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SIMULTANEOUS HEAT AND MASS TRANSFER IN

ABSORPTION OF GASES IN LAMINAR LIQUID FILMS

ABSTRACT

This report describes a theoretical analysis of the combined heat

and mass transfer process taking place in the absorption of a gas or

vapor into a laminar liquid film. This type of process, which occurs in

many gas-liquid systems, often releases only a small amount of heat,

making the process almost isothermal. In some cases, however, the heat

of absorption is significant and temperature variations cannot be

ignored. One example, from which the present study originated, is in

absorption heat pumps where mass transfer is produced specifically to

generate a temperature change.

The model analyzed in this study describes a liquid film that flows

over an inclined plane and has its free surface in contact with stagnant

vapor. The absorption process at the surface creates nonuniform tem

perature and concentration profiles in the film, which develop until

equilibrium between the liquid and vapor is achieved. The energy and

diffusion equations are solved simultaneously to give the temperature

and concentration variations at the interface and the wall. Two cases

of interest are considered: constant-temperature and adiabatic walls.

The Nusselt and Sherwood numbers are expressed in terms of the operating

parameters, from which heat and mass transfer coefficients can be deter

mined. The Nusselt and Sherwood numbers are found to depend on the

Peclet and Lewis numbers as well as on the equilibrium characteristics

of the working materials.
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EXECUTIVE SUMMARY

This report describes the approach to theoretical analysis of the

combined heat and mass transfer process taking place in absorption

systems. The two transfer phenomena are strongly coupled in these

systems. The purpose of the analysis is to relate, quantitatively, the

heat and mass transfer coefficients to the physical properties of the

working fluids and to the geometry of the system. The preferred con

figuration is that of a falling film of liquid on a metallic surface

which transfers heat from the absorbent in contact with the vapor of the

absorbate.

This study originated from ORNL's program on absorption heat pumps.

In trying to optimize the design of absorbers and desorbers for these

systems, it was recognized that fundamental, quantitative information on

the combined heat and mass transfer process was lacking. Correlations

of an empirical nature (not always publicly available) exist for

determining the transfer coefficients for specific fluid pairs in

specific geometries. Theoretical models backed by experimental data

exist on gas absorption in liquid films, but they deal only with iso

thermal mass transfer and neglect the effect of heat transfer. The aim

of the present study has been to produce the kind of fundamental under

standing for the combined process that is already available for pure

heat transfer or pure mass transfer. A theoretical analysis is the

first step in this direction. Our model calculates the temperature and

concentration distributions in the films and the resulting transfer

coefficients for typical flow regimes, geometries, and boundary con

ditions. One of the important results of the analysis is the scaling

laws of the system.

In the system analyzed, a film of liquid solution, composed of

substances I (absorbent) and II (absorbate), flows down over an inclined

plane. The film is in contact with stagnant vapor of substance II at

constant pressure P . At x = 0, the liquid solution is at a uniform

temperature T and composition C (moles of substance II per unit of

volume of solution) corresponding to an equilibrium vapor pressure P

lower than P . As a result of this difference, absorption takes place
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at the liquid-vapor interface. The substance absorbed diffuses into the

film, and the heat generated in the absorption results in a simultaneous

heat transfer process. Two cases of practical interest are considered:

in one, the wall is kept at a constant temperature T ; in the other, the

wall is adiabatic.

In formulating the model, the following assumptions have been made:

1. The liquid solution's properties are constant and independent of

temperature and concentration.

2. The mass of vapor absorbed is small compared with the mass flow

rate of the liquid. Therefore, the latter is constant and so is

the film thickness.

3. There is no heat transfer in the vapor phase.

4. There are no natural convection effects in the film due to tem

perature or concentration differences.

5. Diffusion thermal effects are negligible.

6. Vapor pressure equilibrium exists between the vapor and liquid at

the interface.

Under the above assumptions, the simultaneous heat and mass transfer

in the system at steady state is described by the energy and diffusion

equations. Boundary conditions are given (1) at the entrance plane,

x = 0, where the temperature and concentration are known; (2) at the

wall, y = 0, where the no-mass-flux condition requires 3C/3y = 0, and

where either a temperature is specified (for the constant-temperature

wall case) or 9T/3y = 0 (for the adiabatic wall case); and (3) at the

vapor-liquid interface, y = A, where the concentration and temperature

are related to each other through a thermodynamic equilibrium condition,

and the heat flux equals the mass flux times the heat of absorption of

the vapor in the solution. Thus, the two equations can be solved for

the two unknown variables, temperature and concentration, and their

distribution in the film can be obtained.

The model developed is quite general and may be solved for a variety of

flow regimes (laminar, turbulent, transition) and fluid properties. It

can be extended to other wall and interface conditions. In our first

solution, described in this report, the energy and diffusion equations

were solved for laminar flow. A numerical solution based on finite
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differences in a two-dimensional grid and an analytical solution based

on a series of eigenfunctions were developed and agreed very well.

In addition, an integral method was employed which made it possible to

obtain approximate analytical expressions for most parameters of interest.

The solution was carried out for a linear absorbent — a mixture with

a linear temperature-concentration equilibrium relation and a constant

heat of absorption. The techniques of solution are suitable, however,

for nonlinear absorbents with given characteristics.

The solution describes the development of the thermal and concen

tration boundary layers and the variations of the temperatures, concen

trations, and heat and mass fluxes. These quantities in their normalized,

dimensionless forms depend on two characteristic parameters of the

system: the Lewis number Le and the dimensionless heat of absorption A.

The length in the direction of flow is normalized with respect to the

Peclet number and the film thickness.

The model shows the existence of two boundary layers, of temper

ature and of concentration, which develop as the absorption effects at

the interface diffuse toward the wall. The former normally develops

considerably faster than the latter since the Lewis number (ratio of
-3

mass to thermal diffusivities) is usually small, on the order of 10 .

The gradients in the temperature and concentration profiles are sharp

for small lengths near the entrance plane and flatten out with distance.

The general dependence of the temperature and concentration on the

normalized length t, = (x/A«Pe) is described in this paper for a typical

set of values of the parameters Le and A. Initially, for small £, the

behavior is the same for both constant-temperature and adiabatic walls.

Thermodynamic equilibrium is reached at the interface immediately upon

contact with the vapor, but it takes some distance for the effect to

diffuse into the film and be felt at the wall. As t, increases, the wall,

bulk, and interface temperatures and concentrations vary toward a final

common value. In the constant-temperature wall case, the dimensionless

temperature and concentration reach asymptotic values of 0 and 1,

respectively. In the adiabatic wall case, the asymptotic temperature

and concentration are A/(A + Le) and Le/(A + Le), respectively.
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Heat and mass transfer coefficients for the system were calculated.

The Sherwood number for mass transfer from the vapor-liquid interface to

the bulk of the film reaches an asymptotic value of 3.45, with fully

developed boundary layers for the constant-temperature wall. Lower

values are obtained for the adiabatic wall. Under the same conditions,

the Nusselt number for heat transfer from the interface to the bulk

reaches values of 4.23 and 2.65 for the adiabatic and constant-tem

perature wall, respectively. The Nusselt number for heat transfer from

the bulk to the wall reaches 1.60.

xvm



1. INTRODUCTION

Absorption of gases and vapors into liquids is encountered in

numerous applications in chemical technology. These processes normally

involve simultaneous heat and mass transfer within the gas-liquid system.

The heat of absorption gives rise to temperature gradients leading to

heat transfer; the temperature influences the vapor pressure and con

centration equilibrium between the two phases, which in turn affects the

exchange of mass.

The combined heat and mass transfer process does not lend itself

easily to mathematical analysis. Many studies of absorption problems

have considered the heat and the mass transfer separately, neglecting

the coupling between them. Fortunately, in many cases the heat inter

action is small, so the process may be considered isothermal. In some

processes, however, the effect of heat transfer is important and cannot

be neglected. A typical example is when the absorbate is a vapor with

high heat of absorption, such as water. Furthermore, there is growing

interest in processes in which mass transfer is initiated specifically

to produce a temperature change. One such example, from which this

study originated, is of absorption heat pumps for heating and cooling;

the heat transfer accompanying the mass transfer is of primary importance.

The gas-liquid contactors in which absorption takes place are

typically spray, trayed, or packed towers. Of particular interest are

systems involving falling liquid films, which have found wide applica

tion in modern equipment. Many studies, using different flow regimes,

geometries, and boundary conditions, have been performed on gas absorp

tion in liquid films. Chien and Ibele did a comprehensive survey of the

hydrodynamics of falling films.1 As early as 1940, Vyazovov formulated

a simple model for isothermal absorption in a falling film, which was

shown by comparison with experimental results to provide rough estimates

for the mass transfer coefficients.2 Improved and more elaborate models

have been since developed. Olbrich and Wild provided a solution to the

diffusion equation in laminar flow for several falling film geometries;

the solution, in the form of a series of eigenfunctions, includes ten



eigenvalues and coefficients.3 Rotem and Neilson added to the laminar

solution the diffusion in the direction of flow, which turns out to be

negligible for large enough Peclet numbers.4 Tamir and Taitel extended

the laminar flow solution to cases involving interfacial resistance.5

Chavan and Mashelkar et al. considered absorption in non-Newtonian

liquids, and Sandall and his co-workers studied turbulent flows.6-10

All these studies deal with mass transfer only, under conditions where

heat transfer has no effect.

Only recently has some work been published on combined heat and

mass transfer in falling films. Yih and Seagrave analyzed a laminar

flow problem and studied the effect of a temperature gradient on the

absorption process.11 Neglecting temperature variations in the direction

of flow, they essentially assumed a linear temperature profile across

the film thickness. The temperature variation in their model influenced

the process through its effect on the physical properties of the liquid.

Nakoryakov and Grigor'eva used a similar approximate approach and also

assumed a linear temperature profile across the film.12 In their model,

however, temperature variations in the direction of flow were not

neglected. Two later and improved models by the same authors have

calculated, rather than assumed, the actual shape of the temperature

profile, which led to more accurate results.13'14 In ref. 13 an eigen-

function series solution is given for the coupled diffusion and energy

equations for an impermeable, constant-temperature wall and an equi

librium boundary condition at the liquid-vapor interface. In ref. 14 an

analytic solution was obtained for the temperature and concentration

variation near the entrance region. The main limitation of these models

is their assumption of a uniform velocity profile in the film, whereas

the actual velocity profile in laminar flow is parabolic. This assumption

leads to a deviation of about 20% in the heat and mass transfer coefficients

and to underprediction by about 40% of the distance required for boundary

layer development. The models are also restricted to a constant-temperature

wall.13'14

The present study originated from work at Oak Ridge National Laboratory

(ORNL) on absorption heat pumps. Although some scattered data are avail

able on the design of absorbers and desorbers for these systems, it was



recognized that fundamental, quantitative information on the combined

heat and mass transfer process is lacking. This report is an attempt to

improve on the models described earlier and to remove some of their

limitations. The model, for a falling film of absorbent solution in

laminar flow, calculates the heat and mass transfer coefficients for

typical wall conditions and finds their dependence on the system's

parameters.





2. MODEL AND EQUATIONS

The system analyzed is described schematically in Fig. 1. A film

of liquid solution, composed of substances I (absorbent) and II (absorbate),

0RNL-DW6 81-4736R

T = T

LIQUID

SOLUTION
OF SUBSTANCES

IANDTI

VAPOR OF SUBSTANCE H
AT CONSTANT PRESSURE P%

Fig. 1. Description of falling film of absorbent in contact with
absorbate. Typical profiles of velocity, temperature, and concentration
are shown.

flows down over an inclined plane. Substance I remains in the liquid

phase; substance II may be absorbed into the solution. The film is in

contact with the stagnant vapor of substance II at constant pressure P .
v

At x = 0, the liquid solution is at a uniform temperature T and com

position C (moles of substance II per unit volume of mixture) corre

sponding to an equilibrium vapor pressure P different from P . Because
vo v

of this difference, a mass transfer process takes place at the liquid-

vapor interface. The substance absorbed at the interface diffuses into

the film; the heat generated in the absorption results in a simultaneous

heat transfer process. Two cases of practical interest are considered:

in one, the wall is kept at a constant temperature T ; in the other, the

wall is adiabatic.



The flow of the liquid film is assumed to be laminar, one-dimensional,

and fully developed throughout. No shear forces are exerted on the

liquid by the vapor. The film thickness can be easily determined from

the mass flow rate, density, viscosity, and angle of inclination

(e.g., ref. 1). The velocity profile, shown in Fig. 1, is parabolic and

given by

u=|u [2(J) -(^)2] , (1)

where u is the average flow velocity, equal to the mass flow rate per

unit breadth, divided by the density and film thickness.

In formulating this model, the following assumptions have been

made:

1. The liquid solution is Newtonian, and its physical properties

are constant and independent of temperature and concentration.

2. The mass of vapor absorbed per unit time is small compared with

the mass flow rate of the liquid. Therefore, it is assumed that

the latter, the film thickness, and the average flow velocity are

constant.

3. There is no heat transfer in the vapor phase.

4. There are no natural convection effects in the film due to tem

perature or concentration differences. (This assumption is in fact

a corollary of the first one.)

5. Diffusion thermal effects are negligible.

6. Vapor pressure equilibrium exists between the vapor and liquid at

the interface.

Under these assumptions, the simultaneous heat and mass transfer in

the system at steady state is described by the energy and diffusion

equations:

9T 32T

U 3i = a W- ' (2)

3C „ 32C
U to - DW ' (3)



where diffusion and heat conduction in the x-direction have been neglected

with respect to those in the y-direction. The following boundary condi

tions apply:

or

T = T and C = C at x = 0 ; (4a)
o o

^- = 0
3y u '

T = T for constant temperature wall ,

3T/3y = 0 for adiabatic wall ,

at y = 0 ; (4b)

T = T. and C = C. at y = A . (4c)

Here T. and C. are the interfacial temperature and concentration, both

unknown functions of x. They are related to each other and to the

interfacial mass flux n., also unknown, by the following conditions:

F(T., C.) = P = constant , (5a)
1 1 v

D(3C/3y) = n. at y = A , (5b)

k(3T/3y) = n.H (T., C.) at y = A , (5c)
X 3. X X

where H is the heat of absorption, per mole of the vapor, in the
a

liquid. Equation (5a) represents the condition of vapor pressure equi

librium at the interface; Eqs. (5b) and (5c) describe the mass and heat

fluxes, respectively, at the interface. The heat of absorption is

defined as

H = hTT - H (C , T ) , (5d)
a II 11 l l

where h is the enthalpy (per mole) of the vapor in contact with the

film and H is the partial molal enthalpy of substance II at the inter-



face. The variable H is a function of the interfacial temperature and

concentration, whereas h is independent of them. The definition (5d)

is more rigorous than the one sometimes found in the literature, in

which H is expressed in terms of the latent heat of vaporization and
3.

condensation of substance II at temperature T. minus the differential

heat of dilution. This definition would be correct if the vapor were

saturated at a temperature equal to that of the liquid interface, but

this is generally not the case, nor is it so in the present problem.

The typical shapes of the temperature and concentration profiles in

the film are depicted in Fig. 1. Before proceeding with the solution,

it would be useful to rewrite the equations in a dimensionless form.

The new variables are defined as

1 x y ,. .
? = PeA' nA; <6a>

v=u/u =|(2n -n2) ; (6b)
T - T C - C

9 " t~^T ' Y ="c-^"^ ; (6c)
e o e o

where T is the equilibrium temperature of the solution at concentration

C with the vapor, and C is the concentration of the solution at
o e

temperature T in equilibrium with the vapor. The variables T and C
° e e

have a physical significance: T is the temperature the film would

reach if thermodynamic equilibrium could be achieved without change in

concentration, C is the concentration that would be reached if thermo

dynamic equilibrium could be achieved without change in temperature.

Both are limiting cases to what actually happens in the simultaneous

heat and mass transfer process.

Equations (2) and (3), with the new dimensionless variables, become

36

V H =
32e
3n2 '

v^ = Lef%
3rT

(7)

(8)



where Le is the Lewis number. The boundary conditions now have the

dimensionless form

6 = 0 and y = 0 at z, = 0 ; (9a)

or

^ = 0 •
3n U '

0 = 0 for constant temperature wall, ) at r\ = 0 ; (9b)

30/3n = 0 for adiabatic wall,

6=0. and Y = Y- at n = 1 ; (9c)

where 0. and y. are the dimensionless interfacial temperature and
i l

concentration, both unknown functions of £,, which are related to each

other as follows:

f(0-5 Y-) = 0 (equilibrium condition) , (10a)

n.A

3Y/3n =y± =p* _c) at n=1, (10b)
e o _

afl H (C - C )
|i -U.A(0., Y)=y.Le a e_T° atn-1. (10c)

p e o

Here y. is the dimensionless mass flux from the vapor to the film and A

is the dimensionless heat of absorption, which is a function of 0. and

V
The problem is now well defined mathematically in terms of the two

second-order differential Eqs. (7) and (8) and the boundary conditions

(9a-c) for the unknown distributions of 0 and y with t, and n. The

boundary conditions are given in terms of two additional unknowns, 0.

and Y-» which are determined along with y. from Eqs. (lOa-c).

The two cases for which the model was developed (constant-temperature

and adiabatic walls) are of practical interest in actual working systems.

The former simulates a process in which the liquid is constantly cooled

during absorption, such as in absorption chillers and heat pumps. The



10

latter represents a case in which the process occurs without cooling,

such as in many gas-liquid contactors. We have assumed that the constant-

temperature wall is at temperature T equal to that of the entering

solution. If this is not the case, the results will vary somewhat because

of an additional pure heat transfer process between the wall and the

film near the entrance region.14 Also, the adiabatic wall may be con

sidered as a particular case of the more general constant heat flux

condition.



3. THE LINEAR ABSORBENT

To proceed with the solution, it is necessary to know the equi

librium relation between the temperature, composition, and vapor pressure

of the specific liquid absorbent being used. This relation, expressed

in a dimensionless form for the parameters at the interface, yields

Eq. (10a). In addition, it is necessary to express the dimensionless

heat and absorption A in terms of 6. and y. for the given materials.

Data on equilibrium properties have been compiled from experimental and

theoretical studies and are available in the literature for many liquid-

vapor combinations.

A universal relation between the temperature, concentration, and

vapor pressure in equilibrium can be formulated which would fit a large

number of absorbents within a limited range of the preceding parameters.

This relation indicates a linear dependence between the temperature, the

concentration, and the logarithm of the vapor pressure. A thermodynamic

justification for this relation, limited to electrolytic solutions, is

given below, based on the definition of the osmotic coefficient and the

Clapeyron equation. Similar behavior is exhibited by some other, non-

electrolytic absorbents.

The osmotic coefficient f of a solution composed of a solvent

(substance II) and a single electrolyte (substance I) which dissociates

into v ions is defined by ref. 15:

1000 , , , ,,,,-<j>vm = —— In (a ) , (11)
II

where m is the molality of the solution, related to the solvent con

centration C by

1 MIICm = i- (1000 - -ii-) . (12)
M p

The activity of the solvent a may be expressed in terms of the

vapor pressure as

aTT = P /P ° , (13)
II v v

11
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where P is the vapor pressure of substance II in its pure state, at

the given temperature. Substituting Eqs. (12) and (13) into Eq. (11)

yields

P MTT
In = -<£v -—

P ° MI
v

(X "IW)- <14>
The vapor pressure of the pure substance II may be expressed in

terms of temperature by means of the Clapeyron equation:

P° hf
ln P^ =RT^ <T "V » (15)

o o

where P is the vapor pressure at the temperature of origin T , and hf

is the latent heat of vaporization at this temperature, assumed to

remain constant over a limited temperature range. The same assumption

can be applied to the osmotic coefficient. Thus, by adding Eqs. (14)

and (15), we obtain the following linear relation between the temperature,

concentration, and logarithm of vapor pressure:

1 Pv * ^In p- - -*v —
o I

(CM \ h

The validity of Eq. (16) was checked for a number of common ab

sorbents, including LiBr-H„0, LiCl-H„0, and CaCl„-H20, and was found to

be very good under the above limitations for a wide range of temperatures

and concentrations. It should be noted that for ideal solutions or very

dilute solutions, Raoult's Law or Henry's Law may be applicable instead

of Eq. (16).

The heat of absorption has been defined as the difference between

the enthalpy of the vapor h and the partial molal enthalpy of sub

stance II in the liquid E^ [Eq. (5d)]. The value h ,which is independent

of the interfacial temperature and concentration, is often considerably

larger than H . This is particularly so for vapors of low molecular

weight such as Ho0. In those cases, the dependence of A on 6. and v. is
^ 11

very weak.

We will define a linear absorbent as a material having the following

properties:
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1. The relation between the temperature and concentration in equi

librium with vapor at constant pressure is linear, of the form

C = C^ + C2 . (17a)

2. The heat of absorption is constant and independent of the

temperature and concentration.

Then, for a linear absorbent, the dimensionless relation (10a) becomes

Y± = 1 - 0. , (17b)

and

A = constant . (17c)





4. EXACT SOLUTION

Two different methods of reaching a solution were used to obtain

the temperature and concentration distributions in the film: analytical

and numerical. A linear absorbent was assumed in both cases, and the

results of the two methods were in excellent agreement. The equations

in effect are (7) and (8) with the boundary conditions (9a) and (9b) at

the entrance plane and the wall, respectively. The condition (9c) at

the interface for the case of a linear absorbent becomes

0+ Y=1and |£- = Xp- at n=1 . (18)
dri dri

4.1 Analytical Solution

The approach to the solution is similar to the one employed in

ref. 13 for the case with the uniform velocity profile. Using the

Fourier method, we write a separation-of-variables solution for Eqs. (7)

and (8), in the form of two infinite series of eigenfunctions, as follows:

00 -a 2t,

6= L Vn(n)e n » <19a)
n=l

-3 2?

Y=1- £ BnGn(n)e n ' <19b)
n=l

where a and 3 are the eigenvalues corresponding to the eigenfunctions

F and G , respectively. The boundary conditions (18), which must be

satisfied at any ?, indicate that for every n, a = 3 . Substituting
n n

Eqs. (19a) and (19b) into (7) and (8), we obtain the following equations

for the eigenfunctions:

^ +f(2n-n2)c*n2Fn =0, (20)
d2G a 2

-^ +|(2n -n2)^ G =0 , (21)
dnz 2V ' ' 'Le n

15
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with the boundary conditions at the wall resulting from Eq. (9b)

Gn'(0) = 0 ; (22a)

F '(0) =0 for adiabatic wall, or F(0) = 0 for constant

temperature wall. (22b)

Another boundary condition to be satisfied by Eqs. (20) and (21) is

condition (18) at the interface, which yields

A F (1) = B G (1) , (23a)
nnnn v '

AF'(l) = -AB G '(1) . (23b)
nnnn v '

Note that equations (23a) and (23b) for A and B are homogeneous
n n

and have a solution only if the determinant equals zero, namely

Fn'(l) Gn'(l)
F (1) = "XG (1) ' <24>

n n

which is the condition for determining the eigenvalues a once a solution
n

is obtained for F and G . The coefficients A and B can then be
n n n n

determined from the boundary condition (9a) by means of a Sturm-Liouville

orthogonality condition at Z, = 0.

A power series solution to Eq. (20) may be written in the form

Fn(n) = E A n1 > (25a)
i=0 n,x

where, using the boundary condition (22b) , we find

a n = 1, a = 0, a = 0, a „ = -a 2/2 for adiabatic wall ;
n,u n,l n,2 n,3 n '

a_ = 0, a n = 1, a 0 = 0, a „ = 0
n,0 n,l n,2 ' n,3

for constant-temperature wall ;

3 (an i-4 " 2an i-3)an ±=jan2 '±.± _ 1. > for i5 4, both types of wall . (25b)
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Similarly, the solution to Eq. (21) may be written as

CO

Gn(n) = E \t±^ > <26a>

where we find, with the aid of boundary condition (22a) ,

b = 1, b = 0, b „ = 0, b = -a 2/2Le ;
n,0 n,l n,2 n,3 n

b .=|^~ n^T4 „ n^-3 for 15 4.
n,i 2 Le 1(1 - 1)

(26b)

The eigenvalues are the roots of Eq. (24) . An algorithm may there

fore be employed where a guessed value of a is used in Eqs. (25b) and

(26b) to calculate the terms of the series a . and b ., and, hence,
v ' n,i n,i

the eigenfunctions F (1) and G (1). The results are then substituted in
n n

Eq. (24). If the latter is not satisfied, a different guess is taken

until convergence is obtained.

Table 1 lists the first nine eigenvalues for a set of typical

values of the parameters, A = 0.01 and Le = 0.001. The table also shows

the corresponding coefficients A and B , which must be calculated to

complete the solution. To do so, we must formulate an orthogonality

condition at t, = 0, which is of the Sturm-Liouville type yet somewhat

different from its standard form because of the coupled boundary con

dition in Eq. (18).

Consider Eq. (20) for the eigenfunction F ; multiplying it by

another eigenfunction F and integrating over the range of n yields

4a2/ (2n -n2)F F dn =-/
I n J m n J

0

1

F F' dn
m n

/= F (O)F' (0) - F (l)F' (1) + / F1 F1 dn . (27a)
m n m n / m n



Table 1. Eigenvalues and coefficients for typical values of the parameters:

A = 0.01, Le = 0.001

Adiabatic wall Constant temperature wall

n a
n

A
n

B
n

a
n

A
n

B
n

1 0 0.90909 0.90909 0.05765 0.026696 1.3373

2 0.10225 -0.14691 0.18984 0.16052 0.025699 -0.54334

3 0.19871 -0.12830 -0.19710 0.26269 0.026061 0.35597

4 0.29605 -0.10555 0.19098 0.36464 0.026789 -0.26809

5 0.39449 -0.08459 -0.17902 0.46640 0.027817 0.21567

6 0.49385 -0.06756 0.16558 0.56793 0.029115 -0.17983

7 0.59395 -0.5439 -0.15237 0.66916 0.030765 0.15338

8 0.69463 -0.04435 0.14006 0.76997 0.032680 -0.13206

9 0.79574 -0.03667 -0.12886 0.87079 0.035054 0.12027

CD
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Similarly,

4a2 / (2n -n2)F F dn =F (O)F' (0) -F (l)F' (1)
2 m J n m n m n mv '

0

1

/ 'V+ / F' F' dn . (27b)
J n m

0

Subtracting Eq. (27b) from (27a) and using the boundary condition

(22b), we obtain

.1

3' 2 _ „ 2\ / /o„ _ «2/(a/ - aJ) I (2n - nz)F F dn = F (l)F' (1) - F (l)F' (1) . (28a)
z n m j nm nm mn

0

Repeating the same with Eq. (21) for the eigenfunction G , we
n

find that

£- (a z - am^) / (2n - nz)G G dn = G^CDG' (1) - Gm(l)G' (1) . (28b)
ZLe n m J nm nm mn

0

At this point we introduce the coupling between the equations, which is

where this orthogonality condition differs from the conventional one.

From Eqs. (23a) and (23b),

F (l)F' (1) - F (l)F' (1) = -A-^ [G (l)G' (1) - G (l)G' (1)] ;
nm mn AAnm mn

n m

using this condition to combine Eqs. (28a) and (28b) finally yields

ar,2 " O / ^ ~ n2)GJn m J n

-r(a 2 - a 2) / <2n - n2)(LeA AF F + AB B GG ) dn = 0 , (29a)
n m J nmnm nmnm

0

which may be written as

= 0 for n 4- m

/ (2n - n2)(LeA AFF +ABBGG)dn
_ nmnm nmnm 4- 0 for n = m

(29b)

It should be noted that this type of "coupled" orthogonality condition

was developed and used earlier by Sparrow and Spalding in a problem

involving sublimation in a duct.16
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We now return to boundary condition (9a); using Eq. (19), we find

CO oo

J2 Vn(n) =° and T BnGn(n) =1 ; (30)
n=l n=l

therefore,

y> / (2n - n2)(LeA AFF +ABBGG)dn
i_j J nmnm nmnm
n=l 0

= J (2n - n2);iXB G dn . (31a)
„ m m v '

Using the orthogonality condition (29b),

J (2n - n2)(LeA 2F 2+ AB 2G 2) dn = J (2n -n0 nn n n ' *: ' n n2)AB^G^ dn ,

(31b)

which provides one relation between A and B ; a second relation is avail-
n n

able in either (23a) or (23b). Solving (31b) and (23a) for A and B yields
n n J

xJ (2n - n2)Gn(n) dn
0

B = , (32a)

f Gn2^Jq (2n - n2)[Lef\^y Fn2(n) +AGn2(n)] dn

G (1)

An - Bn FTiy * (32b)
n

The analytical solution is now complete. The algorithm mentioned

earlier makes it possible to obtain the first few eigenvalues* from

Eq. (24) without difficulty for most values of interest of the parameters.

This is sufficient for an accurate calculation of 0 and y for moderate

and large values of £ due to the exponential terms in Eqs. (19a-b). For

*The sequence of the eigenvalues is such that a higher n corresponds
to a larger value of a .

n
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small values of z,, however, a large number of eigenvalues is required.

The recursive formulas (25b) and (26b) turn out to be unstable for large

values of a , and it is increasingly difficult to obtain convergence of

the series (25a-b) and (26a-b) for the eigenfunctions. An alternative

method for obtaining the eigenvalues is through a numerical integration

of Eqs. (20) and (21). Rather than doing this, it was found to be more

efficient to use a numerical method for solving the original Eqs. (7)

and (8) in their partial differential forms, which will be described

next. Yet, the analytical eigenvalue solution is very useful for a wide

range of the parameters Le and A, where enough eigenvalues can be cal

culated to cover a considerable range of £. For the small ?'s, a simi

larity solution has been obtained similar to the one in ref. 14, which

will also be described below.

4.2 Numerical Solution

The numerical technique used to solve the partial differential

Eqs. (7) and (8) was based on the so-called "method of lines" or "semi-

discretization."17 The z, - n plane of the film was divided into thin

strips by means of lines parallel to the z, axis. This discretization of

the n-coordinate made it possible to express the second-order derivative

with respect to n in each of the equations in a finite-difference form.

Thus, a first-order ordinary differential equation, in z. alone, was ob

tained along each line. Such an equation could be readily solved by

means of an available ordinary differential equation integrator using

the boundary condition (9a). The integrator selects automatically the

required step in z, and varies it as necessary as the integration proceeds.

Some difficulty in applying this numerical method to the entire

domain resulted from a singularity at the point Z, - 0, n = 1. This is a

singularity of the type often encountered in boundary layer problems and

is due to a discontinuity in the temperature and concentration between

the interface and the entrance plane at this point. To overcome this

problem, an analytical solution applicable close to the singular point

was developed, which made it possible to calculate the values of the

variables at some finite distance away from the point and begin the
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numerical solution from there. The analytical solution is similar to

the one used in ref. 13 and will be described briefly here.

By defining a new variable

n1 = l - n , (33)

and recognizing that the term (2n - n2) is very close to unity near the

singular point, we can rewrite Eqs. (7) and (8) as

3 30 32(
2 3£ 3n T ' (34)

!&-*%• «5>
where the boundary conditions (9b) and (18) now apply at n., ""*" °° and

n, = 0, respectively. It is then possible to find a similarity variable,

combining both z, and n-, > for each of the equations and to convert them

from partial to ordinary ones. Using the common similarity technique,

Eq. (34) becomes

d20 „ d6
dz^ " "2Z dz" > <34a>

where z= n1/'\/8c/3. Eq. (34a) may be integrated twice to give

6= k± erf (z) + k2 = k± erf (^^8^/3 )+ k, . (34b)

In a similar manner we find from Eq. (35) that

Y=k3 erf (r^/V'8Le?/3) +k4 , (35a)

where k^, k2, k„, and k, are constants of integration. Applying the

boundary condition (9a) yields k = -k and k = -k, since erf (°°) = 1.

The boundary condition (9b) is satisfied automatically for both the

adiabatic and constant-temperature walls. Then, applying the boundary

condition (18) yields k± + k3 =-1 and k± =Xk^yfhe from which all the
constants of integration can finally be determined. Thus, we obtain the
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following expressions for the dimensionless temperature and concentrations,

in terms of the original variables:

Y

A + yfHe

Vl7
A+y,Le

1-erf Y

1 - erf "If

' 3(1 - n)2
8£

/3(1 - n)2
8Le£

(36)

(37)

which are valid for small z,, for both the adiabatic and constant-tempera

ture wall cases. This is to be expected, since the effect of the wall

cannot be felt until the boundary layer developing from the interface

has had enough distance to fill the entire film thickness.

The similarity solution for a small value of Z, has made it possible

to use the numerical technique described earlier and to overcome the

problem associated with the discontinuity at the point z, = 0, n = 1. In

addition, this solution is used to complement the eigenvalue solution

whose usefulness at small z, was limited by the number of obtainable

eigenvalues.





5. RESULTS AND DISCUSSION

Figures 2 and 3 describe the general behavior of the temperature

and concentration in the system as they vary with the normalized length

1.0 I | I I I I I I II I I I I | II II 1 1—TTTT
ORNL-DWG 82-8146

CD

0.4 -

Fig. 2. Dimensionless wall, liquid bulk, and interface temperatures
as functions of the normalized length Z, for Le = 0.001 and A = 0.01.

Broken lines describe adiabatic wall; solid lines describe constant-

temperature wall.

z,, for a typical set of values of the parameters Le and A. Curves are

given for 6 and y at the wall (0 , Y )» the liquid bulk (0, y), and the
w w

liquid-vapor interface (6., y.). The solid lines describe the results

for the constant-temperature wall and the broken lines for the adiabatic

wall. This notation will be maintained for the rest of the curves in

this section.

Initially, for very small z,, the behavior is the same for the

adiabatic and constant-temperature wall cases. The liquid at the inter

face reaches thermodynamic equilibrium with the vapor immediately upon

contact at z, = 0, but it takes some distance for the effect to diffuse

25
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Fig. 3. Dimensionless wall, liquid bulk, and interface concen
trations as functions of the normalized length z, for Le = 0.001 and
A = 0.01. Broken lines describe adiabatic wall; solid lines describe
constant-temperature wall.

into the film and be felt at the wall. Consequently, 0 and y remain
w w

essentially zero for small z, while 0. and Y- remain almost constant at

their initial values reached at r, = 0. These values are A/(A +*fhe)
and-^Le/(A +-JLe) , respectively, as we find from the similarity solution
for small E,, Eqs. (36) and (37).

As C increases for the adiabatic wall case, the wall, bulk, and

interface temperatures increase monotonically toward a final common

value and become closer and closer to each other. This steady increase

occurs because the heat of absorption is not being removed from the

system. For the constant-temperature wall, the interface temperature

increases slightly, following the trend of small t,, and the bulk tem

perature attempts to approach it as heat is conducted from the interface

into the film. Then, both temperatures decrease toward zero as heat

flows out of the system through the wall. The interfacial concentration

in both cases follows a trend opposite to that of the interfacial tem-
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perature, since y. - 1 - 0. [Eq. (18)]. The bulk concentration increases

in both cases toward a final value equal to that of y.. Note that in the

adiabatic wall case y increases with z,, while y« decreases.

The asymptotic values of the dimensionless temperature and con

centration may be found from the eigenvalue solution by substituting

z, -> oo in Eqs. (19a-b). In the constant-temperature wall case, the

dimensionless temperature becomes equal to that of the wall (0 = 0),

and the concentration reaches the corresponding equilibrium value (y = 1).

In the adiabatic wall case, the asymptotic temperature reflects some

increase from the initial value [0 = A/(Le + A)], and the corresponding

equilibrium concentration [y = Le/(A + Le)] is lower than the thermo-

dynamically possible value of 1.

Figures 4 and 5 describe typical temperature and concentration

profiles across the film for typical values of z,. At small z, the

gradients of both quantities are very sharp and their variations are

P~

77 ' '
I

1 h \
0.8

KLYo.o, L
—

0.6 7 1 —

0.4

---10

--100

0.2

n n 1 1 1 1 1 1 I I

—

0.0 0.2 0.4 0.6

9

0.8
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ORNL-DWG 82-8149R
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I I I

0.8
r—o.i

—

1
"~~10

—

0.6 I— 100
—

0.4 j —

0.2 —

n n I I I I I I I I

0.2 0.4 0.6

7

0.8 1.0

Fig. 4. Typical profiles of dimensionless temperature and concen
tration across the film at different values of z, for adiabatic wall

where Le = 0.001 and A = 0.01.
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Fig. 5. Typical profiles of dimensionless temperature and concen
tration across the film at different values of Z, for constant-temperature
wall where Le = 0.001 and A = 0.01.

limited to a thin layer near the interface. As z, increases, the effects

at the interface diffuse toward the wall and the gradients become more

moderate. There are, in fact, two boundary layers, one of temperature

and one of concentration, which develop starting from the point of dis

continuity (z, = 0, n = 1) . The former develops considerably faster than

the latter, as the thermal diffusivity a is larger than the mass diffusion

coefficient D.

The effect of the heat of absorption A is illustrated in Figs. 6

and 7, describing the temperature and concentration at the interface and

at the wall, respectively. In the former, each curve represents either

0. or y- when read on the corresponding scale, since 0. + y. - 1. The

initial value (z, = 0) of the interface temperature increases with A,

and that of the interface concentration decreases, according to the

formulas shown in Figs. 2 and 3. The same is true for the asymptotic

values of temperature and concentration, respectively, both at the

interface and at the wall. The heat of absorption A does not seem to
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Fig. 6. Dimensionless interface temperature and concentration as
functions of the normalized length z, for Le = 0.001 and different
values of A. Broken lines describe adiabatic wall; solid lines describe

constant-temperature wall. The "slug flow" solution by Grigor'eva and
Nakoryakov for the constant-temperature wall is plotted for comparison. 13

have an effect on the distance required for the boundary layers to

develop. Figure 7 indicates variations in wall temperature and con

centration beginning approximately at the same value of z, for all values

of A. At the limit of A = 0 (negligible heat of absorption), 0 is zero

throughout the film, Y- = 1 f°r aH £j ancl Y varies as illustrated in
i w

Fig. 7. Under this condition, the results of our solution reduce to those

of the models for isothermal mass transfer in a laminar falling film (see,

for example, ref. 5). Also, in this case there is no difference between

the adiabatic and constant-temperature walls.

In addition to the results of this solution for the adiabatic and

constant-temperature wall cases, Fig. 6 shows the results of the solution

generated by Grigor'eva and Nakoryakov with the assumption of a uniform

velocity profile (for a constant wall temperature only).13 Their solution

shows the same initial and asymptotic behavior as the present one.13

However, theirs underpredicts the length required to achieve a certain

temperature or concentration level by about 40%.
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Fig. 7. Dimensionless wall temperature and concentration as functions
of the normalized length z, for Le = 0.001 and different values of A.
Broken lines describe adiabatic wall; solid lines describe constant-

temperature wall.

The effect of the Lewis number is shown in Figs. 8 and 9, describing

the temperature and concentration at the interface and at the wall,

respectively. As in Fig. 6, each curve in Fig. 8 represents either 0.

or y.. The initial and asymptotic behaviors are as predicted by the

formulas given in Figs. 2 and 3. An increase in Le leads to a decrease

in 0. and to an increase in y •> at z, = 0 for both cases and at Z -> °° for
i i

the adiabatic wall case. In addition, Le has an effect on the develop

ment of the concentration boundary layer. The larger Le, the shorter

the distance required for the concentration change to reach the wall, as

shown by the curves for y in Fig. 9.
w

Figure 10 shows the mass flux at the interface, y., as a function

of t, for Le = 0.001 and different values of A. Under all conditions,

the rate of absorption is lower for an adiabatic wall than for a

constant-temperature wall. Initially, at small z,, the curves for the

two cases coincide. For larger Z,, after the thermal boundary layer has

become fully developed, the heat removed at the wall enhances the mass
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Fig. 8. Dimensionless interface temperature and concentration as
functions of the normalized length z, for A = 0.01 and different values
of Le. Broken lines describe adiabatic wall; solid lines describe constant-

temperature wall.
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Fig. 9. Dimensionless wall temperature and concentration as functions
of the normalized length z, for A = 0.01 and different values of Le.
Broken lines describe adiabatic wall; solid lines describe constant-

temperature wall.
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Fig. 10. Dimensionless mass flux at the interface as a function of
the normalized length Z, for Le = 0.001 and different values of A.
Broken lines describe adiabatic wall; solid lines describe constant-
temperature wall.

transfer in the constant-temperature wall case. The point at which the

solid and broken curves part may serve as a measure for the length

required for the full development of the thermal boundary layer. The

value of y. tends to zero at large z, for both cases. Also, increasing

A reduces the mass flux, as expected. The curve for A = 0 describes the

case of isothermal mass transfer, in which y. is the largest possible

value for the given Le, and where there is no difference between the

adiabatic and constant-temperature walls.



6. HEAT AND MASS TRANSFER COEFFICIENTS

The literature is often somewhat ambiguous about the definition of

heat and mass transfer coefficients. This is particularly so in problems

of simultaneous heat and mass transfer due to the coupling between the

two processes. Yih and Seagrave have used two different definitions of

the Sherwood number, one based on (C. - C) and the other on (C. - C ).^
1 1 o

Nakoryakov and Grigor'eva have defined it based on (C - C ).11+ Tamir

and Taitel have used an additional definition of an average Sherwood (or

Nusselt) number based on a logarithmic mean concentration (or temperature)

difference.5

We will define the transfer coefficients based on the quantity

difference which constitutes the driving force for the transfer phe

nomenon. The coefficient of local mass transfer from the interface to

the bulk of the liquid is defined through the Sherwood number as

Sh =-£- =7 ^=r . (38)
D (Y± " T)

The coefficient of local heat transfer from the interface to the bulk of

the liquid is defined through the Nusselt number as

hTA y A

In the constant-temperature wall case we must also consider the heat

transfer coefficient from the bulk of the fluid to the wall. Hence,

Nu' =

h-x/A q
T = Jw . (40)

Figure 11 describes the Sherwood number as a function of the

normalized length z, for different values of Le and A. The value of Sh

is very large for small Z, and decreases toward an asymptotic value as z,

increases. For each set of conditions, Sh is greater for a constant-

temperature wall than for an adiabatic wall. The reasons are the same

as those for y. (Fig. 10). The behavior in the two cases is the same

33
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Fig. 11. Local Sherwood number as a function of the normalized

length z, for different values of Le and A. Broken lines describe
adiabatic wall; solid lines describe constant-temperature wall.

for small t,, and the discrepancy begins when the thermal boundary layer

has reached the wall, increasing with Z,.

In the case of a constant-temperature wall, the effect of A on Sh

is small. For fixed A, Sh is larger for smaller Le, contrary to what

may be expected, because while the mass flux y. increases with Le, the

driving force (y. - y) increases even faster. A smaller Lewis number

requires a larger distance for the concentration boundary layer to

become fully developed. For all combinations of A and Le, the Sherwood

number for a constant-temperature wall tends to an asymptotic value of 3.45.

In the case of the adiabatic wall, increasing A reduces Sh signifi

cantly for all values of Le. A larger A leads to a greater deviation

from the constant-temperature wall behavior, this deviation shrinking to

zero for A = 0. For fixed A, a larger Lewis number results in a smaller

deviation. Unlike the constant-temperature wall case, the asymptotic

value of Sh depends on A and Le, decreasing with the former and increasing

with the latter.
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The variations of Nu and Nu' with Z, are illustrated in Fig. 12 and are

considerably less marked than that of Sh. In the initial region of de-

10:
"I 1—I I I I I II

10'

10

J L I I II

10" 10"

~1 1—I I I I III \ I I I I

J I I I I I I II

i
A _!_
A Pe

101

ORNL-DWG 82-8152

~1—I I MM] 1 1 I I I I11

4.23

2.65

J It _|JU
1.60
i i i i

10' 10J

Fig. 12. Local Nusselt number as a function of the normalized
length z,. The curves are almost unaffected by variation in Le between
10~^ and 10~2 and by variations in A between 10~3 and 10-1. Broken
lines describe adiabatic wall; solid lines describe constant-

temperature wall.

velopment of the thermal boundary layer, Nu decreases in the same manner

for the adiabatic and for the constant-temperature wall cases. In this

region, Nu' is zero, as the effects at the interface have not reached

the wall. Beyond that region there is little variation in Nu, which

tends to the asymptotic values of 4.23 and 2.65 for the adiabatic and

constant-temperature wall, respectively. The asymptotic value of Nu'

reaches 1.60. This behavior is almost unaffected by A and Le for a wide

range of values of these parameters.

The results of the "slug flow" model by Grigor'eva and Nakoryakov

show the same general behavior, but the actual values of the coefficients

deviate by about 20% from those of the present analysis.13 With the
assumption of a uniform velocity profile and a constant-temperature wall,

the asymptotic value of Sh is 3.00, and that of both Nu and Nu' is 2.00.





7. INTEGRAL SOLUTION

In addition to the exact solutions described in the previous sec

tions, an approximate integral method was employed, and its results were

compared with those of the former. The advantage of the integral method

is its simplicity and the possibility of obtaining explicit formulas for

most of the parameters of interest. Computing time was reduced signifi

cantly and the results agreed very well with the exact solutions.

The mathematical formulation of the integral solution and its results

are described in this section. Readers uninterested in these details

should skip to Sect. 8.

7.1 Formulation

The integral method of solution converts the partial differential

Eqs. (7) and (8) into ordinary ones by assuming the shape of the tem

perature and concentration profiles across the thin liquid film, based

on the given boundary conditions. The exact shape of those profiles is

not our primary interest; rather, it is important to learn about the

variation with z, of the temperature and concentration at the interface

and at the wall, from which the heat and mass transfer coefficients can

be calculated. When the profiles assumed satisfy the boundary conditions

and are close in shape to the actual ones, the integral method gives

results close to those of an exact solution, as has been demonstrated in

many boundary layer problems as well as in a case similar to the present

one of isothermal mass transfer in a falling film.

The integral form of Eqs. (7) and (8) is obtained by integration

across the film thickness and making use of the conditions (9a-c) and

(lOa-c). Energy Eq. (7) becomes

oT / vS dT1 =V " % > (41)

where q is the dimensionless heat flux at the wall, q = [39/3nJ„_n*
nw w ti-u

The diffusion equation, Eq. (8), becomes

/'
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(42)

Before proceeding with the formulation of temperature and concentration

profiles, it would be useful to consider their qualitative behavior.

Figure 13 describes the variations in concentration and temperature for
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the two cases of interest — the constant-temperature wall and the adiabatic

wall. The liquid at Z, = 0 is at a state of nonequilibrium with the

vapor. As a result, a process of simultaneous heat and mass transfer begins

at the interface and extends its effect gradually into the film. Thermal

and concentration boundary layers begin to develop and grow in thickness

until they fill the entire depth of the film. As will be shown later,

the thermal boundary layer usually becomes fully developed first.

For both layers in this developing region, the temperatures and

concentrations at the interface are functions of the boundary layer

thickness, which is itself a function of z,. Once fully developed, the

profiles continue to vary over the entire film thickness as long as the

transfer process at the interface continues. After sufficient distance

in the direction of flow, the temperature and concentration become

uniform across the film as equilibrium is reached.

In accordance with the above, let us denote the value of z, where

the thermal and concentration boundary layers become fully developed by

z, and Z, , respectively. We will assume the following profiles, satisfying

the boundary conditions (9b) and (9c):

1. Concentration.

In the developing boundary layer region, 0 <_ z, <_ z, ,

(o for 0<n<(1 - «)
Y = , («a)

|Y. [(1 - Sy - n)/<Sy]2 for (1 - 6y) <t, <1

which also satisfies y = 0 and 3y/3h = 0 at the edge of the boundary

layer. The bulk concentration in this region would then be

y=X VY dri =T(\ "lo-/ (43b)
In the fully developed boundary layer region, z, >_ z, ,

Y = YTT + (Y, " Y )n2 , (*4a)
w l w
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where y is the dimensionless concentration at the wall. The bulk con-
w

centration for this region becomes

Q vY dn =|q (9y± +HYW) • (44b)

Note that at the point of transition between the two regions, C = C ,

where 6=1 and y = 0, we obtain y = y.12 and y = 9y./20 from both
Y w 11

Eqs. (43a-b) and (44a-b).

2. Temperature.

In the developing boundary layer region, 0 j< x, <_ t, ,

0 for 0 < n £ (1 - 6 )

(45a)

ei [(1 - <5Q - n)/6Q]2 for (1 - SQ) <n<1

with the bulk temperature

0= j0 v6 dn =̂ ^ -̂§-J. (45b)
The same profiles apply in this region to both the adiabatic and constant-

temperature wall cases.

In the fully developed boundary layer region, t, > z, ,
6

then for the adiabatic wall,

6=0 + (6. - 0 )nz , (46a)
w 1 w

0=^ (90. +110w) , (46b)

where 0 is the dimensionless temperature at the wall. For the constant-

temperature wall,

V + (9i - qw)n ' (46c)

h (18ei +V ♦ (46d)
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where q is the dimensionless heat flux at the wall.

Note that at the point of transition between the two regions, z, = z, ,

where 6=1 and 0 = 0 or q =0 (for the adiabatic and constant-
w w

temperature wall, respectively), we obtain 0 = 0.n and 0 = 90./20 from

both Eqs. (45a-b) and (46a-d).

Substitution of the above profiles in the integral Eqs. (41) and

(42) yields

(1) Energy equation:

r \50" To-/

•^k (90. + 116 ) = y.A for adiabatic wall,20 l w J l

~r (180. + 7q ) = y.A - q
40 l w J x w

= y.A for 0 < z, < Z, ;
l o

(47a)

(47b)

or

d_
dC

d?

d_
d?

for Z, >_ ?Q .

(2) Diffusion equation:

6 3'

for constant-tem

perature wall,

d_
d?

d_
d? h (9Yi +llYw}] =Leyi for ĉ S

= Ley. for 0 < z, < z, ,
l — — y

Also, from Eq. (10b) and the concentration profile,

u. = 2y./<5 for 0 < C < X, ,
l i Y — Y

y, = 2(y. - Y ) for ? > c ,
l l w y

and from Eq. (10c) and the temperature profile,

y A = 29/6. for 0 < ? < Z, ;
1 ID — — O

y.A = 2(0. - 0 ) for Z, > Z,a, adiabatic wall ;
l l w — o

y.A = 20. - q for z, > z,n, constant-temperature wall
l l w — 0

(47c)

(48a)

(48b)

(49a)

(49b)

(50a)

(50b)

(50c)
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Equations (47a-c) and (50a-c) plus the equilibrium condition at the

interface (10a) provide five equations for the five unknown variables of

interest: 0., y., y., 6 alternating with y , and 6. alternating with
l l l y w 0

0 for the adiabatic wall or with q for the constant-temperature wall.
w w

All are functions of the single independent variable z,. The variable A

may be expressed in terms of 0. and Y- at each point. The boundary

conditions are

6„ = 0 and 6=0 at z, = 0 , (51a)
0 Y

for the developing boundary layer regions, and

Yw = 0 at ?= ^ where 5=1; (51b)

0=0 for adiabatic wall,
w

or > at z, = z, where 6. = 1 ;
o o

(51c)

for the fully developed regions.

7.2 Solution

Figure 13 describes three zones of the liquid film, indicated by

numerals 1, 2, and 3. In zone 1 both the thermal and concentration

boundary layers are developing, in zone 2 one is fully developed and

the other still developing, and in zone 3 both boundary layers are

fully developed. Our solution will proceed from one zone to the next

in that order.

Zone 1

As is evident from Fig. 13, the behavior in this zone is the same

for both the adiabatic and constant temperature wall cases. The equations

in effect are (47a), (48a), (49a), (50a), and (17a), with the boundary
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condition (51a). Eliminating y. between Eqs. (47a) and (48a), integrating

the resulting differential equation, and applying the boundary condition

yields

Y- o, U„ -t£- I- v.. Is.. -t*- I • (52)'i (*e -¥)-*i (\"£)
Eliminating y. between Eqs. (49a) and (50a) gives

Y. , 0.

r-Tt- (53)
Y

Combining Eqs. (52) and (53) results in

(>-*)-v(>-#)Lefi„2 1 - ^ = 6 2 i - -JL. I. (54)

Since 6 and 6. are both less than or equal to unity, it is clear
Y 0 j,

from Eq. (54) that the ratio 6 /6 is of the order Le2. For most ab

sorbent liquids the Lewis number is much smaller than one. It is there

fore evident that the thermal boundary layer becomes fully developed

when the concentration boundary layer is still quite thin. We thus

find, from Eq. (54),

6 =
Y V^'ef-B") • (55)

and in particular, 6 =^9Le/10 at z, = CQ where 6Q = 1. By substituting
6 from Eq. (55) into Eq. (53), and making use of Eq, (17a), we can
Y

express 0. and y. in terms of 6 :

1 +

(56a)

v = > . (56b)
i
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The bulk temperature and concentration from Eqs. (45b) and (43b) become

(56c)

- 1
Y = T

*e I1-if)

LA
1+vnf1.v)'5

A \ 10 /

(56d)

Now all the quantities of interest have been expressed in terms of

6 ; it remains to determine how 6 varies with z,
O

a Eq. (50a) into Eq. (47a) and 0. from Eq. (5

equation, we obtain the following differential equation

By substituting y.A

from Eq. (50a) into Eq. (47a) and 0. from Eq. (56a) into the resulting

d_
d?

(s-tf)
l>•-¥(• -£)"J ...•<¥(.-£)''

which may be integrated, using boundary condition (51a) to deter

mine the constant of integration. Since 6 <_ 1, the resulting ex

pression may be given a somewhat simplified approximate form, by ex

panding in terms of the small quantity (6 2/10) and neglecting high

powers of it:

8
1 -

10

(l + (3/2)A/Le\
\ 1 + A/Le /

The point where the thermal boundary layer becomes fully developed is

found by substituting 6=1 into Eq. (58a):

Ke so
1 + (17/18)A/Le

1 + A/Le

(57)

(58a)

(58b)
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Zone 2

Although in zone 1 the behavior was the same for the adiabatic and

the constant-temperature wall, here a distinction must be made between

them.

Adiabatic wall. The equations in effect are (47b), (48a), (49a),

(50b), and (17a), with the boundary condition (51c). Eliminating y.

between Eqs. (47b) and (48a), integrating the resulting differential

equation, and applying the boundary condition, yields

^ (90. + 110 )^-
10 l w A (v^-H

Eliminating y. between Eqs. (49a) and (50b) gives

3 ) = x Tw 6

Eliminating 0 between Eqs. (59) and (60) provides a relation between
w

0., Y-> and 6 which, together with Eq. (17a), yields

Yi

11 +_L
10 Le26

Y \- (• -*)]
1 +

1 +

10 Le V 1026
Y L

26
Y L

H + -X.
10 Le

(• -*)]'

(-*
The term 0 can now be found from Eq. (60)

w

26
Y L

10 Le I 10K)]
w

1 +
26

Y "-
10 Le (• •m

(59)

(60)

(61a)

(61b)

(61c)
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The bulk temperature and concentration from Eqs. (46B) and (43b) become

Y U3
2Le

11 +_Y_
10 Le1 + 26

\ (* -£)
(• •m

- 1

1 +
26

11 +
10 Le

6 2
Y (• -*)]

(61d)

(61e)

All the quantities of interest have now been expressed in terms of

6 . To find the variation of 6 with £, we substitute y.A from
Y Y . i

Eq. (50b) in Eq. (47b) and 0. and 0 from Eqs. (61a) and (61c) in the
1 w

resulting equation:

(*-£)d_
d?

6 + j
Y 2

11 +_X
10 Le (• -m

= 4Le

6 +\
Y 2

1

10 Le \ --)110 /J

which may be rewritten as

n 6 2
10 Le

d6
__L

4Le

(62a)

= dC (62b)
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Equation (62b) may be integrated numerically as 6 varies from y9Le/10
to 1, and z, varies correspondingly from z, to z, . An adaptive quadra

ture method was used in the above integration.18

Constant temperature wall. The equations in effect are (47c),

(48a), (49a), (50c), and (17a), with the boundary condition (51c). Elim

ination of y. and 0. from Eqs. (49a), (50c), and (17a) provides an

expression for q
w

i =2fi -y. -*rjT 1•
w V x \)q = 2 fl - y. - *tM • (63)

Substitution of y.A from Eq. (50c), q from Eq. (63), and 0. from

Eq. (17a) into Eq. (47c) gives

d (16y. + 7X-^- )= 40 (1 - y. - 2A -± ) d? . (64)
V x \/ V x 6y/

Also, substitution of y. from Eq. (49a) into Eq. (48a) yields
l

h (** -^). 4Le t^ dr, , (65)
o

Y

and elimination of t, between Eqs. (64) and (65) results in a differential

equation relating y. to 6 :

1[l6Tl +7A (T./6y)] ^ d[Y± (fi, -6^/10)]
Le (y±/6y)

which may be rewritten as

dY. Y± 7A - (10/Le)(6Y + 2A - Sy/y.) (1 - 36^/10)6^
d6 6 (7A + 166 ) + (10/Le)(6 + 2A - 6 /y.)U - 6 2/10)6 2
YY Y Y Y i Y Y

(66a)

(66b)
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Equation (66a) may be integrated with the boundary condition originating

from (56b):

v^EL_ ats -V5w^. (67)
A + "^ 9Le/10 Y

where z, = z, . Once y. has been found in terms of 6 , 0. and q may be
0 i y l w

expressed in terms of 6 by means of Eqs. (17a) and (63). The bulk

temperature and concentration 0 and y may be determined from Eqs. (46d)

and (43b), respectively. It remains to determine how 6 varies with z.
Y

An equation relating these two may be obtained by combining Eqs. (65)

and (66b):

Ar -, 7A6 (1 - 6 2/5) + 86 2(1 - 36 2/10)Q.Z, _ 1 y_ y y y '

d6 2 (7A + 166 )Le + 106 2(6 + 2A - 6 /y.)(l - 6 2/10)
Y Y Y Y Y i Y

(68)

Equations (66b) and (68) were integrated simultaneously using a fourth-

order Runge-Kutta method.18 The value of X where 6 becomes equal to
Y

unity marks the end of zone 2.

Zone 3

In this zone both boundary layers are fully developed. Again, a

distinction must be made between the adiabatic and constant-temperature

wall cases.

Adiabatic wall. The equations in effect are (47b), (48b), (49b),

(50b), and (17a), with the boundary condition (51c). Eliminating y.

between Eqs. (47b) and (48b), integrating the resulting equation, and

applying the boundary condition, yields

("i +119w) =t (9Yi +UV • (69)

Eliminating y. between Eqs. (49b) and (50b) gives

(0. - 0w) = A(y. - yw) . (70)
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Equations (69), (70), and (17a) may be combined to express y., 0., and

0 in terms of y as follows:
w w

1 - (11/20)(A/Le)yw
Yi =1+ (9/20)(A/Le) ' (71a)

A (9/20) + (ll/20)y

Le 1 + (9/20)(A/Le)
* , (71b)

1 - Yw " (*/Le)Yw
3w = 9i " Xl + (9/20)(A/Le) ' (71c)

Here, terms of the order Le have been neglected with respect to unity.

Note that 0. and 0 are very close to each other; the difference between
1 w

them is of relative order Le. The bulk temperature and concentration

from Eqs. (46b) and (44b) become

. (9/20) + (11/20)y + (11/20)Ay

H ~ Le 1 + (9/20)(A/Le) ' W '

(9/20) + (ll/20)y + (ll/20)Ay
— _ W W (lla'\
Y " 1 + (9/20)(A/Le) ' U J

Now all the quantities of interest have been expressed in terms of

the dimensionless concentration at the wall, y . It remains to find
w

how y varies with z,. Substituting y. from Eq. (49b) into Eq. (48b) and
w i

y. from Eq. (71a) into the resulting equation yields

J, [lo+i(1 +X)Yw] -2Le[l-Yw- Le Yw

which may be integrated with the boundary conditions (51c) to give

Y
w

/ Le_\ L T 40 /he + a\"\iTTT j [l ~exp [- U\^TTJ (c - v

Constant temperature wall. The equations in effect are (47c),

(48b), (49b), (50c), and (17a), with the boundary condition (51c).

(72)

(73)
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Eliminating u± and B± between Eqs. (49b), (50c), and (17a) provides an
expression for q :

w

qw " 2[1 + % " (1 + A)Yi] ' (74)

Substitution of y±A from Eq. (50c), q from Eq. (74), and 0. from
Eq. (17a) into Eq. (47c) gives

(16 + 7A)dy± - 7Adyw =40[(1 -y±) + 2A(yw - Y±)]d . (75)

Also, substitution of y. from Eq. (49b) into Eq. (48b) yields

9dYi + lldyw = 40Le(Y. - Yw)d? . (76)

Eliminating dz, between Eqs. (75) and (76) results in a differential

equation relating y. to y :
i w

(16 + 7A)dy. - 7Ady 9dy. + lldy
i w 1 'w

(1 - y ) + 2A(y - y.) Le(y. - y ) '
i w 1 1 w

(77)

which may be integrated with the boundary condition at ? = ? (where
Y

Y = 0 and y = y * as obtained from the solution for zone 2), yielding

(1 - y ) - 2A(y - y )
i 1 w

(1 - y.') - 2AYi'
I"! -(»!,, +llV/20l (iij±^)

1-9yi'/20 J ' (78)

The term in the brackets on the right-hand side of Eq. (78) is also equal

to (1 - y)/(l - y'). It is a number smaller than unity, taken to a very

large power due to Le « 1. It can be shown that this results in

1 - Y± - 2A(y. - yw) = 0(Le) - 0 ; (79a)
hence,

Y± = (1 + 2Ayw)/(l + 2A) ; (79b)
from Eq. (17a),

0. = 2A(1 - yw)/(l + 2A) ; (79c)
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from Eq. (74),

q = 2A(1 - y )/(l + 2A) . (79d)
w w

The bulk temperature and concentration, 0 and y, may be determined

from Eqs. (46d) and (44b), respectively:

0 = (5/4)A(l - y )/(l + 2A) ; (79e)
w

y = (1/20)(9 + lly + 40Ay )/(l + 2A) . (79f)
w w

It remains to determine how y varies with X,. Substituting y. from
w 1

Eq. (79b) into Eq. (76) yields

^ 40 Le d? , (80)
(1 - y ) (11 + 40A)

w

which may be integrated with the boundary condition (51b) to give

|_ yn + 40Ayyw= 1 - exp -(11 + 40AJLe(^ " V (81)

7.3 Results

Figure 14 describes the main system's parameters as they vary

through the three different zones for a typical set of values of Le and

A. The dimensionless boundary layer thickness, temperature, concen

tration, and heat and mass flux are shown as functions of the normalized

length C. Due to the largely different lengths of the three zones, a

logarithmic scale has been chosen for z,, with a small linear portion

near the inlet end. As in the results of the exact solutions, the

solid lines describe the results for the constant temperature wall and

the broken lines for the adiabatic wall case.

In zone 1, the behavior is the same for the adiabatic and constant-

temperature wall cases. The thermal boundary layer develops from zero

to its full thickness while the concentration boundary layer develops

partially to a normalized thickness \ 9Le/10 at the end of the zone.

The interface temperature and concentration are essentially constant at
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the value reached initially at X, = 0 upon contact with the vapor

[A/(A + "^Le) and Le/(A +yjhe), respectively]. The wall temperature
and concentration are zero. The bulk temperature and concentration are

close to zero and increasing. There is no heat flux through the wall;

however, the mass flux y. in this zone is quite high, as the driving

force for mass transfer is at its maximum. The length of zone 1 is

given by Eq. (58b). It is almost constant at X, = 9/80, decreasing

slightly with A/-yLe.

In zone 2 the concentration boundary layer reaches its full thickness,

becoming fully developed after a shorter distance from the inlet in the

adiabatic than in the constant-temperature wall case. In the former

case, the wall, bulk, and interface temperatures increase monotonically

toward a final common value and become close to each other at the end of

the zone. This steady increase occurs because the heat of absorption is

not being removed. For the constant-temperature wall, the interface and

bulk temperatures increase slightly, following the trend of zone 1, then

decrease toward zero as heat flows out of the system.

The heat flux q in this case begins at zero value at z, = X, , in-
w W

creases and reaches a maximum as more heat of absorption is created, and

then decreases toward zero and has a low value of 2A/(1 + 2A) at the end

of the zone. The interfacial concentration in both cases follows a

trend opposite to that of the interfacial temperature, since y^ = 1 - 0.^

[Eq. (17a)]. The bulk concentration increases in both cases toward a

final value equal to that of y..

In zone 3 both boundary layers are fully developed. External heat

and mass fluxes are small and changes in the temperature and concentration

profiles take place by virtue of thermal and mass diffusion within the

film, tending to make those profiles uniform. The temperature and con

centration tend toward an asymptotic value, which may be found by

substituting z, -> <=° in the results of the solution for zone 3. In the

constant-temperature wall case, the dimensionless temperature becomes

equal to that of the wall (0=0) and the concentration reaches the

corresponding equilibrium value (y = 1). In the adiabatic wall case the

asymptotic temperature reflects some increase from the initial value

[0 = A/(Le + A)], and the corresponding equilibrium concentration
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[y = Le/(A + Le)] is lower than the thermodynamically possible value of 1.

The results of the integral solution were found to be in very good

agreement with those of the exact solutions described earlier.



8. NUMERICAL EXAMPLE

The following example will illustrate the use of the results ob

tained earlier for calculating the parameters in a practical case.

Consider a film of LiBr-H„0 solution flowing down over a tray inclined

at 45°, at a mass flow rate of 0.25 kg/s per meter of breadth. The

initial temperature and concentration of the solution are 75°C and 60%

LiBr by weight, respectively. The film is in contact with dry saturated

water vapor at 45°C which has a vapor pressure higher than that of the

solution at the above conditions and is therefore being absorbed. We

would like to calculate (1) the maximum change in solution concentration

achievable when the tray is adiabatic, (2) the same when the tray is

being cooled from below and kept at a constant temperature, (3) the

maximum temperature rise of the solution in the adiabatic case, and

(4) the length of tray required, in the direction of flow, to produce

90% of the maximum concentration change in either case.

The absorption process is described on a thermodynamic equilibrium

chart (taken from ref. 19) in Fig. 15 for both the adiabatic and constant-

temperature cases. The solution at its initial state has a vapor pressure

of 4.8 kPa, considerably lower than that of the vapor at 45°C (9.7 kPa).

In the case of the adiabatic wall, the water concentration in the absorbent

increases (LiBr decreases) and the bulk temperature increases. For the

constant-temperature wall, the bulk temperature is the same at the

beginning and end of the process; however, in between there is some

increase in temperature, as illustrated in Fig. 2.

We will begin by calculating the flow velocity and film thickness.

The physical properties of LiBr-H„0 solution under the present temperature

and concentration are listed in Table 2. The film Reynolds number is

given by ref. 1:

Re = 4l7y = 4 X °'" = 333 .
3 x 10

The flow is, therefore, clearly laminar (Re < 500). Then, from the

Nusselt formula for falling films:1

55



M ' I 'I ' I ' I ' I

ADIABATIC WALL

CONSTANT

TEMPERATURE

WALL

56

ORNL-DWG 82-8155

200

150

100

50

40

30

20

10

5
4

3

2

1

0

Ixl
<r
z>
CO
CO
LU
ec
o.

cr

o
O-

CO
m
<

120

110

100
<>
o

W
90

=>

$ 80
or
ui
a.

> 70
iii
H

rr 60
o
n

5 50

hi

fcr 40
m
rr
o
co
m

30
<

20

10

0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

SOLUTION TEMPERATURE. °C

180

Fig. 15. Thermodynamic equilibrium chart for LiBr-H„0 solution,
taken from ref. 19, illustrating the absorption process with an adiabatic
wall and a constant-temperature wall, under the conditions of the
numerical example.

A =
/ 3yr \i/3. /
\p2g sin $ J \

3 x 3.0 x 10 x 0.25

(1.72 x 103)2 x 9.8 sin 45' )'
/3

= 0.48 x 10
-3

m

0.25
u =

pA 1.72 x 103 x 0.48 x 10"3
= 0.30 m/s

Next, we find the equilibrium concentration and temperature C and

T used to calculate the normalized quantities y and

definition, we find from the diagram, Fig. 15:

Based on this

kmole HO

C = 52.8% LiBr = 47.2% Ho0 = 45.1
e 2 3 . ^.

ip. solution
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Table 2. Physical properties of LiBr-H_0 solution

at 60% concentration and 75°C

density, p 1.72 x 103 kg/m3

dynamic viscosity, y 3.0 x 10"3 kg/m-s

kinematic viscosity, v = y/p 1.74 x 10-6 m2/s

specific heat, c 0.92 x 103 J/kg«°C

thermal conductivity, k 0.6 W/m*°C

thermal diffusivity, a = k/pc 0.38 x 10-6 m/s

diffusion coefficient, D 0.1 x 10-8 m2/s

Lewis number, Le = D/a 2.6 x 10"3

heat of absorption, H 4.9 x 107 J/kmole

aFrom refs. 19 and 20.

and T = 91.5°C. We can now calculate the scaling parameters of the

problem. The Lewis number, based solely on the properties of the solution,

is listed in Table 2. The Peclet number is

uA 0.30 x 0.48 x 10~3 „,„
Pe = — = = 379 ,

a 0.38 x 10-6

and the dimensionless heat of absorption is

Ha(Ce " Co) „ 4.9 x 107(45.1 - 38.2)A=Le —-t| 5-y = 2.6 x 10"3 x '-
pCp(Te - Tq) 1#72 x 103 x 0.92 x 103(91.5 - 75)

= 3.37 x 10"2 .

We are now ready to use the results of the solution to answer the

questions posed in the problem. For the adiabatic wall case, the asymptotic
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values of the normalized temperature and concentration, 0 and y, were

found to be A/(A + Le) and Le/(A + Le), respectively. Thus,

A 3.37 xlO"2 =0.928 =Ta3_T°
°° A + Le -9 a T-T'

Le 3.37 x 10 2 + 2.6 x 10"3 e o

T, = 75 + 0.928(91.5 - 75) = 90.3°C ,

- Le 2.6 x 10~3 Coo ~ C0
Y~ =tt^ = : =°-0716 - -c—^-f3.37 x 10"2 + 2.6 x 10-3 °e o

Cm = 38.2 + 0.0716(45.1 - 38.2) = 38.7 kmole H20 per m3 solution

= 59.5% LiBr .

It is thus found that in adiabatic absorption the temperature of

the solution increases from 75 to 90.3°C, almost as high as the no-mass-

transfer limit of 91.5°C. The concentration change is small, only from

60% LiBr to 59.5% LiBr. However, in the constant-temperature wall case,

the asymptotic value of y is unity, and, therefore, C = C =52.8% LiBr.

It now remains to find the length of the tray required to produce

90% of the maximum concentration change. For the adiabatic wall case,

we seek

y = 0.9 7 = 0.9 x 0.0716 = 0.0644 .

From a calculation similar to that leading to the plot in Fig. 3,

for the values of A and Le at hand, we find that this occurs at Z, = 30.

Thus,

= £PeA = 30 x 379 x 0.48 x 10"3 = 5.46 m

Similarly, for the constant-temperature wall case, we seek

y = O^y^ = 0.9, which occurs at z, = 600. Hence, the required x is 109 m.

It is thus clear that with laminar flow the length required to achieve

full equilibrium is very large. This is not surprising in view of the



59

low heat and mass transfer coefficients. However, if one is satisfied

with partial equilibrium, the savings in the heat transfer area is

considerable.





9. CONCLUSIONS

A model was developed for analysis of the combined heat and mass

transfer processes in absorption of vapor in laminar liquid films. The

energy and diffusion equations were solved with an equilibrium boundary

condition at the vapor-liquid interface. Two cases of practical importance

were considered: a constant-temperature wall and an adiabatic wall.

Two methods of solution — analytical and numerical — were used with very

good agreement between their respective results. In addition, an inte

gral solution was developed which made it possible to obtain approximate

analytical expressions for most parameters of interest. The solution

was carried out for a linear absorbent, a mixture with a linear

temperature-concentration equilibrium relation and a constant heat of

absorption. The techniques of solution are suitable, however, for non

linear absorbents with given characteristics.

The results of the solution describe the development of the thermal

and concentration boundary layers and the variation of the temperatures,

concentrations, and heat and mass fluxes. These quantities in their

normalized, dimensionless forms depend on two characteristic parameters

of the system: the Lewis number Le and the dimensionless heat of ab

sorption A. The length in the direction of flow is normalized with

respect to the Peclet number and the film thickness. In the constant-

temperature wall case, the dimensionless temperature and concentration

reach asymptotic values of 0 and 1, respectively. In the adiabatic wall

case the asymptotic temperature and concentration are A/(A + Le) and

Le/(A + Le), respectively.

Heat and mass transfer coefficients for the system were calculated.

The Sherwood number for mass transfer from the vapor-liquid interface to

the bulk of the film reaches an asymptotic value of 3.45, with fully

developed boundary layers for the constant-temperature wall. Lower

value walls are obtained for an adiabatic wall. The Nusselt number for

heat transfer from the interface to the bulk reaches, under the same

conditions, values of 4.23 and 2.65 for the adiabatic and constant-

temperature walls, respectively. The Nusselt number for heat transfer

from the bulk to the wall reaches 1.60.
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