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An Observation On The Total Energy
Of A System With Phase Changes

V. Alexiades

A. D. Solomon

D. G. Wilson

ABSTRACT

In most heat transfer processes the choice of a reference energy and
reference temperature are arbitrary, since only differences in energy
and temperature are relevant to the transfer process. Thus, in
applications to thermal energy storage, the total energy of a system
will be obtained by integrating the temperature drop relative to an
arbitrary reference temperature. In this report we show that the
integral of the temperature drop will not yield a physically relevant
total energy in a system with a phase change unless the reference point
is chosen in a particular fashion. Indeed, we show that conservation of
energy constrains us to choose the melt temperature of the material as
the reference point in a simple phase change process, while for multiple
phase changes (as in iron), or variable melting temperatures (as in the
solidification of an alloy), energy conservation places severe
restrictions on the choice of the reference point.



Introduction

The most basic condition to be obeyed by a model of a heat transfer

process is the conservation of the total energy of the system being

modeled. In most cases only differences of energy and temperature play

a role, and so both may be referred to an arbitrarily chosen reference

state. Thus, for a simple heat transfer process in a slab of length L,

one can express the total thermal energy as

L

E(t) = / p c [T(x,t) - T„pfj dx (Kj/m)
0

with Tref arbitrary, where p is the constant density (kg/m3), c is the

constant specific heat (KJ/kg °C) and T(x,t) is the temperature (°C) at

the point x at time t. However, if energy is to be conserved when phase

changes and moving boundaries are involved in the model, a straight

forward extension of this definition of energy with T ^ an arbitrary

constant is inappropriate.

The total energy in a body undergoing a phase change is a very

important quantity from the practical point of view. Since it must be

conserved, it is also very important in the modeling of the process.

So, an appropriate definition of the total thermal energy is required.

In this report we examine a simple minded but natural definition of

energy in various phase change processes. Sections 1 and 2 deal with

single and a multiple phase changes respectively in a finite slab. In

section 3 we examine the case when the critical temperature varies with

time. In all cases we find that the requirement of conservation of

energy imposes explicit requirements on the choice of reference



temperature, which sometimes are reasonable and sometimes are not.

Results of our search for more appropriate definitions of energy will

appear in another report.

An implication of this work is that when computing (either

analytically or numerically) energy balances in a material undergoing a

phase change one must be careful to choose the reference state so that

total energy will be conserved or to modify the definition of total

energy appropriately.

1. Energy in a single phase-change process

Let us consider a slab of phase-change material (PCM) occupying the

interval 0 < x < L, initially in its solid state. The slab is insulated at

x = L and a heat flux q is applied at x = 0 so that the PCM melts at a

critical temperature T . The interface is a curve x = X(t) such that at

time t the liquid occupies 0 < x < X (t) and the solid occupies

X(t) < x < L. Let the constants c£, k£ and c , k$ be the specific heat and

conductivity of the liquid and the solid respectively and, for simplicity,

let us take the density of the PCM to be a constant, p, in both phases.

The standard model for such a process is the following two-phase

Stefan problem for the unknown temperature T(x,t) and interface location

X(t):

pc T, = (k T ) in the solid (p=s) and in the liquid (p=£)
L) U U A A

(1.1)

T(X(t), t) = Tcr, (1.2)



pH X(t) = k T (X(t)+,t) - k. Tv(X(t)-,t) (Stefan condition),
S X x» X

(1.3)

"k£Tx
x=0

% ' "ks Tx
x=L

(1.4)

In (1.3), H denotes the latent heat of the phase change.

The total energy in the PCM at time t is the energy due to sensible

heat and latent heat. A way of expressing this is to write

E(t)

X(t)

/
0

pc£ [T(x,t) Tref] dx

+ / PC, [T(x,t) - T f] dx + PH X(t)
X(t) s ret

(1.5)

We claim that if the energy is to be conserved, then the reference

temperature T , in this definition of total energy must be taken to be

eaual to the critical temperature T .

Indeed, since the only energy input is q , conservation of energy

can be expressed as

E(t) = qQ. (1.6)

Differentiating (1.5) with respect to time we find

E(t) = PC, [T - T ,] X(t) - pc [T - T .] X(t)
'l L cr ref s L cr ref-

X(t) L

+ / PCo T.(x,t) dx + / pc T.(x,t) dx + pH X(t)
0 X Z X(t) s Z



Using (1.1) and integrating by parts, we obtain

E(t) - p(c, -cJ[Trr -Trofj *(t) ♦ k^
l s -"• cr ref

x=L
+ k t

s x
+ pH X(t),

x=X(t)

x=X(t)

x=0

and then, because of (1.3) and (1.4), we obtain

f(t) =qQ +P(Cjl-cs) [Tcr-TrefjX(t).

(1.7)

(1.8)

Therefore, the total energy will be conserved only if the last term in

(1.8) vanishes. This term clearly exists because of the phase-change

[c£ * csJ or the moving boundary (X(t) * Oj. In the presence of such

phenomena the only way to make the term vanish is to choose T ^ = T .
ref cr

If the total energy of the system at time t is given by

X(t) L

E(t) = / pc [T(x,t) - T ] dx + / pc [T(x,t) - TJ dx + pH X(t)
0 cr X(t) s cr

(1.9)

then £(t) = qQ and energy is conserved.

Observe that the Stefan condition (1.3) is consistent with

definition (1.9) but not with (1.5). Indeed, only when T f=T do

(1.6) and (1.7) imply (1.3).



2. Energy in a multiple phase change process.

Let us consider a system in which N distinct phases are created in

the PCM which again is insulated at x = L and has a heat flux qQ imposed

at x = 0. In each phase the heat conduction equation (1.1) is valid, at

each interface x = X1(t) (i = 1, 2,...,N-l) the temperature is a critical

temperature T1 (i = 1, 2,..., N-l) and either aStefan condition of the

type (1.3) with latent heat H1 holds there or the fluxes balance each

other k. T1 = k. , Ti+1 at x= X^t); such acondition can occur e.g.
IX 1 'J. A

when a fast chemical reation takes place at an interface.

We write the total energy as

N X'(t)
E(t) = I / pc1 [T(x,t) -Tjef] dx +I pHJ XJ(t)

i=1 Xi_1(t) J

thwhere X°(t) = 0, X (t) = L, c1 is the specific heat of the i phase,

T1 , is a reference temperature for the i phase, HJ the latent heat
ref

and j takes all the values in {1, 2,..., N-l} for which a Stefan

condition is prescribed on x = XJ(t).

Proceeding as in section 1, we find that the energy is conserved

provided

1=1



Setting each term of this sum equal to zero yields N-l equations for the

N unknowns T1 f, i=l, 2,..., N. Therefore, there are infinitely many

choices for the constants T f which result in conservation of the

total energy in such a multiphase system.

3. Energy in a phase change process with time-dependent critical
temperature

Let us reconsider now the process of section 1 but allow the

critical temperature to be a function of time,

T(X(t), t) = Tcr(t).

Physically this can happen in many interesting situations. For example

a chemical reaction may take place at the interface, or there may be

simultaneous diffusion of a solute with the critical temperature

depending on its concentration

Clearly a constant T c will not suffice in this case. So, let us
J ref

take the energy to be given again by (1.5) but with T f = T f(t).

Computing E(t) we find E(t) = ft(t) + q , with

O(t) = p(c£ - cs)[Tcr(t) - Tref(t)] X(t) - p[c£ X(t) + cs(L - X(t))]tref(t)

=p(c£ " cs)Tcr(t)*(t) - pfc IK x+CS^L " xd^W*^-



Conservation of energy requires &(t) = 0, which yields, upon

integration, the following expression for the reference temperature:

Trfif(t) =[CjlX(t) +cs[L -X(t)]]"1{[c£X(0) +cs[L -X(0)]]Tref(0)

+(c* "cs^ j Tcr(x)X(T)d^

Note that the denominator is never zero, so T f(t) is well-

defined. Alternatively, integrating by parts in the last integral

and, choosing Tref(0) =Tcr(0), we find

Tref(t) =[cs +(c£ -cs) X(t)]"1{cs Tcr(0) +(c£ -cs)Tcr(t) X(t)

t

"(C£ -Cs) /X(T) Tcr(T)dT}.

For convenience we define y =c /(c£ -c ). Then

1 tTref(t) =[y +X(t)]"1 {y Tcr(0) +TCf.(t) -/X(x) tcr(x)dx}. (3.2)

Thus, the total energy in the system may be defined by

X(t) L
E(t) =/ PC,[T(x,t) - T„ef(t)]dx + / pc [T(x,t) -T f(t)]dx

0 reT X(t) s reT

+ P H X(t), (3.3)

with T f (t) as given above.

Unfortunately, a variable T f cannot be used as a reference

temperature in physical measurements, so (3.3) as a definition of

energy is not satisfactory from the physical point of view.



An alternative to having a time-dependent reference temperature is

to choose an arbitrary constant T as the reference temperature and

compensate by adding a "source" term in the definition of energy so that

the latter will be conserved. Clearly, the term to be added must be

equal to -n(t) with T f(t) =TQ = const. Thus the modified definition

of total energy is

x(t) L
E(t) = / PcjT(x,t) - TJdx + / pc [T(x,t) -T ldx + pH X(t)

0 * ° X(t) s

+P(cs -c£) /[Tcr(t) -Tj X(t)dt. (3.4)

Remark If the critical temperature happens to be a constant, then

(3.1) (or (3.2)) simply says Tref(t) = Tcr = const., and (3.3) as well

as (3.4) reduce to (1.8), thus recovering the results of section 1.

The difficulty with the modified definition (3.4) is that its last

term cannot be interpreted physically in any reasonable way. Clearly, a

more appropriate definition of total energy is needed. This will be

addressed in a forthcoming report.
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