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PREFACE

A primer to group theory was drafted to be included as an appendix to this report. Then it was

thought that it could be useful to experimentalists who might want to apply the proposed method of

data reduction. This idea was abandoned when the draft grew to be the size of this report, and it was

felt that there was a major shortcoming in it. We had not succeeded, to our satisfaction, in presenting

in an elementary but meaningful fashion the essential notions of topology and measure theory required

for the proposed use, in this report, of the group manifold and its invariant measure as well as deal with

continuous groups. The essential difficulty with drafting this appendix was that we did not know what

to assume as the mathematical background of its readers. If we set this background too low, we would

have to write a book presenting the modern approach to mathematics instead of writing this appendix.

We feel there are many people more qualified to write such a book if there is a demand for it. How

ever, since an appendix was drafted, it is available in its current draft form from the author upon

request.



APPLICATION OF GROUP THEORY TO DATA REDUCTION

F. G. Perey

ABSTRACT

The analysis within the framework of a theory of what was observed in experiments is essential to
the testing of theories and is fundamental to physics. It is shown in this report how group theory can be
used to provide a general method of data reduction whereby only the laws of a particular theory are
used in the analysis of observations. This application of group theory involves introducing a group of
transformations of the physical system upon which the observations were made. This group of transfor
mations leaves invariant the entities of the theory corresponding to the observations made but
transforms the entities that were not observed from what they are presumed to be in this theory into
what they are not, called possibilities for what they are. This group of transformations is called the
possibilities-generating group for the entities for which the observations are being reduced. Since possi
bilities for entities of theories so obtained are functionals of a known group of transformations, the sub
sequent use of these possibilities in the theories must be made consistent with the theory of representa
tions of groups. There is a well-known invariant associated with functionals of group elements which is
invariant with respect to the parametrization of this group. It is the normalized volume measure in the
group manifold of the possibilities-generating group. In this report this invariant measure is called the
physical probability of the possibilities since it is a probability measure which has a Borel algebra. The
above proposed method of data reduction allows us to deal unambiguously with the uncertainties in
entities of physical theories obtained from all of the observations made in experiments and the distinc
tion between systematic and statistical uncertainties disappears. Concrete realizations of possibilities-
generating groups are given and explanations in group theoretical terms are offered for several impor
tant intuitive notions related to probabilities.



1. INTRODUCTION

The broad issue addressed in this report is the concept of testability of physical theories by observa

tions made in experiments. For centuries, physicists have drawn from the observations they make impli

cations in the theories they propose. Therefore, this activity is not new and is a legitimate subject of

inquiry for physicists. Possibly because physicists have had such a long experience at this activity, there

is not much concern expressed in the physics literature about the manner in which this task is carried

out today. Consequently, this report does not address an issue recognized as a problem in physics

today. In fact, it may be called a dead issue and this forces us to approach it from fundamental con

siderations in this introduction.

The statement "physical theories are testable proposed explanations for observed physical

phenomena" is a philosophical statement about physics and is not too controversial to be used in a phy

sics report. It is the purpose of this report to show that if one accepts at face value the above statement

one can justify, and even demand, that group theory be the tool used to analyze the implications in a

theory of what was observed in an experiment. The drawing of implications in a theory from what was

observed in an experiment is called here "performing the data reduction." The tool currently used to

estimate uncertainties in data reduction is the theory of statistical estimation, but it cannot deal with

some of the observations said to lead to systematic uncertainties. It is shown in this report how group

theory allows us to deal quantitatively in a coherent fashion with the uncertainties in data reductions

that arise from all observations.

In order to develop some operational procedures useful to do some physics from the statement that

physical theories are testable proposed explanations of observed physical phenomena, it is expedient to

consider briefly a possible philosophical justification for this statement. A little over 300 years ago,

Leibniz developed a philosophical system that has had a profound influence in the development of sci

ence and, in particular, physics. This philosophical system is based largely upon two main principles of

interest to us here: the Principle of Contradiction and the Principle of Sufficient Reason. The first of

these principles states that every assertion is either true or false, and the second one states that nothing

happens without a reason. The Principle of Sufficient Reason can be regarded as the basis for the



notion of causality used in physical theories that are deductive systems of assertions from some

hypotheses. The Principle of Contradictions plays a role in the choice of axioms used to develop

theories for analyzing observations by demanding that they do not give rise to internal contradictions.

The Principle of Contradiction is also the basis for the notion of testability of physical theories by

experiments, if one considers that what is observed in experiments establishes by some process of iden

tification the logical truth of an assertion of these theories dealing with observables. While the above is

not physics and likely not philosophy either, it is offered as a "justification" for two points which allow

us to apply group theory to perform data reduction. The first point is that physical theories are causal

since they are deductive systems of assertions based upon some axioms. In these theories every asser

tion is either true or false, and they are free of internal contradictions. The second point is that obser

vations made in experiments are used to establish the logical truth of some assertions of physical

theories by a process of identification with what is observed. Whether one considers that these two

points have been given adequate justification is open to question, and more modern-sounding arguments

could have been offered. The philosophical justification of these two points is not our main concern

here. We want to analyze the implications for physics of these two points assuming that they appear

reasonable enough to warrant such an analysis.

Group theory plays such an important role in contemporary physical theories that it is presumed

familiar to the reader. The idea of using group theory to deal unambiguously with ambiguity is almost

as old as group theory itself. Our concern in this report is with the ambiguities that arise when one

uses a physical theory to analyze the observations made in experiments. As is well known, 150 years

ago Evariste Galois made important contributions to the development of group theory, and the cir

cumstances under which these were made are also well known.1 In 1832, on the eve of the duel in

which he was killed, Evariste Galois wrote a celebrated letter to his friend Auguste Chevalier - a letter

from which his most important contributions to group theory are known to us. In the last paragraph of

this letter dealing with technical matters, Galois states that his main preoccupation for some time had

been the application of the theory of ambiguity to transcendental analysis. To our knowledge, no clues

have been found as to what Galois was referring to here except for what he then states in the next two



sentences. These two sentences freely translated are: "The object was to determine a priori in a relation

among quantities or transcendental functions what transformations could be made, what quantities

could be substituted to the given quantities, without changing what the relation was. This enables us to

recognize right away the impossibility of many expressions that one would otherwise seek." There is lit

tle doubt from these statements that Galois' theory of ambiguity was a mathematical theory and not a

physical theory. However, one can conjecture, on the basis of those two statements alone, that Galois'

theory of ambiguity may have been closely related to the method of data reduction proposed in this

report.

The idea that Galois' theory of ambiguity was group theory and could be used to deal with uncer

tainties resulting from observations is not new. In a very interesting discussion of the Leibniz Principle

of Sufficient Reason, George Birkhoff2 draws a relationship between group theory and the Principle of

Sufficient Reason. In this paper, after citing the above mentioned paragraph in Galois' letter, he states:

"This passage shows how in Galois' mind the theory of groups and the theory of ambiguity were interre

lated. Unfortunately, later students of the theory of groups have all too frequently forgotten that, philo

sophically speaking, the subject remains neither more nor less than the theory of ambiguity." Birkhoff

then shows by an elementary example the idea of a group and of the associated ambiguity. In the ter

minology to be introduced formally in the next section, Birkhoff states that the possibilities-generating

group for the positions of the vertices of a flat square object, a tile, observed to lie aligned on a square

grid, is the group of symmetries of the square: the cyclic group of order 4. However, even though Bir

khoff does mention probability theory in this lecture, it does not appear that he pursued further these

considerations to the point of developing formally the quantification by rational numbers of possibilities

generated by a group of transformations using strictly group theory as is done in this report.

Many different theories of probabilities have been proposed.3'4 In a few of these, group theory is

explicitly used,3 but in many more, developed before and since 1832, invariance arguments of one form

or another that could be easily construed to be group theoretical arguments are made use of.3'5 The

essential characteristic of all these attempts at using group theory, or invariance arguments of a group

theoretical nature, is that group theory is used only as a device for assigning an a priori probability to



possibilities within the framework of theories of probabilities that owe little or nothing to group theory.

To our knowledge, group theoretical arguments have only been used in connection with classical or

Bayesian theories of probabilities based upon the notions of "degrees of beliefs" or "degrees of ignorance"

measured by probabilities. Recently, Jaynes6 proposed a formal principle to justify the application of

group theory to carry out a type of invariance argument first introduced by Poincare7 in 1895. Jaynes

calls this principle a Desideratum of Consistency, and it is to be used in the assignment of a priori pro

babilities. This Desideratum of Consistency is: "In two problems where we have the same a priori

information we should assign the same a priori probability." Jaynes8 advocates the use of these a priori

probabilities with the algebra of probabilities of Cox.9 Cox's algebra of probabilities is generated from

three essential axioms by a type of invariance argument built upon the symmetry properties of the

operators of Boolean algebra. This led him to some functional equations, earlier considered by Abel,10

whose solutions became the "laws" of his algebra of probable inference. The Cox-Jaynes theory of pro

babilities represents, to our knowledge, the theory of probabilities that makes the greatest use of invari

ance type arguments to date and was the starting point of our investigations.

Poincare's views on the nature and meaning of probabilities are well known from an essay he

devoted to them and which he used as the introduction to the 1912 edition of his book.7 It does not

appear from this essay that he gave great weight to the role that group theory may play in probability

theories. However, he does mention, as would Birkhoff later, its usefulness in a particular problem.

This problem is the shuffling of a deck of playing cards. There is no other specific mention of group

theory throughout this book except in the last chapter, also added to the 1912 edition. In this last

chapter, Poincare gives a detailed analysis of the problem of shuffling a deck of cards based entirely

upon group theory, including the use of elements of group algebra. It is of some historical interest that

at the end of this analysis Poincare refers to one of his papers:11 "On the algebraic integration of linear

equations and the periods of Abelian integrals," the very subject of Galois' lost "third manuscript" which

Galois mentions' in the letter quoted from earlier.

The above references on the use of group theory in probability theories do not constitute an exhaus

tive survey of the literature. They merely serve to indicate that the idea of using group theory to deal



with the notion of uncertainty or ambiguity, most often in connection with theories of probabilities,

seems to have occurred to some notable mathematicians such as Galois, Poincare, and Birkhoff. It

seems fair, however, to say that these attempts have not yet provided a group theoretical foundation to

the notion of probability as used in physics as is done in this report.

In Sect. 2 of this report a method of data reduction is presented in a completely general and

abstract context. This method should, therefore, be applicable to the analysis of observations by any

testable physical theory proposed as an explanation for the phenomena involved. Group theory is used

to provide an explanation, within the framework of the physical theory used to analyze the observations,

of the fact that these observations yield several values for an entity of this physical theory related to the

observations, even though in this physical theory this entity should have only one value. This problem

occurs because when one applies the proposed theory to analyze the abstraction corresponding to the

physical system, using only what was observed of it, this abstraction exhibits elements of apparent sym

metry with respect to the entity of interest that was not observed. Group theory is used to deal with

this element of apparent symmetry. The group of transformations of the abstraction for the physical

system in the theory used is called a possibilities-generating group for the entity of interest. Its ele

ments generate, from the value which the entity of interest is postulated to have in the physical theory

used, values which this entity does not have which are called possibilities for the value of this entity.

The identity element introduces the value which the entity has in the set of possibilities. The possible

values for the entity of interest then become in the physical theory used functions of the elements of a

group and must be treated as such. Consequently, there are "weights" that must be attached to these

possible values, weights which are uniquely determined by the group structure of the possibilities-

generating group. These weights are now normally called in group theory the volume measure in the

group manifold. The volume measure at each "point" in the group manifold can be normalized to unity

when summed over the group manifold. The normalized volume measure at each "point" of the group

manifold is called here the physical probability of the possibility for the entity of interest corresponding

to this point.



Through the remainder of the report, properties of these physical probabilities are developed and

interpreted.

In Sect. 3 concrete realizations of possibilities-generating groups are given, and it is shown that the

proposed method of data reduction yields unique physical probabilities in specific situations where the

theory of statistics cannot be used.

In Sect. 4 a notation is introduced for designating the normalized volume measure in the group man

ifold of a possibilities-generating group. This notation for the physical probabilities of possibilities for

entities of theories obtained from observations is then used to show that their algebra is the algebra of

probabilities: a Borel algebra. This is merely the consequence of the additive nature of the volume

measure in a group manifold.

In Sect. 5 the physical probability of the possibilities for the outcome of an experiment which can be

characterized by a frequency is obtained. It is then shown that, according to the theory used to analyze

this experiment, the limiting frequency with which a particular outcome would be observed if the exper

iment were carried out repeatedly is equal to the physical probability of this outcome. This result shows

that the normalized volume measure in a group manifold of the possibilities-generating group can be

interpreted in the theory used as a conceptual limiting frequency.

In Sect. 6 it is shown that the normalized volume measures in a group manifold constitute an

abstract topological space that has a well-defined group structure. This leads to the notion of an

abstract physical probability space which is imbedded in a subspace of a real linear space. Conse

quently, one can always associate a physical probability distribution to the physical probability of a pos

sibility for the value of an entity of a theory. It is suggested that this result is a proper explanation to

the widely held intuitive notion that most probabilities are more or less uncertain; they are said to be

estimated.

In Sect. 7 the concept of Bernoulli trials is briefly analyzed from the point of view of the proposed

method of data reductions in order to show that this method can also deal with observations from

repeated measurements.



2. APPLICATION OF GROUP THEORY TO DATA REDUCTION

A formal methodology is presented in this section for obtaining the implications in an existing physi

cal theory of what was observed in an experiment. A physical theory is taken to be a proposed explana

tion of observable phenomena. Because what one obtains from observations in experiments is called

data and the analysis of these observations is called data reduction, the aim of this section is to present

a method of data reduction; it could also be called a method of data evaluation. Why one cannot

develop a theory of data reduction but only a method of data reduction is first discussed. The brief

philosophical discussion in the introduction is offered as a justification for the starting point of the dis

cussion.

2.1. Physical Theories and Observations

In the introduction physical theories were considered as deductive systems of assertions from some

hypotheses, or axioms. However, it is more conventional in physics to use the terminology of

mathematics than the one of logic when discussing physical theories, and this convention is followed.

From this point of view, physical theories are considered as consisting mostly of mathematical relations

that are postulated to hold among some abstract entities of these theories. That physical theories can

be so considered is the consequence of the adoption of a convenient and very powerful symbolic nota

tion. In order for the mathematical formulae that stand for physical theories to be construed as an

explanation of observed physical phenomena, some of the abstract entities appearing in them must be

"observables" of these physical theories. That is to say, an equivalence relation must exist between what

is observed in an experiment by physicists, ultimately via their senses, and some of the abstract entities

called observables of physical theories. Only through the presence of such equivalence relations in phy

sical theories can observations made by physicists be transcribed into data of physical theories and vice

versa. These transcription rules are formally axioms of physical theories. They will be assumed to have

been correctly applied to the observations.

Through the use of the above transcription rules, what is observed generates in the symbolic notation

of a particular theory a mathematical relation that holds, or is logically true, in this physical theory



since some specific observations were made. These mathematical relations generated from observations

involve only observables of physical theories. In the conventional language of experimental physics,

these mathematical formulae are the data of physical theories obtained from experiments.

These two types of mathematical relations, the general relations of the physical theories and the

relations derived from observations, must satisfy some conditions if they are to be a part of physical

theories. Since this paper is not concerned with what physical theories are in any detail except for some

specific examples used as illustrations, these details are not discussed here. The above description of

physical theories and observations is not presumed to be controversial and serves to define a vocabulary

whereby one can discuss in an abstract way physical theories and observations made in experiments.

2.2. Data Reduction and the Scientific Method

On the basis of the above considerations, the activity that has been called data reduction can be for

mulated in mathematical terms. Let us consider a particular physical theory, T, in which a mathemati

cal relation written

T (D,C) = 0 (2.1)

holds, where D is an observable of this theory and C may be, but need not be, an observable of this

theory.

Let us now consider a specific experiment, E, for which the theory T is a proposed explanation. In

this experiment a particular observation is made which, after using correctly the appropriate transcrip

tion rule of the theory T, yields the mathematical relation of the theory T:

ET(D) = 0 . (2.2)

What is called data reduction in this paper is the analysis of the solutions to the system of relations

(2.1) and (2.2). In the performance of this analysis one must remember that strictly speaking it is a

physical problem that is being solved and not a mathematical one. What this implies is that whatever is

done mathematically can and must, if necessary, be verbalizable in physical terms from the point of

view of the postulated physical theory T being applied. The particular concern of this paper is that in
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many, if not most, experiments there may be several mathematical solutions to the system of relations

(2.1) and (2.2) for some entity of the theory T, symbolized by C above, that is postulated in this theory

to have a unique if unknown value.

A fundamental task that faces physicists is to provide a physical explanation in terms of the theory

T for the fact that when it is properly applied it yields several values for an entity which it postulates

must have a single value, although the mathematical reasons for this are obvious. In this paper, it is

chosen to consider that the above is an "apparent difficulty" until a suitable explanation for it has been

found in terms of the theory T even though its mathematical explanation is no mystery. That the above

result frequently occurs is a generic problem in science and we are used to it, that when it occurs we say

we are uncertain of the value of the entity and in some situations this uncertainty is of no practical sig

nificance, that the mathematical reason for its occurrence is understood, and, finally, that when it

occurs in an experiment this does not invalidate the theory used because it has not been falsified, are all

statements of facts or value judgements and do not constitute an explanation for its occurrence in terms

of the physical theory T.

Can an explanation of this apparent difficulty be provided entirely from the viewpoint of the pro

posed testable physical theory T, or must one invoke some general, or specific, physical considerations X

that are external to the physical theory T being applied? A little reflection shows that if the physical

theory T is claimed to be testable and the scientific method demands that it be, then an explanation for

this apparent difficulty must be provided strictly on the basis of the physical theory T. The reason for

this is that the physical considerations X, if they are not implied by the physical theory T but used with

this physical theory T, transform the physical theory T into the physical theory TX. Therefore, the

physical theory T ceases to be when one introduces physical considerations not implied by its axioms.

Then it cannot properly be said that it is the physical theory T which is being used or tested.

The above simple argument suggests that there cannot be a theory of physical measurement and a

theory of data reduction which are independent of physical theories. This statement can be rephrased

to say that every physical theory must imply a method of measurement and a method of data reduction.

Such conclusions have been reached before from a different rationale.12 In this paper the method of
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measurement is bypassed and its end product is considered: it must yield a statement of the physical

theory of the type (2.2). This allows us to focus upon the issue of the method of data reduction.

Since the apparent difficulty which is the concern of this paper (the fact that in some situations

there may be several solutions where the physical theory applied implies there should only be one) is

related to the idea that observations lead to uncertainties in reduced data, the above conclusion is at

first disturbing. It is disturbing because a theory of data reduction has been used in physics for a long

time. This theory of data reduction is independent of the physical theories used that are presumed to be

testable. It is used with all physical theories and allows physicists to deal with the notion of uncertain

ties in physical data obtained from observations. This theory of data reduction is the theory of statisti

cal estimation based upon the theory of statistics. If one attaches any weight to the above arguments,

then one must seek to eliminate from physics the theory of statistical estimation in spite of its apparent

success, its pervasiveness, and its resulting wide acceptance in the physics community today. The theory

of statistical estimation must be replaced by a method of data reduction that is applied with and

implied by testable physical theories. Furthermore, this method of data reduction cannot have any phy

sical content of its own. Whatever physical notions are involved in this method of data reduction, they

must be provided by the physical theory being applied.

The fact that it appears one must give up, at least in physics, the theory of statistics and the theory

of statistical estimation is not as disturbing as it may seem at first, even though these theories play an

important role today in the testing of physical theories and in many physical theories including those

perceived to be most successful such as statistical mechanics, quantum mechanics, etc. The arguments

used to reach the above conclusions only pertain to the physical meaning one attaches to the formulae

one identifies with the theories of statistics and statistical estimation. These arguments say nothing

whatsoever about the nature of the formalism that may result from a method of data reduction. From

the pervasive nature throughout physical theories and other sciences of the formulae one justifies today

on the basis of statistical arguments, one should suspect that many of these formulae will reappear but

be justified on a totally different basis. Because of this, it is important to find out whether the whole
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exercise which this paper is about is not a purely semantic one. The arguments given in this paper will

be a more useful semantic than the current one if it can be shown that it allows us to solve, in addition

to the problems we can cope with today, a clearly recognized important class of problems for which

there is currently no satisfactory solution if one adopts the viewpoint of the theory of statistics. In this

paper it will be shown that the semantic point of view proposed allows the exact quantification of the

systematic uncertainties, as well as the exact quantification of the "statistical" uncertainties from a uni

fied point of view that involves no physical postulates, and this cannot be done with the theory of sta

tistical estimation.

2.3. The Possibilities-Generating Group

A method of data reduction based upon group theory is now presented. The fundamental idea of

the method is explained in an abstract context. That is to say, neither the experiment, nor the observa

tions made in the experiment, nor the proposed testable physical theory being used to analyze the obser

vations are specified. Concrete examples are given in the next section.

The basic idea of the proposed method of data reduction is to look at the physics experiment that

has been performed strictly on the basis of what was observed and from the viewpoint of the theory

used to analyze these observations. Group theory is used to deal with the fact that even though in the

physical theory used some entity should have only a single value, on the basis of the observations there

are several mathematical values for this entity. To deal with this problem means to provide a physical

explanation for this situation within the framework of the physical theory being applied.

A mathematical equation can have several different solutions. In mathematics none of these dif

ferent solutions have anything special over the other ones. All of the solutions satisfy the given equa

tion, and they collectively form the set of solutions of the equation. A particular terminology has been

introduced to refer to the several solutions that are found in the problem of concern to us. The set of

solutions found on the basis of the observations is called an exhaustive set of mutually exclusive
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solutions. This statement conveys the notion that only one of the several solutions to the mathematical

relations can be the value of the entity of the physical theory since it postulates there is only one value

to this entity. The statement that we find an exhaustive set of mutually exclusive values for the physi

cal entity is neither a statement of mathematics nor a statement of the physical theory used, it is a com

mentary acknowledging what we have called an apparent difficulty. This commentary labels what the

apparent difficulty is: the set of mathematical solutions is not the singleton that the physical theory

postulates. This commentary states that we have run into a mathematical impossibility and because it

is the physical theory that created it, the physical theory should resolve it. The mathematical relations

that resulted when the observations were encoded into the physical theory, together with the body of

mathematical relations that stand for the physical theory, contained the statement that the set of solu

tions had to be a singleton. This was mathematically impossible; therefore the requirement that the set

of solutions had to be a singleton was ignored and made a commentary to the set of several solutions

found. The difficulty arose because a mistake was made. Since the physical theory uses the language

of mathematics, after the observations were encoded into mathematical terms the solutions were sought

as if we were dealing with a purely abstract mathematical problem ignoring the requirement that the

set of solutions had to be a singleton. Once the several solutions were found, the abstract mathematical

problem was considered to be a physics problem and the condition that the set of solutions had to be a

singleton inserted. This yielded a commentary to that effect: the set of mathematical solutions is an

exhaustive set of mutually exclusive solutions to the physics problem. We must correct this mistake and

consider at the outset that the set of solutions must be a singleton, this statement is an essential aspect

of the physical theory for which the mathematical relations stand.

It is now shown how group theory provides the tool to accomplish the above task. Before the

method is verbalized in physical terms, a well-known result of group theory is recalled. This result was

established 150 years ago by Galois in an important contribution to group theory. Certain mathemati

cal equations have several different solutions. It is always possible to associate with these equations a

group of transformations whose order is equal to the number of solutions. This group of transforma

tions has the property that by starting from any one of the solutions one can generate all of the other
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solutions. Another way of saying this is that each of these equations is the expression of an underlying

symmetry and if there are n different solutions it is because this symmetry is n-fold. It will not be pro

ven in this paper that the kinds of equations we are dealing with in physics have this property. This

will be taken for granted since in modern physics one thinks of the underlying symmetries referred to

above as more fundamental than the equations, the "laws of physics," themselves. One even says that

the equations, the "laws of physics," are derived on the basis of the symmetries rather than the reverse.

From a mathematical point of view, there is an equivalence relation between the symmetries and the

equations.

The above mathematical result is all that is needed to verbalize a method of data reduction entirely

in terms of the physical theory being used. This physical theory must be assumed correct until it has

been proven that it cannot be correct. Let us consider a particular theory and a particular physical

situation in which something is observed. Let that which was observed be properly encoded into the

language of this theory and assume that according to this theory there is an entity which was not

observed but is related to the observations and that we are interested in its value. If, in this physical

theory, it is possible to find a group of physical transformations whose elements change the value of this

entity into values it does not have without changing what was actually observed in this physical situa

tion, then several possible values will be found for this entity on the basis of what was observed. There

will be as many possible values as there are ways of changing the physical situation in the physical

theory used, plus the identity transformation. Each element of the group of physical transformations,

except the identity transformation, changes the value of the entity into a value it does not have, gen

erating a possibility for its value. The set of physical transformations forms a group in the usual sense.

For obvious reasons, this group of physical transformations in the physical theory being used is called

the possibilities-generating group for the value of the entity in question. An equivalent way of stating

the above is that on the basis of what was observed from the point of view of the physical theory

applied, there is an apparent symmetry in the physical situation with respect to this entity of interest.

It is very important to emphasize that this symmetry in the physical situation is only apparent from the
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point of view of the logic of the physical theory applied and what is identified in this physical theory

with what was observed.

The above is offered as an explanation for why there can be several possible solutions on the basis of

some observations for an entity of a physical theory being applied to analyze these observations when, in

this physical theory, there can only be one solution for this entity. It is clear that two different physi

cists, having made the same observations in a physical situation and having applied the same physical

theory, will find the same possibilities-generating group. It is also clear that what is observed in a par

ticular physical situation, when analyzed by two different physical theories which have a corresponding

entity, may very well yield a different possibilities-generating group for this entity in each physical

theory. Since the logics being used are different the same physical situation may have different

apparent symmetries.

The above constitutes a very broad generalization of the specific instances used by Poincare and Bir

khoff to indicate how group theory can be used to deal with situations that lead to uncertainty.

2.4. The Probability Measure

The preceding discussion focussed upon providing a rationale using group theory for the notion of an

exhaustive set of mutually exclusive possibilities for an entity of a physical theory that result from

observations. Because the set of transformations of the physical situation by the laws of the theory used

forms a group, it is not possible to tell which of the possibilities is the value of the entity of the physical

theory used. Every different possibility for this abstract entity is generated by an element of the group

of transformations; each possibility can be associated with an element of the group. If the possibilities-

generating group is of order n there are exactly n different ways of associating the elements of the

group with the n possibilities. These different ways are provided by the group multiplication table of

the group. Therefore, every possibility can be associated with, mapped into, every element of the

possibilities-generating group. Consequently, every mathematical formula of this physical theory in

which this entity enters must be regarded as a functional of the elements of the possibilities-generating

group for this entity. These functionals of the group elements must have an invariant meaning in the

physical theory whenever a particular possibility for the entity is used. It was, in fact, through the



16

analysis of particular functionals of solutions of algebraic equations that Galois was led to important

discoveries in group theory.

At this time it is useful to recall a well-known mathematical result of group theory that is at the

foundation of the theory of representation of abstract groups by linear substitutions. In order to provide

meaning to functionals of group elements, it is necessary to adjoin to each abstract group an abstract

space called the group space, or the group manifold. This group manifold is a topological space in

which there is a one-to-one correspondence between some "points" in this topological space and the ele

ments of the group. It is through the introduction of the group manifold that functionals of group ele

ments acquire the meaning of functionals defined in a space that represents the abstract group.

Without going through the mathematical details found in every textbook on the theory of representa

tions of groups that deal with both finite and continuous groups,13'14 the fundamental theorems upon

which group algebra is based depend upon the introduction of a "volume measure" in the group mani

fold. This volume measure in the group manifold is defined as the density of points in the neighborhood

of each point in the group manifold. Because the group manifold of a finite group is a disjoint topologi

cal space the volume measure in the group manifold of a finite group is uniform, i.e., the same at every

point in the group manifold. In the case of a continuous group, the volume measure in the group mani

fold is not necessarily uniform over the group manifold. Of interest to us is the fact that the volume

measure in the group manifold of a group, being defined as a density of points in the group manifold, is

a positive quantity that is additive. This volume measure can be summed over all the points of the

group manifold to yield a finite measure, in view of the closed nature of the group manifold that results

from the closure property of the elements of the group. Therefore, it is always possible to normalize the

volume measure in a group manifold to yield unity when algebraically summed, a Riemannian integral

in the case of a continuous group, over all the group manifold. In mathematics a measure which is

introduced in an abstract space and has the above properties of being positive definite, additive, and

normalizable to unity when summed over the complete space is called a probability measure. The ter

minology of volume measure in the group manifold of a group that has been used above is often called
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the "volume element" in the group manifold14 or the "weight function" in group space.13 By whatever

name it is called in group theory, it is a probability measure15 in mathematics. The normalized volume

measure in the group manifold of a group is uniquely defined by the structure of a group. Although it

plays an important role in defining the Frobenius algebra of a group, the volume measure is not an ele

ment of this group algebra in the conventional definition of the elements of this algebra. However, it is

possible from the definition of the volume measure in a group manifold to define an algebra of this

volume measure and, as it must be since this volume measure is a probability measure, its algebra is a

Borel algebra.

The relevance of the above mathematical considerations to the method of data reduction based upon

the application of group theory is that, since there is a unique group of transformations that generate

the possibilities for an entity of a theory from the observations, there is also a unique probability meas

ure that one can associate with these possibilities.

What has just been accomplished in a very general and abstract way is to provide a group theoreti

cal foundation for the notion of possibilities, and their associated probabilities, for entities of theories

determined from observations. Because the probabilities of the possibilities for entities of theories

defined above occur as a result of the interpretation of what was observed in a physics experiment

within the framework of a physical theory, it is appropriate to refer to these probabilities as physical

probabilities to distinguish them from the usual statistical probabilities.

2.5. Summary of the Proposed Method of Data Reduction

The operational method that emerges from the above discussion is now briefly summarized. If there

are any implications in a theory of what was observed in an experiment, it must be that in this theory

what was observed is not everything that there is in this physical situation. For instance, according to

the theory some other observations could have been made but were not made or could yet be made. It

may also be that in this theory what was observed is related to some abstract entities that are not

observables of this theory. Whatever the case may be, if the theory used postulates that there are enti

ties which were not observed but are related to what was observed, data reduction is the analysis of



18

what can be said about these entities on the basis of what was observed and the postulated laws of this

theory. The basic idea is to apply group theoretical methods to perform this analysis so as to use only

the laws of physics of this theory. This is done by seeking a group of transformations that changes the

physical situation which constitute the experiment from what it was, is, or will be, into what it was not,

is not, or will not be. The transformations that constitute the elements of this group must be made

according to the laws of this theory and leave invariant what was observed of this physical situation, the

experiment. Usually one is not interested in analyzing all of the implications in the theory of what was

observed. The analysis focuses upon some entity for which the data that are identified with what was

observed are being reduced. The above group of transformations is called the possibilities-generating

group for the entity of interest which was not observed. Each element of this group changes the value

of the entity of interest into a possibility for the value, except the indentity element of this group which

leaves unchanged the value but inserts it into the set of possibilities for the value. The normalized

volume measure at each "point" of the group manifold of the possibilities-generating group is called the

physical probability of the possibility generated by the corresponding group element.

The physical probabilities of possibilities for entities of physical theories determined in the above

fashion are conditional probabilities in the usual terminology of probability theories. They are condi

tional not only upon what was observed but also upon the logic that was used to analyze the observa

tions: the physical theory used. Because of how they were obtained, according to group theory, physi

cal probabilities of possibilities for entities of theories are nothing but weights which must be assigned

in the physical theories to the possibilities regarded as functionals of group elements. These weights

must also be assigned in the theory to any functionals of the theory in which the possibilities enter.

According to the manner in which they were obtained in the proposed method of data reduction since it

is not a physical theory, physical probabilities are not observables of the method of data reduction.

They are not observables of the theories being used to analyze experiments either as they are weights
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attached to possibilities for entities that have not been observed. If there is any relationship between

physical probabilities for entities of theories and observables of these theories, it can only be a purely

conceptual one and must be derived, or derivable, using these theories. The conditions under which this

relationship holds must also be established.
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3. CONCRETE REALIZATIONS OF POSSIBILITIES-GENERATING GROUPS

In this section simple examples of data reductions are given to illustrate the concept of a

possibilities-generating group. In the usual language of group theory, concrete realizations of

possibilities-generating groups are given. The examples given in this section are selected for a number

of reasons. They are so simple that there is no need to introduce a special formalism, as will be done in

the next section to deal with more complex problems of data reduction. The different possibilities-

generating groups are isomorphic to a variety of abstract finite and continuous groups. Most of the

examples form the basis of more elaborate data reductions later in the paper and are used to derive

some general results. There are some historical reasons for choosing these examples. Some are experi

ments based upon situations that have been used in the past to illustrate concepts of probability

theories; some can be solved using the classical theory of probability;16 and others have been used to

show the internal contradictions of the classical theory of probability.

In each of the experiments now considered, the observations only result in placing an upper and a

lower bound on the value of an entity of a physical theory, and there is no direct observation of the

value of this entity inside these bounds. In these instances it is conventional to say that the uncertainty

in the value of the entity, based on the observations only, is systematic in nature, or that there is a sys

tematic uncertainty in the value of the entity. These situations are to be contrasted to those where

there are direct observations of the value of an entity upon repetition of a measurement and a sample of

values having a distribution of values is observed. In these latter instances, using the theory of statisti

cal estimation, one can obtain an estimated statistical uncertainty in the value of the entity, based upon

the sample of values, an uncertainty which is characterized in terms of statistical probabilities. It is

likely that most statisticians would frown upon the use of statistical probabilities to characterize the sys

tematic uncertainty when the data contain no sample of values, only a single 100% confidence interval

where the value of the entity lies. It is fair to say, however, that some notable physicists have expressed

opinions that they would not hesitate to quantify these systematic uncertainties by probabilities on the

basis of some "common sense" arguments starting with Laplace,16 Poincare,7 Jeffreys,17 and Feynman.18

As mentioned in the introduction, Jaynes8 used group theoretical arguments to solve problems of data
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reduction using a rationale different from the one proposed in this paper, but he had failed to solve one

of them using this rationale.19

All examples of data reductions in this section are the analysis of some thought experiments. For

simplicity, classical physics is the theory used and the details of measuring instruments are omitted. In

all examples, some definite observations are identified with some entities of classical physics which

become the data reduced for a specified entity of classical physics that was not observed in the experi

ment.

3.1. The Coin Experiment

In the first experiment considered, a coin is observed lying flat on a horizontal surface. It was not

observed how this specific coin came to be in this position or which side of the coin was facing up. This

physical situation is analyzed using classical mechanics. The observations made in the experiment must

first be encoded into an abstract entity of classical mechanics. The coin is encoded into a flat rigid

body having two identifiable sides and being at rest in a three-dimensional euclidean space. Because the

flat body must have two identifiable sides, these can be brought into correspondence with the numbers 1

and 2 to become side 1 and side 2. A set of orthogonal axes can be introduced to describe the three-

dimensional euclidean space with the z-axis as "up" and the x-y plane in the plane of the flat rigid body.

The observations made, including the fact that the position of the sides has not been observed, are

equivalent to placing an observer in the x-y plane.

For an observer not located in the x-y plane which side is facing up can be observed in classical

mechanics. Either side 1 or side 2 is facing up; both sides cannot be simultaneously facing up. In clas

sical mechanics there is no symmetry for this physical situation with respect to which side is facing up.

However, this situation must be analyzed from the vantage point of what was observed, namely from an

observer located in the x-y plane. In classical mechanics for an observer in the x-y plane the physical

situation has an apparent symmetry since the coin collapses into a two-dimensional object with parallel

sides, and the labels on the sides can no longer be seen. The above data can be reduced, or analyzed,

for the side that is facing up.
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The element of symmetry exhibited in classical mechanics by the physical situation, which is the

experiment when all of the observations have been encoded into it, can be analyzed in the usual fashion

by introducing a group of transformations. The elements of this group change what is the side facing

up in the physical situation into what is not the side facing up, and leave unchanged what is observed

which is the flat rigid body lying in the x-y plane. The physical transformations in classical mechanics

which accomplish this are rotations of 180° and 360° about an axis joining the center of the flat object

to the position of the observer in the x-y plane. Rotation by 360° about this axis is the identity element

of this group which is isomorphic to the abstract group of order 2. This group generates two possibili

ties for the side facing up: the side 1 and the side 2. The volume measure in the group manifold of a

finite group is the same at every point of the group manifold since it is a disjoint space. Therefore, the

normalized volume measure is 1/2 at both points in this case. Consequently, the physical probability of

the two possibilities for the side of the coin facing up is 1/2. This completes the data reduction for the

side of this coin facing up since we can formally use in classical physics the two possibilities for this

entity called "side 1 up" and "side 2 up" if we attach to them a weight of 1/2, called their physical pro

bability, because these can and must be regarded as functionals of the elements of a group of transfor

mations of classical physics. In this paper we terminate the data reduction for an entity of a physical

theory related to observations made in an experiment with the determination of the physical probabili

ties of its possibilities since from then on these possibilities for the entity can be treated as any other

abstract entity of this physical theory that is a functional of a group element of a group of this theory.

The above analysis does not say anything about the phase of the moon, which is another physical

situation, because the analysis of this experiment is irrelevant to the analysis of another experiment. In

particular, the above analysis does not tell us what would happen if this coin were tossed in the air and

one subsequently observed which side was up when it came to rest. There is no random or statistical

element introduced in the above arguments; these are concepts of another physical theory. There is also

no element of "physical symmetry" in the coin in the above discussion as one might attempt to convey

by saying the coin was "fair". The physical transformations that constitute the elements of the
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possibilities-generating group are mental transformations allowed by the laws of the theory used. In the

above analysis, the coin was never actually rotated about any axis.

It should be noted that in the above experiment if the side of the coin which was facing up had been

observed but the side of the coin facing down had not been observed, it would be possible to reduce the

data for what had not been observed in exactly the same fashion. The possibilities-generating group

would be a rotation of 360° of the coin about any fixed axis and its order is unity. There is only one

possibility - the side that is not facing up - and its physical probability is unity.

3.2. The Playing Die Experiment

The next experiment analyzed involves a playing die. The physical situation is very similar to the

one in the previous example: the orientation of a solid object is observed but the markings on its faces

are not observed. Therefore, the possibilities-generating group for the location of the faces of the object

will be the point group which is the group of symmetry of a geometrical figure that is an abstraction

corresponding to the encoding of the observations made into the physical theory used. The reason for

considering in some detail this experiment is to provide a physical interpretation in terms of the observa

tions made of the fact that the possibilities-generating group is decomposable into the direct product of

two possibilities-generating groups. This feature of possibilities-generating groups, as will be shown

later, plays an important role in most data reductions.

An ordinary right-handed playing die is the physical object involved in this experiment. By this it is

meant that it has six faces numbered 1through 6; opposite faces are parallel; the sum of the numbers on

opposite faces is seven; and the normals to the faces having the numbers 1, 2, and 3 define a right-

handed orthogonal coordinate system. It is subsequently determined that the die is at rest with one side

facing "up" and another side facing "north;" however, the numbers on the sides were not observed nor

how it came to be in this position. We are interested in reducing the above data for the markings on

the various faces of the playing die. The above data do not define the playing die of this experiment as

a "perfect" cube or a "fair" die. However, one can introduce an imaginary cube whose sides are parallel

to those of the playing die and whose fixed point coincide with the fixed point of the playing die. The
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numbers on the sides of the imaginary cube being projections from those on the corresponding sides of

the playing die. In the following data reduction we deal with this imaginary cube, and at any time we

can mentally project the numbers on its faces onto the faces of the playing die.

The possibilities-generating group for the markings on the sides of the cube is the total rotational

symmetry group of the cube. The group keeps invariant the fact that there is a side facing up and one

facing north. This group is known as the octahedral group14 (O), and has 24 elements. Each of the

possibilities generated by this group can be uniquely labelled by naming the number of dots on the top

side and on the north side of the cube. The physical probability of each of these possibilities is equal to

1/24 since this group is finite and has order 24.

One could also reduce the data in this experiment for the number of dots on the side facing up only,

if that is what one wanted to do. In this case, the possibilities-generating group is the dihedral group,

D3, which has six elements built upon any one of the four three-fold symmetry axes which constitute the

space diagonals of the cube. The rotations are by 120° about these axes and the reflections are in a

plane perpendicular to these axes. These reflections are equivalent to a rotation of 180° of the cube

about a space diagonal normal to the space diagonal used for the 120° rotations above. The six possi

bilities generated by any one of the above dihedral groups, D3, are labelled 1, 2, 3, 4, 5, and 6 dots on

the top side, and 1/6 must be assigned as the physical probability of each of these possibilities. Each of

these possibilities for the number of dots on the top side can be called a "marginal" possibility since they

ignore which side of the die is facing north. There are 4 different possible dihedral groups that can be

used in this data reduction. This "ambiguity" will be discussed later and should not be of concern at

this stage since any one of these groups gives the same answer. The fact that the same answer is

obtained for all these groups will be taken as an indication of the internal consistency of the method of

data reduction proposed in the sense that if there are several different ways of reducing the data, the

final result should be invariant of the way chosen.

Now let us suppose that one is interested in the number of dots on the side facing north, conditional

upon the fact that the side facing up has a particular number of dots on it, say 1 dot. The possibilities-

generating group for the number of dots on the north side must keep invariant the side of the die having
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one dot facing up in the data reduction. This possibilities-generating group is the cyclic group of order

4, C4. The generator of this group is a rotation by 90° about the vertical four-fold symmetry axis

through the cube. The four possibilities for the number of dots on the side facing north can easily be

named since the side having 6 dots has the physical probability of unity for being the side facing down.

Therefore, conditional upon the fact that the side having one dot is facing up, there is a physical proba

bility of 1/4 for the possibility that the side having 2, 3, 4, and 5 dots is facing north.

It should be noted that the octahedral group, O, is the direct product of the two groups D3 and C4.

Therefore, it was unnecessary to do the three data reductions above if we had made use of this fact.

3.3. The Balls in a Box Experiment

All of the remaining examples of data reduction in this section are the analysis of physical situations

that are closely related to the measurement of entities of physical theories where the observations lead

to systematic uncertainties in the "measured" values. In the example now considered, the entity of

interest can only have a discrete value; the following examples will deal with continuous parameters of

physical theories.

The physical situation now considered is defined by observations that determine there are a certain

number of balls in a box and this number of balls is not less than Na but not more than Nb, where Na

and Nft are two integers with NA > Na. If the number of balls in the box is denoted by N, then the

observations yield the data: Na < N < Nft. This situation is the typical one where it is said today that

the measured value of N has a systematic uncertainty.

In the method of data reduction proposed in this paper, since N was not observed but the data are

related to N, Na < N < Ni; these data can be reduced for the entity N. To reduce the data Nfl < N

< NA for the value of N, it is necessary to introduce a group of physical transformations that changes

the number of balls in the box, but leaves unchanged the fact that there are no less than Na balls in the

box and no more than Nj balls. The physical operations that correspond to the elements of the group

consist of adding and removing balls from the box.
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That the above operations form a group is very well known since the above problem is nothing but

an "occupation number" problem. It is usual to treat those problems by introducing "creation-

anihilation" operators that change the number of "particles" (balls) in the "state" (the box) thus forming

a group. The possibilities-generating group for the number of balls in the box is therefore isomorphic to

the cyclic group of order N6 - Nfl + 1; it is isomorphic to the group obtained by the addition modulo

N* - Na + 1 of the integers O, 1,2, ..., N6-Na. The possibilities-generating group for the number of

balls, N, in the box generates from the number of balls in the box the possibilities Na, Na + 1, ..., N6 -

1, N6. Because the order of the group is Nfc - Na + 1, the physical probability of each of these possi

bilities for N is l/(Nft- Na + 1).

3.4. When?

The remaining examples of data reduction involve possibilities-generating groups that are Lie

groups. The next two examples deal with the "measurements" of the two parameters of the abstract

time-space of classical physics. The time space of classical physics is a one-dimensional affine space.

The two parameters associated with this time-space are called interval of time and instant of time. The

parameter instant of time is the position parameter in this space; that is to say, it is characterized by

translation invariance. The parameter interval of time is associated with the metric of this space and is,

therefore, characterized by scale invariance.

The first experiment involves the determination of when an event occurred. There are two observa

tions made in this experiment: the event of interest has been observed (1) not to have occurred before a

known time, tb and (2) to have occurred not later than another known time, t2. In classical physics

which is the theory used to reduce the data, t, < t < t2, the event of interest must have occurred at

some specific time t. Since the time t has not been observed and is the entity for which the data are

reduced, the elements of the possibilities-generating group must transform it to a new time t' but must

leave invariant what was observed: t) < t < t2. As pointed out above, since an instant of time is defined

in classical physics to be a continuous translation invariant parameter, the possibilities-generating group
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for the time t is the one parameter Lie group T, where t is transformed into t' according to t' = t + a,

and where a is the continuous parameter of the group. The group manifold or parameter space of this

group is a closed compact topological space. In the data, t, < t < t2, t, and t2 are irreducible represen

tations of the known times. They define the closed parameter space of the possibilities-generating group

for the instant of time t. It is well known14 that the volume measure in the group manifold of T, is

constant; therefore the physical probability that the event of interest occurred in an interval of time, dt,

at any time, t, between t, and t2 is dt/(t2 - t,), and zero elsewhere.

3.5. How Fast?

The measurement of the scale parameter of the time-space of classical physics is considered in the

form of the measurement of the period of a cyclic phenomenon t. Here again, there are two observa

tions in this experiment: the period of the phenomenon of interest was observed to be (1) not less than

the known period jx of a particular phenomenon and (2) not more than the known longer period t2 of

another phenomenon. The data to be reduced for the period t can be written tx < t < t2.

The data reduction for this experiment parallels the one for the previous experiment. The only

difference is that the possibilities-generating group for the period t is the scale transformation, t' = br.

The parameter space for this Lie group is also closed. The volume measure in the parameter space of

this group is no longer constant but proportional to 1/b. Therefore, the physical probability for the pos

sibility that the period of the phenomenon of interest is in the time interval, dr, about t, in the range t,

^ t < t2, is dr/(r In (t2/ti)), and zero elsewhere.

The last two data reductions involving continuous parameters solve a fundamental logical problem

that arises when one tries to apply the theory of statistics to continuous parameters. It is then required

that one deals with a sample of values of the continuous parameter. It is a logical impossibility to have

a sample of values for a continuous parameter since a finite number of digits must be used. To cope

with this problem the notion of significant figures is introduced. Every datum in the sample must there

fore be of the type just reduced, but it is said that such datum cannot be dealt with using the theory of

statistical estimation because this datum leads to systematic uncertainties. The fact that for some



28

specific applications it does not matter where the value of the parameter is in an interval is irrelevant

from a purely logical point of view: one cannot obtain a sample of values for a continuous parameter.

It is often said that classical physics is deterministic. One interpretation of this statement is that it

is possible in principle to determine the initial condition of a system such that its behavior at any subse

quent time can be predicted. Since time is a continuous parameter in classical physics, the last two

data reductions indicate that the above statement cannot be correct if one considers that the initial con

ditions would have to be determined by observations.

3.6. Von Mises' "Water and Wine" Problem

The example of data reduction now considered is the analysis of a problem proposed by Von

Mises.20 This problem is of interest because it is one of the last remaining "Bertrand Paradoxes." Ber-

trand paradoxes are problems which yield contradictions when the principle of insufficient reason is

applied to solve them in two different ways. Von Mises' "water and wine" problem is analyzed here

because Jaynes,19 who used transformation group arguments based upon his desideratum of consistency

to solve the Bertrand chord problem, conjectured that Von Mises' problem may be "ill posed." From an

experimental physics point of view, we deal with the measurement of the ratio of two scale parameters

that produce a dimensionless entity.

As originally stated by Von Mises, the problem is the following: "We are given a glass containing a

mixture of water and wine. All that is known about the concentration of the liquid is that the ratio of

water to wine is not less than 1 and not more than 2; this means that the mixture contains at least as

much water as wine and, at most, twice as much water as wine." Von Mises shows that if the principle

of indifference is applied to the ratio of water to wine, one obtains a median value for the probability

density function of 3/2. However, if one applies the same principle for the inverse ratio, the median

value for the probability density function of the ratio of water to wine is 4/3. The classical theory of

probabilities is therefore internally inconsistent when one uses the principle of insufficient reason in this

fashion to assign probabilities. Inconsistencies such as the ones above have been used by Von Mises,

among others, to argue that definitions of probabilities not based upon limiting frequencies of observa

tions (the statistical definitions of probabilities) were doomed to failure.
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In order to reduce the data corresponding to Von Mises' stated observations in the experiment, it is

necessary to specify what attribute is used to express the concentration of the liquid. This is required in

order to know what is the "law" of the physical theory that applies to this attribute since this law deter

mines the allowed transformations of the physical system. Classical physics is used to analyze the situa

tion of Von Mises, and masses are used as the relevant attributes. Since a definite mixture of water

and wine is observed, it has a definite mass M which is equal to the sum of the mass of the water, Mb

and the mass of the wine, M2. Therefore from classical physics one has the datum, Mi + M2 = M,

where M must be kept constant. The second datum is 1 < M,/M2 < 2 which is the same thing as 1/2

< M2/M, < 1. These data have to be reduced for the ratio M,/M2, or M2/Mb which was not

observed. The elements of the possibilities-generating group for the ratio M)/M2 must change this ratio

from what it is in the mixture while keeping all of the data unchanged. Since one datum is M, + M2

= M where M is fixed, the elements of the group must change simultaneously M2 and M,. If a certain

mass of water is added to change the ratio, Mi/M2, the same mass of wine must be withdrawn. Since

mass is a continuous parameter in classical physics, the group of transformations is a one-parameter Lie

group where Mi and M2 are transformed into M', and M'2 according to M', = M, + a and M'2 =

M2 - a. From this group of transformations which is the possibilities-generating group for the masses

M! and M2, one can easily calculate the physical probability density function for the ratio, M,/M2, and

find that its median value is neither 3/2 nor 4/3, but is 7/5. If one uses "Jeffreys rule"17 one must con

clude in his theory of probabilities that the median value of the ratio M,/M2 is ^/Tsince the ratio of

the two masses can only be in the domain 0 to co. This is wrong since in classical physics it is

equivalent to treating the ratio of the masses, Mt/M2, as a scale parameter which it is not.

The above analysis of Von Mises' problem requires that a particular attribute of wine and water in a

physical theory be used for expressing the "concentration of the liquid." This analysis only holds for

attributes that are additively conserved in the mixture in the theory used. The answer given would not

hold if volumes were used and the wine contained alcohol. However, a unique answer prevails for any
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specified law of volume additions, but it varies with the law. We conclude that after all Jaynes was

right that the problem was ill-posed and we have given the reason why and it differs from Von Mises'.

If we look at Von Mises' problem as one of data reduction in a physics experiment, it is well posed since

a particular attribute of a physical theory must have been used and needs to be specified, and this deter

mines the transformation law which allows us to reduce the data uniquely.
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4. THE FUNDAMENTAL THEOREMS OF PHYSICAL PROBABILITIES

In this section a notation is introduced to designate the physical probability of the possibilities for

entities of physical theories; that is to say, to designate the normalized volume measures in group mani

folds of possibilities-generating groups. It is then shown that when this notation is used to express the

fact that the normalized volume measures in a group manifold are additive (countably additive) one

obtains formulae which have been used for centuries as the axioms of theories of probabilities and are

considered today as the physical laws of random phenomena: the laws of statistics. Mathematicians

describe the formulae given in this section by saying that the algebra of the normalized volume meas

ures in a group manifold is a Borel algebra.

4.1. Notation

The notation used to denote the physical probabilities of possibilities for entities of physical theories

must of necessity be complex since it must indicate not only to which possibilities they refer to but also

which possibilities-generating group is involved. However, to adopt too complex a notation defeats the

very purpose for which a symbolic notation is used: conciseness.

It would be desirable to use five symbols to indicate the possibilities-generating group involved.

These symbols would be used to indicate: (1) the observations made in the experiment, O; (2) the physi

cal theory being applied, T; (3) the data of the theory identified with the observations, D; (4) the

abstract entity C of the theory T for which the data D are reduced; and (5) some standard designation

for the abstract group isomorphic to the possibilities-generating group.

Although it should always be possible to provide all of the above information, it is not practical to

do so in the notation. One must rely upon the context in which the notation is used to provide much of

that information. The only element among those listed above that is retained is the data D of the phy

sical theory which are left invariant under the transformations of the group. Occasionally it is useful to

indicate the specific entity C of the physical theory for which the data D are being reduced. The fact

that the theory being used does not appear in the notation of the possibilities-generating group is a

departure from tradition since data reduction is used to test physical theories considered as hypotheses



32

and in the usual tradition of "hypothesis testing," the hypothesis being tested appears explicitly in the

notation.

No shortcuts can be taken in the notation to designate which possibility, or sets of possibilities, the

physical probability applies to since one cannot rely upon the context in which the formulae are used to

provide the information. A physical probability can only apply to a specific possibility of a set of possi

bilities, a subset of this set, or to the whole set. Consequently, the notation of set theory could be used

but this will not be done since, in general, one is interested in dealing with the power set of a set of pos

sibilities. It is therefore more convenient to use the notation of lattice theory15 which has the further

advantage of being frequently used in connection with Borel algebras. However, since the terminology

of lattice theory is not commonly used in physics, the notation adopted will be explained in terms of the

presumed, more familiar operators of Boolean algebra.

The sign A is called a "conjunction" and is a binary relation; it is the usual "logical and" in the sense

of "and also." The sign V is called a "disjunction" and is also a binary relation; it is the usual "logical

inclusive or" in the sense of "and/or." The sign ~ is called "complement" and is a unary relation in the

sense that ~A is the complement of A. The notation ~A is only used in a context when A designates

a subset of a set of possibilities and ~A is a subset of the set of possibilities where the set AV~A is

the complete set of possibilities and AA—A is the null set. What is called the complement of a set is

therefore the relative complement of a set. Readers familiar with lattice theory will recognize that

mathematically we are dealing with Boolean lattices in which the <x-measure introduced in the lattices

to generate a Borel algebra is uniquely defined since these Boolean lattices are generated from the

group manifold of a group. It must also be noted that in this method of data reduction the Lebesgue

extension of a cr-additive measure in a a-field of sets is not introduced as is normally done in the theory

of statistics.15

If in a particular physical theory on the data D the possibilities-generating group for the entity C is

of order n it generates a set of possibilities {C,}, i = 1,2, ..., n, then the notation

(Q\D) (4.1)
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is used to denote the physical probability of the possibility C,. The symbol to the left of the vertical bar

indicates to which possibility, or subset of the set of possibilities, the physical probability applies to; the

symbol to the right of the vertical bar indicates the possibilities-generating group, although only the

data D left invariant by this group is indicated in the notation. Occasionally, the notation (4.1) for a

physical probability is extended to show explicitly which entity C of the physical theory the data D are

being reduced for as follows:

(QlDiC) . (4.2)

If one denotes by B a particular subset containing the elements Cb C2, ..., Cm, of the set of possibil

ities {C,(, i = 1,2, ..., n, the Boolean notation

B = CxVC2V...VCm , m < n (4.3)

is used to denote B. The physical probability of B is written:

(B\D) = (CiVC2V...VCm\D) , (4.4)

or

(B\D:C) = (ClVC2V...VCm\D:C) . (4.5)

If it is necessary to indicate that the data D consist of two sets of data, D[ and D2, then the Boolean

notation

D = DxkD2 (4.6)

is used for D in the symbol for the possibilities-generating group. For instance, if this were the case one

would write the physical probability (4.1):

(Qb,AZ>2) . (4.7)
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It is important to note that the disjunction sign cannot be used on the right-hand side of the vertical

bar in the symbol for a physical probability, and if the conjunction sign appears between two symbols

they cannot be mutually contradictory in a physical theory because a group of order zero does not exist.

By definition, the symbol (C|C:C) is unity since the possibilities-generating group in this case is of order

one: the identity transformation.

If the possibilities-generating group is the direct product of two groups, as was the case in the exam

ple of the playing die experiment in Sect. 3, each possibility of the set of possibilities {C,}, i = 1, 2, ...,

n, can uniquely be identified by two labels, or indices, one from each group. There is a conflict of nota

tion between the standard notation of group theory where Cj.k would be used and the notation of lattice

theory where (Ay, B^) would be used (the elements of one lattice being denoted Ay and the elements of

the other B^). This is also in conflict with the standard notation of probability theories where a "com

pound event" would be written \jBk. Even though it may create some confusion for those familiar with

lattice theory, in the case of possibilities generated by a group which is the direct product of two groups,

the notation adopted in this paper is:

C, = AjABk , (4.8)

where C, is a possibility generated by the direct product group and Aj, Bk are the possibilities gen

erated by the two groups. There is no conflict in this use of the conjunction sign and its use in (4.6)

because of its meaning of "logical and". In the case of a group of transformations that is the direct pro

duct of two groups, one may write:

(Q|D:C) = (AjABk\D:C) . (4.9)

It is often useful in this instance to indicate for which entity of the theory the data D are being

reduced.

It was implicit in the above notations that the possibilities-generating group was a finite group. This

notation can be extended when it is a continuous group. When the possibilities-generating group is con

tinuous, it is preferable to identify the possibilities for which the physical probability is given by the
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corresponding elements in the group manifold. This is done by using a representation of the

possibilities-generating group as was done in the two examples of continuous groups given in Sect. 3.

Using a one-parameter continuous group as an example, if one denotes by x a specified faithful

representation of the possibilities-generating group for the entity Xand by dx the volume element in the

group manifold at x, then the physical probability for the possibilities corresponding to the volume ele

ment dx is written:

(dx\D:X) - (x\D:X)dx , (4-10)

where (x|D:X) is the density function of group elements at x normalized to unity when integrated over

the group manifold and is called the physical probability density function of the possibilities at x.

Because the notation for continuous groups [the left-hand side of (4.10)] is formally identical to the

notation for finite groups and the results apply to both, there is no need to differentiate between the two

types of groups in the rest of this section. In the case of continuous groups, the summations are to be

replaced by Riemanian integrations over the group manifold.

The notation adopted makes it apparent that, in the method of data reduction proposed, a physical

probability of a possibility for an entity of a physical theory is a conditional probability, in the usual

terminology of probability theories.

4.2. The Disjunction Theorems

What are called here the disjunction theorems of physical probabilities are the expressions, in the

notation just defined, of the fact that the volume measure in the group manifold is additive. That is to

say, the physical probability corresponding to a subset of the set of possibilities is the sum of the physi

cal probability of each element of the subset.

If |C.}; j = it 2, ..., n are the n distinct possibilities for an entity Cgenerated by a possibilities-

generating group of order non the data D, then by definition of physical probabilities one has:

(ClVC2V...VCn\D:C) = £ (C,|D:C) = 1 • (4'U)
1 = 1



36

If one denotes by A a subset of the set {C, }, i = 1,2, ..., n, say the subset {C,-}, j = 1,2, ..., m with

m < n, then one obtains directly:

(A\D:C) - (C]VC2V...VCm\D:C) = £ (Q|D:C) . (4'12)
1 = 1

If B denotes another subset of the set of possibilities {C,(, then it follows that:

(AVB\D:C) = (A\D:C) + (B\D:C) - (AAB\D:C) , (4.13)

where AVB denotes the union of the two subsets A and B, usually written AIJB, and AAB denotes the

intersection of two subsets A and B, usually written AfiB.

The use of the sign AAB to designate the subset of possibilities which is the intersection of the two

subsets A and B of the set of possibilities {C,} is consistent with the meaning of the symbol A in boolean

algebra where it stands for the possibilities which are in the subset A and also in the subset B. It is

used here in the same sense as "meet" in lattice theory where the elements of the lattice are subsets and

the binary relation is set inclusion.15

4.3. The Complement Theorem

Given a set of possibilities {C,-}, i—1, 2, ..., n and A denotes a subset of this set. By definition, the

subset of the set {C,}, called the relative complement of the subset A is ~A and ~A has no element in

common with A. Therefore, applying the three disjunction theorems above one obtains directly:

(CxVC2V...VCn\D:C) = (AV~A\D:C) = (A\D:C) + (~A\D:C) = 1 . (4.14)

The last equality in (4.14) is called the complement theorem.

4.4. The Conjunction Theorem

As previously stated, if the possibilities-generating group for an entity C on the data D is the direct

product of two groups, each possibility C, can be specified by two indices, one coming from each of the

two groups. It follows that the number of possibilities C,, n, is the product of the orders 1 and m of the
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two groups: n = lm. Since for a continuous group the volume measure in the group manifold

corresponds to the number of elements of the group in the neighborhood of the point,13 the volume

measure in the group manifold of a continuous group which is a direct product group is equal to the

product of the volume measures of the two groups and the group manifold is two-dimensional.

In the notation adopted, one writes for the possibility C, of the direct product group A^AB*, where

Aj is one of the possibilities associated with one of the two groups and Bk is one of the possibilities

associated with the other group. It therefore follows that one has:

(C,|D:C) = {AjABk\D:C) = (Aj\D:A)(Bk\AjAD:B) . (4.15)

The formula (4.15) is called the conjunction theorem. In most theories of probabilities, the formula

corresponding to (4.15) is called the law of conditional probabilities, an inappropriate terminology here

since all physical probabilities are conditional.

It must be noted that in the conjunction theorem (4.15) there are three different possibilities-

generating groups involved, as is seen from the symbols on the right-hand side of the vertical bars. The

possibilities-generating group D:C is the direct product of the possibilities-generating group D:A, and

the possibilities-generating group A,AD:B. The elements of the group labelled D:A leave D invariant

and generate the possibilities for A making complete abstraction of the entity Bof the physical theory.

The elements of the group A;AD:B leave invariant Dand A,-, as if A, was the value that Ahas in the

physical theory, and generates the possibilities for B.

If G, and G2 are two groups, then the direct product group Gi x G2 is the same as the direct pro

duct group G2 x Gb The groups G, and G2 are both invariant subgroups of the group G, x G2 or G2 x

Gb Since it is purely conventional how one labels the elements of a direct product group in terms of

the elements of the two groups it is the direct product of, the conjunction theorem (4.15) can be rewrit

ten:

(Ci\D:C) = (BkAAj\D:C) = (Bk\D:B)(Aj\BkAD:A) . (4.16)
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It must be emphasized, as is clear from the notation, that the possibilities-generating group D:A is

very different from the possibilities-generating group B*AD:A. Although the set of possibilities gen

erated by the group B*.AD:A is a subset of the possibilities for A generated by the group D:A, the

group B^AD:A is not generally a subgroup of the group D:A.

A physical interpretation of the groups that enter in the conjunction theorem is provided by the

playing-die experiment analyzed in Sect. 3 if one denotes by B the side of the die which is facing north

and by A the side of the die facing up.

4.5. Bayes Theorem

The two formulae (4.15) and (4.16), collectively called the conjunction theorem, have two important

corollaries. The first one has been given the name of Bayes theorem, even though it was not first pro

posed by Bayes, and holds in all theories of probabilities where the equivalent of (4.15) and (4.16) hold,

however they are justified.

What is called Bayes theorem is the formula that results from equating the right-hand sides of

(4.15) and (4.16), since they are both equal to (C,|D:C). We can rearrange the terms:

or

(BMjAD.B) (4i7'l(A^O-.A) =Ujp.^^— . (4.17)

(Aj\BkAD:A) (a is)(BMjAD.B) = (Bk\D:B) J{A\D-A) '

The above formulae can be obtained directly from group theory. They are important because one

can obtain algebraically the volume measure in a group manifold without having to exhibit explicitly

this group of transformations; for instance, the group B,(.AD:A. In many problems of data reduction it

is much easier to obtain the physical probabilities of the possibilities on the left-hand sides of (4.17) or

(4.18) from the physical probabilities of the possibilities that appear on their right-hand sides.

Although the price paid to do so appears to be high, the following corollary reduces the number of

transformation groups one has to deal with from three to only two.



39

4.6. The Sum Rule

The second important corollary to the conjunction theorem is obtained by making sure that the phy

sical probabilities are the normalized volume measures in the group manifold, a fact which resulted in

the first disjunction theorem (4.11). This second corollary is often called the sum rule. It is obtained by

summing both sides of (4.15) over all the possibilities Aj of the set of possibilities generated by the

group of transformations, D:A, of which there are m. Thus one obtains:

2(BkAAj\D:C) = ^(Aj\D:A)(Bk\AjAD:B) . yHiy>

It should be recalled that the group D:C is the direct product of two groups, and what one obtains

by summing the physical probabilities on the left-hand side of (4.19) over all of the m possibilities A7- is

just the physical probability that was denoted (B*|D:B) in (4.16). Therefore, if (B*|D:B) is substituted

for the left-hand side of (4.19), one obtains:

m (A ?f)1
(Bk\D:B) = ^(Aj\D:A)(Bk\AjAD:B) , ^M}

which is called in this paper the sum rule of physical probabilities.

It should be noted that the left-hand side of (4.20) is just the physical probability that appears in

the denominator of (4.17) and that the physical probabilities that appear on the right-hand side of

(4.20) are those in the numerator of (4.17). The result (4.20) (the sum rule) shows that one does not

need to exhibit explicitly the group D:B in order to obtain the physical probability (Bt|D:B) if one

already has the physical probabilities (Ay|D:A) and (Bfc|Ay-AD:B). If one uses (4.20) in (4.17), the

Bayes theorem becomes:

{A]KkD.A) . (Ap^jBMjAD-.B) (4.21)
f{Aj\D:A)(Bk[4jAD:B)
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Often Bayes theorem is only quoted in the form shown in (4.21) rather than in the form shown in

(4.17).

4.7. Remarks

The formulae given in this section are merely the encoding of the fact that the normalized volume

measure in a group manifold is an additive measure into a notation which is adapted to the method of

data reduction proposed. These formulae establish explicitly that the algebra of physical probabilities of

possibilities for entities of physical theories is a Borel algebra. This fact was implicit in the additivity of

the volume measure in a group manifold. The Frobenius algebra of groups has long been used in physi

cal theories. The fact that there is a Borel algebra associated with a group does not seem to have been

widely recognized or made explicit use of in developing physical theories, although many useful statisti

cal physical theories have been proposed. It should be noted that usually one tends to associate Borel

algebras with semigroups rather than groups.

The formulae given in this section have been called the fundmental theorems of physical probabili

ties because they are useful in performing most data reductions as will be shown explicitly in the next

section when an important result is derived at the same time.



41

5. PHYSICAL PROBABILITIES OF OUTCOMES AND LIMITING FREQUENCES

The purpose of this section is to provide an illustration of the use of the algebra of physical proba

bilities to perform a data reduction. In the physical situation now analyzed, the data will be reduced

for an entity of the physical theory that could be called the outcome of the experiment if the experiment

were to be performed. It will be shown that, from the point of view of the theory used to analyze the

physical situation, the limiting frequency with which a certain type of outcome should be observed to

occur (if the experiment were repeated an infinite number of times) is numerically equal to the physical

probability of this type of outcome based upon the data that describe that physical situation and does

not contain any observed outcome. It is only in Sect. 7 that the reduction of data containing observa

tions of outcomes in repeated experiments is considered.

The type of physical situation now analyzed played an important role in the development of theories

of probabilities. From about 1650 to approximately 1750 the use of probability theories was mostly res

tricted to the analysis of thought experiments such as the ones analyzed in this section. It was only

after approximately 1750 that theories of probabilities were explicitly used in the analysis of data

obtained in experiments, including the observation of their outcomes.

5.1. Conceptual Sampling

The thought experiment now analyzed is based upon and analyzed with classical physics and can be

characterized by the name of conceptual sampling without replacement. The experiment involves a long

tube and N distinguishable spherical balls. As usual the distinguishability of these spherical balls will

be explicitly accomplished by considering that these balls are numbered 1 through N. In this experi

ment, the balls numbered 1 through n, n < N, are black, and the remaining balls are white. The balls

are all approximately of the same diameter. The inside diameter of the tube is larger than the diame

ter of any of the balls but smaller than the sum of the diameter of any two balls. The tube is held vert

ical and has a release mechanism at the bottom whereby balls placed inside the tube could be released

or drawn out of the tube one at a time. According to classical physics, balls should be released from

the bottom of the tube in the order in which they were inserted into the tube at the top. In the
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language adopted in this paper, however, if the order of the loading of the balls into the tube has been

observed, there is, based on these data, a physical probability of unity that they will come out of the

tube in that order, if the balls have not yet been drawn from the tube.

The data reduction that concerns us in this section is when the observations mentioned above have

been made but the order in which the N balls were loaded into the tube has not been observed. This

can easily be accomplished by having someone else load the balls into the tube. The above geometry for

this type of experiment is chosen over the conventional urn from which balls are drawn blindfolded to

avoid any connotation that there is an element of chance involved.

5.1.1 The number on the first ball drawn

On the basis of the observations interpreted in classical physics, the first ball drawn would be the

one at the bottom of the tube and there is a number on it. The number that is on the first ball drawn

will be considered the outcome of the experiment and the data are reduced for this entity. The relevant

data here are that the N balls are in the tube and the entity for which these data are reduced is denoted

F for the first ball drawn but it is implied that the relevant attribute is the number on this ball. The

possibilities-generating group for F is denoted N:F. This group of transformations corresponds to an

element of apparent symmetry in the physical problem considered from the point of view of classical

physics in which only that which has been observed appears. What this apparent element of symmetry

is can easily be found. There are N balls in a column each with a different number on them. There is

no element of symmetry if we visualize the column of balls with the numbers visible to the observer;

however, for an observer placed on the opposite side of the column of balls so that the numbers on the

balls could not be seen, this same column of balls exhibit a great amount of "symmetry." What this ele

ment of symmetry is corresponds to the fact that two different columns of N balls, which are different

because the order of the balls in the columns are different seen from a poir.t in space where the

numbers on the balls cannot be observed, appear to be the same. There are N! such different columns

of N balls that would appear to be the same. The complete apparent symmetry in this column is

described by the symmetric group SN. The symmetric group of degree N, SN, is not the one that

interests us in the data reduction considered here because we only care about the number that is on the
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bottom ball of the column. The possibilities-generating group N:F that is needed is the cyclic group of

order N, CN which is an invariant subgroup of SN. A physical interpretation of the elements of the

group, N:F, must be provided. This is easily done. The generator of the cyclic group, CN, is the

transformation of the column of N balls where the bottom ball is placed at the top, or its inverse

transformation where the top ball is placed at the bottom. There are N different elements of this group

of transformations. Each element of this group of transformations applied to the column of balls that is

in the tube changes the number that is on the bottom ball and, therefore, changes the outcome of the

experiment. Let us denote by {F,}, i = 1, 2, ..., N, the set of possibilities for F, where F, stands for the

first ball drawn has the number i on it. Because the group N:F is finite and of order N the normalized

volume measure in the group manifold of N:F is 1/N. Therefore, the physical probability of each possi

bility F, for the outcome of this experiment is:

(F,\p/:F) = 1//V , ; = 1, 2, ..., N . (5.1)

5.1.2 The color of the first ball drawn

To consider that the outcome of the experiment analyzed is the number on the first ball drawn is

permissible, but one can also consider the color of the first ball drawn as its outcome. The observations

made in this experiment include the data that the balls with numbers less than or equal to n are black

and the others white. These data have now to be considered as well, and for this data reduction the

data will be written N,n. Since we are still considering the first ball drawn from the tube, the

possibilities-generating group is still the one found in the previous data reduction which will now be

denoted N,n:F. If one denotes by Bi the subset {F,}, j = 1, 2, ..., n, of the set of possibilities for F, {F,},

i = 1,2, ..., N, in Boolean notation we have:

Si = FXVF2V...VF„ , (5.2)

and Bi can be read: "the first ball drawn is black." The relative complement of the subset Bb ~Bb can

be written W, to be read: "the first ball drawn is white." Using the disjunction theorem of the algebra

one obtains for the physical probability of the possible outcome B,:
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(Bx\N,n:F) = (FxVF2V...VFn\N,n:F) = ^{F^,n:F) = -^ . (5'3)
1= 1 **

5.1.3 The first two balls drawn are black

The emphasis in the rest of this section is on the application of the algebra of physical probabilities

to calculate the physical probability of some specific possible outcome of the experiment, where the out

come of the experiment is considered the drawing of several balls from the tube. The idea is to focus

upon some specific possible outcomes rather than generating all of the possible outcomes for a certain

number of drawings of balls from the tube, by giving explicitly the relevant possibilities-generating

group. It is for these types of data reductions that the algebra of physical probabilities is most useful.

The notation B, is introduced to indicate that the outcome of the i'h draw results in a black ball and

the notation W, denotes that it results in a white ball. Assuming that in this experiment n > 2, the

data N,n are now reduced to calculate the physical probability of the outcome denoted B,AB2. It is

emphasized that no balls are drawn from the tube; what is being calculated is the physical probability

of a specific outcome of a contemplated experiment. In the rest of this section only the data available

to perform the data reduction, N,n, are used to symbolize the possibilities-generating group. What is

now sought is (B!AB2|N,n). Using formally the conjunction theorem of the algebra one obtains:

(BxAB2\N,n) = (Bx\N,n)(B2\BxA[N,n]) . (5.4)

The first term on the right-hand side is given by (5.3). The second term on the right-hand side can

readily be obtained from the considerations that yielded (5.3). The symbol B,A[N,n] means that there

were N balls in the tube of which n were black and then a black ball was drawn from the tube. The

state of the system at this stage can be described by saying there are N-l balls in the tube of which n-1

are black. Repeating the same argument that led to (5.3), but with N replaced by N-l and n replaced

by n-l, the second term of (5.4) is just (n-l)/(N-l). Therefore, the desired answer is:

(BxAB2\N,n) = -^\ = J|K^2)! , (5.5)
1 2 7V(7V —1) (n-2)!7V!

where n! is the gamma function T(n+1).
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By induction it is readily shown that:

(*,A*2A ••• ABr\N,n) =-f^=$ . ^
(n—ry.N]

Similarly one has:

(WXAW2A • • • AWs\N,n) - {N_H_s)m •

The possibilities for the outcomes (5.5), (5.6), and (5.7) are some of the possibilities generated from

the unknown order in which the balls are in the tube, by the direct product of cyclic groups.

5.1.4 The first r balls drawn are black and then m-r white balls are drawn

From the results (5.6) and (5.7), applying the conjunction theorem yields for the physical probabil

ity of the possibility that r black balls are drawn and then m-r white balls are drawn for the outcome of

drawing m balls from the tube:

(BXAB2A •••ABrAWr+xAWr+2A •••AWm\N,n) = in^~^~^+r)l ^

This result holds for the particular sequence indicated. However, it can readily be shown that it also

holds for any particular specified order of obtaining r black balls in m draws.

5.1.5 In m draws r black balls are obtained

From the result (5.8) one can obtain the physical probability of the possible outcome in which

exactly r black balls are obtained in m draws regardless of the order in which the black balls occur in

the drawing. To do this requires only consideration of the group of permutation of r B symbols and m-r

W symbols. The order of this group is well known to be given by the binomial coefficient:

im | = m\ (5.9)

If in analogy with the notation N,n used to indicate that there are N balls in the tube of which n

are black and the remaining ones white, one denotes by m,r the possible outcomes of the drawing of m

balls and r of them are black and the remaining ones white, then one obtains by multiplying (5.8) by
(5.9):

(N-n)\(N-s)\ (5.7)
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\m\ lN-n) (5.10)
i \m \ \r\ \m—r\(m,r\N,n) = —-

\m)

The right-hand side of (5.10) is known as the hypergeometric distribution.

The result (5.10) is the physical probability of the possible outcome of the experiment if one consid

ers that the outcome of the experiment would be the drawing of m balls from the tube and this outcome

is characterized by the number of black balls that would be obtained. Since the drawings of a ball

would be the outcome of pressing the lever of the release mechanism at the bottom of the tube, one can

also view the drawing of m balls as the collection of the outcomes of pressing the lever m times. If one

considers the drawing of a black ball as a result of pressing the lever as one type of outcome and the

drawing of a white ball as another type of outcome, making abstraction of the fact that every time the

lever is pressed it is a different ball that is obtained, then the ratio r/m can be called the frequency with

which a particular type of outcome (a black ball) would be obtained if the lever was pressed m times.

Consequently, the result (5.10) can be viewed as the physical probability of the possible frequencies for

a particular type of outcome.

It must be recalled that since there is no drawing of balls actually done in the experiment, the fre

quency fm = r/m is a ratio of observables of the physical theory used to analyze the physical situation

and that it is not a ratio of observations in this situation.

5.2. Conceptual Limiting Frequency

In the theory of statistics, the concept of the limiting frequency of observed outcomes of a certain

type plays an important role since it is the definition of a statistical probability. Physical probabilities

in this paper are not so defined but, having obtained in (5.10) what can be interpreted as the physical

probability for possible frequencies of outcomes in the physical situation analyzed, this situation is now

modified to allow the definition of what will be called a conceptual limiting frequency.

The ratio r/m was called the frequency of possible outcomes where a black ball was drawn in m

draws and denoted fm. In order to define a limiting frequency one must generate an infinite sequence

of values of fm. Because in any actual experiment of the type analyzed N and n can only be finite, and
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also consequently m and r, any sequence of frequencies fm, however defined, must be finite. There is,

however, no essential reason why the integers N, n, m, and r cannot be made very large, at least con

ceptually in a thought experiment. That is to say, one can treat mathematically the formulae just

derived and continue to assign to the symbols that appear in them the meaning they have in classical

physics for the situation they were obtained from.

One can take the formula (5.10) and let both N and n tend to infinity while keeping the ratio n/N

constant. What one then obtains is:

lim (5.11)

NnZ™ (ms\N,n) = (m,r]p) - -^-^p^-pT^ •
n/N=p

If one does the above, all of the analysis that lead to (5.10) still holds. In particular, the physical

probability of the possibility for drawing the first ball black is still n/N which is now p. However, what

has been obtained in the process of letting N and n tend to infinity, while leaving their ratio stay con

stant and equal to p, is that the physical probability of the possibility for drawing a black ball at any

time the lever is pressed now stays constant and is given by p. The physical meaning of this is clear.

When n and N are very large the ratio of black balls to the total number of balls that are in the tube

remains very closely the same after any number ofdrawings very much smaller than N and n.

Having obtained (5.11), one can now let both m and r be large. This allows us to use the Stirling

approximation to the factorials in (5.11). Introducing the notation fm for the ratio r/m, the formula

(5.11) becomes:

(Jjp) = [lTmfm(\-fm)\ 1/2

*• f > y i —f '
J m i J m

(5.12)

The mathematical analysis of the distribution (5.12) as a function of m has been performed in great

detail long ago (Laplace,16 Chapter III, Book II, and Poincare,7 Chapters IV and V). The purpose of

this analysis is to show that the sequence of distributions (5.12) as a function of mtends to a limiting

distribution which in modern terminology is the Dirac delta distribution 5(f-p). This result can be ver

balized in physical terms as follows. According to the physical theory used, the conceptual limiting
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frequency with which the outcome of a particular type would be observed, if the experiment were car

ried out indefinitely, is equal to the physical probability of this outcome on the data.

It must be emphasized that the above interpretation of the fact that the limiting distribution (5.12)

is the Dirac delta distribution <5(f-p), is a statement made from the point of view of the physical theory

used about entities that have not been observed and says nothing about what will be observed. Any

assertion about what will be observed in an experiment is an assertion of a physical theory since it is a

statement about what is and has not been observed and must therefore be either true or false.

Although the above derivation of the relation between conceptual limiting frequencies and physical

probabilities of possibilities for the outcome of experiments is the traditional one given in the classical

theory of probability,16 it only applies to observables of physical theories. However, data of physical

theories can be reduced for entities that are not observables, and it is not very meaningful then to speak

of limiting frequencies of what would be observed if the experiment was carried out indefinitely. For

every data reduction in which possibilities for entities of theories are generated by a group of transfor

mations, there is another conceptual limiting frequency that one can introduce and which is numerically

equal to the normalized volume measure in the group manifold (the physical probability of the possibili

ties). This conceptual limiting frequency arises from the group axioms. Each possibility for an entity

of a theory is generated by applying conceptually a transformation of the physical system defined by the

observations (the data). Each different transformation produces a physical system that has the same

elements of apparent symmetry on the data; therefore one can conceptually apply indefinitely these

transformations and count the number of times a particular possibility is generated as well as count the

total number of times these transformations have been applied. In the limit where this is done an infin

ite number of times, each possibility will occur the same number of times and the ratio of the number

of times a particular possibility occurs to the total number of times these transformations have been

applied is a limiting frequency which is equal to the normalized volume measure in the group manifold.

There seems very little doubt that the above conceptual physical interpretation which can be given to

the normalized volume measure in a group manifold may have been at least intuitively perceived when

it was introduced and is reflected in the manner it is called: it is a countably additive measure that can
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be associated with each group element of the group. It may not be unreasonable to conjecture that the

above physical interpretation given to the volume measure in a group manifold may play some role in

the apparently long held and deep-seated conviction that there is a relationship between probabilities

and limiting frequencies. What is argued above is that these frequencies are conceptual as opposed to

being real and result from apparent symmetries that arise from the interpretation in a theory of what a

physical system is on the basis of what is perceived to have been observed.
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6. PHYSICAL PROBABILITIES OF PHYSICAL PROBABILITIES

In all of the examples of data reductions performed so far in this paper, one could easily find in the

theory used a group of transformations of the physical system analyzed whose elements changed what

was the entity of interest and left invariant the data corresponding to the observations. In the type of

data reductions now considered such a direct relationship is lacking between the data corresponding to

the observations and the entity of interest. What happens in these situations is that an element of sym

metry of the physical system involves not the entity of interest but some other entity. One can therefore

introduce a group of transformations whose elements change what this other entity is and leave invari

ant the data corresponding to the observations. This group of transformations is therefore a

possibilities-generating group for this other entity and one can determine the physical probability of

each possibility for this other entity. Now one finds that some, if not all, of the possibilities for this

other entity give rise in the physical situation to an element of symmetry that involves the entity of

interest when they are individually adjoined to the data corresponding to the observations. One can now

introduce a possibilities-generating group for the entity of interest. The elements of this group of

transformations leave invariant not only the data corresponding to the observations but also one of the

possibilities for the other entity. Since this second possibilities-generating group is a function of the ele

ments of the first possibilities-generating group one must assign to this second possibilities-generating

group the physical probability of the possibility for the other entity that enters into it. It is appropriate

in these situations to view the first group of transformations as a possibilities-generating group for

possibilities-generating groups for the entity of interest. In these situations it is also appropriate to say

that the physical probability of the possibilities for the entity of interest, determined by the second

group of transformations, have a physical probability determined by the first group of transformations.

In the proposed method of data reduction, it is the above mechanism that explains and allows us to

deal formally, therefore quantitatively, with the intuitive notion that all probabilities which are numeri

cally equal are not the same. This also explains the intuitive notion that probabilities are uncertain.

Two examples of data reductions involving possibilities-generating groups for possibilities-generating

groups are first given. Then the situation is analyzed formally from the point of view of group theory.
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6.1. Discrete Probability Space

The first example considered involves a finite group of transformations that generates, on the data in

the experiment, possibilities for an entity which is not the one of interest. Then each of the possibilities

for this entity so obtained is used to determine a possibilities-generating group for the entity of interest.

The physical situation that forms the basis of the data reduction is the same as the one considered in

Sect. 5. That is to say, there are N numbered balls, numbered 1 through N, in a vertical tube which

has a release mechanism at the bottom. However, instead of having observed in this experiment the

number of balls in the tube, N, it has only been observed that this number of balls is not less than Nt >

0, but not more than N2, where N,2 and N2 are two integers with Ni < N2. As in the previous section,

the order in which the balls have been inserted into the tube from the top has not been observed. The

data corresponding to the observations in this experiment is written symbolically N] *S N < N2. The

object of the data reduction is to find the physical probability of the possibility that the first ball drawn

would have the number 1 on it. In the notation of Sect. 5, one seeks the physical probability (F,|Ni <

N < N2).

According to classical physics, there is a number of balls in the tube and let us denote this number

by N,-. If this number ofballs, N,, had been observed, then as derived in Sect. 5, one would have:

L (6.1)(Fx\Nj) = -±-
v

The result (6.1) holds for all values of N,- > 0 and therefore it holds for N, < N,- < N2. Conse

quently, one can formally write:

(Fl\[N=Nj]A[Nx^N^N2]) = -^- . (6'2)

The physical probability (6.2) is obtained from the cyclic group of order N,-, as explained in Sect. 5.

The possibilities-generating group in (6.2) is one of the possible possibilities-generating groups for the

ball at the bottom of the tube; it is the one when the number of balls in the tube is N,-. One must for

mally generate by a transformation group all of the possible values for N. Therefore this
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possibilities-generating group for N generates all of the possible possibilities-generating groups for the

ball at the bottom of the tube. This group of transformations will also consequently establish the physi

cal probability of these possible possibilities-generating groups.

According to classical physics, there must be a particular number of balls, N, which is the number

of balls in the tube. The data corresponding to the observations are NL < N < N2, and they must be

reduced for the value of N though not the entity of interest. We must therefore find a group of

transformations of the physical system whose elements change the value of N and leave invariant the

data N, < N < N2. This possibilities-generating group was given in Sect. 3 in terms of "creation-

anihilation" operators but the element of apparent symmetry was not discussed in classical terms; this

will now be done. As is always the case, this group of transformations corresponds to an apparent ele

ment of symmetry in the physical system when it is viewed from the point of view of the physical theory

and only what was observed appears. In this particular situation what is this element of apparent sym

metry can easily be visualized. There is a column of balls, N] of which are seen, but there is an

obstruction that prevents balls in this column to be seen, if there are more than Nb and this obstruction

is finite in extent, such that if there were more than N2 balls one would see the column extend above

the obstruction. Therefore, every column of balls placed behind the obstruction which has at least N,

balls but no more than N2 balls, will appear the same. However, this element of symmetry is only

apparent in the physical theory. If we did look from behind the obstruction at the column of balls the

number of balls, N, that is in this column of balls would be seen. The possibilities-generating group for

this data reduction, as discussed in Sect. 3, is isomorphic to the group of addition modulo N2 - Ni + 1

of the integers O, 1,2, ..., N2-Nb The physical meaning of the elements of this group correspond to

adding and subtracting balls to the column, such that the number of balls in the column before and

after each transformation is at least Ni balls but not more than N2 balls, except for the identity element

of the group that does not change the number of balls in the column.

The above possibilities-generating group is isomorphic to the cyclic group of order N2 - Nj + 1 and

the possibilities for N that it generates are N,, N] + 1, ..., N2 - 1, N2. Each of these possible values

for N have the physical probability
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iN^N^ =I^n-TI • (6J)
To each of the possible values N, for the value of N, there is a different possibilities-generating

group for the number on the ball at the bottom of the tube, and the physical probability (6.3) is the

physical probability of each of these possibilities-generating groups.

We are now in possession of all the elements needed to calculate the desired physical probability

(FiHi < N < N2). Since we are not interested in which of the possible cyclic groups of order N,- gen

erated the possibility Fi and all of them can:

N> , (6.4)
(FX\NX^N^N2) = 2 (FxA[N=Nj]\Ni^N*ZN2) .

N-Nt

Using the conjunction theorem of the algebra of physical probabilities, one can expand each term in

the sum on the right-hand side of (6.4) to obtain:

N' , , (6.5)(FiK</V</V2) = 2 (Nj\N^N^N2)(FxtN=Nj]A[Nx^N^N2]) .

Since the two factors in each term of the sum (6.5) are given by (6.3) and (6.2) respectively, the

final result is:

1 N> 1 (6.6)
W>*»*™ ' N2- Nx + X ^ -N- •

Had we been interested in the physical probability of the possibility that the first ball drawn had a

number on it that was less than or equal to i, then we would be interested in the physical probability of

the subset of possibilities for the ball at the bottom of the tube: {Fb F2, ..., F,}. Using the disjunction

theorem of the algebra of physical probabilities yields; if i < N,-:

N> , , (6-7)(FxVF2V...VFi\Nx^N^N2) =2 S (NjW^N^N2)(FktN=Nj]A[Nx^N^N2]) .
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The formulae (6.5) and (6.7) are essentially the "golden rule" of quantum mechanics and were

derived from an analysis of a classical experiment without using the theory of statistics but applying

group theoretical methods.

It seems clear that on the basis of the observations made in the experiment considered in this sec

tion, Ni < N < N2, it is meaningful to ask: what is the physical probability of the possibility for the

value N to be a particular value between N) and N2? In classical physics one says that N must have a

value. As shown in Sect. 5, having answered this question it is meaningful to ask then: what is the

physical probability of the possibility for the number on the bottom ball to be the number "one"? This

physical probability is a function of the answer to the previous question. The set of N2 - NL + 1

nnmhpr« —!— , , are the different answers that one can give to this questionnumoers ^, N^ +{, .... N^_{ ^

depending upon the particular answer given to the previous question. This set of N2 - N, + 1 numbers

are the different possibilities for this physical probability and each of these has a physical probability.

Therefore, in this data reduction one can associate a physical probability distribution with the physical

probability (F,|N, < N < N2), this physical probability distribution is the set of physical probabilities of

the possibilities for the value of N. As shown by (6.6), (FjNi < N < N2) is the first moment of this

distribution. The mathematical meaning of this is quite clear, the possibilities-generating group N, <

N < N2:F, where F is the bottom ball in the tube, is a very complex group involving the direct product

of the cyclic group CN~N+X and the cyclic groups CN[, CN+i, •••, CN-U CN. Each of the cyclic

groups CN, CN +,, ..., CN _b CN generates a possibility to which the label F, can be attached as well

as a different N label from the cyclic group C^-^ +i- In the case of the physical probability of the

possibility for the number on the bottom ball to be 1, in the data reduction of Sect. 5, there was no such

physical probability distribution that it could be associated with it, except the Dirac delta distribution.

In the proposed method of data reduction the Dirac delta distribution corresponds to a possibilities-

generating group of order one; that is to say, the absence of symmetry.
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6.2. Continuous Probability Space

In the data reduction just performed, the group of transformations that generated all of the possible

possibilities-generating groups for the entity of interest was finite. This group of transformation is

continuous in the data reduction now performed.

The physical situation is again the same one: a vertical tube containing balls with a release mechan

ism for balls at the bottom of the tube. However, the observations now made on the system are that the

balls are of two types: some are black and the remaining ones are white, as in Sect. 5; but the observa

tions on the number of balls yield the data of classical physics: there are at least two balls in the tube

and at least one of each color. The data corresponding to the observations are written N > 2 and 0 < n

< N, where N is the total number of balls and n is the number of black balls. N may therefore be

arbitrarily large. These data are going to be reduced for the color of the ball at the bottom of the tube

which would be, according to classical physics, the first ball drawn.

On the basis of the analysis of this physical situation in Sect. 5, one has:

(Bx\N,n) = -n- . (6.8)

Therefore a knowledge of both n and N is not required in order to obtain the physical probability

for the possibility that the bottom ball is black. It is sufficient to know the ratio n/N which is again

denoted p. If the observations in the experiment had only determined the ratio p of black balls to total

number of balls in the tube we would have:

(Bx]p=n/N) = p . (6.9)

From the data in this experiment we have:

0 < p = — < 1 (6.10)
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where the limits 0 and 1 must be excluded since 0 < n < N. What is therefore sought in this data

reduction can be written (Bt|0<p<l). The physical probability (6.9) can be rewritten:

(fi,|[/> = rt//V]A[0<p<l]) = p . (6.11)

If W[ denotes the possibility for the bottom ball to be white one always has:

(fi,|0<p<l) + (W$<p<\) = 1 . (6.12)

From classical physics n/N = p must be a rational number and so is q = (N - n)/N; therefore

(6.11) and (6.12) can be rewritten:

p + q = 1 . (6.13)

Although not necessary, it is useful at this stage to consider the above two rational numbers p and q

to be the cartesian coordinates of a point P in a real linear two-dimensional space in which one has

introduced an orthogonal coordinate system. Because p and q correspond to physical probabilities, the

relations (6.10) and (6.13) can be said to define a physical probability space for this data reduction.

This physical probability space is embedded into and is a subspace of the above real linear two-

dimensional space. In the real linear two-dimensional space, the relations (6.10) and (6.13) define the

segment of line joining the end points of the two basis vectors (1,0) and (0, 1), but the two end points

of this segment of line are excluded. Not all of the points of this segment of line are in the physical

probability space, only those having rational coordinates. The physical probability space thus defined is

a compact topological space.

According to classical physics there must be a number N of balls in the tube and n of these are

black; therefore there is a ratio n/N for the specific physical system considered. Consequently, one can

say that there is a point P in the physical probability space defined above that corresponds to what is

and was not observed. The possibilities-generating group for the ratio n/N in the data reduction must

be isomorphic to the group of transformations in the physical probability space that transforms a point
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P, (p,q) into the other points P', (p'.q'X of this space. Because of the topology of the physical probabil

ity space, the possibilities-generating group sought can only be the continuous one parameter Lie group

that translates any point P of the probability space into any other point P' of this space. This Lie group

is usually denoted T[ and is the projective group of transformations defined by the transformation:

P — P' = P + m (6.14)

where m is a rational number. Since we have 0 < p < 1 and 0 < p' < 1 the parameter space, or group

manifold, of this group is closed. The volume measure in the group manifold of this group is a con

stant. Normalizing the volume measure to unity over the closed group manifold one obtains:

(dp$<p<l) = (p$<p<\)dp = dp , 0<p<\ , (6.15)

and the physical probability density function (p|0<p<l) is unity.

We have now all the elements needed to calculate the physical probability (B,|0<p<l) from the phy

sical probability distribution (6.15) associated with it. From the sum rule of the algebra of physical

probabilities one obtains:

lim * „ (6.16)
(B,|0<p<l) = a^O f {BxA[p= —p<p<\)dp .

Expanding the integrand by the conjunction theorem yields:

lim b „ , (6.17)
(Bx\0<p<\) = a-0 f {Bt{p= -£]A[0<p<l]) {pb<p<\)dp ,

b-*\ a N
and the two factors in the integrand are given by (6.11) and (6.15) respectively. Performing the

integration and taking the limits indicated gives the numerical value:

(6*<p<.) = \ • (618)

and from (6.12) one also obtains (W,|0<p<l) = 1/2.
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The physical probability (B]|0<p<l) may be written (Bj[N > 2]A[0<n<N]). From Sect. 5 one has

(Bi|[N= 2]A[n=l ]) = 1/2 which is the data reduction for a physical situation related to the one con

sidered in this section. This latter physical probability has the same magnitude as the one just derived

but the physical probability distribution associated with it is the Dirac delta distribution.

6.3. Physical Probability Spaces and Their Group Structure

In the last two data reductions, it was necessary to introduce a possibilities-generating group for an

intermediate entity of the theory before a group of transformations involving the entity of interest could

be found. In the usual language of group theory, one had to adjoin to the data corresponding to the

observations another datum of the theory before a group of transformations could be found whose ele

ments generated the possibilities for the entity of interest. This other datum of the physical theory,

since it was not among the data corresponding to the observations, could only be a possibility for

another entity of the theory and a possibilities-generating group for this other entity had to be found

and was found. It was then a simple matter to sum over all of the possibilities for this other entity to

obtain the desired result. Because there was a physical probability distribution corresponding to the

possibilities for this other entity, the end result was that there was a probability distribution "associated"

with the physical probability of each possibility for the entity of interest. In fact, the physical probabil

ity of each possibility for the entity of interest was the first moment of its associated physical probabil

ity distribution. The above feature is found in most data reductions and is largely responsible for the

fact that it is frequently not obvious at first sight that there is a group of transformations of the system

that transforms the entity of interest but leaves invariant the data corresponding to the observations.

There is, however, an aspect of the data reductions in the last two examples which seemed to have been

intuitively perceived: it is the notion that there is more to the physical probability of a possibility for an

entity than its magnitude, that physical probabilities of a given magnitude may be more or less uncer

tain. It seems clear that this notion is intimately related to what has been called the physical probabil

ity distribution associated with the physical probability of the possibility for the entity of interest.
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Jaynes8 discovered on purely algebraic grounds that the algebra of probabilities was such that one could

formally always introduce a probability distribution associated with a probability if Bayes hypothesis

held. He calls the probability distribution the Ap distribution and relates it to the "strength of the evi

dence" upon which the probability p is based.

In the last data reduction, a physical probability space for this data reduction was introduced. This

physical probability space was embedded into a subspace of a real linear space in which an orthogonal

system of coordinates was introduced. It was found that there was a group structure associated with

this physical probability space regarded as a topological space. It will now be shown that such physical

probability spaces can always be introduced in data reductions. The group structure of such probability

spaces play an important role in many data reductions; for instance in the analysis of the shape of an

angular distribution or the shape of an energy spectrum.

Given a data reduction in which the possibilities-generating group for the entity of interest is of

order m, where mis infinite if the group is continuous, one can always form mutually exclusive subsets

of the set of mpossibilities. Let there be nsuch subsets whose union forms the complete set of possibil

ities for the entity. It is then said that we have an exhaustive set of n mutually exclusive possibilities

and, if the order of the possibilities-generating group is greater than n, some of these n possibilities are

decomposable into several mutually exclusive possibilities for the entity of interest. Let us denote by p,

the physical probability of the i'h subset of the set of possibilities, then we necessarily have:

(6.19)
2 Pi = 1 >

/ = i

where the p,'s are positive and rational numbers. If one now considers the np,'s as the components of

an n-dimensional vector P, then one can consider the set of all such vectors P as defining an n-

dimensional physical probability space which is embedded into an n-dimensional Euclidean space. By

an n-dimensional Euclidean space is meant a n-dimensional linear real space in which a system of

orthogonal coordinate has been introduced with the usual Euclidean metric. Such aphysical probability
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space lies in an n-l dimensional subspace of the n-dimensional Euclidean space and is in a closed

domain in this subspace. This domain is bounded by the lines that join the "points" of the Euclidean

space corresponding to the position of the unit vectors. These lines define a n-sided regular polygon in

an n-l dimensional subspace. All of the points inside this n-sided regular polygon in the Euclidean n-l

dimensional subspace are not in the n-dimensional physical probability space: only the points whose

coordinates are rational numbers.

It is clear that the n-dimensional physical probability space defined as above is a compact topologi

cal space and that there is a group structure associated with it. This group is an invariant subgroup of

GL(n,R), it has n-l essential parameters and is usually called the translation group T„_i and the group

manifold of this group is closed. As is well known, the volume measure in the group manifold of this

group is uniform over the group manifold.

From a purely mathematical point of view, what has just been shown is that one can consider the

normalized volume measures in the group manifolds of groups as components of abstract probability

vectors and these vectors define a topological probability space embedded into a subspace of a linear

Euclidean space. There is a particular group structure associated with such a probability space. The

relevance of the above for physical theories is quite clear. Physical probabilities of possibilities for enti

ties of physical theories can be treated in physical theories as any other abstract entities of these physi

cal theories in the sense that they are abstractions associated with a group structure in an abstract

linear space. This seems to have been clearly realized by Laplace16 who treated physical probabilities

on the same footing as any other entities of classical physics assigning probabilities to their possibilities

on the basis of the Principle of Insufficient Reason as any other position parameter of classical physics.

This was earlier perceived by Bayes21 but he seemed far more reluctant to do this and he found that he

did not have to do it in the particular problems he was interested in solving. The fact that one can

define probability spaces that have a definite group structure, as just shown, establishes the very contr

oversial result of the classical theory of probability known today as "Bayes hypothesis." When one

defines physical probabilities as done in this paper, Bayes hypothesis becomes a theorem of group

theory.
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7. BERNOULLI TRIALS

In all the thought experiments analyzed, classical physics was the physical theory used, and the data

were reduced for an observable of classical physics that had not been observed, as it must be. One can

conceive that these entities for which the data were reduced since they were observables of the theory

used are the outcomes of the experiments. If one takes this point of view, the experiments were not

complete since their outcomes were not observed; for instance, the side of the coin facing up, the

number of balls in the tube, the number on the ball at the bottom of the tube, etc. This is a legitimate

point of view, and, in most experiments, there is among the observations one of them that is called, with

some legitimate reason, the outcome of the experiment. Most such experiments are repeated in the

sense that the observations that are not called the outcome are said to define the conditions under which

the experiment is conducted and produces the observation called the outcome. It is then found that

when one repeats the experiment in the above sense, the observed outcomes vary: there is a distribution

of outcomes observed. These so-called repetitions of the experiment can only be made a finite number

of times. It is for the treatment of such series of outcomes that the theory of statistical estimation is

used today. It cannot properly be used to deal with observations that are not considered a series of out

comes in the above sense. It is, however, perfectly legitimate to consider everything that was observed

in an experiment as the observations made in one experiment and to analyze this experiment on the

basis of a theory. This latter point of view involves properly encoding all of the observations made into

data of a theory. Then these data can be used to analyze their implications in this theory for some

related entity of this theory. It is by taking this second point of view that experiments involving a so-

called set of observed outcomes are analyzed in the proposed method of data reduction.

In the usual point of view where one applies the theory of statistical estimation, the question that is

answered first is: what would be the limiting frequencies with which the different outcomes would be

observed to occur if one were to repeat the experiment an infinite number of times and if one assumes

that the repetitions of the experiments were random samples from a "parent" distribution? Having

obtained an estimated "parent" distribution, one can then answer any number of questions related to

random sampling from this "parent" distribution using the theory of statistics. In particular, if one asks
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what are the probabilities for all the different outcomes at the next repetition of the experiment, the

answer is given by the estimated "parent" distribution. Therefore, to show that the proposed method of

data reduction is capable of dealing with data that contain a sample of outcomes in the experiment, the

question that will be asked is: what is the entity of the physical theory that corresponds to the next out

come on the basis of all the observations?

A concrete example is given before the general technique, known as Bayesian method of data reduc

tion, is briefly discussed.

7.1. More Black and White Balls in a Tube

Once more a tube containing black and white balls is used to provide a concrete example of a

repeated experiment, but this time some outcomes will be observed. The outcomes here are the color of

the balls that are drawn from the bottom of the tube. First, one must define the observations that

determine one is indeed repeating an experiment. It is the fact that the data of the physical theory

corresponding to the observations at the beginning of each trial are the same, as far as the outcome of

interest is concerned, that determines one is repeating an experiment. In the specific example con

sidered now, the data of classical physics identified with the observations are: (a) the number, N, of

black and white balls in the tube is considerably larger than any number of balls one may contemplate

drawing from the tube; and (b) both the number, n, of black balls and N-n of white balls in the tube

are also considerably larger than any number of balls one may contemplate drawing from the tube.

What is precisely required of these data, called the initial data, are that the initial ratio of black balls,

n, to total number of balls, N, p = n/N, remains practically unchanged as one draws balls from the

tube, whatever their color happens to be. In other words, one requires that if it is contemplated draw

ing altogether m balls from the tube, the initial data are such that: p = n/N = n/(N-m) = (n-

m)/(N-m). By choosing such initial conditions, if neither n nor N have been observed then one can

select the ratio of black balls to total number of balls in the tube as the entity of interest for which the

data are to be reduced. Each drawing of the same number of balls constitutesa repetition of the experi

ment (a trial) and the different outcomes can be taken as the number of black balls which is observed

among this set of balls.
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In this experiment the initial conditions before each drawing of a set of balls yield the data of classi

cal physics 0<p<l where p is the ratio of black balls to the total number of balls in the tube at each

drawing. These data are the very same ones that were used in the second example in Sect. 6 and were

reduced to obtain the physical probability of the possibility that the first ball drawn is black. In order

to be more general, these data are now reduced for the physical probability of the possibility for obtain

ing r black balls when m of them are drawn from the tube. In this fashion one can consider the draw

ing of m balls from the tube as one outcome or a set of m outcomes. Therefore what one seeks is

(m,r|0<p<l) and on the basis of the analysis in Sect. 5, from formula (5.11), one obtains:

{m,r\[p=n/N]A[0<p<l]) = (™]p' (X-pT'' - {1A)

What is sought can be written using the sum rule of the algebra of physical probability:

lim * (7.2)
(»i,r|0<p<l) = a^O f ([m,r]A/?|0<p<l) dp .

6—1 Ja

Using the conjunction theorem one can expand the integrand to yield:

lim b (7.3)
(m,r\3<p<l) = a—0 f (p|0<p<l)(»i,r|[/>=/i/iV]A[O<p<l]) dp .

b^\ Ja

The density function (p|0<p<l) was calculated in Sect. 6 and the other term in the integrand is given

by (7.1). Consequently, one obtains for (7.3):

n lira b (7.4)
(m,rb<p<\) = M a-0 f pr(\-p)m-r dp .

Since 0 < r < m, the integral in (7.4) is the well-known beta function of arguments r+1 and m-

r+1:

r1 „. ,m-r A - Hr + l) T(m-r + \) (7.5)

Then the result sought is:
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(m,rb<p<l) = —^— . (7-6)
m +1

This result is a generalization of the data reduction performed in Sect. 6 where B x stands for m =

1 and r = 1 in the notation now adopted. This result can also be interpreted as giving the physical pro

bability for a set of m outcomes of drawing one ball from the tube, where this set of m outcomes is only

characterized by the number of times a particular type of outcome is observed in this set.

Now, for the first time in this paper, let the first m balls be drawn from the tube and let r be the

number of black balls found among these m balls. For someone who has observed the number, r, of

black balls in this set of m balls, the result (7.6) ceases to have any meaning whatsoever because it

refers to possibilities and what has been observed is a fact, not a possibility. For someone who knows

because he has observed that m balls have been drawn from this tube but has not observed how many of

them are black, then (7.6) holds as the physical probability of the possibilities for the outcome, or set of

outcomes. What is also remarkable is that the result (7.6) also holds for someone that knows nothing

about the initial conditions of the experiment upon which (7.6) was derived; namely that N, n, and N-n

are all large compared to m. The only necessary condition for (7.6) to hold is that this person be told

that m outcomes have been observed for an experiment and that there were only two types of outcome

in this experiment. Then to this individual there are m + 1 possible sets of outcomes where each possi

ble set of outcome is defined by the number r that it contains of outcomes of one type. The data of

physics that this information corresponds to is: mA(0 < r < m). This problem was considered before

and yields as the group of symmetry the cyclic group of order m 4- 1, which yields (7.6) for every pos

sible set of outcome.

Let us now consider the data reduction for someone who has observed m balls being drawn from the

tube and that r of them are black. For this individual, his data concerning the number of black balls, n

- r, and total number of balls, N-m, in the tube still yield, in classical physics for the ratio of black balls

to total number of balls in the tube, the same value p that prevailed before the m balls were drawn and

0<p< 1. Therefore, as far as the ratio of black balls to total number of balls is concerned, the physical

system is in the same state as it was before the m balls were drawn. If he were to draw m more balls
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from the tube he could consider it a repetition of his first experiment in both the sense of one outcome

or in the sense of m outcomes. However, he cannot ignore the fact that he has made the observations

that there were r black balls when m of them were drawn. Any further data reduction on his part must

now be for the data: (m,r)A(0<p<l).

For generality's sake, let us now reduce the data (m,r)A(0<p<l) for the possibility of drawing

exactly / black balls if k more balls were to be drawn from the tube now. In order to show that no new

concepts, or notions, are involved in the proposed method of data reduction when, as it is now said,

there is a sample of outcomes in the data to be reduced, the data reduction now performed follows very

precisely the one just completed. What is now sought is (k,l|[m,r]A[0<p<l]) and what corresponds to

(7.1) is:

(kJtp = -£—^]A[«,r]A[0<p<l]) = (V(l-/>)*-' • (7'7)
TV — m v''

The formula (7.2) becomes:

lim b (7.8)
(A:,/|[m,r]A[0<p<l]) = a—0 f ([k,l]\p{m,r]A[0<p<\])dp .

b^\ Ja

Expanding the integrand as for (7.2) yields:

lim * (7.9)
(Jfc,/t#M,r]A[0</><l]) = a^oo ( (k,l\pA[m,r]A[0<p<\])(p\[m,r]A[0<p<\])dp .

b-~\ Ja

The first factor in the integrand is given by (7.7), but the density function (p|[m,r]A[0<p<l])

remains to be calculated and is no longer (p|0<p<l) as was the case in (7.3).

It is straightforward to calculate the density function (p|[m,r]A[0<p<l]) using the algebra of physi

cal probabilities. The integrand in (7.2) was expanded in a particular fashion to become the integrand

in (7.3) but it can also be expanded as:

(/w,r|0</7<l)O»|[»i,r]A[O<p<l])rfp . (7.10)

Setting (7.10) equal to the integrand in (7.3) yields immediately:
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*^<'» " **"><» ""itT^n" ' (7.11)

which is Bayes theorem applied to physical probability density functions. Every term on the right-hand

side of (7.11) has now been calculated: the density function (p|0<p<l) is equal to unity, the numerator

is given by (7.1) and the denominator by (7.6). Therefore one obtains the density function:

(pt»i,r]A[0<p<l]) = (m +l)(™) pr(\-pT~r , (712)

which is considerably different from the uniform value it had before the m balls were drawn and it was

observed that r of them are black.

The integration in (7.9) can now readily be done since it is also expressible as a Beta function.

Rearranging the factorials into binomial coefficients one obtains:

[r+/| \m+k-r-l\ (7.13)
(k,ltm,r]A[0<p<l]) = rhm +™~' .

I k I

The expression (7.13) can be used to calculate the physical probability of the possibility for drawing

a black ball on the first draw after having drawn m balls from the tube and observed that r of them

were black. This result is obtained from (7.13) by letting k = 1 and / = 1, and this may again be

written Bi and we have:

(Bxtm,r]A[0<p<\]) = j~ . (7.14)

The result (7.14) is known as Laplace's "Rule of Succession" and has been considered very contr

oversial since derived by Laplace on the basis of Bayes hypothesis nearly 200 years ago. As it must, the

result (7.14) reduces to the result obtained prior to the drawing of any balls by letting m = r = 0 in it.

7.2. Criterion for Bernoulli Trials

The notion of repetition of experiments under presumed identical conditions plays an important role

in physics and is now briefly analyzed from the point of view of the proposed method of data reduction.
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It may appear at first sight that the situation just analyzed is not a good example of the repetition

of an experiment if one were to draw a second set of m balls from the tube after having drawn the first

set of m balls. Since, after having drawn the first m balls from the bottom of the tube, the system is

missing these m balls and there is now a different set of m balls at the bottom of the tube, the system is

indeed different before and after the first m balls were drawn. The system is in two different states

according to the theory used before and after the drawing of the first m balls. However, if one consid

ers the original data and what they were reduced for: what is the number of black balls among the bot

tom m balls in the tube? and one takes into account the fact that m balls were drawn but exclude the

fact that the outcome is known; then, whatever the outcome was, the same question being asked before

the first drawing of m balls asked again after the m balls are drawn will yield the same set of possibili

ties for the answer with the very same set of physical probabilities. It is because one knows from the

point of view of the theory applied and all of the observations made that the system is different, except

for the same element of apparent symmetry with respect to the entity of interest, and will be so after

the second outcome is observed that it is meaningful to ask the same question and reduce the data for

the entity of interest. However, as was shown in the data reduction just performed, when one uses the

exact observed outcomes of the trials (the number of black balls among the total number of balls

drawn) the element of apparent symmetry of the physical system as viewed in the theory applied on the

basis of all the observations changes dramatically and is reflected in the physical probabilities of the

possibilities for the outcome of a subsequent trial. In particular, if one calculates the physical probabil

ity of the possibility for drawing one black ball at the next draw, since the ratio of black balls in the

tube to the total number of balls would be this number if it had been observed, then one is calculating

this ratio on the basis of the observations which do not yield this ratio directly but are related to it. As

shown in Sect. 6, there is always a physical probability distribution that one can associate with the phy

sical probability of a possibility for an entity related to the observations in a physical theory; there is

therefore a physical probability distribution that one can associate with the calculation of the ratio of

black balls to the total number of balls in the tube.
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On the basis of the above discussion, the data reduction just completed, far from being a purely

academic exercise, bears a very close relationship to what is called a physical measurement in a tradi

tional physics experiment. There is a repetition of some observations. At each repetition of the "meas

urement" the system is not identical to what it was at previous trials, either by necessity or design, but it

exhibits, on the basis of all observations at each trial if one excludes only the precise outcomes obtained

at previous trials, the same element of symmetry with respect to the entity of interest in the theory

applied.

7.3. General Remarks

The analysis technique used in the specific example just analyzed is well known and is referred to

frequently22 as a Bayesian method of inference. This technique can always be applied in the proposed

method of data reduction because the data, corresponding to the observations which determine the

experiment is being repeated, can be reduced to determine the physical probabilities of the possibilities

for the entity of the physical theory that corresponds to what is called the outcome of the experiment.

In the proposed method of data reduction, there is no uncertainty as to what to use as the "estimator,"

using the terminology of the theory of statistical estimation. This is because a physical theory is used to

analyze the data. This physical theory, whatever it may be, determines the element of apparent sym

metry which the physical system analyzed is presumed to have when viewed on the basis of the laws of

this physical theory. This element of apparent symmetry determines uniquely the possibilities-

generating group for the entity of interest.

When there is an observed sample of outcomes from repetitions of experiments, there are many

other questions that one can try to answer than the one considered: what are the physical probabilities

of the possibilities for the outcome of the next trial? For instance, one could ask if there are any mean

ingful regularities in the observed sequence of outcomes? or, is there any "memory effect" whereby the

outcome at a particular trial influences to some degree the subsequent outcome or outcomes? If there
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were no such effects, the trials could be considered independent and here again group theoretical tech

niques can be used to analyze these points since there should be no elements of symmetry in the

sequence of outcomes. There are also other well-known notions of the theory of statistical estimation

that can be investigated using group theoretical methods, such as the quantification of the extent to

which the sample of outcomes supports one or the other of two proposed physical theories that compete

as an explanation of the physical phenomenon. These questions will be investigated in a subsequent

paper.
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8. CONCLUSIONS

Independent of the philosophical justification offered for it and even though it may not be without

some merit on cultural grounds, the method of analysis of observations presented in this paper solves a

fundamental problem of scientific methodology. Given that scientific theories are proposed as explana

tions for observed phenomena and that there may be several different competing explanations for a par

ticular phenomenon, this problem is: How can these theories be applied to the analysis of observations

for which they are proposed explanations, strictly on the basis of their own concepts?

Group theory applied in the manner shown in this paper solves this problem for physical theories,

since it makes use of only the physical concepts of the particular theory being applied to analyze the

observations and can deal with the notion of ambiguity that results from most experiments. This appli

cation of group theory provides a rationale, within the framework of the physical theory used in the

analysis of the observations, for formulae that have long been applied successfully to deal with only a

certain type of observations. These formulae were previously justified on the basis of a specific theory,

the theory of statistics, whose concepts are not necessarily coherent, in a two-valued logic system, with

those of the physical theories being used with it. This meant that all physical theories had to be given a

statistical interpretation when they were not based upon stochastic considerations, such as theory of

measurements, classical mechanics, quantum mechanics, relativity theories, etc. The mathematical

foundation of these formulae in group theory is as secure as their foundation in the Lebesgue extension

of Borel measures in a a-field of sets. Therefore, the issue of what interpretation to give these formu

lae, which strongly influences for which application it is perceived legitimate to use them and what one

perceives to derive from their use, is not decidable on purely mathematical grounds.

The group theoretical interpretation of physical probabilities that results from the analysis given in

this paper appears to have greater powers of explanation than the statistical interpretation since it

allows us to deal in a unified fashion with the different types of observations made in actual experi

ments that lead to the well-accepted notions of "systematic" and "statistical" uncertainties. How to deal

with observations that lead to "systematic" uncertainties is one of the great unsolved problems of the

theory of statistical estimation since it is a "rare event problem." Although the "rare event problem,"
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which is the problem of dealing in the theory of statistical estimation with events whose probabilities are

such that none have been observed so far, has received a lot of attention lately, in view of its societal

importance in risk analysis, limited progress seems to us to have been made so far to solve it on the

basis of statistics. The "rare event problem" of risk analysis is formally identical to the situations

analyzed in this paper where there was no direct observation of the entity of interest, and it was said

there is a systematic uncertainty. This lack of progress is largely responsible for the revival of the

notion of Bayesian probabilities during the last two decades.

The physical probabilities of this paper, the normalized volume measures in the group manifolds of

possibilities generating groups, are neither observables of the method of data reduction nor of the physi

cal theories that gave rise to them. Probabilities that are not physical observables are said today to be

Bayesian probabilities and said to express degress of beliefs, or ignorance, of individuals, therefore

argued to have no usefulness in science. Although the physical probabilities introduced in this paper are

Bayesian probabilities, since they are not observables, far from being unscientific are a necessary conse

quence of the rigorous application of the scientific methods and are elements of deductive logic. Among

other things the scientific method requires that scientific theories be deductive systems of assertions,

possessing observables so that they be capable of making predictions about observables, on the basis of

observations, in order to be falsifiable. It is therefore a requirement of the scientific method that deduc

tive logic be used to generate from observations made in experiments assertions about observables that

have not yet been directly observed. We have seen in this paper that deductive logic forces us to assign

weights to assertions of theories dealing with entities of theories that have not been observed but are

related to the observations. Although not observables, these weights (called physical probabilities in this

paper) can be interpreted in the theory as conceptual limiting frequencies of future observations that

should be made on the basis of what was observed. These conceptual limiting frequencies, dealing with

future observations, cannot be observables for an essential reason: future observations cannot be ever

observed. As soon as one makes an observation, this changes the physical probabilities that must now
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be invariant with respect to all the observations that were made. Physical probabilities are therefore

only elements of deductive logic that are relative to a set of observations being analyzed from within a

deductive system of assertions: a physical theory.

This paper does not say anything about the usefulness of the concept of stochastic physical

phenomena to construct a physical theory. However, the use of the mathematical theory of statistics to

deal with observations transforms this abstract deductive system of assertions into a physical theory

since it introduces into it observables. It is in essence argued in this paper that when this is done the

theory of statistics should be treated as a physical theory and judged on the basis of its experimental

verification and explanative powers. It is argued that it seems unscientific to promote a physical theory,

the theory of statistical estimation, to a priviledged status acting as a filter that must be used in the

testing of other physical theories. The method of data reduction presented in this paper makes it in any

event unnecessary.
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