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ABSTRACT

A study was made of the existence and uniqueness of solutions to the

long-range, energy-economy model LEAP. The code is a large scale, long-

range (50 year) equilibrium model of energy supply and demand in the U.S.

economy used for government and industrial forecasting. The study

focused on the two features which distinguish LEAP from other equilibrium

models - the treatment of product allocation and basic conversion of

materials into an energy end product. Both allocation and conversion

processes are modeled in a behavioral fashion which differs from classi

cal economic paradigms. The results of the study indicate that while

LEAP contains desirable behavioral features, these same features can

give rise to non-uniqueness in the solution of allocation and conversion

process equations. Conditions under which existence and uniqueness of

solutions might not occur are developed in detail and their impact in

practical applications are discussed.



I. INTRODUCTION

A significant effort was undertaken by the Energy Information Agency

of the Department of Energy to evaluate the long-range, energy-economy

model LEAP.1"10 The code is in wide use in both the public and private

sectors to predict and analyze the supply and demand of energy over fifty-

year periods. In the public sector, the code is referred to as the LEAP-

EMS11 system, while in the private sector it is called DFI-GEMS.12 All

versions of the code are derivatives of the original GULF-SRI13 energy

model used in the early 1970's to model plant capital investment strate

gies for the oil industry.

As part of the overall effort to evaluate LEAP, a separate subtask

was designated to investigate the mathematical structure of the equations

which constitute a typical LEAP model. Within this framework the ques

tions of existence and uniqueness of solutions to the LEAP equations

were explored. Since LEAP has many features that are derived from

classical economic theory for which existence and uniqueness questions

have been studied in the past,1^'1^ the present work focuses on the

major aspects of LEAP which set it apart from other intertemporal equi

librium models. A constructive approach to existence and uniqueness

questions was also taken, since much of the present work arose out of an

analysis of convergence problems in a specific LEAP model.

The following sections offer an extensive analysis of the two most

characteristic features of the LEAP modeling system - the treatment of

energy demand allocation among suppliers and the concept of a varying

plant capacity factor for the differing vintages of capital stock used in



the production of energy from the same generic technology. The basic

characteristics of the allocation and production (i.e., conversion)

processes in LEAP which distinguish it from other modeling codes are

discussed in Section II. The equations for these processes are reviewed

in Section III. A discussion of the uniqueness and existence of solu

tions to these equations is presented in Section IV and conclusions based

on this analysis are given in Section V. The implications of the results

of this study for users of the LEAP system are also discussed in the

concluding section.



II. CHARACTERISTIC FEATURES OF THE LEAP MODELING SYSTEM

Despite the fact that the LEAP code exists in many versions and can

be used to model very diverse energy economies, there are some basic model

characteristics which underly all LEAP systems.12,16 In all versions of

the code, a general intertemporal equilibrium model of the energy economy

is constructed from an interconnected network of basic process modules.

Each process module represents a generic process in the energy economy,

such as energy production (and conversion) or resource supply and

transportation and each module is governed by a set of generic process

equations. The generic processes can be used to represent different ac

tivities in the economy for a typical modeling network by appropriate

choice of the exogeneous parameters within each process module. In this

manner a generic process module can be used to represent coal, gas, or

nuclear energy conversion or allocation in the context of a specific

problem.

Although much of the code system is consistent with elementary eco

nomic theory,16 two of the most important generic process modules -

allocation and basic conversion - have characteristic features which

distinguish LEAP from other classical equilibrium modeling systems. In

both of these modules behavioral relationships were developed to make the

response of the allocation and production processes smoother functions

of price than those called for in classical economic theory. The alloca

tion of demand among differing suppliers, for example, was made a smooth

function of price instead of allowing the supplier with lowest price to

take all the demand. Likewise in the production process, the production



levels of differing vintage plants producing the same end product respond

smoothly to prices instead of starting up and shutting down abruptly at

certain optimal price levels. Both of these smoothing relationships are

engineering attempts to model realistic behavioral responses of aggre

gated supply units in the economy and are therefore not strictly based on

classical economic paradigms.

Due to the central role played by the two key behavioral relation

ships above, the study of existence and uniqueness questions will focus

on these generic behavioral equations in the allocation and basic con

version process modules. Other more traditional aspects of this problem

have already been treated by Brock and Nesbitt16 and Falk, et al.17 in

the framework of classical economic theory. In this study it will become

clearer that while the engineering behavioral aspects of LEAP indeed have

practical merits in modeling, they lead to important conflicts with

classical theory as far as existence and uniqueness of solutions are con

cerned. These latter drawbacks must be understood in some detail if the

code is to be used without major complications.

In the developments which follow, the analysis of the behavioral

relationships in allocation and conversion process equations will be

carried out in a time independent framework. Although intertemporal

relationships add another dimension to the problem, the most important

aspects of the existence and uniqueness problem can most easily be

gleaned from an analysis of the static case.



III. CHARACTERISTIC BEHAVIORAL EQUATIONS

A. Allocation Process Equation

The essential features of the behavioral equations characteristic

of LEAP allocation processes are best illustrated by treating a generic

allocation process module. In such a module several energy sources at

various prices are each allocated a share of an end market demand

according to the source prices. After this allocation is accomplished an

aggregated selling price to the end use demand is determined as a weighted

average of the supply prices. This procedure is shown graphically in

Fig. 1.
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Fig. 1. Schematic of LEAP allocation process

The characteristic behavioral feature of the LEAP allocation process

is that it does not choose the energy source with the lowest price to

satisfy the entire demand as would be the case in classical economic



theory. Instead LEAP allocates some share of the market to each energy

supplier in a smooth fashion dependent on price.12 This was done in an

attempt to include in the model more realistic aggregated industry or

geographic average behavior as well as factors of a long-term economic

nature which often determine contractual agreements. The behavioral

relationships which are used however are price dependent and for the sta

tic case give rise to the following two allocation equations,7

Q

N

Y qi n- (^4- ~d:Pi

\A

?M
(2)

Here P and Q are the end use market price and quantity; pi and qi are the

price and quantity of the itn supplier and y is a behavioral parameter

that determines how sensitive the allocation process is to differences in

price between the different suppliers of energy.

In the limit when y -»• ~, the allocator satisfies all of the end use

demand Q with the lowest priced energy source, (i.e., q^ = Q for p^ = Pm-jn)'

On the other hand when y = 0 the allocator gives each energy source an

equal share of the market demand irrespective of price (i.e. all qi/Q are

equal).* The relationships given by Eqs. (1) and (2) can therefore model

*Note - In the LEAP code non-equal shares also can be allocated by exogen-
ously determined parameters for the y = 0 case. Since this is not an
essential feature of the existence and uniqueness proofs, however, this
fact was neglected to simplify the discussion.



allocation behavior ranging from the strictly classical lowest price case

to price independent allocation based on other consideration, as well as

a smooth transition of behavior in between these two extremes. The pro

cess model is thus flexible and behavioral in nature allowing real world

data to be fit with an exogenously determined parameter y.

B. Conversion Process Equations

The basic conversion process module in LEAP is an attempt to use the

classic economic theory of the firm to model energy conversion

process12'16 (be it coal, nuclear, electric power, etc.). All phases of

conversion are modeled but emphasis is placed on capital investment and

the decision to build and operate a physical plant economically.

Consequently much of the modeling is concerned with determining how much

conversion capacity to bring on line to meet a certain demand, what capa

city factor to operate it at and what price to charge for the end product.

The stated basis for capital investment and plant operation decisions

in LEAP is the classic economic principle of long-run profit maximization

under perfect competition. The particular relationship used is one of

long-term profits for an aggregated industry being zero (the return on

equity being included in costs). This zero profit condition arises in

LEAP from the assumption that all conversion takes place in industries

that display constant returns-to-scale with respect to plant size. As a

consequence of this assumption the price for the end product of all con

version processes is independent of plant size and final demand. Any

demand level can be met once the appropriate price level for zero profits

is determined.



The price level for the end product of an aggregated conversion

process which guarantees no net long run profits is determined in LEAP

from the following equation,7

i+Lc

X (PJ "*lj) CfijdiJ =Nc 1-1....,T (3)
j=i

Here "i" is the time period index denoting when a plant is built; "j" is

the time period index denoting when it is operated; Lc is the lifetime of

the plant; pj is the unit price of energy produced by the process at time

j; ^.j is the average unit variable operating cost at time j of a plant

built at time i dependent on the factors of production (i.e., labor,

materials and energy); Cf.. is the capacity factor for a plant built at

time i when operated at time j; d-jj is the discount factor in the

jtn time period for capital invested at time i; and Nc is the total fixed

capital cost of the plant per unit of capacity.

Equation (3) summarizes the fact that the net present value of pres

ent and future cash flows is equal to the total capitalization of the

plant, so that long run profitability is zero.

The actual computation of the prices pn- in LEAP for model time

periods i=l T is accomplished by solving Eq. (3) backwards in time

starting at i=T, the terminal year and proceeding with backward substi

tution to i=l. The terminal year equation is,

T+Lc

(PT "*T,T> CfT.T dT,T =Nc "E (Pj "$T.j) CfT,jdT,j =Nc -Hpj (4)
j=T+l



The sum over years T to T+Lc in Eq. (4) is modeled in LEAP with exoge

nous parameters which predict prices pj, operating costs <{>T,j» and capa

city factors CfT , for all future years of plant operation beyond the

terminal year T. This model is called the terminal value model.

Given the terminal value model and Eqs. (3) and (4), the final

equation for conversion process prices in any year can be written generi-

cally as follows

(P - $) Cf = k (5)

where the constant kn- is determined by the terminal value model and

future year price calculations as,

i+Lc

Nfc"J (Pj -ftj) Cf dij
kj - J-1+1 'J - "c""Pj (6)

dii "dTi

In addition, once the price is determined by the above equations, any

level of demand for the end product of the conversion process in excess

of that produced by the existing capital stock can be met by adding new

plant capacity, since new capacity additions are not dependent on the

price to demand.

The distinguishing feature of the LEAP conversion process model com

pared with other commonly used equilibrium models is that LEAP can

distinguish between differing vintages of capital stock. Both old and

new plants can be made available and run at varying capacity levels to

meet any existing demand. Older plants can also be retired gradually

from use as they become economically inefficient. The behavioral rela

tionship that is used to control the output level of differing vintages
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of capital stock as a function of price is that of the capacity factor,

defined as,7

Cf,
3 m

i +
c#1 j

Pj

Here 3 is the maximum capacity factor (typically < 1); $ij is again the

average unit operating cost; pj is the unit price of the final product;

a is an exogenous parameter; and 6 is a behavioral parameter that deter

mines how responsive the capacity factor is to prices and operating costs.

In the limit as <S * <*>, the capacity factor Cf •»• 3 and is independent

of prices and costs. This case corresponds to the classic Leontief

input-output model of the firm1** in which the plant runs at full capacity

as long as p > $~. For all other values of 6, the capacity factor has a

smooth behavior between the extremes of 0 and g. Plants tend to run

closer to full capacity when prices are higher than operating costs and

tend to shut down when prices drop below operating costs in this model.

Using Eqs. (5) and (7), the static price equation for LEAP conver

sion processes can be written as follows (dropping subscripts),

(P-W
3

1 +
a<f>

_P _

6
= k

(8)

Rewriting this equation in a more compact form as a function of prices,

the final conversion process price equation becomes,

p6+l _ ap6 = b (9)



where

11

Jc + $ (10)
3

b =Jc (<$)5 (11)
3

Eq. (9) is a nonlinear algebraic equation in prices determined primarily

by future plant profitability, present average operating costs and the

behavioral parameter 6.
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IV. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Given the modular nature of the LEAP code, the examination of

existence and uniqueness questions can be most easily accomplished in a

classical supply and demand framework from the vantage point of each

individual generic process. This approach has already been used to

investigate existence and uniqueness of LEAP equation solutions in the

context of intertemporal equilibrium modeling.16*17 The same approach

will be used in this paper, but a more specific analysis will be made of

the characteristic behavioral relationships in allocation and conversion

processes. The major weakness of previous discussions of existence and

uniqueness is that the specific LEAP functional forms were not dealt with

in full detail. It was always assumed that each generic process would be

governed by classical economic theory and therefore obey classical

constraints. In the discussion to follow it will be made clear that the

two characteristic behavioral relationships in LEAP do not quite conform

to classical expectations and the conditions for uniqueness and existence

can only be made clear by careful examination of these divergences.

A.l. Allocation Process Equations

Given the two basic allocation process equations (Eqs. (1) and (2))

and the modular structure of LEAP, the particular behavior of allocation

solutions can best be studied by isolating the supply and demand func

tions of the module. As an isolated system then, the allocation process

supplies another process module with a price, P, for an energy product as

a function of the demand for that product, Q. The allocator does this by
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aggregating the supplies of products fed into it by other process

modules. In a classic supply and demand framework then, the allocator

produces an aggregate "indirect" supply curve,16 PS(Q)> from the indivi

dual "indirect" supply curves feeding it, pi (q-j), in order to satisfy the

"indirect" demand curve,16 Pd(Q). for the aggregate product, derived from

the process module the allocator feeds.

Under rather general assumptions concerning monotonicity and bounded-

ness of the aggregate "indirect" supply and demand curves PS(Q) and Pd(Q)»

it is a relatively easy task to prove existence and uniqueness of alloca

tion process solutions if these two curves cross once and only once over

the full range of non-negative Q values. Since PS(Q) is assumed to be

monotonically increasing and P<-|(Q) is assumed to be monotonically decreas

ing in the LEAP formalism,16 the conditions needed for uniqueness of the

intersection of the two curves are generally satisfied. The actual func

tional forms for Pd(Q) and Pi(q^) needed to verify this behavior,

however, arise in the process modules adjacent to the allocation process;

only PS(Q) can therefore be investigated within the framework of alloca

tion process equations. If this latter curve is unbounded and monotoni

cally increasing for non-negative Q values, then uniqueness and existence

can be proven for allocation process solutions. If, on the other hand,

the curve is bounded from above and can be shown to have a local maxima,

then both non-existence and non-uniqueness are possible under conditions

governed by the behavior of Pd(Q)«

The investigation is therefore begun by examining the behavior of

the aggregate indirect supply curve PS(Q). A functional form can be
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developed for this curve by first rewriting P as an explicit function of

the demand Q. To accomplish this, Eqs. (1) and (2) can be rewritten as

follows:

where Hyfq") is given by.

and,

p= HY_!(q)
HY(q~)

HY(q~) = 2aj"

My 1

pjlqjl

Note here that qj is an implicit function of Q through the following

transcendental equation given by Eq. (2), that is

ai-n- - J12X Q

(12)

(13)

(14)

(15)

The nature of the indirect supply curve, Ps(Q)» can now be examined

by determining the behavior of its slope, dP/dQ. Differentiating Eq. (12)

with respect to Q yields,

Idf.
P dQ

1 dHY.i
HY_i dQ

dH^
"dQ"

(16)
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where from the definition of HY and ajY

and

dHj
dQ

da
JX
dQ

V daJY
4- dQ

YaJY dPj dqj
Pj dqj dQ

Combining Eqs. (15) through (18) we get

_dJL - JL V BJ iHl
dQ " Q 2- dQ

(I7)

(18)

pj (19)

where 3j is ameasure of the relative slope of the jtn indirect supply

curve feeding the allocator (i.e. Pj(qj)) and is defined by

dpj/Pj d(lnpj)
H = y <Tqj7qJ =y d(lnq-j)

(20)

From the transcendental equation for q as a function of Q (i.e. Eq.

(15)) the dqj/dQ term in Eq. (19) can be evaluated. After some manipu

lation the simultaneous equations for the dq-j/dQ values are,

or

dqj__ qi_ +51 V 3ii
dQ " Q Q 4- dQ

(l+3i)-^l =ii(l +y 3j
dQ Q Z- J

j

3i
dqj
dQ

dqj
dQ

(21)

(22)
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Defining the new variable vn- = 3i dq-j/dQ, Eq. (22) can be solved to

give

(qj/Q) Pi
,. = 1 + B1
1 ^(qj/Q)gj

1-Z. 1+3j

- 8- dc*i (23)

Substituting the results from Eq. (23) and Eq. (12) into Eq. (20), the

relative slope of the indirect supply curve PS(Q), denoted by n, is

finally obtained as

d(lnP) q dP V
d(lnQ) P dQ 1-m (24)

Equation (24) summarizes the possible types of behavior of the allo

cation process indirect supply curves in terms of the behavior of the

indirect supply curves feeding the allocator (i.e., the values of 3j).

From these results it should be immediately clear that even if all the

indirect supply curves, Pj(qj)» are monotonically increasing functions of

qi (i.e. 3j > 0 for all j), the aggregate indirect supply curve, PS(Q),

resulting from the allocation process is not necessarily a monotonically

increasing function of Q (i.e. n > 0). The sign of the relative slope of

the aggregate indirect supply curve can be made negative if the

appropriate terms in brackets on the right side of Eq. (24) are negative.

Since the 3j values can in general be arbitrary positive numbers

consistent with the behavior of the process modules in LEAP feeding the

allocation process, the vi terms will always be positive as a result of
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the fact that,

0 <_LL< 1 and Y 3L =1 (25)
1+3 i A^ Q

From Eq. (1), however, it should be noted that P represents an average

of individual supply curve prices feeding the allocator. There will

therefore always be at least one supply curve price (e.g., Pj) greater

than P. If the slope of this curve is very large (i.e., 3j •»• ») and its

market share (i.e., qi/Q) is not negligible, the contribution of this

term to the numerator on the right side of Eq. (24) can always be

made to outweigh the other terms causing n to become negative. With

these considerations taken into account, both non-uniqueness and non

existence of allocation equation solutions are possible when,

3j » 3j all j * J and y^ Pj > P (26)

In summary then, both non-existence and non-uniqueness are possible

at a point in the aggregate indirect supply curve where the individual

supplier with the highest price makes a significant contribution to the

aggregate supply and this supply curve has a very large slope compared to

the other indirect supply curves feeding the allocator (i.e., 0j >> 3j

for all j* J and qj/Q is not small). In this case, the Jtn term in the

sum of the numerator in Eq. (24) will be both negative and larger than

the remaining terms for a range of Q values, giving rise to a region of

monotonically decreasing aggregate indirect supply curve behavior. In

this region, PS(Q) will pass through a local maximum.

It should be noted here that the only condition that is always

sufficient to guarantee existence and uniqueness for the allocation
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process equations is if y=l. In this instance Eq. (26) can never be

satisfied and monotonicity of the indirect supply curve PS(Q) is

guaranteed if all the indirect supply curves feeding the allocator are

also monotonically increasing (i.e., all 3j > 0).

The characteristic manner in which the aggregate indirect supply

curve achieves a local maximum is best illustrated by a simple example in

which two supplies of a product are allocated to one final use. In this

case Eqs. (1) and (2) can be written explicitly as follows,

ql q2P=_Lp +_£p (27)
Q Q

Hi
Q

fe)1
fcW "©

(28)

The equation for q^ is redundant here since it can be derived from

the identity,

To illustrate the behavior of the aggregate indirect supply curve,

the following individual indirect supply curve behavior is assumed for

P1(q1) and p2(q2),

Pl(qi) = 1 p2(q2) = aq2 (3°)
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As a result, Eqs. (27) and (28) can be written in terms of two new

variables x and y as follows,

P=1+£<y-l) (31)

yY+1 + y = x (32)

where

y = aq2 x = aQ (33)

Eqs. (31) and (32) represent a parameterization of the aggregate in

direct supply curve behavior in terms of the arbitrary slope, a, of the

second indirect supply curve. In principle, Eq. (32) can be solved for

y(x) given x and then Eq. (31) can be solved for P(x). The equations are

transcendental and this procedure is best done numerically. Results of

this numerical exercise are summarized in Fig. 2, where P(x) is plotted

versus x for various values of the price sensitivity parameter y.

As can be seen from Fig. 2, all the aggregate indirect supply curves

exhibit a local maximum for y values greater than unity. The maximum

occurs at values of x > 2. This behavior is a direct result of the

aggregate indirect supply curve being an average of the individual indi

rect supply curves feeding the allocator. Since the weighting of this

average always favors the individual curve with the lowest price, P(x)

will always asymptotically approach P(x) = pi = 1, thus creating a broad

maximum in all cases except y=1« The maximum decreases in size and

becomes less broad as y becomes larger with the curve eventually becoming
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Fig. 2. Aggregate indirect supply curve behavior for

allocation processes
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discontinuous when all final supply is allocated to the individual

supplier with the lowest price (i.e. y = »). This limit is equivalent to

horizontally adding the individual indirect supply curves in Fig. 2 (i.e.

adding x values at constant price) to get the aggregate indirect supply

curve. This procedure is the one expected from classical considerations

and also the one expected from the analysis presented in Ref. 16. The

LEAP procedure for modeling allocation as a smooth function of price

therefore has the net effect of altering the horizontal addition rules

for supply curves with the net effect of creating the conditions which

allow a local maximum to occur.

For problems in which many suppliers feed an allocator, the con

dition under which a local maximum tends to occur are as follows:

1) prices in the aggregate indirect supply curve are close to the inter

section of two individual indirect supply curves, 2) one of the indivi

dual curves has nearly constant price behavior as a function of quantity

(the asymptotically lower priced one) and 3) the other individual curve

has a steep slope. Since this can potentially occur at many points in

the aggregate indirect supply curve, many local maxima are possible. In

addition, since each allocation process is time dependent and many allo

cators occur in any large model of the energy economy, the multiplicity

of local maxima is potentially large.

A.2. Practical Implications of Allocation Process Equations

Looking a little closer at the process modules linked to alloca

tors in typical LEAP networks, it is clear that the conditions for

multiple solutions and non-existence are governed predominantly by the
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behavior of the indirect supply curves arising from the LEAP basic con

version and resource processes which feed allocators. In most cases, the

behavior of indirect supply curves discussed in Section A.l and exhibited

in Fig. 2 occurs more frequently in LEAP than might have been expected.

For example, all indirect supply curves arising from basic conversion

processes are constant functions of quantity.16 This behavior, which

might have been the most difficult condition to meet, is therefore most

commonly met in LEAP. In addition, most resource process indirect supply

curves are monotonically increasing functions of quantity which fre

quently have steep slopes when resource reserves are non-renewable and

near exhaustion. The conditions for multiple solutions in LEAP are

therefore most likely met when at least one resource process and one or

more basic conversion processes feed into a single allocator. Local

maxima will occur in this case at points in the aggregate indirect supply

curve when resource process prices and the conversion process prices are

approximately equal.

Since local maxima in aggregate indirect supply curves are poten

tially common occurrences in LEAP models, the behavior of the indirect

demand curve appears to be the determining factor for the occurrence of

existence and uniqueness problems in any given practical model. The fact

that the local maxima in the aggregate indirect supply curve usually are

either very localized or yery broad, make it clear that the necessary

conditions for non-uniqueness center on the existence of almost constant

indirect demand curve behavior with respect to end use quantity in the

process module fed by the allocator. This nearly constant behavior would
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allow the indirect demand curve to intersect the indirect supply curve at

more than one point near its local maximum or possibly not at all.

Since most allocators are linked directly to either conversion or

end use demand process in a typical LEAP network, nearly constant

indirect demand curve behavior is a rare occurrence, thus preventing

existence problems from being more frequently encountered in LEAP models.

Nonetheless, such behavior is possible and the behavioral relationship

embodied in the LEAP allocation process equations rests on shaky mathema

tical and economic grounds. The rather predictable circumstances under

which the equations break down must therefore be carefully observed in

practical application of the LEAP system.

B.l. Conversion Process Equation Solutions

The question of uniqueness and existence of LEAP conversion process

equation solutions cannot be examined in the same manner as was done

for the allocation process, that is, by studying indirect supply curve

behavior. The fact, as was stated in the last section, is that the final

product indirect supply curve is constant with respect to quantity. Any

monotonically decreasing indirect demand curve will produce a unique

intersection with such a curve, thereby yielding a unique equilibrium

solution to these equations. The approach to the conversion process uni

queness problem, will therefore, be to study the uniqueness of the prices

themselves as they arise as solutions to the non-linear conversion process

equations [(i.e., Eq. (9)]. This study will also be carried out in a time-

independent framework after taking intertemporal effects into consideration

[(i.e., using Eq. (9)].
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As was seen before, the functional form for the capacity factor

(i.e., Eq. (7)) gives rise to a nonlinear equation for the conversion

process price (i.e., Eq. (9)). In order to analyze this latter equation

more easily, it can be rewritten in terms of the dimensionless variables

x and y, as follows:

y$+l = (x+l)y<* + a6x (34)

where

p k <35>

The behavior of interest will be in the region where y > 0 since both

prices, p, and average operating cost, •$, will both be constrained to be

positive in solving the LEAP equilibrium equations. For practical pur

poses 3,6, and a will also be assumed to be positive since they are

exogenously specified parameters with some non-negative economic basis.

Since y(x) is transcendental in x, it is easiest to explore the

price solution as an implicit function by solving x(y). This solution is

as follows,

111 (36)

-W
Plotting Eq. (36) and then inverting the ordinate and abscissa gives

y(x). The result is shown generically in Fig. 3.

As can be seen from the figure, the problems which arise regarding

solution uniqueness occur when x < 0. For all values of x > 0, Eq. (34)

has a unique price solution in the region of positive prices. For values

of x < 0, on the other hand, either two solutions or none exist depend

ing on the values of the parameters a and <5. This behavior is further
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complicated in the limit 6 -»• <*>, in that the functional form of y(x)

becomes discontinuous. The discontinuity is two-fold, a range of y values

exist for x = 0 and single y value (i.e., y=l) can also have a range of

x values. This discontinuous limiting behavior, therefore, leads to the

possibility of non-uniqueness for cases where y > 0 as well.

Some of the above difficulties can be removed by an appropriate choice

of the exogenous parameters a and 6. For the case of 6 = 0, the discon

tinuity and multiple valuedness of y(x) disappears and y = 2x+l emerges as

the unique solution. In another problem case, when 6 + ~, if a=l, the

range of solutions for x < 0 disappears and when x > 0 continuity at y=l

is restored to the y(x) curve. The observed problems in the uniqueness

characteristics of the price solution can therefore be alleviated exoge-

nously in some cases, albeit, at the expense of flexibility in modeling

behavioral effects.

The above discussions make it clear that the uniqueness of the solu

tions to the LEAP conversion process equations hinges on the values of

the parameters which define x. Since the only potentially negative com

ponent in the definition of x is related to future year profitability,

the critical factor in determining conversion process price uniqueness is

the nature of future year plant profits. This profitability is reflected

in the value of the parameter k as determined in Eq. (6). If the para

meter is always positive, price uniqueness is guaranteed. If, on the

other hand, k can be negative, then non-uniqueness is possible.

Going back to Eq. (6), it is clear that the value of k is related

to the capital cost of the conversion process plant per unit output, Nc,
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and the present value of future cash flows per unit output, Np. If future

profitability is always strictly less than capital costs (i.e., Nc > Np)

then the plant will operate at a net profit in its startup year (i.e.,

p > $ , Cf > 0) and k will therefore be positive. Under these conditions

uniqueness of solutions to the conversion process price equation will

always be guaranteed. If, on the other hand, future profitability exceeds

capital cost (i.e. Np > Nc), then k will be negative and the plant will

operate at a loss in its startup year. In this instance, depending on

the specific values of k and $, non-existence and/or non-uniqueness of

the solution is possible.

In conventional economic theory where optimal profit conditions are

satisfied in the production process, both short run and long run maximum

plant profitability will insure non-negative profits in each time period

of plant operation.19 If these theoretical considerations were employed

in LEAP they would then guarantee the uniqueness and existence of the

solution of the conversion process price equation. Since a behavioral

form of the capacity factor was used in LEAP in place of a traditional

production function for plant operation, the LEAP conversion equations do

not necessarily satisfy traditional economic constraints and as a result

short run profitability is not guaranteed.19 The LEAP conversion process

equations therefore admit the possibility of k < 0 and non-uniqueness of

solutions due solely to the choice of the form of the capacity factor.

The findings summarized above can in certain instances be offset in

the more complex framework of a search for an intertemporal equilibrium

solution to the LEAP equations. It should be noted, however, that future

plant profitability represented in the sum on the right side of Eq. (4)
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goes beyond the time horizon solved for in any LEAP model. This added

time period is modeled by a post horizon pricing approximation, called

the terminal value model. Since this terminal value model is exogenously

specified, the relationship between the final time horizon price and all

prices beyond this horizon is largely determined by exogenous parameters.

This fact makes the value of k dependent on exogenous data but in a

fashion that is very problem dependent and difficult to predict before

hand. Questions of uniqueness and existence thus will remain a problem

with the conversion process equations, until the results of each practical

problem are analyzed for violations of classical economic profitability

constraints.

B.2. Practical Implications of Conversion Process Equations

The economic conditions under which non-uniqueness are more likely to

appear in realistic problems can be gleaned from Eqs. (6), (9), (10) and

(11). In cases where future profits are high and capital costs are low,

problems can potentially arise. These conditions in general result from

either a combination of steep price rises in future years along with

relatively slow rises in operating cost or the combination of stable

prices and slowly falling operating costs. If these trends appear in the

terminal value model, the effect will be most pronounced in latter year

conversion process equation solutions. These conditions are realistic

from a behavioral point of view but violate the short and long run profi

tability conditions.

Most of these problems can be eliminated in the limit as y + ».

In this case, the LEAP capacity factor approximates a Leontief production
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function18 for plant operation in which full capacity production is

undertaken when p > $ and plants are shut down when p < $. This modeling

choice is less than desirable behaviorally but economically and mathema

tically more sound.

The implications of multiple or non-existent solutions in the con

version process for practical LEAP models are the same as those found for

the allocation process. The conversion process equations appear many

times in any large LEAP network and a bifurcation of solutions can poten

tially appear each year in each conversion process. This leads to the

possibility of many potential solutions to the network if the proper con

ditions arise. Checks must be made of yearly plant profitability in LEAP

solutions in order to insure uniqueness of the particular results being

analyzed.
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V. CONCLUSIONS

The results of this study indicate that the two most characteristic

features of LEAP which distinguish it from other large scale equilibrium

economic models (i.e. the behavioral relationships for product alloca

tion and the plant capacity factor in conversion processes), are the

possible sources of non-uniqueness in the solution of the model

equations. In the case of the allocation process, the conditions under

which non-uniqueness arises (i.e. the combination of one nearly constant

and at least one steeply rising indirect supply curve) are not uncommon

in typical LEAP networks. The additional necessary condition of a nearly

constant indirect demand curve in the process which is fed by the alloca

tor, however, is expected to occur rarely. The complete set of con

ditions, therefore, do not pose too serious a problem in most LEAP appli

cations, although the potential for non-uniqueness does still exist.

Most of the above problems with non-uniqueness can be eliminated

altogether by making the allocation process more discontinuous, whereby

the allocation more nearly approximates the theoretical case of total

allocation to the lowest priced supplier. Since LEAP has the ability to

model this more classical behavior by using an exogenous modeling para

meter (i.e. y in Eq. (2)) the model can be used flexibly to eliminate

this source of non-uniqueness should it arise. The problem in allocation

is thus one of trying to have more flexibility in behavioral modeling

while keeping in mind the constraints imposed by mathematical and econo

mical rigor. The price paid by the LEAP form of this flexibility,

however, is the potential for non-uniqueness and non-existence of alloca

tion process solutions.
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The solution of the conversion process equations share some of the

same problems as those in allocation processes (i.e., potential solution

non-uniqueness due to modeling plant production in a behavioral fashion).

The particular form chosen for the capacity factor (i.e., one which shuts

plants down gradually as they become less profitable) is one which admits

uneconomic behavior in future years of plant operation and also allows

plants to operate at a loss in their startup year. The future year pro

fitability conditions are the ones that give rise to the possibility of

non-uniqueness in the solution of the conversion process equations.

These problems can be eliminated exogenously, again, by forcing the capa

city factor to closely approximate a Leontief production function. In

this limit no startup losses occur and uniqueness is guaranteed. This

approximation is less flexible behaviorally and, therefore, the price

paid by such flexibility is again mathematical and economic rigor.
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