 0, peG ,

or at least that of finding veK0 such that

<D(v) = (l/2)||F(Tv)||2

is minimum.

Proceeding as in the case of a single equation, for v, heK0,

<h(v)h = <F1(Tv)D1h,...,Fm(Tv)Dmh, Fm+1(Tv)h, F(Ty)> , (3.4)

where F. is the partial derivative of F in its ith argument. Note in

this connection that the ith argument of F operates on vectors in R ,

so F.(T (p)) is a linear transformation from Rn to Rn. Denote by F.(T )*

the function on G so that

Fi(Tv)*(p) = (F.(Tv(p)))*, peG, i=l,...,m+l.
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Using this notation,

4>'(v)h = <Di.h, F.(T )*F(T )> +...+ <D h, F (T )*F(T )>v \ > i > n\ v/ \ v/ m mv v' v vy

m i1

As before, define H = K , H0' to be the image of K0 under D and P

to be the orthogonal projection of H onto H0'. Then

<T(v)h

Fm+l(Tv)*F(Tv)

Fi(Tv)*F(Tv)

F (T )*F(T )
rrr v; v v'

^Fm+l(Tv)*F(Tv)
Fi(Ty)*F(T )

= P "

W Vi(Tv)*F(Tv)

= <h,z>s

where /Fra+1(TV)*F(TV)'
Fi(Tv)*F(Tv)

Z = (Vs(f))(v) - TT0P

,Fm(Tv)*F(Tv)
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Using the gradient function V A, we have the steepest descent process:

9(0) = r, g'(t) =- (Vs<j))(g(t)), t>0 . (3.5)

We seek a minimum of <J> as lim g(t). Of the terms making up (V«.$)(v),
t-vco =>

veK0, the expressions Fm+1 (TV)*F(TV) and Fn- (TV)*F(TV), i=l,...,m are

readily computed. This involves simple manipulations of v, r, F together

with various partial derivatives F•, i=l,...,m. The main computational

effort is with the projection P. It will be seen in the next section

that P can be computed in an organized way once the projection tt of K

onto K0 is determined from concrete boundary conditions. This projection

is simply given in reasonable examples as may be seen in Section V.

IV. STUDY OF THE PROJECTION P

Suppose that H, K, H0' and D are as in the preceding section.

Theorem

P=D(ttD*D|r(7t))"1 ttD* .

Proof

We show first that ttD*D ID/ \ has an inverse. For zeK, D*Dz =

D*(z,DiZ,...,Dmz) = (I+Di*Di + ... + Dm*Dm)Z. Thus D*D is a symmetric

positive transformation which is :> I, the identity transformation on K.

Denote TrD*D|rw % by E. If zeR(Tr), then since ttz=z, <Ez,z> = <ttD*Dz,z> =

<D*Dz,z> = ||Dz||2 >_ ||z||2. Therefore E > I0, the identity on K0 and

so E_1 exists and E"1 < I0. Hence P = DE_1ttD* exists. Clearly R(P),

the range of P is a subset of H0' since if zeH, Pz = DE"xttD*z eH0'

inasmuch as R(E_1)eK0. Suppose z e H0'. Then z = Dr for some reK0 and so
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Pz = DE-1TrD*Dr = DE-1 (ttD*D10 )r = Dr = z. Therefore P is fixed on the
1Ktt

image of K0 under D. By calculation, P* = P, P2 = P and so P i_s_ an

orthogonal projection. In summary, since P is an orthogonal projection

on H which is fixed on H0' and has range in H0', it must be the orthog

onal projection of H onto H0'.

Theorem

If f =(fo, fi,...,f )eH, then Pf = (z, d1 z,...,Dmz) such that

zeK0 and

iDz

is minimized.

This is a direct consequence of the fact P is the orthogonal pro

jection of H onto Ho'.

Theorem. If f = (f0,fi,...,fm) eH then Pf = (z,DjZ,...,D z) where
m

z is the unique solution in K0 to

Tr(z+D1*D1z+...+Dm*Dmz) =^(fo+D^fj+.-.+D^) . (4.1)

This follows since Dz = Pf = D(ttD*D|r, »)_1TiD*f and so z =

(ttD*D|R(7T))"1ttD*G and hence Eq. (4.1) holds. This theorem forms the

computational basis for determination of z. For given (fi,fi,...,f ),

Eq. (4.1) is essentially a large linear system for the unknown z. In

applications this is usually a sparse system. It may be solved by

Gauss-Siedel iteration, partial Cholesky decomposition or any of a
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variety of other schemes. A FORTRAN listing5 of such a scheme has been

provided (in subroutine PT of the code listed in this reference).

V. EXAMPLES

The consideration of the following rather general problem on a

bounded region ft c R2 will be useful for the examples given in this

report.

f(z,3z/3x,3z/3y)32z/3x2 + 2g(z,3z/3x,3z/3y)32z/3x3y

+ h(z,3z/3x,3z/3y)32z/3y2 = 0 (5.1)

z = oj on Ti, 3z/3n = 3oj/3n on r2

where T\ and r2 are two piecewise differentiable curves in ft, oj is a

given C1 function on ft and 3z/3n is the derivative of z normal to r2.

Rewrite Eq. (5.1) as a system

f(z,u,v)3u/3x + g(z,u,v)(3u/3y+3u/3x) + h(z,u,v)3v/3y = 0

3z/3x - u = 0

3z/3y - v = 0 (5.2)

z = oj on Ti

(!!)•»•($£)•" »r9y-

where rT is a normal vector function on r2.

The numerical approximation to Eq. (5.2) is obtained by reinter

preting z,u,v as functions on a grid G approximating the region ft. Take



14

K to be the space of triples of such grid functions. Take Di and D2 as

in Section II for this grid. Take s to be a member of K which agrees with

o) on G. Take Ti' and r2' to be subsets of G approximating the curves

Ti and r2, respectively. Our numerical problem then becomes

f(z,u,v)D1u + g(z,u,v)(D2u+D!v) + h(z,u,v)D2v=0

Diz - u = 0

D2z - v = 0

(5.3)

:(p) -s(p). ps r^. (;{P|) .n(p) -(jgi|j{jj) -n(p). per,"
Define F: R3 X R3 X R3 •> R3 by

for b, , b2 , b eR

#(a,b»c)bi + g(a»b,c)(b2+Ci)'
+ h(a,b,c)c2

ai— b

a 2— c

The relevant subspace K0 of K for this problem is defined as all

(|j)eK such that z(p) =0, pelT ,("ipj) •n(p) =0, per2. The orthogonal
projection tt from K onto Ko is easy to calculate:



/z>

z(p) =

u(pr
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where

z(p), perr

0 , per!

y(p)

a

, P^r2

b, P^2

where (J) is the nearest element of R2 to (j/[|\) such that (J) .n(p) =
Now let us consider some specific examples.

Example 1. Minimal surface equation:

(l+(3z/3y)2)32z/3x2 - 23z/3x 3z/3y 32z/3x3y

+ (l+(3z/3x)2)32z/3x2 = 0 on ft ,

z = oj on ft .

Example 2:

(a2-(3z/3x)2)32z/3x2 - 23z/3x 3z/9y 32z/3x3y

+ (a2-(3z/3y)2)32z/3y2 = 0 .

Where a stands for a2 + ((y-1 )(2)(z^-(3z/3x)2 - (3z/3y)2) , a«, and zc

are given positive numbers.
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A solution z is elliptic when

A = (3z/3x)2(3z/3y)2 - (a2-(3z/3x)2)(a2-(3z/3y)2)

= a2((3z/3x)2 + (3z/3y)2 -a2) < 0 ,

and hyperbolic when A > 0. The hyperbolic region indicates supersonic

flow and the elliptic region indicates subsonic flow. The quantity a_

is the "local speed of sound", y = ~\ A for air, z^ is the speed of

flow at infinity, and aoo is the speed of sound at infinity.

Boundary conditions for the problem on all of R2 are:

z(x,y) ~ x ,

and 3z/3x ~ u^ ,

3z/3y ~ 0

as x2 + y2 ->• °°

together with

3z/3v (*;<*•*> <x^ er3
U/dX \r (x,y) (x,y) eI\

where r3, I\ describe upper and lower contours, respectively, of an air

foil. For numerical calculations, the problem is put in a box (say [0,1]

x [0,1]) with the first boundary conditions replaced by

z(x,y) = x, y = 0 or 1

3y/3x = Uoo» x = 0 or x = 1 or y = 0 or y = 1

3z/3y = 0, x= 0 or x = 1 or y = 0 or y = 1 .
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References [2], [5],

Example 3. Navier-Stokes equation.

- v V-oj + U-oj + Vp = 0

Vu = oj (5.4)

V-u = 0 ,

where p,u,oj are unknown functions on ftCR2, p being real valued, u:ft->-R2

and oj:ft+L(R,R2) the space of 2x2 matrices. The number v is a known vis

cosity. Renaming the unknowns u and oj,

u-(s)"-(? !)•

Equation (5.4) is rewritten

'ax+3y\ + /ar+eS\ +/PxW0>
Vyx+V V+Ss/ \p / \0,

\ r\ /a V

vsx Sy/ \y 6/

rx + sy = 0

where av = 3a/3x etc. For appropriate F this may be written in the form

of Eq. (3.1). Various boundary conditions may be incorporated (and a

corresponding space K0 defined) as in Examples 1 and 2.
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VI. CONVERGENCE RESULTS

This section contains some comments on the steepest descent process

Eq. (3.5). A first fact to note is the following:

Theorem.

There is a unique function y from [0,°°) to K such that g(0) = r, g' (t) =

- (Vs<j))(g(t)), t > 0.

Proof.

Since F is a c( 'function, Vs<t> is c( '. Hence for some 6>0 there

is a unique solution g to the problem g(0) = r, g'(t) = - (Vs<f>)(g(t)),

0 <_ t < 6. Consider the union of all such intervals [0,6] and suppose

that this union is not [0,°°). Denote by t the least upper bound of this

union. Define J(z) = F(TZ), zeK, using the notation introduced before

Eq. (3.3). Define a:[0,x) - R by a(t) = (1/2) ||J(g(t)) ||2, te[0,x).

Then

oT(t) = <J'(g(t)) g'(t), J(g(t))>

= -<J'(g(t)) J'(g(t))* J(g(t)), J(g(t))>

= - ||J'(g(t))* J(g(t))||2 = - l|g'(t)||2, te[o,x).

Thus a'(t) < 0, te[0,i) and a(a) - a(b) = /b | |g' | |2, 0 <a < b <t.
By Swartz's inequality,

(4bH^M)2l/ab||g1l2 /abl =(b-a) /ab||g^||2
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and so

4U ||g'|| <(b-a)V2 (4D||g'||2)y2

= (b-a),/2 (a(a)^(b))'/2 < (b-a)'/j a(a)'/2

< x1/? ||J(r)||/v^.

Therefore, lim j^Ug'll exists (and does not exceed /F ||J(r) |\Ui ).
Hence S = lim g(t) exists. But there is 61 > 0 so that there is a

t">T

unique solution h to h(x) = s, h'(t) = - (Vs4> )(h(t)), te[x,6i+T]. Define

k: [0,6i+t] -»• K such that

(g(t) 0 < t < t
Mt)={

(h(t) x < t < x + 6X .

Clearly k satisfies uniquely

k(0) = r, k"(t) = - (Vs4) (k(t)), 0 < t < 6X + x ,

a contradiction in view of the definition of x.

We now consider directly the question of the existence of

lim g(t) .
t->x

Where g is the unique solution of Eq. (3.4).

The following theorem gives a convergence criterion for this process.

There are two purposes for giving the condition:

i) it provides a practical way for discovering rate of con

vergence from a sequence of calculated approximations,

ii) it is related to a condition which can be verified in

some cases.
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Theorem.

Suppose {t.j}-™Q is a sequence of numbers so that 0 <_ t.+-, — t. =

t. — t. , <_ 1, i=0,1,2,... . Suppose moreover that the

I (e(t.+1) -e(t.))/2
i=0 n ' n

converges where 6(t) e(1/2) ||J(g(t))||2, t>0. Then u=J.im g(t)

exists and (Vs<()) (u) = 0.

Proof.

If 0 < a < b, then as seen in the proof of the previous theorem

4b llg'M 1(b-a)V2 (/ab ||g1|2)y2 <(b-a)(3(a)-3(b))V2 .

Hence Jti+1 ||g'| |< (3(ti+1) - 3(ti))V2 ,i=0,l,2,... and so the
t-j

convergence ofJ^Q (3(ti+i) -3(ti))1/2 implies the existence /0°°||g'||
and consequently of u= \™ g(t). If (Vs4>)(u) t 0, then ^ g'(t) =
- (Vscb)(u) f 0. But this is in contradiction to the existence of

f°°I Iq" II and so the theorem is established.

As a practical matter, since 3(t) = (1/2) ||J(g(t)) ||2 =

^l|F(Tg(t)-r)ll2 and F(Tg(t)-r(p)) =FfD^gU) (p),...,Dm(g(t))(p),
g(t)(p),p), peG, it follows that 3(t) is a measure of the amount g(t)

misses being a solution u to Eq. (3.1). In actual computation 3(t) may
i/

be readily computed and hence also the ratios (3(t1-+-|) - 3(t^+2)) /

(3(ti+i)) - 3(ti))J/2 for asuccession of integers i. Evidence of con

vergence is present if these quantities are bounded below some number

less than 1.
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VII. DISCUSSION

Methods described in this report are probably not competitive

with many existing schemes developed for particular problems - for

example Laplace's equation. The strength of these methods rests in part

on the following three items:

i) The method is widely applicable. Existing codes already cover a

wide class of problems; e.g., systems which cover a general

second-order quasilinear equation as in Examples (1) and

(2). Alteration of these codes to cover much broader

classes of problems is a routine matter,

ii) The method is not dependent upon type. In Example (2) for

some choices of parameters a^, Uoo, the solution will be

hyberbolic in some parts of the region and elliptic in

others. The nonlinearities in a sense determine where

these regions lie. Any purely hyperbolic method or purely

elliptic method would be inappropriate. A wide collection

of flow problems have similar characteristics. Some of

these problems cannot at present, it seems, be treated by

other methods,

iii) Full boundary data (i.e., boundary conditions which de

termine a unique solution) are not required by the method.

If "insufficient" data are given, the method tends to

converge to the solution "nearest" to the starting

estimate. This can be very useful when sufficient

boundary conditions are not known.
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The numerical development given here has been in terms of finite

differences. Corresponding finite element procedures have been coded

by graduate students Craig Beasley and Morris Liaw of North Texas State

University. Indications are that the given steepest descent method will

work very well in a finite element setting.
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