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DESCRIPTION AND USE OF THE MONTE CARLO CODE "LILITA"

Jorge Gomez del Campo
- and _
Robert G. Stokstad
I. INTRODUCTION -

The computer code "LILITA" models the equilibrium decay of the primary
reaction products of heavy-ion collisions. Two major applications of the
code have been developed. The first is the prediction of relative yields,
energy spectra and angular distributions of evaporation residues and 1ight
particles (alphas, protons and neutrons) produced in a heavy-ion compound-
nuclear reaction. The second consists of modeling the equilibrium decay
of excited fragments produced in a two-body collision (such as quasi-
elastic or deep inelastic scattering). The equilibrium decay of the
reaction products is calculated by using the Hauser-Feshbach formula in
conjunction with the Monte Carlo method, and the results are given in the
laboratory system--in either singles or coincidence modes. The code can
genefaté the results in both histogram and event-by-event formats to suit
the application of the user.

In sections II and III of this report we describe the approximations
used in evaluating the Hauser-Feshbach formula and its use in conjunction
with the Monte Carlo method, respectively. Section IV gives a description
of the program input and a discussion of the event-by-event calculations.
Section V describes the processing of the event-by-event file used for
coincidence calculations, either for fusion reaétions or for two-body
inelastic collisions. Section VI contains comments on the parameters used
for the statistical model calculations, and in the Appendix the flow

diagram of the code is discussed.



An earlier version of the code has been used extensively in a "singles"
mode for calculations of the evaporation residues of an equilibrated com-
pound nucleus. Examples are given in Refs. 1-3. Also in Ref. 3 is a

‘brief description of these calculations.

IT. APPROXIMATIONS IN EVALUATING THE HAUSER-FESHBACH FORMULA

A. The Level Density and Transmission Coefficients

The first step in the calculations is the specification of an excited
fragment of mass A, nuclear charge Z, total anQu]ar momentum (magnitude
and direction) J, and excitation energy Ex. These quantities are deter-
mined according to the distribution of primary reaction products for
either a fusion or a two-body reaction, and the different options available
for this step are described in section IV.

Once J, Ex, Z_and A have been determined, the next step is the com-
putation of the probability of emission of particle a with orbital angular

momentum %£,. This normalized probability can be expressed as:

= Pg"Q‘a

Pty e

The index a = 1, 2 or 3 corresponds to the emission of neutrons,

protons, or a particles, respectively. The probability distributions

PJ,za are given by:

Plota = I S o(e,Ig)Tygle)de : (2)
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where S I, + 1, is the entrance channel spin, i

is 0 or 1p, and

a

a
> > > S ry - - . -
J =35, %%, I, is the intrinsic angular momentum of the residual nucleus.

a a
The Ty,(e) are the optical model transmission coefficients. The quantity
p(e,Ia) is the density of levels in the residual nucleus, at an effective
excitation energy U determined by the emission of particle type a with
energy e. The code uses different approximations for p(e,I,) for excita-

tion energies in the high density (continuum) region and in the low exci-

tation (discrete levels) region.

The Fermi gas level density (Ref. 4-6) is of the form:

CEp2) %) o227 (1220t

1
p(esla) 24(2ac)1/2at3

where ¢ = Jrig/hz, o2 is the spin cutoff factor given by o2 = ct, where
t = /U/a and the excitation energy U is given by U = Eg - Ap - e. Eyis
the maximum excitation energy in the channel a (see Fig. 1); Ap is the
pairing energy given in Ref. 4.

For speed in computation, the code uses a constént-temperature
approximation to the Fermi gas level density (FGLD) in the continuum
region. For the discrete region a uniform level density is used. The
excitation energy at which the continuum region is defined to begin is ECT
(section IV, file 19 and Fig. 1). The parameterization of the optical
model transmission coefficients is achieved by fitting a Fermi function to
the optical model Ty's. This function is given by:

C

- a
" 1texp{(Brg-€)/0B2 } * (4)
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An example of the fit obtained to the optical model Ts,'s using Eq. 4 is

given in Fig. 2.

1) The Continuum Region

The integration of Eq. 2 is done in two parts. The division of the
two ranges of integration, (1) and (2), does not always correspond to a
continuum region and a discrete region, but depends on the relative values
between .the maximum excitation energy (Eo) and ECT. The maximum excita-
tion energy Eo is obtained when the‘pérticle is emitted with energy ¢ = 0
(see Fig. 1) and is equal to Ex-Esep where Esep is the separation energy
at channel a. |

Four cases are considered for the integration of Eq. 2 and are illus-
trated in Figs. 3a to 3d, respectively. The first case (3a) corresponds
to ECT < Ey/4 which usually applies for the first step of the evaporation,
since the excitation energy is large, and also for all successive evapora-
tion stages in which ECT < E,/4. For this case the discrete levels
contributing to the integra]lcan be neglected, and it is possib]é to use
the ;onstant temperature formula for both ranges (1 and 2) of integration,
fitting the constant temperature formula to FGLD in each range. The sharp
cutoff formula for the Ty,(e) is used, with values of Coulomb and centri-
fugal barriers determined by fitting Eq. 4 to the optical model Tz's-

For this case Eq. 2 can be written:

-Ii/Zoil _ e-(Ia +1)2/202

Saly 4

b
L} *e(0) [ e/M de , (5)
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where the index (1) stands for range (1). The spiﬁ cutoff, Tay s is
assumed constant for range (1); p(0) is the FGLD computed at excitation
energy, Ey, Of the residual nucleus. T, is the constant temperaturé for
range (1), extracted by fitting e-E/Tl to the.FGLD at an excitation energy

E = E,/2. The limits of integratﬁon a, and b, are given by:

B, “Coulomb plus centrifugal barrier (consequehce of using the

a, =
sharp cutoff model)
b, = Eq - Eg/2 = Eg/2
and B, is given by: B =B (2=0) + (ﬁz/zuaR%a) 2,(2,41) « (6)

An equation similar to Eq. 5 can be written for region (2) using

the level density
o, = o(Ey/2) e (& = Eol2)/Ty 7)

for e > Eo/2, Where T, is the constant temperature for range (2)
extracted by fitting p, to the FGLD at E = E /4, and the limits of
~integration are a, = E4/2,b, = E,.

Figure 3b illustrates the second case for which Eq/4 < ECT < Ey/2.
For this situation, range (1) covers Bgy < € < Ej (as before) and a
constant temperature is used. In range (2), however, T2 used in the
constant temperature formula is evaluated at ECT instead of Eo/4. The
third case, illustrated in Fig. 3c, applies when Eo/2 < ECT < Ej.  The
range (1) extends from B, < € < E,, but T1 is evaluated at ECT; and
range (2) is now a discrete region where a constant level density, DLD
in Fig. 3c, is used (see discussion below). The last case occurs when

ECT < E, (Fig. 3d), and range (1) extends from Ey < & < Ey, range (2) is

zero, and the constant level density is used for range (1).



The result of the two-region level density approximation (solid

line) is compared to the FGLD (dashed 1ine) in Fig. 4.

2) The Discrete Region

For the case of a discrete level region, Eq. 2 is used with a level
density py appropriate for this region. Since discrete regions are popu-
lated when the particle energy € is close to or less than the barrier Bla’
it is not possible to use a sharp cutoff for Tla' The code uses Eq. 4, |
where C, and A are given on File 19 and Card 6 (Section IV), respectively. .

The discrete level density pq(e,l,) is given by:
pqle,1,) = pof(laj) . (8)

That is, we assume that the level density is independent of €. The spin

distribution is given by

f(Iajv) = (ZIq,j + 1) exp{'(Iaj + 13)2/205} ’ (9)
20& =5z /Ed7a . (10)

where Eq = minimum (E,,ECT) and I/ Ipjg are given on File 19 (Section
Iv). ‘ﬂrig is the rigid body moment of inertia, calculated by
2 Ipigli? = 0192 x AS/3 x re2, where re is also given in File 19

(Section 1V), and py is calculated by

Imax

po L f(lgz) =DLD , (11).
Iaj"o
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where Ipax is given by Eq = #2/2 94 {Inax(Ipax + 1) = (I5(I5 + 1)1},
I, is the ground state spin. DLD is the number of levels per MeV at ECT

and is also given in file 19.

B. Successive Evaporation

The code cbhputes Eqs. 1 and 2 using either the continuum form
(Eq. 5) or the discrete form (Eq. 8) for the n,p and o channels for every
step in the evaporation process. A sequence of excitation energies Eyj
and total angular momenta I,; is produced. The angular momentum of the
residual nucleus obtained from the spin distribution of Eq. 5 or 9 is I4j.
When Ey; (i steb) is less than EIM (given in File 19) the evaporation
process stops. The sequence stops also when an angular momentum I is
reached for which there is no.possible coupling to the angular momentum
exit channel (either by transmission coefficient cutoff T, < 10-1CUTO 4.

by an yrast cutoff).

C. Gamma-Ray Competition

Gamma competition is included in the code by a parameter GAMMA (File
19) that gives the total probability for gamma decay. This parameter is
used only in the case that the p,n, and a channels are each open only for
the discrete region. This probability has to be determined empirically by
looking at known decay properties of the nucleus under consideration.
However, gamma decay can be the only allowed mode of decay if, due to
-angular momentum considerations, decay in the particle channels requires

1oi values below the yrast line or £, values such that T, < 10-1CUTO,



D. Kinematics

For all sequences of evaporated particles, the code calculates their
velocities (and those of the recoil nucleus as well) with respect to the
“center-of-mass system of the decaying nucleus. The coordinate system
used in the computation of these velocities is illustrated in Fig. 5 for
the cases of fusion (5a) and two-body reaction (5b). Defining the angles
¢ and §; as the polar aﬁd azimuthal angies of the direction of emission
of the light particles with respect to a duantization axis, taken along
the direction of the total angular momentum, J, whose direction with
respect to the laboratory system is given by the primary distribution
(i.e., perpendicular to the beam for fusion reactions and by a given
alignment for the two-body case). These angles determine the direction
of emission of the 1ight partices and, Consequent]y, the direcfion of the
recoil velocities. |

In general, the quantum mechanical angular distribution can be

written as:5

M(o16) = I (@041) of M aq (0358) (12)

where the initial. orientation of the total angular momentum J is given by
the orientation tensor pﬁ. Using Eq. 12 for the specific case of compound
nucleus reactions and the quantization axis as the beam direction, the
familiar Hauser-Feshbach expression6‘(which is essentially the producf of
two Z coefficients times the Legendre polynomial) can be derived. For the

present code, we have chosen the direction of J as quantization axis and
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Mg = J, where M; is the projection of J along the quantization axis. For

this sifuation Eq. 12 reduces to
W(oi) = ; By Ay P, (cos ¢;) , : ‘ (13)!

where the coefficients By and A, are given by

By = 2(20+1)}/2 <y Jd-d| 20> (14)

Ay = (20+#1)1/2 (22,41) <8, 0 2, 0 |2 0> W(agRy 9|2 Sy),

where B, and AA are given in terms of Clebsch-Gordon and Racah coefficients
and S, is the channel spin. The distribution of §; is isotropic.

The advantage of using Eqs. 13 and 14 is that they depend only on the

variables J, 24, S

o and ¢; and therefore the angular distribution can be
-

calculated in advance and stored in an array which is defined by the
indexes J, 2, and S . A further simplification of Eqs. 13 and 14 has been
to consider only integer spins, to reduce as much as possible the sizes of
the array that contains the angular distribution. The summation over A

extends to the maximum of 2%, or 2AJ where AJ =|J - S | . Since in

Eqs. 13 and 14 only the Mj = J component is considered, it is necessary to
incorporate the initial orientation of J; this is done through the use of
classical rotational matrices, as discﬁssed in the following section.

For every combination of angular momenta, the probability distribu-
tion for ¢1,P(¢i) = W(o4)sin ¢4 is calculated in 5-degree steps from
0° to 90°, and the results are stored in the array IQME(I), given on

file 28 (see section IV).
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The semiclassical Timit to Eqs. 13 and 14 (J,14>>%,) is also used in

the code, and this expression is
A
W(o7) = ((2q - 80) /(2 + 80)1 3| Pg‘i(cos o902 (15)

where pﬁi(cos ¢1) are the associated Legendre polynomial. Results of
Eq. 15 are stored in the array ISCL(I) given also on file 28.

For subsequent steps in the evaporation process or for cases where
J # My, Egs. 13 and 14 should incorporate the M; dependence; however,
this would require a considerable amount of storage space. To avoid
this, the quantum mechanical angular distribution is always calculated
for the case My = J and a classical rotation of coordinates is done by
the angles ¢, and &, which are the polar and azimuthal angles of I, with
respect to the quantization axis. The ang]e 84 is isotropic and ¢, is

given by:

Iy

cos (¢q) =7 (16)
a .
where M; is given by its probability distribution Py. :
Ia MI,
Pup, = < My | Ras My s Tgs Mp 22 - (17)

This probability distribution is computed prior to the Monte Carlo
calculations and is stored on the array IGLEB(I) file 27 (see section IV).
The coupling scheme of J, %, and I is illustrated in Fig. 6. The
calculations of Eqs. 13-15 and 17 were done with a computer program

provided by J. R. Beene.’
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III. THE MONTE-CARLO METHOD AND THE ORDER OF THE CALCULATION
Since the Monte Carlo method constitutes the core of the program, a
brief description of it is given. In general, for a given probability

distribution P(y) and a random number 0 < x < 1, one has

> [ Ply)dy = F(b) - F(a) (18)

where F(y) = [ P(y)dy.

If a and b cover all the range of y values,

b
o J Py)dy =1

and, in terms of x,

TORRIORE | | 19)

In those cases where F(y) is known, one can solve Eq. 16 either by
inversion y = g(x) or by iteration procedures. As an illustration of
this, we apply Eqs. 18 and 19 for the probabi]ity PJ, using~the sharp
cutoff model given by Py = (20 + 1)/(Jc + 1)2. This is done in the

following way:
Je
g SJ =1 and F(J) = (J+1)2/(Jc+1)2 , (20)

from which it follows that

F(0)-1/(T+1)?
X AR - (21)

By inversion of Eq. 21, one gets J = /rx{(Jc +1)2 -1} +1-1. For

the case of fusion reactions, the program uses Egs. 18 and 19 to obtain
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the quantities of interest during the evaporation process according to

the following steps:

1)

2)

3)

Obtain the initial compound nucleus angular momentum J using

Eq. 21, or oy defined on card set 12.
From Eq. 1 for the given J, obtain g, and a. (a =1, 2, or 3 for

a neutron, proton, or alpha). This is done by using

2
) Pﬂ,za(R) = X , (22)

R=1 a,2,

when the summation equals the random X, then a, %4, and the
range of integration R(1) or (2) are determined. Also, the A
and Z of the residual nucleus are thus determined.

Extract the c.m. energy e, carried away by the emitted particle.
This is done using the following:

For R =1

-Bla/Tl -Bla/Tl -bl/Tl)
- -e

y=e x(e . (23)

where the variables are defined in Eqs. 5 and 6.
For R = 2
o (B2aP1)/T - ~(B2aD1)/T - - (E,-by)/Ty)

if Bag > by
and (24)

y=1-x- e PO e

For either range: e, = bj(R-1) - Tp en(y), where R =1 or 2.
Thus, the first evaporation is completed and a sequence of J, a,
L4» and e has been determined. Next, one computes the final

excitation energy Ej, Mass (A) and charge (Z) of the residual
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nucleus. If Ej < EIM(A,Z) (file 19), then an evaporation residue

has been produced and the program computes the kinematics. If

E; » EIM(A,Z), the process continues.
4) From J and %, obtain the residual angular momentum I, using the

spin dependent part of Eqs. 3 or 8 p(I,) with:

J+e S+ -
N = * e p(Iy) (25)
So= [9-24 | 14=| So-ia |
and
) p(Ia)/N =X
S(!Id.

(when the summation of the numerator makes the ration equal to X,
then loj is determined).

5) With the new total angular momentum I, and the excitation energy
Ej the code calculates Eq. 1. Steps 2 and 3 are repeated with the
same equations except J » I,. (When discrete regions are involved,
the equations used in steps 2 and 3 must be replaced by the
equivalent Egs. 8 through 11).

For each evaporation residue event, the program stores J,

(Eai’“i’AisZi) for i=1,n, where n is equal to the number of light

particles emitted. For the evaporation of neutrons, protons and

alphas, «; is equal to 1, 2 or 3, respectively. The mass and charge

of the residual nuclei are Aj and Z;.

From the values of €aj and the angles 95 and 8 obtained from Eqs 13

and 14 or 15, a velocity vector'U; = (v;, ¢i, s;) for the emitted

particles is determined.
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To calculate the laboratory velocities of the emitted particles Vg,
it is necessary to transform the ve]ocities'U; in a set of axes in the
c.m. system of the emitter. Calling A1'1 the matrix of such a trans-
formation, we have

Va=Vp+V1-_1+V1- .

where v; is given by

Vi = AL " (26)
-1 _ i-1
and Aj™* = I Rj
i=0
In the above equation i represents the evaporation step, n the total

number of evaporated particles, and V; is given by the following

recurrence relation:

Vi = Vi + 95 + Vp

where V.; is given by

Vpi = Ai'l vpi' . ' (27)

The vector'ﬁ}i is the recoil velocity imparted to the fragment due to
the particle emission and is calculated from'Vi by a simple reflection
of coordinates. The ve]ocity'Vb is the laboratory velocity of the
primary fragment which is equal to the velocity of the compound nucleus
for fusion reactions, and for two-body reactions should be specified in
the primary distribution. The matrices Rj are classical rotational
matrices constructed with the angles Yaj and Gai determined from Eqs. 16
and 17. These angles describe the change of orientation of the total

angular momentum with respect to the quantization axis due to particle

°g
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emission. For every sequence of evaporated particles, Eqs. 26 and 27
are calculated with starting conditions (i=1) of Ry, A; = Ry, V, = 0.
The laboratory velocity of the secondary fragment, or evaporation
residue in the case of fusion, is given by Eq. 27 for i=n. The matrix
Ro describes the initial orientation of the total angular momentum J
with respect to the perpendicular to the reaction plane and is the unit
matrix for the case of full alignment in the two-body reactfon. For the
case of fusion, J has a random orientation in a plane perpendicular to
the beam and R, is a rotational matrix for the angles 9o = 2nx, when x
is a random number and 84 = 1/2.

The Monte Carlo calculations described above generate a series of
events, either in singles or coincidence modes, fof the residual frag-
ments and light particles. These events are grouped in a matrix of the
type N(Z,M,eL,¢L,EL), where N represents the number of events in the
bins 6 >6) +A8) , ¢ >¢ +A¢| , E >E| +AE for a given fragment or light par-
ticle of charge Z and mass M. The angles 6 and ¢ are the polar and
azimuthal Taboratory angles, respectively. The polar axis is taken
along the beam direction, and E| is the laboratory energy. The construc-
tion of the laboratory differential and integrated cross sections is
done from the matrix N and the particular requirement of the calcula-
tions, such as coincidences, solid angle and absolute cross section
scales. A few examples of this procedure are given below.

The cross section for production of a given Z,M fragment is:

O(Z,M = O_T z N(Z,M,equ)LsEL) ’ (28)

NT 66,6,

where o7 is the total cross section for either the fusion or two-body



16

process and Ny is the total number of events generated by the Monte
Carlo calculations.

The double differential cross sectipn is:

o tAB; ¢ +Ad EL+AEL
(dzc/dQLdEL) = (op/Nde; ) ) ) ) {N(Z,M,8.,01,E)} » (29)
oL oL By -

where A¢p is given by the solid angle constraint Mgy = dQL/(AeL sin eL).

For the case of singles calculations and unpolarized target and
projectile, the ¢ distribution is isotropic and the double differential

cross section can be written as

(dzc/dQLdEL) = ZHUT/(NT AeL sin eL AEL) 2 2 N(Z’M’eL’EL)' (30)
| 6. K

Expressions similar to those above can be obtained for the case of coin-

cidence calculations.
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IV. DESCRIPTION OF INPUT FOR CODE "LILITA"

CARD 1) MORE, ITIME, IPRINT
FORMAT (315)

MORE = 0: Complete input from cards 2 through 11 must be given.

MORE < 0: Terminates the program.

ITIME: Time in sec. for each calculation (i.e. one bombarding energy).
This parameter allows one to have a printed output once the
running time exceeds ITIME.

IPRINT: Gives a detailed output, IPRINT times, for each event. Use 0 or

a small number ~ 10.

CARD 2) IMOD, JONE, IPT, INU, IEN, IANG, ICUTO, IONLY
FORMAT (1018)

IMOD = 0: Energy and angular distributions of residues will be calcu-
lated and results stored as a function of Z of the residue.

IMOD = 1: Calculates only total yields of evaporation residues.

IMOD = 2: Energy and angular distributions will be calculated and all

decay cascades stored event by event on tape. See section V.

JONE: JONE # 1, fusion input.
JONE = 1, two-body input.

IPT: Maximum number of protons in the input table. IPT < 34.

INU: Maximum number of isotopes allowed for a given Z. INU < 12,
IPT and INU control the array of nuclei considered in the
calculations and described on file 19.

IEN: Parameter used to control the steps AE for the energy distri-
butions; AE = (E1 - EMG)/IEN where E1 and EMG are given on

card 5. Used only if IMOD = 0. Also, the first energy bin is
given by E = EMG. Usually it is convenient to use EMG = 0.0.

IANG: Angular distributions will be stored every IANG degrees
(integer steps). IANG > 1. Used only if IMOD = O.

ICUTO: Cuts off the transmission function at Tyjp = 10-1CUTO,

IONLY: IONLY = 1 will generate the primary distribution, in a Monte
Carlo way; i.e. no evaporation is done. This option is
useless for fusion, so IONLY = O.
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(IMAX(I), I=1, IPT)

FORMAT (2014)

IMAX(I):

CARD 4)

Maximum lab angle for which angular distributions will be calcu-
lated for the residues Z(I) = Z compound nucleus + I - IPT. Enter
IMAX(I) = 0 for all residues whose Z < Znj, Or Z > Z ax Where

Zmin and Z are defined on Card 4. The ?MAX(I) valiés are used
on1y for IHSB = 0. For IMOD = 2, IMAX(I) # O unless the user
wants to exclude some residues from the kinematics calculations.
A1l IMAX(I) = O between Zpip and Z,., will be excluded from the
kinematic calculations. The array ?EK (8000) stores the resi-

IPT
dues as a function of Z and hence IEN * E IMAX(I) < 8000 where
IEN has been defined on Card 2. 121

(ICO(I), I =1, 7), LMAX1, LMAX2, LMAX3

FORMAT (1018)

ICO(1):
ICO(2):

IC0(3):

ICO(4):
ICO(5):
1CO(6):

100(7):

Number of events requested for all the residues.

Maximum A considered in the input table (usually A of composite
system).

Maximum Z considered in the input table (usually Z of composite
system).

Zmin for which angular and energy'distributions will be calculated.

Not used.

Zmax t+ 15 where Z ax 1S the maximum Z for which angu]ar'and energy
distributions wi]T ge calculated.

Logical number of output unit for IMOD = 2.

LMAX1, LMAX2, LMAX3: Maximum 2-1 for n, p, a. Maximum values allowed are

CARD 5)

(15,15,25).

CM1, CM2, CNM, ZT, ZP, El, EMG

FORMAT (8F10.0)

CMl: Projectile mass number.

CM2: Target mass number.

CNM:  Compound nucleus mass number. ZT, ZP are Z of target and Z of
projectile.

El: Lab projectile energy (MeV).

EMG: Minimum energy (MeV) considered for energy distributions.
Usually EMG = O.
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CARD 6)  ALMAS
FORMAT (F10.0)
ALMAS: Parameter fo control the choice of level density parameter a. If
ALMAS > 0 ALD is read from file 19. If ALD = 0, then ALD = A*ALMAS.
ALMAS < O selects the Gilbert and Cameron option for the level
density (see comment cards in the main program).
CARD 7)  INEU(I), I=1, IPT
FORMAT (1413)
INEU defines the maximum neutron number that will be considered for isotopes
of a given Z. The masses and quantities needed to compute the level densities
are coﬁtained on file 19 and they are arranged in arrays of elements (I,J),
where I runs from 1 to IPT in increasing proton number, and J from 1 to INU in
decreasing neutron number. The indices (I,J) for a given (A,Z) nucleus are
defined by the following relations:
I = Z+IPT-1CO(3) and J = I+ICO(2)-INEU(I)-IPT-A+1.
Table I illustrates the arrays used on file 19 for the case of compound

nucleus 26A1 with IC0(3) = 13, ICO(2) = 26, IPT = 12 and INU = 6.

CARD 8)  ILKI, IELKI, IALKI, ISHIF, IANFI
FORMAT (1018)

ILKI: If equal to O, the energies and angles of 1ight particles are not
stored; if equal to 1, they are stored.

IELKI: Number of energy bins

IALKI: - Number of angular bins

ISHIF: Use O

IANFI: Use O

CARDS 9) and 10) - Two comment cards.

FORMAT (20A4)
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CARD 11) [ICARD, ICOMNU, IBAR, IMAX, ICLA, JKK, MC, IZC, SIGTO, EX, RAM
FORMAT (815, 3F10.0) |

This card controls the input selection for the Subroutine Primary and

defines whether a fusion or a two-body reaction is to be simulated.

ICARD: Number of cards that define the Primary Input. If O fusion input.

ICOMNU: Equal to 1 for fusion and O for two-body

IBAR: This parameter defines the J distribution. For the fusion case,
this distribution is determined either by the use of the sharp
cutoff in the entrance channel (Eq. 20) in which case IBAR=1, or
by input cards in which case IBAR=0. The J distribution is
given by Card Set 12.

JMAX: Equal to 2*J. for a fusion reaction using the sharp cutoff
(J¢ critical J).

ICLA: For Ericson-Strutinski angular distributions of 1i%ht partic]és,
use 1 (same option as our previous version of LILITA; this

option is that described in Ref. 3).

ICLA: Equal O for the quantum mechanical calculations described in
section II.D.

JKK: Is a parameter used to control the sharing of excitation energy
in a two-body reaction. If total excitation EXT is less than
JKK, EX1 and EX2 are given by EX1 - AL*EXT/(Al + A2). If.
EXT > JKK, then (EX1-A1)/al = (EX2-A2)/a2 (equal temperatures).

MC: Mass number of composite system.

I1ZC: Z of composite system.

SIGTO:  Total cross section in mb for the process. i.e., SIGTO = I oy,
where oy is given on Card Set 12. For fusion with IBAR = 1,
SIGTO = wnx2(J.+1)2.

EX: Excitation energy for compound nucleus.

RAM: Ratio of fluctuating to aligned components of angular momentum
for DIC (i.e. two-body) input.

If ICARD > 0, then the following input (Card Set 12) must be given by a
number of cards equal to ICARD.
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CARD Set 12)

The input for fusion is as follows: - DO...I = 1, ICARD
READ 23, PRO(I), QMM(I), XJ(I), RAA(I), RBB(I)

23 FORMAT (F8.0, 8X, F8.0, 8X, F8;0, 16X, 2r8.0),

where
PRO(I): oy
QMM(I): EX
XJ(1): J

RAA(I): Z compound

RBB(I): Mass compound (A number)

For a two-body reaction this input is as follows:
DO...I =1, ICARD

READ 23, PRO(I), QGG(I), QMM(I), SIQ(I), XJ(I), SXJ(I), ETHE(I), RAA(I),
RBB(1}, QUMA({I)

23 FORMAT (10F8.0)

This input has been designed for the specific case of modeling the
equilibrium decay in DIC for the 20Ne + ®3Cu reaction (see Ref. 10).
PRO(I), cross section for the ith two-body reaction; QGG(I) is the Qgg
for this channel; QMM(I) is the most probable Q, where Q is defined by a
Gaussian distribution, SIQ(I) is the Q spread (oq) given in units of the
most probable Q, XJ(I) is the amount of transferred angular momentum
(aligned part), SXJ(I) is the J spread (oj), where J is also defined by a
Gaussian distribution, ETHE(I) = n, where n is a parameter that defines
the c.m. angular distribution of the primary fragments and is given by
(from 6. . = 2° to 90°):

(do/d@)c.m, = 1/(Sin"a ) . | (31)
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RAA(I) is the Z of the primary fragment (projectile like fragment, or
body 3 in the usual two-body kinematics notation) and RBB(I) is the mass
of the fragment. QJIMA(I) is a parameter used to define the Q dependence

of the transferred angular momentum, i.e.:

J(Q) = XJ(1) * Exp ((QIMA(I)-Q)2/TEMPZ) , (32)

where TEMP = EX of Card 11, and J, the aligned part of the angular momen-
tum, is given by: J = J(Q) + SXJ(I) x GAUS(V) where GAUS(V) is a
Gaussian random number. The total angular momentum for fragment 1 is

given by:

le = 1012(1.0 + R2 + 2R(2v - 1)) , (33)

where R = RAM given on Card 11 and is defined by R = If/I,, where If'is the

fluctuating component and Iy the aligned one. I, is given by:
Io, = 9(Q) x 4,/(4 + ) | (34)

where 4, and J, are the moments of inertia of the two bodies.
File 19 contains the following information?

READ (19,10) 171, IM1, AMXT, (FUSI(L), L =1, 11)

I0 FORMAT (215, Fl12.6, 11F6.2)

1z71: 1 nuc]éus

IMl: A nucleus

AMXT: Mass in AMU

FUSI(1): a (level density parameter)

FUSI(2): ap (pairing energy)

FUSI(3): EIM (threshold for particle emission; below EIM only y-decay
is possible)

<
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FUSI(4): ECT

FUSI(5): GAMA, is a parameter 0 < GAMA < 1, to allow the assignment of
a probability for y competition.

FUSI(6): DLD (number of discrete levels/MeV at ECT)

FUSI(7): |H2/284| for FUSI(7) < 0. If FUSI(7) > O, then FUSI(7) =
@ﬂdﬁﬂrig)'l, where Iy is the moment of inertia of the nucleus
at an excitation energy from 0 - to ECT.

FUSI(8): (I, + 1), I, = ground state spin.

FUSI(9): ro in Fermi for computation of 2 J}ig/ﬁZ = .0192 AS/3 r 2.

FUSI(10): rgy in Fermi for computation of the 2 = 0 proton barrier (i.e.
Coulomb).

FUSI(11): rqg in Fermi, used in the computation of the £ = 0 a barrier.
READ (19,191) 1z, (FASI(L), L = 1,55), Al, A2, A3, D1, D2, D3

191 FORMAT (I5, 61F6.2)

IZ: Z of nucleus

FASI(1-55) contains the parameters relevant tovcomputing the transmission

coefficients using Eq. 4. The barriers By are defined as:

By = By + (i2/2uRp2) 2(x + 1)
where Bo = 1.44 Z,Z,/r (A 1/3 + A,1/3) , (35)
and Rg = rg(A}/3 + AJ1/3),

By fitting Eq. 8 to the optical model T,'s, the radius parameter r, is
extracted. FASI(1-15) contains the barriers B, (in MeV) for the nucleus
IM1 and neutrons %rom 2=0 to 2=14 with B, extracted from the optical

model fits.

FASI(15-30) contains the radii ry, resulting from the fits using Eqs. 28
and 29 for nucleus IM1, IZ1 and protons 2=0 to 2=14.

FASI(31-55) contains the rédii ry for nucleus IMl, IZ1 and a-particles, for

2¢=0 tO 2-25.
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The quantities Al, A2 and A3 correspond to the coefficient C, in Eq. 4
for neutrons, protons and a-particles, respectively. The quantities D1,
D2 and D3 correspond to the values of A in Eq. 4 for neutrons, protons

and a-particles, respectively.
V. EVENT-BY-EVENT CALCULATION

For IMOD = 2 the code calculates the residual yields and kinematics from the
fragments in an event-by-event mode. This is done in the following way:

The program generates the array called IARRA(I) for each event and contains
the following information:

IARRA(1): Z of primary fragment.

IARRA(2): M of primary fragment.

IARRA(3): 10* Q(10 times the primary reaction Q value for two-body or
10 times the excitation energy of compound nucleus for fusion)

in MeV.
IARRA(4): 2*Jj (where J; is the total initial J of the fragment).
IARRA(5): Z of secondary fragment (or residue).
IARRA(6): Mass of secondary fragment (or residue).
IARRA(7): 2*J¢; Jg is the residual J (of fragment or residue).
IARRA(8): 10*Exs; 10 times final excitation (MeV).
IARRA(9): KI; number of emitted light particles.
IARRA(10+9+KI): A set of KI numbers containing the sequence of emitted

Tight particles, where 1(neutron), 2(proton) and
3(alpha).

IARRA(10+KI»9+KI+3*K1): KI set of those coordinates v , Vs V ) that
correspond to the velocities of thz em1tted
particles in a coordinate frame given in Fig. 5.

Given INDEX = 9+KI+3*KI, then

TARRA( INDEX+1+INDEX4KI): Vx, velocity coofdinates of the

fragments %res1due or secondary fragment) in
the coordinate frame of Fig. 5.
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IARRA(INDEX+KI+1): 103*x, where x is a_random number used to compute the
angle between I (aligned) and Itotal (transferred)
angular momenta in DIC.

IARRA(INDEX+KI+2): -9999, indicating the end of the event.

The velocity coordinates are given in units of 10%c, where c is the speed
of Tight. For fusion calculations there is one event per eVaporation
residue, however for two-body reactions the above event corresponds to
the primary fragment (3) and will be followed by the same information
but for primary fragment (4). The index 3 and 4 refers to the several
outgoing fragments in the two-body kinematics.

The velocity coordinates vy, v;, v, and Vg, V;, V), defined in the
event-by-event calculations, refer to a coordinate system fixed in the
rest frame of the emitter (compound nucleus for fusion and bodies 3 and 4
in the case of a two-body reaction); therefore, they must be transformed
to a velocity vector defined in the laboratory system. This can be done
during the processing of the event-by-event file, noting that the trans-
formation will depend on the orientation of the total angular momentum J
(Fig. 5a) or Jj,Jo (Fig. 5b) and the center-of-mass velocity Vém. For
the case of two-body reactions, the c.m. velocities of the primary
fragments are V3 and V4. The orientation of the total angular momentum
is given by the angles ¢ and.a, where ¢ is the polar and § is the azi-
muthal angle and the polar axis is the x axis in Fig. 5. Therefore, a
rotational matrix R(¢,$) will give the desired transfdrmation to the lab

system in the following way:

T =RT 4T+ T, (36)
V =RV + 7V, + Vb o, , (37)
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where v' and V' are the ve]ocity.vectprs for the light particles and frag-
ments, and they are given by their coordinates (vy,vy,v,) and (V;,VJ,V;)-
The vectors v| and VL are then the laboratory velocity vectors of the
light particles and fragments, respectively. The velocity of the primary
fragment is represented by Vp and is zero for fusion and equal to V3 or
V4 for two-body reactions. For a two-body reaction, the vector V| depends
on the center-of-mass angle of the primary reaction 8¢y and therefore the
events generated by the Monte Carlo calculations must be weighted by the
primary angular distribution (do/d@)cm. Also, if coincidence calculations
are done, one usually has a constraint with respect to the laboratory angle
of V| and, in consequence, .it is desirable to solve Eq. 37 for 6.p. This
will give the specified direction of V.

The angles ¢ and & needed to compute R are ¢ = 2my (y random number)

and § = /2 for fusion. For the case of a DIC reaction, § = 2IIx and

cos ¢ = R sin B/YR241 - R cos B, where g = lix, where x is given on the

array element IARRA(INDEX + KI + 1).

VI. INPUT PARAMETERS

The statistical model parameters used in the computation of the eva-

poration steps are contained on file 19 (see section IV) for nuclei of

Z up to 34 and A up to 74. The mass table provided is that of Ref. 11
and is given in AMU. The Tevel density parameters a, used in the calcu-
lation of Eq. 3 are those of Ref. 9, for nuclei of A > 24. For those
cases where no entry is given in Ref. 9, the value of A/7.5 is used. For
nuclei of A < 24, Eq. 3 was fitted to the known levels as given in the
compilations of Endt and Van der Leunl? and Ajzenberg-Se1ove.13 The

values of Ap (pairing energy) are those of Ref. 4 for Z > 10. For Z < 10
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and even-even nuclei, Ap was calculated from 32/(A0-57), which corres-

ponds to the extrapolation based on the values for 24Mg given in Ref. 4.

For odd-odd nuclei 4 = 0 and for odd-even 4 = 16/(A%+57)  the calcula-

tions of Jrig in Eq. 3 were done with a radius parameter of 1.3 fm and
using the diffuseness correction given by Davis and Nix;14

The optical model transmission coefficients are parametrized using
Eq. 4. An example of such parametrization is given in Fig. 2 for the
céses of P + 24Mg and o + 28Si. The optical model parameters were taken
from Ref. 12. For the case of P + 24Mg, illustrated in Fig. 2, these
parameters are V = 49.14, r, = 1174, a = 0.736, Wg = 8.06, r,' _ 1.19,

a' = 0.562 and re = 1.17. The optical model parameters for a + 28Si are

V = 202.4, ro = 1.314, a = 0.673, W, = 20.55, rd' = 0.314, a' = 0.673 and
rc = 1.34. As can be seen from Fig. 2, an adequate fit can be obtained

from Eq. 4 for Ty » 0.1 if the value of A varies with 2. However, for

the present code, no & dependence on A is included. Because of these

limitations in parametrizing the optical model transmission coefficients,

cutoff values give unreasonably high probabilities for Tow ¢ values. The
values of the barriers B, used in Eq. 5 are indicated by arrows in Fig. 2
for 2 =0 and 2 = 4 for the case of P + 24Mg and 2 = 0 and 2 = 5 for
o + 2853,

The parameters used in the computation of the emission probabi]itieé
for the case of discrete regions (Eq. 8) were taken from Refs. 12 and 13
for A < 48 and from Ref. 16 for A > 48. For all nuclei where FUSI(7) < O
on file 19, the values Jq were extracted by fitting the discrete spin
distributions, Eqs. 9 and 10, to known discrete levels. For all other

nuclei, FUSI(7) > 0 and 9y = Jrig/Z.O.
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APPENDIX
STRUCTURE OF CODE LILITA

Figure 7 shows a flow diagram of Code LILITA. The main program con-
tains the read statement for Cards 1 to 11 and also reads files 29, 27
and 28, which contain input data and the quantum mechanical angular
distributions. Also, the main program contains the printout statements.
The first subroutine called from the main program is PRIMAR, which for
ICALL = 0 reads Card Set 12 and determines the type of calculation to be
done, i.e. fusion or two-body simulation. Also, the main program calcu-
lates the Coulomb plus centrifugal barriers used in the computation. The
next subroutine called from main is NXTEVN, which does the actual Monte
Carlo calculations. Subroutine NXTEVN calls PRIMAR, DISCRE, KINT and
QUTP. The subroutine PRIMAR is called with ICALL=1 to provide the first
step in the Monte Carlo calculations, i.e. to give the initial Z, A, 3
and Ex of the fused system or of the two primary fragments. Subroutine
DISCRE is called, when the emission probability is computed for the
discrete regions (Eq. 8), to determine the energy carried away by the
emitted light particle as well as the final spin of the residual nucleus.
Subroutine KINT is called to compute the sequence of angles of the
emitted 1ight particles, as discussed in Section I-D. Subroutine OUTP is
called for IMOD=2 (Card 2) to store on disk or tape the eveht-by-event

results.

The subroutine KINT calls QUAN, CLAS and GLEB to cdmpute the kine-
matics of the light particles and fragments. The subroutine PRIMAR makes

use of subroutine ANGLE to compute the c.m. angle of the two-body primary
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reaction as well as function Gauss to provide a random number in a

Gaussian distribution, to be used in the computation of the Q distribu-

tion and the spins of the primary fragments.

The application of the code to model the equilibrium decay features
of a two-body reaction may require a different kind of input than that
provided in the code through the subroutine PRIMAR. The user could adapt
this subroutine to suit his particular requirements. For this purpose, a
détai]ed explanation of the quantities used in the PRIMAR subroutine are |

given on comment cards in this subroutine.

The code has been tested in the IBM 3033 computers of the ORNL
computer facility, and typically the evaporation calculations are done at
a rate of ~ 300 light particles per second, which means that adequate
statistics for most cases can be achieved with computing times of 3 to 5

minutes. The code uses 256 K of core space.

The LILITA code is available in 9-track tape, 800 or 1600 BPI, and can

be obtained upon request from J. Gomez del Campo, Physics Division, ORNL.
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TABLE I

1,J) INEU(I)
¥y ¥
1,1 1,2 1,3 1,4 1,5 1,6

7
8He 7He ®He
2,1 2,2 2,3

7
9Lj 81§ 7L
3,1 3,2 3,3
l2g  11g 10 >
4,1 4,2 4,3
138 l2pg llg S
5,1 5,2 5,3
15¢ luc 13¢ 4
6,1 6,2 6,3 .

3
17N 16N 15N
7,1 7,2 1,3

2
199 180 170
8,1 8,2 8,3

1
21f 20F 19
9,1 9,2 9,3
23Ne 22Ne 21Ne 0
10,1 10,2 10,3
24Na 23Na 22Na 0
11,1 11,2 11,3

0
25Mg 21+Mg 2.3Mg
12,1 12,2 12,3

0
2671 25A1 24A]
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the width of the barrier A is 0.1 for 2=0 and 0.2 for 2=4.
For o + 285§ A=0.1 for 2=0 and 2=5.
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Figure 4. Fermi gas model level density, Eq. 3 (dashed line) for 22Na.
The solid line is the two temperature approximations discussed
in the text. The histogram corresponds to the level density
obtained from the known Tow-lying states. The level density
parameters are a=3.68 and ry=1.4.
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Figure 5. Coordinate system used in the kinematical calculations.
a) Diagram for the case of fusion reactions in which J is
randomly oriented in the xy plane and perpendicular to the
beam {Z axis). b) Diagram used for the case of the two-body
reaction. Jj and J, are defined along the direction of the
transferred angular momentum for the projectile-like (V3) and
target-1ike (V4) fragments and are not necessarily perpen-
dicular to the reaction plane. The reaction plane is defined

by VemsV3 and Vg,
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MAIN PROGRAM

Read Cards 1-11 and Fi]es 19, 27, 28

Calculates Coulomb plus Centrifugal Barriers

Printout Results

END

Events > | NXTEVN “ICALL = I
ICO (1) Does the Monte
ICALL = 0 Carlo Evaporation
PRIMAR
Gives the Initial
PRIMAR J, Ex, Z, A
Reads Card Set 12 + +
+ +
[AngTe ] [Gauss |
[QUAN] «
KINT DISCRE OUTP
[GLEB] «» | Computes Gives € and I Event-by-
Kinetmatics from Discrete Event File
[ CEKSl «> Distribution

Figure 7. Flow

Diagram of Code LILITA.
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