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ABSTRACT

The objective of this program is to develop a microwave oscillator
capable of producing 200 kW of W power at 60 GHz. The use of cyclotron

resonance lnteraction is being pursued.
The design, early construction, and test phases are discussed. A peak

output power of over 200 kw was obtazined with over 50% efficiency at pulse
durations of 20 yus.
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I. INTRODUCTION

The objective of this program is to develop a microwave oscillator
designed to produce 200 kW of OW output power at 60 GHz. Neither tunability
nor bandwidth are considered important parameters in the design but
efficiency is. Mode purity in the output waveguide is not a requirement for
the device, but the circular electric mode is considered desirable because

of its low loss propertles.

With these objectives in mind, an approach based on cyclotron resonance
interaction between an electron beam and microwave fields is being pursued,.
Tne detailed arguments leading to this approach are contained in the final
report of a preceding study program1. The device configurations of
particular interest, called gyrotrons, have been discussed in recent
11terature2°6. They employ a hollow electron beam interacting with

ceylindrical resonators of the TEOM1 class,

The optimum beam for the cyclotron resonance interaction is one in
which the electrons have most of their energy in velocities perpendicular to
the axial magnetic field. Another requirement is that the spread in the

axlal components of the electron velocities be as small as possible.

The approach chosen to generate the beam is a magnetron type of gun as
is used on tne 28 GHz gyrotron, also developed for Oak Ridge National
1aboratory7'8. With this type of gun, the shaping of the magnetic field in

the gun region becomes quite important,

Gyrotron behavior studies utilizing 28 GHz test vehicles are
continuing. Areas studied this quarter included high voltage gun arcing,

new cathode materials, rf behavior and cavity and output taper design.

Tne superconducting solenoid magnet was corrected and operated in

support of experimental tube testing.



Preparation was made for making computer calculations of heat transfer
and temperature cycle data for the gyrotron collector with pulse lengths

relevant for fusion experiments.

Several face cooled double disc CW window designs were evaluated

theoretically.

A variety of waveguide components including waterloads, mode filters,
miter bends and flange adapters were designed and are in various stages of
fabrication.

The first experimental tube ylelded promising results in terms of
demonstrating the peak output power. The second experimental tube 1is

nearing completion. The third experimental tube is under construction.



IT. GYROTRON BEHAVIOR STUDY

A. ARCING AND CROWBAR INVESTIGATION

A majority of the quarter was spent working with various tubes and
trylng to find a cause for the frequent crowbars in the VGA-8000 and
VGA-B8050 tubes. Tne purpose of this work is to eliminate some of the design
problems in gyrotrons so the developmental work at higher frequencies can
proceed more rapidly. Work was completed on the first stage of this

investigation.

During this guarter four antennas were placed in the oll tank near the
gyrotron gun to look for rf in the gun region. At first it seemed that the
rf preceded the tube fault. Further investigation, using a digital storage
scope with 50 nanoseconds per point speed, showed that the rf actually
followed the gun anode arc by 100-200 nanoseconds. This rf could be due to
the high beam current drawn when the gun anode voltage approaches ground

potential.

Using the table of probable events that would occur with various tube

faults, all types of faults were seen. Observed were the following:

1. gun anode arc to ground (Figure 1);

2. gun anode arc to cathode (Figure 2);

3. cathode arcs to ground with the gun anode following (Figure 3);

These three figures were taken with the digital storage scope during
the OW operation of the VGA-8000 S/N 11, Figure 1 shows the mod-anode
voltage going quickly towards ground potential while at the same instant the
mod-anode current goes in the direction of discharging the capacitance in
the modulator between mod-anode and anode. As can be seen in Figure 1 the
time constant for the discharging of that capacitance is quite long. Figure
2 shows a lower seal arc. This seems to be much less frequent than an upper

seal arc. In this figure the mod-anode voltage tries to go more negative
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and at the same instant the current goes for a short time in the direction
of charging the capacitance In the modulator from mod-anocde to anode. The
crowbar then fires and the voltages go to zero. Figure 3 shows an arc from
cathode to ground. This Is very seldom seen. The mod-anode voltage goes
- towards the cathode voltage, and yet the mod-anode current is going in the

direction of discharging the mod-anode to anode capacity in the modulator.

In the event of case No. 2, the beam should shut off without a crowbar,
but this doesn't seem to be the case, and this will be further investigated.
During pulse operation, the gun anode voltage tends to go more negative,
rather than more positive, with the start of the crowbar. Wnile in CW
operation the failure mode seems to be the gun anode voltage going more

positive, indicating an arc from gun anode to ground,

B, NEW CATHODE MATERIAL

Discussions were held with those involved in cathode design at Varian.
Some data were obtained on results from the cathode study programs at Varian
and elsewhere. The M~type and mixed-metal-matrix cathodes appear to be
worthy of Investigation. They can have lower work functions than the barium
cathodes as well as higher emission density with good life. The M-type
cathodes typically seem to have a2 more uniform surface emission, which is
good for lower velocity spreads due to surface roughness and spotty

emission.

A more thorough study could be made by buillding an Auger microscope and
observing the uniformity of emission. This could be done on a modest
budget; but the real question arises in the velocity spread. This
measurement would require building a good beam analyzer. At the moment,
none exists for magnetron injection guns and construction of a beam analyzer

would require a substantlally large budget.

c. RF BEHAVIOR

During the quarter an exploration of parameter space was performed with

two tubes. The data for the CW tube are shown in Figure N, The VGA-8000
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S/N 11 was used for these tests. Figure 4 points out that the best way to
start the tube oscillating in the correct mode is to start with a low gun
anode voltage and a high magnetic field, then raise the gun anode voltage to
the design value and then lower the magnetic field to get the desired output
power. Figure 5 shows the data for the VGA-8050 S/N 9 pulse tube.

Comparing Figures 4§ and 5 illustrates that the coperation of the CW and pulse
tubes is very similar, but there are two evident differences. First, the CW
tube has a 28.4 GHz mode and the pulse tube does not. Further examination
will have to be done to identify this mode. Though it i1s not shown in
Figure 4, the TE221
TE modes, as it is also at lower field than the TE

021 021
tube. The second difference occurs at the low gun anode voltage levels. In

mode was at lower magnetic field than the 28.4 GHz and
mode in the pulse

the CW case, it appears more difficult to operate in the correct mode than
in the pulse case. A plot similar to these with the VGA-8000 3S/N 11
operated in the pulse mode will help indicate whether these differences are

due to the geometry differences or to the different mode of operation.

At high magnetic fields the 32.4 GHz mode oscillates wilth low power.
This mode does not seem to be a problem because it can be avoided with the
appropriate magnetic field setting. The TE221 mode appears to be a more
gerious problem. As can be seen in Figure 6, to obtain high output power

the main field is lowered and then the TE mode becomes the lower limit in

221
main magnet field, and the upper limit for power output,

Figure 6 shows the characteristics of the VGA-8000 3S/N 11. It was
operated for periods of a few hours at the 200 kW CW level. Thnis curve
compares well with the previous curves for S/N 5R2 and S/N 6. Tnis tube
achieved H0% efficlency.

D. CAVITY AND OUTPUT TAPER DESIGN

Two cavity designs have been looked at to reduce the mode competition.
One design has already been used on 60 GHz and has been reported. Another
design is still being investigated to be used on the VGA-8000 S/N 8 rebulld.
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The rebuild of S/N 8 will also include a part for a residual gas
analyzer (RGA)., This will allow the liberated gases to be analyzed during
bakeout as well as during tube operation. There will also be another port
to observe the gas pressure in the gun region during operation.  These
- diagnostics will help to determine what is occurring in the tube during
operation.

12



ITII. SUPERCONDUCTING SOLENOID MAGNET

The superconducting solenoid magnet, received at the end of December,
exhibited some dimensional problems. The short ecylindrical section of the
. bore which mates with the O-ring at the bottom of the tube body and provides
alignment was undersized, tapered and out of round. This condition likely
occurred during welding of the plate and shell dewar assembly. An in-

process machine operation was apparently omitted.

This mechanical problem, which prevented inserting the gyrotron
completely through the bore of the dewar, was solved at Varian by setting up
the entire dewar in a mill and boring out the inside surface to the correct

diameter.

After evacuating the vacuum chamber of the dewar, the boil-off of

liquid helium and liquid nitrogen was approximately as expected.

An axial magnetic field measurement was made at Varian that agréed with

the field measurement at the vendor and with calculations.

The only remarkable electrical problems involved the time required to
change the magnetic field. The coils were designed to operate a 110 GHz
gyrotron. Consequently they have more inductance than absolutely necessary
to operate a 60 GHz gyrotron. This problem will be alleviated by
introducing a suitable resistance in series with the power supplies and main

coils.

During initial tube operation it was found necessary to trim the
mechanical axis of the gyrotron with respect to the mechanical axis of the

dewar to improve beam transmission.
It is understood that this discrepancy is assoclated with the

mechanical support consistent with high performance boil-off

characteristics.

13



Iv. COLLECTOR

Preliminary heat transfer calculations presented in the last quarterly

9 suggest that more detailed, computer calculations be performed to

report
- determine behavior at the water channel. The temperature as a function of
position and time, both during and after a pulse, will be required for
atress calculations to determine the suitability of the collector for
repeated long pulse operation and also for determining required collector

cooling water flow rates for less than continuous operation.

Proposals were solicited for performing these calculations from outside
vendors, one of whom had been used for performing CW burnout calculations
during the 28 GHz gyrotron development. Approximately half the cost of the
proposed effort was for computer time, A decision was made to utilize the
Magnetic Fusion Energy computer network. A code entitled TACO is being used

to perform the thermal analysis.

14



V. OW WINDOW DESIGNS

During the quarter, further effort was applied to the CW window design
problem for the 60 GHz 200 kW CW oscillator. Investigation of the
-electrical propertles (bandwidth and dielectric 1055) as well as the
mechanical properties (deflection and thermal stress) of double disc FC-75
face-cooled window assemblies was carried out. A summary of the design
results 1s given in Table 1 for six different assemblies employing both

beryllia and alumina dises.

A. LOCATION OF PASSBANDS

For each of the six designs presented in Table 1, the gap size was
optimized to provide a perfect match at the operating frequency of the
VGE-8060 S/N X-1, namely 59.7 GHz. The experimental tube also tended to
jump into an undesired mode, probably the TE221. at a frequency of 57.7 GHz.
For this reason it is desirable to match the CW window assembly for this
frequency as well as the desired frequency. The computed VSWR is plotted
versus frequency in Figures 7 and 8 for each of the window designs under
consideration. Characteristically, the CW window passband takes a double
notch form as shown in Figures 7 and 8. It is possible, by choosing an
appropriate window thickness, to approximately center one passband on each
of thne frequencies observed with X-1. The double disc window with 5/2 A

alumina discs is one such configuration as described in Table 1.
B. BANDWIDTH

The bandwidth of each passband should be as wide as possible, but in
any case, must exceed the oscillator resonance bandwidth, f/Q. This
criterion implies an upper limit on the allowable electrical thickness of
the CW window assembly. All the designs listed in the table meet this
bandwidth criterion, However, tne 5/2 A alumina window assembly appears to
have reached the absolute limit in electrical thickness as it provides a
passband for a VSWR of 1.2:1 of only 300 MHz.

15
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Double Dise

Table 1
60 GHz Double Disc Window Designs

Configuration

Disc FC-T5
Disc Thicknesa Gap
Material (inches) (inches)
Beryllia 2/2 »  0.083 0.028
Beryllia 372 v 0.120 0.033
Beryllis k72 x»  0.157 0.039
Alumina 3/2 » 0,099 0.036
Alumina /2 » 0,131 0.036
Alusina 5/2 A 0.163 0.036

Electrical Mechanical
Properties Properties
T8021 Window
Bandwidth Aasy Deflection Deflection Thermal
for VSWR = 1.2 TE221 Loss @ 30 pmig Streas Stress
(MHz) YSWR (kW) (inches) (psi) (ps1)
760 1.85 2.1 0.0026 12,800 92
570 1.82 2.6 0.0008 6,100 180
470 1.59 31 0.0004 3,600 330
500 1.71% 2.3 0.0017 9,000 T80
420 1.40 2.4 0.0007 5,100 1,300
300 1.10 2.5 ¢.000k 3,300 2,000



C.  DIELECTRIC LOSS

The power lost in these window assemblies through dielectrie
dissipation is expected to be higher than that observed at 28 GHz because
the window thicknesses, in numbers of half wavelengths, are larger., All the
window assemblies considered in Table 1 should exhibit dissipation in the
range of 2-3 kW, most of which is due to dielectric loss in the FC-T75
coolant itself. As the amount of loss is similar for all the designs
considered, this property does not present any strong argument in favor of
any particular design. It is noted, however, that because beryllia has a
higher loss tangent than alumina, the dissipation in the beryllia assemblies
will be slightly higher than in the alumina assemblies.

D.  DEFLECTION STRESS

There are two major sources of stress on the ceramic discs in these CW
window designs. There is a deflection, and therefore a restoring deflection
stress, caused by the load of the pressurized FC-75 distributed across the
face of each disc. The disc on the vacuum side rmust, in addition, withstand
the load of atmospheric pressure. When running with an FC~-75 pressure of 30
psig the load on the vacuum side disc will be U5 psi absolute load pressure.
This leads to a deflection and deflection stress at the center of the window
as listed in Table 1; Excessive deflections are encountered when the discs

are less than one tenth of an inch in thickness.

E.  THERMAL STRESS

As the heat dissipated in the ceramic diffuses toward the coolant, the
temperature difference between the disc faces induces a thermal stress in
the ceramic. Beryllia, because of its excellent thermal conductivity, is
subject to an order of magnitude less thermal stress than alumina. For a
given ceramic material the temperature difference between the disc faces are
higher for thicker discs, although the thermal stress remains within safe
limits for all of the designs in Table 1. When both thermal and deflection
stress are considered together there is a narrow range of disc thicknesses

which simultaneously permit low deflection and low thermal stresses.

19



F. COMPARISON QF CW DESIGNS

The window designs of Table 1 have been rated against the criteria

- described above as shown in Table 2. The labels, "unacceptable",
"marginal®™, and "acceptable” are applied to those window properties which
differ significantly amongst the designs under consideration. According to
the rating system, the 5/2 A alumina window is the clear winner for the
first 60 GHz CW window design although it has the disadvantage of a narrow
TE02 bandwidth for the passband centered at 59.7 GHz. Once the window
assembly is completed it may be necessary to retune the window slightly by
adjusting the FC-T75 gap size in order to provide a perfect match for the

TEO2 mode at 59.7 GHz.

20
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Property

73021, bandwidth
75221 ¥SWR
Deflection

Deflection Stress

Table 2

Design Trade-offs for 60 GHz CW Window Design

Beryllia
27/2 A 3/2 A k72
Acceptable Rcceptable Marginal
Unacceptable Unacoeptable Unacosptable
Unacceptable Acceptable Acceptable
Unacoeptable Marginal Acceptable

Alumina
3/2 X br2 A 5/2 A
Marginal Marginal Marginal
Unacceptable Marginal Acceptable
Unacceptable Acceptable Acceptable
Unaoceptable Marginal Acceptable



VI. COMPONENTS

A varlety of waveguide components is being developed for use with tne
60 GHz gyrotron including a waterload, mode filters, miter bend and flange
adapters.

A. WATERLOAD
A W waterload has been designed, All parts have been ordered and
almost all of them have been received. Construction of the first CW

waterload is scheduled to begin in mid April.

B. MODE FILTERS

Two types of mode filters have been designed. The first is a water-
cooled stainless steel waveguide, which utilizes the differential in loss
between non-circular electric modes and circular electric modes. All parts
for this mode filter have been ordered and received. Assembly of the first
mode filter began in late March.

The second type of mode filter consists of alternating stainless steel
rings and gaps backed up by a waterloaded ceramic cylinder. In addition to
the differential filtering loss mechanism of the first type of filter, the
second type creates breaks in the conducting wall for non-circular electric
modes but not for circulér electric modes. All parts for this mode filter
have been ordered and almost all of them have been received. Construction

of this type of mode filter is expected to begin in mid April.
c. MITER BEND
A mitered 90o circular waveguide bend has been designed for potential

wavegulde configuration tests. All parts have been ordered and received.
Assembly of the first miter bend began in late March.

22



D. FLANGE ADAPTERS

Adapters have been designed to enable connection from the copper
gasketed flange to either of the male and female designs used at 28 GHz.

This will allow use of certain waveguide component designs developed on the

28 GHz program. All parts for both the male and female flange adapters have

been ordered and received. Construction began in late March.

23



VII. TUBE ASSEMBLY

A. X-1 (VGE-8060X1)

The first 60 GHz experimental gyrotron was pinched off on January 8 and
placed in test on February 6. This tube utilizes an uncooled anode, a small
collector and a single disc beryllia window. The main purpose of the tube
is to demonstrate 200 kw of peak output power at 60 GHz. Early test results
are described in Section VIII,

B. X-2 (VGE-8060S1)

The second experimental tube incorporates a water-cooled anode and a
dimensional change to place the cathode in a more favorable location with
respect to the magnetic field. All major assemblies are complete. Final
assembly will start immediately. The tube will be available for test after
test set modification. The purpose of this tube is to demonstrate 200 kw of

peak power at fusion experiment relevant pulse durations of at least 100 ms.

c. X-3 (VGE-8060S2)

The third experimental tube provides a vehicle for rapidly
incorporating design changes suggested by tests of X-1 and X-2. All major
assemblies except one collector seal assembly and the anode and cavity

assembly are complete. Final assembly will be complete in July.
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VIII. PRELIMINARY TEST RESULTS FOR THE VGE-BO60 SN X-1

A. HIPOTTING

Testing of the first experimental tube was begun during the first week
of February. The tube was successfully hipotted to 30 kV across the
cathode - gun anode seal and to 100 kV across the gun anode - anode seal.
During hipotting a few mild gas bursts were observed at which time it was
noted that as the pumps recovered from a gas pressure surge, the indicated
pump pressure was two orders of magnitude higher in the gun pump than in the
collector pump. Tnis benavior was expected because the low pumping
conductance of the beam tunnel effectively isolates one end of the tube from
the other.

B. EXCESSIVE BODY CURRENT

Pulsed beam power was applied during the second week of February and by
comparing body current and beam current it was determined that beam
Interception in the beam tunnel was excessive. While the magnet steering
coils did have a slight effect in reducing the body current, their ampere-
turns rating was insufficient to steer the beam clearly through the beam
tunnel. To correct this problem, attempts to shield the tube from external
magnetic perturbations by wrapping iron shields around both ends of the
magnet dewar were made. This had no effect on the excessive beam
interception., Finally, the tube was tilted about a pivot point near the gun
by using 2 mechanical adjustment on the plate which supports the tube at the
top of the dewar. A transverse adjustment of the beam tunnel with respect
to the axis of the dewar bore of 0.022" east and 0.015" north was necessary
to send the beam through the beam tunnel with acceptable (< 5 ma) beam

interception at full beam current (8 a).

C. OBSERVATION OF RF OUTPUT

RF output near 60 GHz was first observed on 24 February. It became
immediately apparent that the modulator voltage pulse was not sufficiently
flat. Work was done on the voltage divider in the modulator to better
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compensate the system for running at 8 a, 80 kV. The gun anode voltage
pulse was improved enough to observe rf pulses of ~ 20 usec in duration.
However, because this tube appeared to be very sensitive to small changes in
gun anode voltage, the rf pulse duration was limited by the slope of the gun
~anode voltage waveform. Thus, it was not possible to increase the rf pulse

duration without further improvement in the flatness of tne voltage pulse.

During this portion of the testing, measurements, indicating a peak
output power of ~ 200 kW at ~ 50% efficiency were obtained. Some
uncertainty must be attributed to these preliminary data because, while
average rf power (~ kW) was measured calorimetrically, the inferred peak
power depended on the less certain measurement of rf pulse duration. Wnen
running under the modulator pulse shape conditions mentioned above, the rf
pulse duration was less than the beam pulse duration. This situation mignt
cause significant error in the peak power measurement if, for example, any

unobserved rf was put out by the tube at other times during the beam pulse.

D. CONTROL OF OPERATING PARAMETERS

In order to improve the accuracy of the rf power measurements it was
clear that further improvement in the pulse shape was needed. Additional
ad justments on the test set improved the flatness of the gun anode pulse to
+ 1%. At this point it became apparent that better control of the voltage
pulse amplitude was also necessary in order to be able to tune the tube to
the optimum operating point. Drift in the dc beam‘voltage also worked
against tuning the tube to the optimum operating point, indiecating that the
beam voltage regulation was inadequate. Finally, the bucking coil current
and main solenoid coll currents were SUbject to long settling times (about
10 seconds and 3 minutes, respectively) because of the high load inductance
and low series load resistance in the magnet energizing circults. These
system problems will be addressed during the long pulse upgrade of the test

set, scheduled for next quarter.
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E. PRELIMINARY DATA

In spite of the complications mentioned above, sufficient preliminary
data were obtained during tnis quarter to identify the basic operating
- characteristics of this 60 GHz design. The tube was run at 100 usec pulse
durations and somewhat lower peak power levels (~ 150 kW). The data shown
in Figures 9 and 10 were obtained with the parameters given in Table 3.

Table 3
Parameters for Frequency vs Top

Coil Current

Beam Voltage ~ 80 kV

Beam Current ~ 6,1A

Gun Anode Voltage ~ 18 kV

Pulse Duration ~ 100 usec
Pulse Repetition Rate 120 (sec)"1
Bottom Coil 25.51 A
Bucking Coil 2.68 A

Behavior similar to that observed in the 28 GHz experiments was observed
here. A decrease in main magnet current detunes the output frequency while
it increases the power output. After a sharp peak in output power, the
operating freguency jumps to that of another mode, probably the TE221. at
57.79 GHz. Tne parameters given in Table 4 accompany the plot of output
power versus bucking coil current shown in Figure 11. As expected, an
increase in bucking coil current decreases the magnetic field at the
cathode, thereby increasing the transverse energy in the beam and raising

the rf output power.
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Table U
Parameters for Power vs Bucking
Coil Current

Beam Voltage ~ 80 kV
Beam Current ~ 6.4 A
Gun Anode Voltage ~ 17.8 kV
Pulse Length ~ 50 usec
Repetition Rate 120 Hz
Top Coil 25.45 A
Bottom Coil 25.51 A

A summary of the data obtained for peak output power versus beam current is
shown in Figure 12. These points were obtained over a large range of
operating parameters including pulse durations from 20-100 usec. We nave
compared the data with the performance predicted by Chu1o for starting
current and by Nusinovich and Erm11 for large signal interaction efficiency.
The curves wWere calculated for cavities with Gaussian electric field
profiles of 6k, Bix, and 100 in length using the theoretical results in
Reference 11. The experimental data fall roughly in the range of 6\ - 10A
indicating that our complex tapered cavity is comparable to a Gaussian field

profile cavity of length ~ 8X.

A number of qualitative conclusions may also be drawn from the

preliminary test results of this tube:

The sensitivity of the 60 GHz gun performance to variations in gun
anode voltage and backing coil current is more pronounced than the 28 GHz
guns. This was anticipated because a long cathode gun optics design is
being used which is inherently more sensitive to changes in these parameters

than the short cathode design employed in the 28 GHz guns.

The mechanical tolerances specified in building the magnet are not
sufficient to prevent beam interception in the beam tunnel. When ordering
solenoid magnets in the future this problem will be corrected by requiring

more ampere-turns for the steering coils, as it is not within the state of
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the art to achleve the necessary mechnanical tolerances for alignment of the

magnetic field witn the mechanical axis of the dewar.

The use of a separate vacuum manifold and pump at the gun end of the
tube is an important aspect of the 60 GHz tube design. The gun pump
provides an interesting diagnostic for the tube during crowbars.
'Furthermore. although it is too early in the 1life of the design to draw
conclusions about the burn-in behavior of the tube, the gun pump appears to
have decreased tube processing time and permitted operation with fewer
crowbars than is possible for the 28 GHz tubes.

The values of gun anode voltage and bucking coil current used to
achieve optimum rf performance indicate that at present the gun sits too low
in the dewar bore. After rechecking all of the design data it was
discovered that the tube length between the cavity and the gun was indeed
excessive. This error will be corrected on X-2. 1In any event, it appears
that respectable beam quality may be obtained, even when the gun is in the
incorrect axial position, by compensating for the error with changes in

bucking coil current and gun anode voltage.
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IX. PROGRAM SCHEDULE AND PLANS

The Milestone Chart and Status Report is shown in Figure 13.
Preliminary test results on X-1 were encouraging, having demonstrated the
. peak output power at short pulse durations. About half of the quarter was
occupled with test set modification and debugging. X-1 has been used as the
test vehicle for this effort. X-2, with a watercooled anode, is nearing
completion and will be avallable for test following test set debugging.

Proposals and quotations for a spare superconducting solenoid magnet

have been recelved and are being evaluated.

The wavegulde components required for testing ¥-1 were completed in
time. These consisted of a pulse waterload and a combination frequency

sampler and arc detector.

All major assemblies for ¥<3 except one collector seal and the anode
and cavity assembly are complete. Construction of this tube will benefit

from lessons learned on X-1 and X-2.

The major subassembly drawings for X-U4 are complete. The current plan
for this tube is to use a collector large enough in diameter to handle CW
operation and an FC-75 face cooled double disc window. The final assembly
drawing for this tube will be complete early next quarter. Parts
fabrication will also start next quarter.

Construction of deliverable waveguide components will also start next

quarter,

The gyrotron behavior investigation will continue next quarter
utilizing 28 GHz test vehicles. The arcing and crowbar investigation will
be complete next quarter, Among the other investigations to be completed
next quarter are ones on new cathode materials, parameter space, rf output
stability, low level starting and efficiency. It is expected that one tube
modification, processing study and test cycle will be completed in support
of this portion of the program.
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