




Contract No W-7405-eng-26

Engineering Physics Division

Mathematical Foundations of LEAP

E M Oblow

Date Published - April 1981

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37830
operated by

UNION CARBIDE CORPORATION

for the

DEPARTMENT OF ENERGY

ORNL-5754

Special

LOCKHEED MARTIN ENERGYRESEARCHLIBRARIES

3 4MSb D5imbb H





m

CONTENTS

ABSTRACT

I INTRODUCTION

II BASIC LEAP ALGORITHM

III OVERALL SCHEME

A ITERATIVE APPROACH

B UP/DOWN ALGORITHM

IV CONVERGENCE TESTS

V RELAXATION AND ACCELERATION

VI PRACTICAL EXPERIENCE WITH LEAP ALGORITHMS

VII CONCLUSIONS BASED ON MODEL 82 RESULTS

VIII ALTERNATIVE LEAP RELAXATION ALGORITHM - NEWTON'S METHOD

IX SUfihAKY

REFERENCES





ABSTRACT

As part of the ORNL energy model validation program an anlysis was

made of the mathematical structure of the LEAP energy modeling code

Emphasis was placed on understanding the equations which the code attempts

to solve and the iterative numerical algorithm used to achieve a converged

solution The equations were found to be highly nonlinear, similar in

form to those found in equilibrium boundary value problems A combination

of a standard nonlinear Gauss-Seidel approach and a modification of

Newton's method was used as the basis of an iterative algorithm to find

local solutions to the equilibrium equations Several weaknesses in this

approach are discussed, mainly those dealing with the computation of

relaxation coefficients in the Newton's method segment of the algorithm

The chief failing of the method as employed in LEAP is the use of a diago

nal Jacobian matrix for Newton's method with an ad hoc scheme for

calculating the diagonal matrix elements Most problems encountered had

large off-diagonal elements leading to a characteristic oscillatory break

down in convergence It was concluded that the LEAP algorithm cannot

be used to achieve convergence in an automated fashion for any general

problem In practice hand intervention is needed in most cases

Recommendations are made to approximate certain key elements of the

Jacobian matrix to improve the general usefulness of the algorithm

Analytic expressions for the approximate elements are derived so as to

facilitate implementation in LEAP Other aspects of the numerical proce

dures are discussed, and recommendations for thier improvement are also

made



I INTRODUCTION

The Energy Information Administration (EIA) of the Department of

Energy is sponsoring a program at Oak Ridge National Laboratory to develop

and demonstrate a methodology for evaluating energy-economy modeling

codes The recent increased use of such codes in the energy policy

decision-making process makes the evaluation task a crucial one if these

codes are to address important energy-related issues It is essential to

know the scope and validity of model predictions before their usefulness

in the policy arena can be justified

In conjunction with EIA's interest in long-range energy-use fore

casting and their need to evaluate the impact of new technologies on the

energy economy, the LEAP modeling1,2 system was chosen for the initial

evaluation effort at ORNL As part of this overall effort a small subtask

was designated to explore the mathematical foundations of this code in

order to better understand the nature of the solutions the code gives to

various modeling problems This report focuses on the numerical aspects

of the solution of the equations which constitute the LEAP system

Primary interest is attached to the iteration schemes used and their con-

vergence properties A future report0 will explore the uniqueness and

existence of LEAP solutions and describe a more in-depth analytic analysis

of the iteration algorithm

Much of the work in this report is understood best only in the con

text of the rest of the ORNL model evaluation program Information rele

vant to this and all other tasks in the program can be found in the iterim

progress report^ and several topical reports comprising the project's



final report 5»6 Descriptions of several important models upon which this

present study is based are dealt with in more detail in these other

reports

II BASIC LEAP ALGORITHM

1 o

LEAP1'*- comprises a coupled set of nonlinear, time-dependent

equilibrium equations in prices and quantities, which in general terms can

be written as

TT(p.q) = 0 , (1)

where Tf is a nonlinear algebraic vector function and "p and c[ are vectors

representing prices and quantities at discrete time points, respectively,

for all processes in the model-energy economy The basic code is modular

in structure, with generic processes (i e , energy conversion, allocation,

etc ) used to construct a network of interrelated energy-economy activities

These processes are linked to each other in the economy through the time-

dependent prices and quantities of energy related products The vector TT

has dimensions equal to two times the number of time intervals (typically

ten), times the number of process links in the network (typically several

hundred), for a total dimensionality of the order of several thousand in a

modeling system such as LEAP Model 22C 6>7

Due to the nature of the basic conversion process in LEAP, the time

structure of Eq (1) is such that there are time intervals before and

after the time period defining the solution space The prices and quan

tities in these intervals are specified exogenously or are modelled very

simply and therefore act as boundary values for the problem Equation (1)

can also therefore be characterized as a nonlinear boundary value problem



Becuase of the nonlinear nature of N and its large dimension in LEAP

(i e , many processes are used to construct a typical network), the choice

of solution method for such a problem is limited The authors of the code

judged that a conventional iterative numerical scheme, the Gauss-Seidel/

Successive Overrelaxation (SOR) method^ was the most practical alternative

under the circumstances Due to other considerations, however, the method

actually implemented in the code is not strictly a Gauss-Seidel/SOR

algorithm, but a combination of closely related standard iterative

procedures This algorithm requires a starting guess for "p and "q and a

means for calculating the relaxation coefficients needed to update the

solutions obtained during the iteration procedure

From these brief comments, it should be clear that the LEAP algorithm

can be classified as a "locally1 convergent scheme That is, it is only

designed to find a solution, if one exists, near the initial vectors ~p

and "q used to start the iteration procedure The details of this approach

are discussed in more detail in later sections It is only important here

to recognize that local convergence is being sought and that the local

nature of the initial values of 15 and "q are crucial to the practical suc

cess of the algorithm In addition although some difimtive work has

been done to explore questions of existence and uniqueness of LEAP-type

solutions, '9,1° the answers to these questions can still only be given

in a general sense When faced with a large energy model like Model 22C,

it is clearly more difficult to characterize the solutions which arise

from the LEAP iteration algorithm For the purposes of this report the

assumption by the authors of the code and its user, that the solutions



which arise are unique and those being sought by the algorithm exist, is

taken as a starting point for this analysis The fact that conditions

exist in LEAP which lead to nonexistence or non-uniqueness of these

solutions are dealt with in more detail in a later report 3

III ITERATIVE APPROACH

A OVERALL SCHEME

To meet the generality and complexity of any proposed LEAP energy

model the solution algorithm was chosen by the authors of the code to clo

sely resemble some physical attribute of the problems modeled by LEAP

That is, the LEAP algorithm attempts to model the equilibration of supply

and demand driven by consumers and producers in a Walrasian-type energy

economy n This procedure gives rise to the familiar cobweb iteration

scheme,11 in which prices are offered by producers, consumers respond

with an appropriate level of demand, which in turn causes producers to

change their prices accordingly This iterative procedure was chosen

after the basic network and modular process structure of the code were

developed The fact that each modular process was chosen to be either a

basic supply or demand unit of the nergy economy model lead naturally to

the choice of the cobweb-type iteration scheme

As employed in LEAP this cobweb scheme is referred to as the up/down

algorithm, in reference to the fact that on the up pass of the algorithm

producers offer prices and on the down pass consumers respond with demand

As pointed out by Falk et al ,9 LEAP is not formulated as an explicit

optimization problem in economics, although other documentation associated

with LEAP11 does contain considerable discussion about the connection bet

ween supply-demand equilibration and optimal solutions to economics



problems Numerical procedures suitable for optimization problems were

therefore not used in the code The up/down algorithm however was only

one of many approaches initially tested in the code before its formal

release and therefore represents a practical compromise to the LEAP

solution problem

B UP/DOWN ALGORITHM

The specific characteristics that lead to the use of the up/down

algorithm are the fact that each modular generic process used to construct

a LEAP network is a natural supply-demand unit linked with other process

units in a supply and demand relationship This structure as implemented

in LEAP also has the desirable property that it can be described mathema

tically by separable supply and demand transformation functions in each

generic process That is, on the supply side a generic process can be

written as,

^k = \(\* Pk" V») k' * k (2)

and likewise on the demand side,

^k = \^k* V» V') k' * k (3)

where ~p~|< and "q^ are the time-dependent components of "p and "q, respectively,

in the kth generic process, G|< and H^ are the ktn process supply and

demand transformation functions, respectively, and k' represents other

processes whose quantities q^ are used in the ktn one In the basic con

version process this structure is somewhat more complex in that k' and k

also represent different time-dependent components internal to the

ktn process, but again because of certain approximations, k' * k



This overall structure of separability and supply-demand unit linking

defines an up/down procedure in which all process prices are solved for in

an up pass, given the transformation functions "G^, and all process quan

tities are solved for in the down pass, given the transformation functions

TTj,, It also allows the entire up pass to be written more compactly as

P = ^(q) (4)

and the entire down pass as

q = H(p) (5)

where G and H are the product of the successive operations of supply and

demand process transformation functions, respectively

The above results allow the equations solved by the entire code to be

represented in terms of either prices alone or quantities alone In terms

of quantities then the code can be written as

q = F(q) = H[G(q~)]

Note that in this format, denoted as a fixed point form,^ if the input

quantity vector to the up pass of the ntn iteration is given by"^1),

then Eq (6) can be written in iterative form to calculate an output quan

tity vector "qn(°) on the down pass as follows

qn(0) =Ftqn(I)3 (7)

This symbolic form of the LEAP equations will be useful in analyzing the

convergence properties of the iteration algorithm



The actual calculation scheme as described in Eqs (2) and (3) is

such that in executing an up (or down) pass in the network, the code steps

from process module to process module calculating the prices (or

quantities) in each basic process module for all time steps Where the

process module equations are non-linear in time, or the k components of

p or q are not yet available, the initial guesses for p" (or "q") are used to

begin the calculation in the first iteration

The specific LEAP algorithm chosen by the authors uses the results of

each process module calculation immediately in the next adjacent process

module calculation This immediate update procedure in the midst of an

iteration pass wthout modification of the calculated value is what charac

terizes the algorithm as a standard Gauss-Seidel iterative approach to

nonlinear equations 14»15 The procedure is locally convergent with a

linear rate of convergence which is guaranteed only if the Jacobian of 7

is negative dominant diagonal in the vicinity of the solution

The Gauss-Seidel scheme can be modified slightly by the inclusion of

a relaxation parameter to alter the output price (or quantity) of each

module calculation for use in the next module This addition of relaxa

tion for the calculated results is the classic nonlinear successive

overrelaxation (SOR) method, an iterative procedure with characteristics

similar to the Gauss-Seidel method As will be seen later, the SOR

approach is also used in LEAP but is limited to only certain process modu

les in any given LEAP network, leaving the Gauss-Seidel method as the

major constituent of the algorithm

To complete the general iterative procedure, a visitation sequence is

defined for the various processes that make up the network structure so

that in any pass (up or down), the algorithm passes through each process
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once and only once In principle, the visitation sequence used in con

junction with this iteration scheme can be arbitrary, albeit at the

expense of the process network being modeled and the form of Eq (6) In

practice, therefore, it is useful to order this sequence to follow the

flow of supply to demand on an up pass and the flow of demand to supply on

a down pass so as to preserve the supply-demand network structure Thus,

the conventional LEAP procedure is to start the iteration process at the

bottom (supply side) of the network and proceed to the top (demand side)

Because this procedure approximates the supply-demand equilibration pro

cess in a classical Walrasian economic sense it has the potential to

increase the speed of convergence of the Gauss-Seidel iteration scheme in

those cases where the algorithm is guaranteed to converge

Note that, in general, if the unknown price and quantity vectors and

their associated equations (l e , Eq (7)) are ordered properly by the

visitation sequence, the matrix operator 7 will block upper-triangular for

prices on the up pass of the iteration sequence and block lower-triangular

for quantities on the down pass Each block represents a process module,

with time-dependent prices or quantities coupled to each other inside the

module block This block format makes the procedure for calculating all

prices in a given process dependent only on processes appearing below it

in the visitation sequences on the up pass and on processes appearing

above it on the down pass The Gauss-Seidel algorithm is well suited for

such a decomposed system of equations



IV CONVERGENCE TESTS

The criteria used to test convergence of this algorithm should be

noted at this point Two different criteria for evaluating the convergence

of the results need to be discussed here, (1) the one described in the DFI

1 ?
documentation of LEAP1 and (2) the one in used in the algorithm at EIA

to generate Model 22C results The two versions use different norms

for testing convergence The following comments describe both the DFI

documented version of LEAP and the EIA version Attention will be drawn

to the specific differences in the norms used for convergence testing as

needed

The state of convergence of the solution during the iteration proce

dure must be checked to determine a stopping point for the algorithm The

LEAP convergence test is performed only in allocation processes and only

on the down pass of the algorithm when quantities are being calculated

In each allocation process, a pointwise convergence check of the com

ponents of the quantity vector"^ in the ktn allocation process is there

fore made Again, it should be emphasized that these are the only quan

tities checked for convergence in the whole algorithm

The rationale for this scheme of testing convergence only in alloca

tion processes is unclear from both physical and theoretical viewpoints

Basically, it is a heuristic approach derived from practical experience

with the code 12 The rationale appears to be that most quantities in a

general model network link directly to some allocation process and these

allocation processes are sufficiently dispersed in various sectors of the

network so that they are decoupled Allocation quantity convergence would

therefore generally represent a good test of overall convergence of the
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other quantities and prices in the model This test can lead to complica

tions in problems where prices are very weakly coupled to allocation

quantities, yielding poorly converged price results in conjunction with

well converged quantities The success of this approach clearly depends

on the particular network structure under investigation

The test used in the DFI documented algorithm is of the form,

(0)
qn.i 1(I)^n,i

(0)
qn,i

< e for all q-, £ q^ (8)

where the subscripts n and l refer the ntn iterate of the itn quantity

component q-, of the vector "5^, the superscripts I and 0 refer to input and

output of the ntn iteration, and e is the exogeneously supplied con

vergence criteria In practice, the convergence test represented by Eq

(0)
(8) is only used when the absolute value of qn>1 is greater than 0 001

quad Below this value, no check is made of convergence

In the EIA version of LEAP that produced the Model 22C results, the

convergence check is of the following form,

(I)
qn+l.i

(0)
qn,i

(0)

< e for all q-,^ q^ (9)

where again e is the exogenously supplied convergence criteria and qn+i -,

is the input quantity to the n+lst iteration

Theoretically, the choice of either of these forms of allocation

quantity convergence testing leads to the second major characteristics of

the iteration algorithm - it is an incomplete pointwise convergence
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testing scheme The procedure is a pointwise scheme because it checks the

convergence of the components of the solution price and quantity vectors

It is an incomplete procedure because it only tests the convergence some

of the components of q (i e , the time components, q^, in each allocation

process), and none of the other prices and quantities in the model It is

true that allocation quantity convergence implies some global convergence

of all other quantities and prices in the code through the transformation

functions 7, "G", and H Convergence in allocation quantities, however does

not imply equal or better convergence of all the other solution prices and

quantities in the code A careful examination of the state of convergence

of all other prices and quantity results for Model 22C reveal that this

problem exists although not on a scale that is significant in this problem

(l e , only a handful of quantities are not fully converged in Model 22C)

Despite the fact that relaxation has not been discussed as yet, it is

necessary here to point out that the specific norm discussed in the DFI

documentation for checking convergence (i e , Eq (8)) is a poor norm for

convergence testing given the specific relaxation algorithm employed in

LEAP allocation processes Results discussed at length later will show

that use of Eq (9) leads to convergence of some quantities in Model 22C

to within e/(l - a.,), where a1 is the relaxation parameter used for the

ith allocation quantity component to get qn+l,i from tne values q^1] and
qj^j Because «1 was about 05for most of these quantities, the reported

converged results for these quantities actually satisfy an ~2e convergence

criteria (i e , about 6% in Model 22C) During the analysis of Model 22C

results, this test was changed at ORNL from Eq (9) to Eq (8) and reruns

of Model 22C with true convergence to e showed a change of less than a
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few percent in all major results Only a few quantities with very small

magnitudes seem to have converged to only 2e as predicted by this

analysis Therefore, in this instance no major problem resulted from

using Eq (9) Other problems run with this version of the code, however,

should be checked because a., can potentially be close to unity, and dif

ferences in convergence as large as a factor of ten are possible (i e , a

37 convergence criteria could actually be in error by as much as 30% in

some quantities) The change from Eq (9) to Eq (8) has now also been

made in the current version of LEAP used at EIA and will therefore be the

test used in all future reported results from EIA

V RELAXATION AND ACCELERATION

During the iteration procedure, a decision is made to improve the

results of any calculated price or quantity The general mathematical

relationship used for this update procedure is of the form

qn+1 " % + A [qn " % J» U°)

where A is, in general, a matrix of relaxation parameters, and the I and 0

superscripts refer again to the input and output of the ntn iterati on

Depending on how the elements of the full A matrix are calculated (to be

discussed in the next section), this general form describes a class of

Newton or Generalized Secant methods 15 They are, again, locally con

vergent schemes, whose rate of convergence can be linear to quadratic1^ in

principle, depending on the choice of A

The two special forms of Eq (10) used in LEAP are the Gauss-Seidel

and Successive Overrelaxation cases For the SOR case, the matrix A is
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assumed to be diagonal so that the components of a (i e , qn,-|) are

relaxed individually by a relaxation coefficient, a-, as follows,

.ill, - W *°,<! - <^> do
In the Gauss-Seidel version, Eq (10a) is used, but modified further so

(I) (0)
that a-, = 1 and qn+1 n = qn 1 This updated component is also used imme

diately in all subsequent calculations internal to the ntn iteration

The vector "qn used in Eq (7) at the stage in the ntn neration when

the itn component of qn is being calculated, therefore has the

following form in the Gauss-Seidel scheme

hn+l,j " Vj J < n

qn(I)= {Vj} Wlth Vj • doc)
(qn.j J > !

The choice by DFI of the particular theoretical form of Eq (10) to

be implemented in the LEAP code is varied, depending on which particular

process module and which component of the price and quantity vector is

being calculated In general, for all prices and quantities in modules

other than allocation, the Gauss-Seidel version of Eq (10) is used In

all allocation processes, the Gauss-Seidel scheme is used for all prices

and a combination of the Newton and SOR schemes (l e the more general Eq

(10) and the specific Eq (10a)) is used for allocation quantities In

total, then the LEAP relaxation algorithm is a peculiar mixture of basic

theoretical schemes, which, as will be seen later, makes it somewhat dif

ficult to analyze
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Looking at this algorithm as it is actually implemented in the LEAP

code,11 it becomes clear that further ad hoc modifications of the above

schemes have been made In one particularly important case, each alloca

tion process only deals with the allocation of the fraction of the total

quantity demanded (or supplied), and relaxation is applied to these

fractions, called market shares, rather than to the actual quantities

themselves This apparently minor modification of the relaxation

algorithm, however, complicates the analysis of relaxation considerable

because market shares are coupled by behavioral lag coefficients in time

These coefficients cause market share changes from one year to the next to

be damped, thereby allowing the market to respond only incompletely to time

changes in demand (or supply) The net effect of such damping is that,

when relaxation is applied in each time period (i e , to each component of

the allocation quantity vector), a time lag couples the earlier time

period relaxation coefficient to the present time period coefficient

This characteristic makes the relaxation parameters a function of the

behavioral lag coefficients, complicating the algorithm considerably

In addition to this difference, the actual LEAP algorithm2 also

relaxes a particular variable which in internal to certain modules in the

code That is, LEAP relaxes new capacity additions in all conversion

processes This choice was based on observations in several practical

problems of wide fluctuations in new capacity additions between
i p

iterations The modelers chose to damp these oscillations and hopefully

improve the convergence properties of the algorithm The particular

relaxation method chosen for this task was the simplest ad hoc scheme

available That is, the new capacity addition vector Nw in each
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conversion process is relaxed by a constant, a For each of the time

component Nj of the new capacity addition vector Nw m each conver

sion processes module, a relaxed component is computed from,

ill .-'i0!*!'-.)"'1!n+l,j n,j n,j

• il\+ •n,j

N(0)_N(D
n,j n,j

(ID

where I and 0 again stand for the input and output of the n iteration
p

In the EIA version of LEAP used for Model 22C, a = 0 7 for all components

of H Note that although K, is relaxed it is never tested for conver-
w J w

gence since it was considered to be a dependent variable by the modelers

At this point, again it must be noted that the DFI LEAP documenta-

3 2
tion and the code that generated Model 22C results differ significantly

insofar as implementing relaxation in the allocation process modules of

LEAP The DFI LEAP documentation describes a Newton-Secant method for

updating the quantity vector in allocation processes in which it is

implied that the full A matrix can be evaluated by using the partial

derivatives of 7 with respect to q (• e , 87/9q~ the Jacobian of 7) Due

to the difficulties in obtaining these derivatives analytically for a

code as complex as LEAP, numerical approximations are used instead

Since the only quantity vectors available in allocation processes are

cp ' and q"^ ' for the current previous iterations, a discrete-secant

approximation to the partial derivatives of 7 is employed The Newton

approach in its discrete-secant form (i e , the Newton-Secant method) is

defined by



A=I-(^
\9q,

16

(12)

.thwhere I is the identity matrix, the i,jul component of the Jacobian of

F is given by

.(0)3F\ a / -n \ _"«n.i (13)
*8q'i.J

and Aq = q — q .
Mn,i Hn i Hn-1 l

= *\
Aqv*'/ Aq^

n A,j ^

r(DSince all the input components of q* ' change from iteration to

:(o) ,(D o(Diteration, the change in Aq; ; caused by the qv ;'th element of Aq1
n n,j ^n

cannot be practically evaluated in LEAP The modelers therefore

approximated the full matrix by assuming that each qj; ;component acts
n, j

independently on only q^ ' This approximation reduces Ato adiagonal
matrix, giving rise to the following relationship for the relaxation coef

ficient ai in terms of the diagonal elements a of the A matrix

a. = a.
n

,(0)
*n-l,i

Mn-l,i
(14)

The DFI documentation, therefore, describes a nonlinear SOR scheme

for relaxation of allocation process quantities [i e , Eq (10a) is used]

with a relaxation coefficient [l e , Eq (14)] derived from the diagonal

elements of the Jacobian of 7 used in a Newton-Secant formalism In this

case the success of this portion of the algorithm will depend critically

on the behavior of the off-diagonal elements of the matrix A
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Since allocated quantities are always directly coupled to one

another in any given year, this hybrid Newton-Secant/SOR method can be

expected to encounter some difficulties in converging any general LEAP

modeling problem This problem can be ameliorated to some degree by

imposing limits on the maximum absolute value of a as is done in the

15
norm reducing version of Newton's method In this modified approach,

g
explored by Falk et al on a LEAP-type model, it is possible from a

theoretical point of view to achieve convergence to an accuracy e, which

is a function of the maximum absolute value of a That is, convergence
+• h

achieved on the n iteration, e . is a function of the form e = e (a ),
n n n u

where a is the limit imposed on the maximum value of the a 's In

practice, restricting the upper limits to very small values, however,

usually leads to an inordinate number of iterations to achieve conver

gence to a specific e This is a resuH of qlj being only slightly

different from <r ' from one iteration to the next, making it possible,

for example, to take several thousand iterations to achieve 1/ convergence

with a = 0 01 As a compromise then, the EIA version of LEAP uses a

maximum upper limit of a = 0 9

A further major modification of the approach described above was also

3
used in the EIA version of LEAP used to generate the results for Model 22C

As in the DFI documented version the EIA version uses a diagonal A matrix

for updating cr ' in each allocation process The EIA algorithm, however

uses the following formula to calculate a ,

-1

ai 1
^n-l,i ^n,i

V n-2,i Mn,i

(15)
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with a condition that 0 1 < a < 0 9 If a is outside this range, a

fixed upper or lower limit (whichever the case may be) rather than the

computed o^ is used Thus, a is always positive and less than unity

The theoretical origin of this approach is unknown, and EIA person

nel have not given a rationale for its choice The approach appears to

be a scheme for finding a sequence of qj; ' values as a function of n that
n, i

can be used for extrapolation purposes to determine q^j-j in athree-
15

point Newton-Secant scheme Even if such a method was being used,

the form of Eq (15) does not fully conform to any known theoretical

technique This approach appears to be heuristic and one that happens

to work to a limited extent on a limited class of problems

Further analysis here is not warranted because of the ad hoc nature

of the scheme A description of actual experience with this algorithm in

some specific LEAP problems is more fruitful and will be discussed in the

next section It is only worth conjecturing here that the use of a diagonal

A matrix with constraints on the a values and their calculation using Newton-

Secant type formulas are inconsistent As will be discussed later in Section

VIII, the nature of the equations in the allocation process do not lend them

selves to the constraints imposed or the nonlinear SOR method in general

and these inconsistencies are the potential failings of the algorithm

As a last point it should be noted that an algorithm using Eq (15)

as its basis must use a different scheme for calculating a on the first

three iterations (i e , the first iterations of a "cold start" which only

has p and q" guesses available to begin the iterative procedure) Since

no previous iteration results are available on the first iteration to

compute relaxation coefficients, the EIA version of LEAP sets all of
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these allocation quantity relaxation coefficients equal to a constant

a = 1 0 This constant, can be fortuitously correct or completely wrong

for the problem at hand leading to an initial divergence of the scheme

because of the particular behavior of 7 in Eq (7) near the solution point

VI PRACTICAL EXPERIENCE WITH LEAP ALGORITHMS

When the project began, little was known about LEAP and its numerical

algorithm except that Model 22C results appeared to have converged to

within 3/, and the output looked reasonable Since that time, an analysis

of the results of a smaller test system, Model 82 has produced more

insights into the code's iterative algorithm This smaller model has

all the essential processes contained in Model 22C but is simple enough

to study in some detail through actual runs These runs can be used

indirectly to comment on the expected impact on Model 22C of the

algorithms described in Section V

Regarding actual degree of convergence, the use of the EIA conver

gence criteria [l e , Eq (9)] in Model 22C runs lead, in principle, to

an overstatement of the level of accuracy (i e , e) achieved in the

reported results Therefore, as a first step in checking Model 22C

results, the convergence test was changed to that given in Eq (8) and

the code was rerun with e = 3/, beginning with the "converged" results

reported in the EIA 1978 Annual Report to Congress and all derivative infor

mation After eight additional iterations the new modified convergence

test was satisfied, and the results were printed Generally, the new results

differed by less than a percent from the Annual Report numbers Thus, no

major discrepancy exists between a solution truly converged to 3/ and the

results published in the Annual Report
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The explanation of this result is that the quantities with the

largest magnitudes in Model 22C were already converged to well below 3/o

in the original EIA run and only quantities with small magnitudes were

near the 3/ criteria Changing the convergence algorithm simply

resulted in these latter quantities converging to the true 37 criteria

instead of the effective 6/ criteria resulting from the use of Eq (9)

with a = 0 5

Note at this point that the mode in which LEAP runs are ended

(i e , stopping the iterative process at convergence and then making one

more iteration from a "cold start" to get printed results in the form of

a "data report") can adversely alter the convergence achieved by the code

Restarting a problem from an already converged solution, does not

continue the iteration process from its termination point Instead, it

begins the procedure over again, using only the solution values them

selves as a starting guess (i e , all previous iteration information is

lost in a restart) As mentioned before, a relaxation coefficient of

a = 1 for all allocation quantities can be theoretically incorrect

depending on the behavior of 7 near the solution point In effect the

additional data report iteration could diverge the converged results

already achieved This is a poor procedure and one that should be

changed in future versions of the code

The above comments are the only ones that can be made directly

about the LEAP algorithm concerning Model 22C Running Model 82, how

ever, generated a better understanding of this algorithm In Model 82,

the runs are usually only a few minutes of CPU time versus an hour or

more in Model 22C and changes in the algorithm can readily be explored



21

It was, in fact, the attempt to run Model 82 to better than 5/ conver-
O A

gence (i e , e = 5 x 10" ) for screening work that provided the first

true understanding of the characteristics of the algorithm for this type

of problem Many small perturbations had to be made in the model

parameters for screening, and reruns had to be made to get the perturbed

results The algorithm in the code was never able to converge these

problems to better than about 57, dispite the fact that a converged

unperturbed case was used to start all these cases The characteristic

breakdown in convergence was always of an oscillatory nature as opposed

to complete divergence

In order to determine the cause of the oscillatory breakdown in

convergence in Mdoel 82, several numerical experiments were performed in

which the assumptions inherent in the conversion and allocation process

portions of the relaxation algorithm were changed All tests were con

ducted using starting guesses for the solutions of Model 82 which were

close to being converged (i e , within the convergence of 5/ already

achieved by the oscillating algorithm)

The first change that was made was to alter the algorithm to relax

quantities as opposed to market shares This change was made to

prevent the "relaxation" of the relaxation coefficients by the behavioral

lag parameter in allocation quantities in future years The net effect

of this change was still an oscillatory breakdown at about the 5/ level,

but a shift in the year in which the maximum error occurred to earlier

model years as opposed to those near the model horizon

The next change made in addition to the one above was the replace

ment ot the EIA formula for calculating the re axation coefficient
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[l e , Eq (15)] with the DFI formula based on the Newton-Secant method

[i e , Eq (14)] This change was made to strengthen the theoretical

basis for analyzing the algorithm At the same time the fixed upper and

lower limits on the values of the relaxation coefficients were

systematically varied to include negative lower limits (a < -50) and

large positive values (^ < 50) In no case did the results with these

modifications effectively alter the oscillatory breakdown of the scheme

in the few percent range

Several additional runs were then made using different constant

relaxation coefficients (from 1 < a < 9) in place of the a = 7 value

in the conversion process portion of the algorithm [i e , Eq (11)] The

same oscillatory results persisted in these cases also

At this point in the analysis it was conjectured that the Model 82

results might not be converging because multiple solutions might exist

for this specific modeling problem with solutions separated in price and

quantity values by a few percent An analytic examination of the alloca

tion quantity and price equations was made to determine the conditions

needed for uniqueness and it was shown that multiple solutions can

indeed exist for allocation process prices and quantities 3 The condi

tions for multiple solution existence (the rare combination of at least

one nearly elastic and one nearly inelastic supply curve to be allocated

and a nearly elastic demand curve into allocation), however, were not

present in Model 82, so this possibility was ruled out

A second theoretical explanation was derived from the work of Falk

et al 9 on LEAP type equations In their work they observed an oscillatory
breakdown in convergence exhibiting an asymptotic oscillation between two
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limit points in the solution The oscillations exhibited a correlation

between the maximum absolute value of the relaxation coefficient,

|a|max, and the separation of the limit points Adecrease in the

allowed |ot|max reduced the limit point separation, with a resulting con

vergence in the limit of |a| + 0, to a single limit point solution
HlCL A

Since no prescription was given for reducing jot I and the fact that a
max

small |a|max causes an excessively large number of iterations to achieve

convergence, an automated scheme for reducing |a| as a function of the
11[Q A

+ h

level of convergence achieved in the n iteration, e , was devised to

test this theory of Model 82 Results for this series of test runs as

well as the formula for lal ,„ as a function of e are summarized in
1 'max n

Table I These results show again that the level of convergence can only

be minimally improved by staging the maximum value of a down systemati

cally as a function of e and then only at the expense of the number of

iterations required The solution in each case still oscillated after

the best converged values were achieved, and the improved best error

values were smaller than the non-staged algorithm by, at most, only a

factor of two

Table I Best Maximum Error Achieved in Less than 100
Iterations with Various a Staging Algorithms

|a| max = /e^ en y^/4

Best maximum error e., 0 05 0 05 0 02

Number of iterations N 48 53 100
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As a last resort, a complete analysis of the local partial

derivatives for each allocation quantity was made using the calculated

q results of previous and present iterations near the 5/ converged

solution achieved As a result of this analysis it was concluded that

a small positive a value should produce convergence for most of the

supply-demand curve slopes encountered in this modeling problem A

series of constant values of a for all quantities in all time steps

was therefore tried on this problem in order to achieve convergence

Surprisingly, a value of a = 0 2 yielded convergence to arbitrary

accuracy in all perturbed cases of Model 82 Typically, e = 5 x 10

was achieved in about 50 iterations for all starting guesses, which were

small perturbations of the initial base-case quantities Other a values

appeared to be converging the results well below 56 but at the expense

of the number of iterations, which in most cases was several hundred or

more to get below e = 0 005

These results were clearly unexpected and seem to go counter to the

theoretical analysis previously done on this problem A constant a

reduces the allocation portion of the LEAP algorithm to a pure nonlinear

SOR scheme and it appears that the rather restrictive conditions under

which this scheme is convergent exist in the Model 82 network In

addition to this, a constant value of a also has the desirable property

of not changing the relationship between total quantities (i e , the sum

of the q 's) and individual components thereby retaining the property
n, i

that supply equals demand before and after relaxation

It should be noted here that most of the a 's for the largest allo

cated quantities in the EIA algorithm were found to be about 0 5, and this
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fortuitous result seems to produce most of the convergence down to the

^ -2
level of e = 10 observed in the original Model 82 results The use

of nonuniform a values seems to result in small quantities being

relaxed so as to cause divergence in those quantities with large magni

tudes after these latter quantities have by and large converged quickly

_2
to well below e ^ 10

VIII CONCLUSIONS BASED ON MODEL 82 RESULTS

The conclusion that should be drawn from the results presented

2
above is that the EIA-LEAP algorithm is a nonconvergent scheme, in

that it cannot be made to reduce e as a function of iteration number n

when started with price and quantity vectors which are close to the

solution point (i e , within 5/) That is to say, an algorithm which

cannot be made to reduce the error norm [i e , Eq (8)] when started

with a solution guess that is in the vicinity of a known solution point is

almost by definition non-convergent From private communications with EIA

personnel this conclusion has been substantiated in that most Model 22C

results are not achieved in an automated fashion, and even the 5/ level of

convergence is reached in most cases only after considerable hand inter

vention

It appears then, that a diagonal A matrix seems to be just adequate

to quickly converge the largest magnitude quantities and therefore reach

the level of a few percent convergence in Model 82 or Model 22C The

algorithm fails at this point in trying to converge the smaller magnitude

quantities This procedure eventually results in oscillation as the

smaller values begin to affect the large well-converged values through the

functional relationship between allocation quantities The algorithm is

reasonable then for answers of a few percent but will not generally converge
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allocation quantities further, even though the results are already close to

a solution Although staging the maximum value of a down as a function

of e is a reasonable approach from a theoretical viewpoint, it is also

not adequate to converge the solution Only hand-choosing a constant

a and the inherent use of a nonlinear SOR scheme seems to yield con

verged solutions with this algorithm To further complicate this

12
picture, there are indications from DFI that the convergence of most

large models (e g , Model 22C) is dominated by relaxation of new

capacity additions in basic conversion processes Here, the choice of

a constant a relaxation in new capacity additions may be the fortuitous

reason that convergence is achieved in many of these problems

Since the only workable scheme found was the constant a SOR

approach, it seems imperative to try to analyze this algorithm more

completely in the general context of Eq (10) The fact that most of

the test runs with Model 82 were started with p and q guesses which were

close to converged, says that the classical analysis of this algorithm

using a rigorous Newton's method is essential to understanding the

failings of all the diagonal schemes except constant a SOR In the case

where the starting values are in the vicinity of the solution, Newton's

method is guaranteed to converge with a quadratic rate of convergence

This fact indicates that the off-diagonal elements of the relaxation

coefficient matrix A are crucial for success of the LEAP algorithm and

only a fortuitous, non-automated procedure for finding a constant a seems

to remedy the problem

The oscillatory nature of the algorithm, characterized by the quick

convergence of large magnitude allocation quantities followed by perturba

tions induced by small magnitude allocation quantity non-convergence, leads
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strongly to the conclusion that the coupling of allocation quantities in

any single year is the dominant off diagonal functional behavior in the A

matrix This then is the working assumption for the next section in which

a more nearly rigorous Newton-Secant method for allocation quantity relaxa

tion is presented In this approach the relaxation coefficients are calcu

lated using Eq (12) and a full Jacobian matrix of the allocation transfor

mation function 7 An analysis of the contribution of off-diagonal elements

to convergence in the previous LEAP schemes will be made in an attempt to

explain the current oscillatory breakdown in LEAP results

VIII ALTERNATIVE LEAP RELAXATION ALGORITHM - NEWTON'S METHOD

In order to overcome the theoretical problems of analyzing the

current LEAP relaxation algorithm relaxation coefficients for a full A

matrix in each allocation process can be estimated using the Jacobian

of the allocation process transformation function Because of its

relative simplicity the Jacobian matrix can be derived analytically from

the given allocation process transformation functions for use in the

LEAP algorithm In what now follows, a Jacobian matrix for all quanti

ties in an allocation process is derived and a Newton's method for

relaxation using these results is sketched out

The scheme to be discussed below deals directly with quantities

rather than market shares, to eliminate the complications introduced by

behavioral lag coefficients in the latter approach The working

assumption for these derivations is the time independence of all alloca

tion quantities as far as the allocation transformation function is con

cerned Although this assumption is not theoretically true, it is felt

that most of the iterative difficulties in a time dependent framework
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can be removed by performing the analysis in terms of quantities as

opposed to market shares

+• h

The price and quantity equations in the k allocation process

which are needed to begin the analysis are respectively as follows

Pk = G(qk, pr, qk.) k' ^ k (16)

% = H^k' V' h^ ^17^

where the vectors pk^ and q~k^ denote all the prices and quantities

linked directly to an allocation process

In this notational form the components of the vectors p^ and qk can

be defined as follows

Pk = (Pr »PN» P) (18)

qk = (qj. »qN» Q) (19)

where each vector has N + 1 components, the first N being the prices

or quantities entering an allocator and the last (P or Q) being the

price or quantity leaving the allocator These relationships can be

represented schematically as

P,Q

(allocation)

Pl'ql I I PN'qN
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Assume now for simplicity that p(q-i), Pn^n) and Q(p) are suPP^y

and demand transformation functions, respectively, which are given analy

tically by the transformation functions of the process modules linked to

•f"h

the k allocation process These functions can also be derived analy

tically, if needed, from an analysis of the LEAP process module equations,

but as will be seen later, this is not necessary for this Newton's method

analysis The specific transformation functions for P(q~) and q-.(p),

,qN(pj) defined in the allocation process are given as follows

N qn
p =

i=i

i

Q pi

ql -/I-V i

Q " \Pi J N

a
\Y\ i /

£
j=i /

N

Q = E qi
1 = 1

where y ts the price sensitivity coefficient

For notational convenience define

Vy =ipn

i N / , \Y N

Y i=l \pi/ 1=1 u

(20)

(21)

(22)

(23)

(24)
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then using the above expressions, the total transformation function for

allocation quantities in the k allocator can be written concisely as

al,YCpl(ql)] hy£p™ W^
q = F(q) (25)

aN,YHYQ

Note here that the functional dependence of a , H and Q on p and q
1 »Y Y

is given in parentheses only for the first element of the 7 operator to

simplify the notation

In order to derive Newton's method for relaxation of the quantities

given in Eq (25), the Jacobian matrix, 87/3q, needs to be evaluated

The Jacobian for 7 is defined as follows

3F

3q

8F1 3F1
3qj

3F,

sqN

3q.

3F. 3F,

•3q
1 3q N'

1,1 ^.N1

i.J
(26)

rN,l N,Ny

In terms of the specific functional form of 7 given in Eq (25), the

elements of the Jacobian matrix are derivable from the following

relationship,

9Fl;Efi,J =3q7[ai,YHYQ]3q.

3a

HQ—L^L
Y 3q

J

+ a

3H

l yH 3q + a. H 3Q

J
i.Y Y 3q.

(27)
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The three partial derivative terms in this equation can be evaluated

using the definitions of a.| and H and also the relationships given in

Eqs (20) and (21) These results on a term-by-term basis can be derived

as follows For the first term on the right-hand side of Eq (27) the

derivative is given by,

3a H dp p'

M -^ =-I* -&T do^ «,, =~y% IT 6n (28)Y 3q ,y pY+l dqi 1J ,H1 p^ ij

•f* h

where p^ = dp (q )/dq is the derivative of the i supply curve feeding

the allocation process and 6 is the Kroneker delta function In a

similar fashion the second term in Eq (27) is

3H yHZ dp q p-
,i.YQi^"pY3Eraqf-YTf-pJqi <29»

The third term is slightly more complicated but can be evaluated

in several steps starting with the following expression,

',aV''A^-,'A»'^ (30)
where 0/ = dQ(PVdP is the demand curve slope of the final allocated

quantity Since P can be written as

P = _Jl_ (31)
Vl
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the derivative of dP/dq can be evaluated using the results in Eq (29)
J

for the derivative 3H /3q as follows
y j

3P_
3q,

= p
3H/3qY/9qj 9HY-l/9qj

H
Y

Y
JL
Y+l

Y-l

Hv 1P-(Y-D-y pj

The final form for the third term is therefore

a H 4Q_
ai,YHY 3q, YqJ PjQ Q Y / P

(32)

(33)

If we now define the relative slopes (i e , the elasticities) of the

supply and demand functions respectively as follows,

, - dFVPi
1 = dqn/qi

dQ/Q
dP/P

the final form for the Jacobian matrix element f is,
i >J

i,J 3q. YPi6U + Ypj 0" 1 + 8 1 (W

(34)

(35)

(36)
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From the expression above, it is clear that the value of any element

of the Jacobian matrix is a linear function of the elasticities of the

supply and demand curves Since these elasticities can in general take

on arbitrary values (usually, however, all the p are positive and $ is

negative), the element f can also assume any value Thus, the Jacobian
• »j

matrix is not in principle diagonal dominant and off-diagonal elements can

play a key role in convergence It should also be noted that the supply

curve with the largest elasticity and/or the largest market share will

produce the largest off-diagonal element f as given in Eq (36) This
• >J

element will therefore have the most noticeable effect on convergence

At this point a simple analysis of the weaknesses of a diagonal A

matrix approximation can be made In principle there is an equivalent

diagonal A that will yield the same results as an exact Newton's approach

For this case the following relationship must hold

&> - q.(I) ♦<n+l Hn
!_iE

3q

-qW +tT-I) (qW-qJ11) (37)

where T is a vector with elements of unity [i e , T = (1, ,1)] and "a is

a vector of inverse relaxation coefficients (i e a = — , —)
al V

Under these conditions the equivalent diagonal relaxation coefficients

a are defined as

0 (q(0)-q(l))VHn Hn '

,_?^-«>
011 = .(o)_„(i) (38)

VHn,i Hn,i '

where a are the coefficients of the inverse of the A matrix
1 sJ
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Since both the numerator and the denominator of Eq (38) are in

general of arbitrary magnitude and sign, it should be clear that a

single a value can also be arbitrarily large and either positive or

negative This is in direct contrast to the size and sign constraints

placed on the relaxation coefficients in the current LEAP algorithm

These constraints in general can cause oscillation and/or nonconver-

gence of the algorithm under very weak conditions on the structure of

any LEAP network

To continue the analysis, Eq (36) can now be used to define a

Newton's method approach to accelerate convergence of allocation pro

cess quantities Since a full Jacobian matrix is available analyti

cally, Eq (10) can be used if A can be evaluated In practice it is

easier to solve the following equivalent set of equations instead of

inverting A" , thus Eq (10) can be rewritten as

qnIl=qnI)+^n (39)

where v is the solution to the following linear set of equations

Avn = 6n (40)

Here the approximate error vector on the n iteration, 6 , is defined as

and as before

AMI-1!) (42)
sq
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The above equation makes it possible to now impliment a full

Newton's scheme in LEAP allocation processes This procedure should

in theory alleviate the oscillation problem observed in results using

the previous algorithm Its use in practice proceeds in the following

manner Once the convergence test in allocation is made on the n

iteration, 6R can be calculated This quantity together with the

analytic expression for f [i e , Eq (36)] can be used in Eq (40)
• >J

to solve for v , the increment to be made in cr ' for the next iteration

Solving this small set of linear equations can be done very rapidly for

the new quantities in each time interval of a LEAP allocator The time

spent in this procedure should easily be justified by the time saved

in accelerating the solution procedure (or for that matter, just finding

any converged solution)

The only remaining item needed to implement this algorithm is a pro

cedure for evaluating p and 3 Since these elasticities are not generally

available analytically for each generic process in LEAP (although expres

sions might be derived for them with some effort), it is more practical

to use a simple secant approximation for them based on the results of the

present and previous iterations

Thus, p and 3 can be evaluated approximately as follows

1i,n

'i.n

6_Qn

i,n Ji,n-1

Vn~qi n-1

Q -Q ixn xn-l

Pn - Pn 1n n-1

(41)

(42)
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In both of these expressions the quantities and prices should be the

latest available (i e , they should refer to output prices on the up

pass and output quantities on the down pass of the current iteration)

Both expressions are easily evaluated in LEAP since both previous and

present iteration prices and quantities are available for all process

modules linked to each allocation process

In summary, the analysis of the LEAP allocation process equations

strongly suggests that the approximation to Newton's method outlined

in this report can be used to represent the strong coupling of alloca

tion quantities in LEAP and therefore to accelerate and/or guarantee some

level of convergence of the current algorithm Although this latter

algorithm is based on several assumptions (l e , time independence and

process module transformation function separability), it should still

offer considerable advantages over the present diagonal matrix scheme

Only further practical experience will determine whether additional

functional relationships must be included in this analysis to guarantee

and accelerate convergence of the LEAP algorithm

IX SUMMARY

The following eight points summarize the findings of this study

1) The LEAP code was found to be comprised of a set of coupled non

linear algebraic equations in prices and quantities The

equations are modularized for each process in the energy economy

and have the mathematical form of a non-linear equilibrium

boundary value problem
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2) An iterative up/down algorithm is used to solve the equations

which closely resembles the tatonnement process of equilli-

brating supply and demand in a classical Walrasian economy

3) In mathematical terms, the iterative algorithm is of the non

linear Gauss-Seidel scheme for most process modules with the

major exceptions being the use of a discrete Newton/SOR scheme

for allocation quantities and a constant relaxation SOR scheme

for new capacity additions in conversion processes

4) The EIA-LEAP algorithm was found to be non-convergent because of

two major theoretical problems The first being the ad hoc

scheme for calculating the relaxation coefficients in the appli

cation of the diagonal/SOR scheme and the second being the off-

diagonal dominance of the Jacobian matrix in the allocation pro

cess equations where the diagonal Newton/SOR approach is used

5) The convergence test in the EIA-LEAP algorithm was also found to

be weak in two respects First, the norm used generally over

estimates the level of convergence achieved and second the con

vergence test is only used in allocation processes quantities,

so that the degree of convergence of all other prices and quan

tities in the code is unknown and untested

6) In attempting to achieve convergence an ad hoc constant relaxa

tion SOR scheme was found to be the only fully convergent scheme

which worked on the models tested

7) Based on a significant number of numerical experiments with the

algorithm it was concluded that the scheme could be improved
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considerably (possibly even made convergent) if a full discre-

tized Newton scheme were adopted for allocation process

quantities Analytic expressions for the Jacobian matrix needed

for the implementation of such a scheme are thus derived and

recommendations for their use in LEAP are made

8) Potential problems with non-uniqueness and non-existence of the

solution of the LEAP equations were also identified in the

study
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