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TEE STIRLING ENGINE WITH ONE ADIABATIC CYLINDER 

C. D. West 

This report shows that integration around the P-V loop 
of a Stirling-like cycle with an adiabatic expansion or com- 
pression space is possible through careful application of the 
ideal gas laws. The result is a set of closed-form solutions 
for the work output, work input, and efficiency for ideal 
gases. Previous analyses have yielded closed-form solutions 
only for machines in which all spaces behave isothermally, or 
that have other limitations that simplify the arithmetic but 
omit important aspects of real machines. "he results of this 
analysis, although still far removed from the exact behavior 
of real, practical engines, yield important insights into the 
effects observed in computer models and experimental machines, 
These results are especially illuminating for machines in- 
tended to operate with fairly small temperature differences. 
Beat pumps and low-technology solar-powered engines might be 
included in this category. 

3 .  INTRODUCTION 

The ideal Stirling cycle has a four-cornered P-V diagram in which the 
basic processes of compression, heating, expansion, and cooling take place 

one at a time, and each process is an isothermal one. The working gas is 

expanded at a relatively high temperature and compressed at a lower tem- 

perature (Fig. 1). Analytical expressions (closed-form solutions) for the 

pressure variations and for the power output, power input, and efficiency 

are fairly easy to find in this case. The efficiency, of course, is sim- 

ply Carnot efficiency for a machine operating between the same tempera- 

ture s. 
Real Stirling machines, although similar in principle, usually oper- 

ate on a cycle that is significantly different from this ideal one; the 

piston movements are usually more or less continuous, so that the basic 

processes merge with expansion and compression taking place while the gas 

is distributed between the high- and low-temperature spaces, and the cyl- 

inders are often more nearly adiabatic than isothermal. This report is 

primarily concerned with the effects of an adiabatic cylinder but will 
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Fig. 1. The ideal Stirling cycle has constant-temperature compres- 
sion and expansion phases separated by transfer of gas, without volume 
change, between a hot and a cold space. 

begin with a brief discussion of past work on the analysis of Stirling 
machines and their departures from ideality. 

The analytical problem posed by the continuous, merged processes was 

finally solved in the 1870s) half a century after the invention of the 

Stirling engine, when Gustaf Schmidt integrated the equations relating 

pressure and volume for sinusoidal piston movements. This integration 

yielded a closed-form expression for  the power output of the cycle that 

has since been rewritten in many ways but is still usually known as the 

Schmidt equation. A useful format is shown below: 

THE SCHMIDT EQUATION IS A CLOSED FORM 
SOLUTION FOR THE POWER OUTPUT OF AN 
ISOTHERMAL STIRLING ENGINE. I T  IS 
DECEPTIVELY SIMPLE IN APPEARANCE. 

The apparent simplicity of this equation is deceiving; when written in 

terms of the basic machine parameters it takes on quite a different 

appearance, as shown on the next page. Note the true complexity of the 

. 
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WHEN WRITTEN IN TERMS OF THE BASIC ENGINE 
PARAMETERS, THE SCHMIDT EQUATION IS SEEN 
TO BE RATHER COMPLEX. 

I 

Schmidt equation, for it is a measure of the difficulties encountered in 

searching for closed-form solutions to all but the most basic of approxi- 

mations to a real Stirling machine. The Schmidt equation, in fact, is 

apparently the only case that has been solved, and even simple departures 

from pure sinusoidal motion, such as might be introduced by the use of 

connecting rods that are not infinitely long, lead to integrations that 

have no known solutions in terms of elementary functions and can only be 

performed numerically. This is no longer a great burden, as pocket cal- 

culators can now perform such integrations with a single keystroke. 

The Schmidt equation also allows for the effect of "dead volume," 

that is, for those gas spaces that are not swept by the pistons at any 

time during the cycle. Tbese spaces usually represent the regenerator 

and the heat exchangers used for heating and cooling, as well as the vol- 

ume remaining in the cylinders at the top dead center piston positions. 

Accounting for  the dead volume leads to a more realistic representation 

because in most real Stirling machines the cylinder spaces do not behave 

isothermally, and so heat exchangers external to the cylinders are needed 

to add and remove the cyclic heat. Regeneration, which clearly requires 

a regenerator of finite volume, is needed in any case if high efficiency 

is sought. 

The Schmidt analysis retains the asspption of isothermal processes 

so that cycle efficiency is equal to the efficiency of a Carnot machine 
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operating between the same temperature limits, even though during the ex- 

pansion and compression phases, part of the gas is hot and part of it is 

cold. 
E 

If one or more of the cylinders is not isothermal, no solutions have 

apparently been published to the work integral ( PdV) except by numerical 

integration. The necessary equations were set up by Finkelsteinl some 90 

years after the publication of Schmidt's results, and they represented a 

major advance, opening the way for computer models of the nonisothermal 

Stirling cycle. There were seven simultaneous equations, of which two 

were differential equations. The system could be reduced algebraically 

to two simultaneous differential equations that, however, could only be 

solved numerically. Many computer codes for doing so now exist. 

4 

An analytical (closed-form) solution for the power output, but not 

the power input and efficiency, of a simplified, three-cornered model of 

a Stirling machine with one adiabatic cylinder has been publisheda and 

allows for the effect of dead volume. It provides a convenient physical 

explanation for some of the effects known from computer simulations and 

from experiment but is recognized to be an even less accurate represen- 

tation of reality than a four-cornered cycle. A different simplification 

was used by Rallis and Urielli,3 who assumed that all the gas (not only 

in the cylinders, but also in the heat exchangers) behaved adiabatically 

during the expansion and compression phases. 

This report is an analysis of a four-cornered analog of a Stirling 

cycle with an adiabatic expansion space; it yields closed-form solutions 

for the power output, power input, and efficiency. Although the movements 

of the displacer and power pistons are separated from each other in the 

analysis, the expansion of the gas is allowed to take place simultaneously 

with its transfer between the hot and cold cylinders during the expansion 

phase. 

Whether or not there is any point in pursuing such analyses is a rea- 

sonable question; after all, computer time is readily available and any- 

way, of what practical application is a solution that permits only one 

cylinder to be adiabatic? 

The second part of the question is most easily answered. Several 

schemes'-6 exist for rendering the cylinders of a real machine isothermal 
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(or nearly so) that involve the fitting of many fins or small tubes to 
the displacer piston and allowing liquid to penetrate their interstices 

during part of the cycle. Without using exotic materials, this method is 

limited to the rather low temperatures at which commonly available liquids 

are thermally stable and have an acceptably low vapor pressure. Thus, in 

practice, this method can only be used at the cold end of the displacer, 

and therefore only the compression space is isothermalized, leaving gas 

in the expansion space to behave nearly adiabatically. 

With regard to the first part of the question, if a closed-form solu- 

tion could be found, it would certainly have great value. First, an ex- 

plicit formula (however complex) is easily portable from one computing 

system or code to another. Second, it can be evaluated to almost any de- 

sired degree of precision without a noticeable increase in computing time 

and cost. Third, no stability or other numerical problems are involved 

in the evaluation. 

The potential saving in computing time is a very important practical 

aspect, because the cost of computing the many hundreds of cases that may 

be required in the course of an optimization search is high enough with 

present codes to impose a limitation on such exercises. "Second order" 

codes - those that compute the output and efficiency of an idealized, 
lossless machine and then subtract the effects of the various known power 

and thermal loss mechanisms one by one - seem to be the most suitable for 
optimization searches,' and these are just the kind of codes that would 

benefit (in terms of computational speed and accuracy) if closed-form 
solutions for the basic cycle parameters could be developed. 

Even if a complete analytical solution of the equations proves to be 

impossible, the attempt to find one may lead to equations that, although 

they require numerical solution, are faster or easier to evaluate than the 

present systems of differential equations. 

Finally, physical insights into the processes involved in an adia- 

batic cylinder machine, insights that may not be gained simply from pe- 

rusal of computer printouts, are offered by the closed-form solutions. 

This report, then, comprises another step toward the desirable goal 

of an equivalent to the Schmidt equations that can be applied to adiabatic 
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cylinder machines. The results are more advanced than we now have, but 

they are not as complete as we would like. 

that eventual goal is achievable even in principle. But they do give 

some analytical insight into the effects associated with the combination 

of isothermal heat exchangers and adiabatic cylinder spaces, and they do 

provide a picture that helps to explain some of the trends and effects 

predicted by the computer models. I 

Nor do they reveal whether 
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2. ISOTHERMAL CnINDERS 

. 

To demonstrate the physical significance of the procedure to be used, 

first consider the standard case of a machine - such as the one shown dia- 
grammatically in Fig. 2 - in which the expansion and compression spaces 

ORNL-DWG 80-1 1356A 

REGENERATOR D DISPLACER PISTON 
COOLER P POWER PISTON 

HEATER 

L _ _ _ _  

c - - - .  

PHASE 1 WITH THE GAS AT THE COLD END AND ITS PRESSURE LOW, 
THE POWER PISTON IS MOVED IN 

GAS FLOW - 
PHASE 3 WITH THE GAS AT THE HOT END AND ITS PRESSURE HIGH, 

THE POWER PISTON IS MOVED OUT 

PHASE 4 WITH THE POWER PISTON STILL OUT, GAS IS  TRANSFERRED FROM 
THE HOT TO THE COLD END OF THE DISPLACER CYLINDER 

Fig. 2. Basic operation of a Stirling engine. 
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are both isothermal. 

shown in Fig. 3 ,  has all the gas in the (cold) compression space and the 

power piston fully withdrawn. During the first phase of the cycle, the 

power piston is moved in, thus compressing the gas, but the displacer pis- 

ton is stationary. Next, the displacer is moved rightwards, thus displac- 

ing all the gas into the expansion cylinder. During this, the second 

phase, no net volume change occurs, and the action is therefore repre- 

sented on the P-V diagram by a vertical line. The power piston is now 
moved all the way out, under the influence of the higher pressure result- 

ing from some (initially, all) of the gas being at the temperature of the 

hot end; this is Phase 3 .  Finally, the displacer piston only is moved 

leftwards, thereby returning all of the gas to the compression space; at 

the end of this fourth phase, the initial conditions again exist, and the 

cycle is complete. The connecting tubes are assumed to be of negligibly 

small volume. 

The starting point, labelled 0 in the P-V diagram 

An evaluation of the power input and output during each of these 
phases follows. 

Phase 1. The volume of the expansion cylinder does not change; thus, 

no work is done. The work in the compression cylinder, all done on the 

ORNL-DWG 81-20088 ETD 

4 

I I I I 
v e  v e  + v, 

T O T A L  VOLUME 

Fig. 3 .  Nomenclature used in the cycle analysis. 
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power piston, is denoted by W , and P1 1:; 
v=ve+vp 

PdV , 

where V is the compression space volume, and P is the pressure at some 
stage during this phase. From the ideal gas equation we have 

p (V + VP' P V  e (1 + k) 
I- -- o e  

T 

w 
T 

- - -  - 
D 

C 
T 

C C 

where k is defined as the ratio between power piston and displacer piston 

swept volume. Therefore, 

1 
P = P V (1 + k) v ; o e  

/"' : = P V (1 + k) log -- 'e ' ; 
= P V ( l + k )  

o e  ve+v o e  'e + 'p 
..* wP, 

P 

/"' : = P V (1 + k) log -- 'e ' ; 
= P V ( l + k )  

o e  ve+v o e  'e + 'p 
..* wP, 

P 

(1) 

( 2 )  = -P V (1 + k) log (1 + k) . wPI o e  

The pressure in the system at the end of this phase is P,, where from 

Eq. (l), 

P, = Po (1 + k) . ( 3 )  

Phase 2. The power piston does not move, but work is done on the 

displacer piston in the expansion space (and an equal but opposite amount 

is done on the compression end). The work at the expansion end is W , 
where 

ez 

V=Ve 
W ez =rz PdV 

v=o 
P=P, 
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and 

PV P(Ve - V) PoVe(l + k) 

Te 
- 

C 
T + -- - 

C 

- 
T 

P V  (1 + k) 1 PoVe(l + k) o e  

P V  (1 + k) 
- o e  dV 

- - 
e2 o e  V(z - 1) + ve t - 1  

.'. W = P V (1 + k) 

Ve(t - 1) + ve 
0 

e V x log 

PoVe(l + k) 
w = -  log e . e2 1 - 5  

The pressure in the system at the end of this phase is P, where, from 

Eq. ( 4 )  

P (1 + k) 
0 

P V  (1 + k) o e  
-c - P =  - 

a Ve(r - 1) + ve z 

This is the highest pressure reached during the cycle. 

Phase 3. Beginning with this higher pressure the power piston is 

moved outwards. The displacer piston does not move, and no work is done 

on either end of it. The work on the power piston is W , where 
P3 

P=P3 

w P3 =fzVp PdV 

P=P2 
v=o 
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and 

PoVe(l + k) w 
~- 

1 .  
- - 

C 
T + - -  "e 

e C 
T T 

PoVe(l + k) 1 PoVe(l + k) --- - :. p = - 
Ve/Te + V /T v + zve * 

C e c  T 

v + zv 
= P V (1 + k) log P e ; 

"e P3 o e  v + zve o e  
:. W = P V (1 + k) 

z + k  
W = P V ( l + k )  l o g y .  
P3 o e  

The pressure in the system at the end of this phase is P3 where, from 

Eq. ( 7 ) ,  

P V (1 + k) Po(l + k) 
o e  

( 7 )  

( 8 )  

Phase 4. In the final phase, with the power piston stationary, the 

displacer piston is moved leftward, returning all the gas to the compres- 

sion space. The work on the expansion end of the displacer piston, W , 
is given by 

e4 

v=v- e 
and 

PV P V (1 + k) o e  PV P(Ve - VI 
.-+A- - - .  

# 

C 
T 

C 
T 

C 
T + 

e T 
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Ve(l + k) 
= log ------ ; Ve(r - 1) + Ve(l + k) 

l + k  z + k  
log - w e4 = revo rt 1 + k '  (11) 

The pressure at the end of this phase is equal to the initial pressure 

P .  
0 

Work outDut, input, and efficiencp. The mechanical work output over 

the whole cycle , Wout , is the sum of the work done on the power piston 
during Phases 1 and 3. 

= w  + w  
%ut p1 P3 

+ Ir [log (1 + k) - log = - p v  -- 
~ e l - t  t 

. c + k  - 
W = P V (1 + k )  log z(l + k> out o e  (12) 

According to Rios and Smith' the power input (heat) is equal to the 

work done at the hot-space end of the displacer piston. This work is all 
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done during Phases 2 and 4 .  Thus', 

in w 

'in 

The effi 
ob t a ine d 

1 \ =  

1 \ =  

= w + We, 
ea 

+ 
- z  (log z - log - l + k  = -P0Ve i-- 

iency q is the r tio of output to input power and is easily 

from Eqs. (12) and (13): 

z + k  
pove(l + k,  log z(l + k̂ , 

- -  -- . - Wout 

'in (1 + k) z + k  ' 
'eve (I. - t i  log z(l + k) 

1 - z .  (14) 

This is equal to the Carnot efficiency, as we should expect. 

(13) 
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3. ADIABATIC EXPANSION CYLINDER . 
The analysis of this new case (Fig. 3 )  allows the expansion cylinder 

to behave adiabatically but assumes that the heat exchangers and regenera- 

tor, although perfectly isothermal, are o f  negligible volume. 

Phase 1. This phase is identical to the isothermal analysis, because 

the expansion cylinder volume remains at zero during this phase and thus 

plays no part - adiabatic or isothermal - in gas behavior. The results 

may therefore be copied from Eqs. ( 2 )  and ( 3 ) :  

w = -P V (1 + k) log (1 + k) , Pi o e  (15) 

and 

Phase 2. Although this phase of the process is described as "heating 

at constant volume," note that not all the gas in that volume undergoes 

the same heating process. Indeed, over any portion of this phase only the 

gas passing through the heater at that time is being heated. The gas that 

passed through the heater earlier in this phase, and is already in the 

adiabatic expansion cylinder, receives no further energy from the heat 

source, except that which is carried in by new gas entering the cylinder. 

The gas entering the expansion cylinder as the displacer is moved 

rightwards does so at the temperature T of the hot-end heat exchanger. 

The gas in the cylinder will generally be at a higher temperature than T 
because it will have been compressed by the rise in pressure as the dis- 

placer movement proceeds in an adiabatic space. The gas in the expansion 

cylinder is continually being compressed and mixed with fresh incoming gas 

at temperature T as the displacer movement proceeds. The mixing of gas 

at two different temperatures is an irreversible process, so the system 

no longer has Carnot efficiency. 

eh 

eh 

eh 

When the displacer has moved rightwards through a volume V and then 
moves through a further volume dV, the mass of gas leaving the isothermal 

I -  

* 
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cold space, dMc, is given by 

PdV - (Ve - V)dP 
d M =  

RTch C 

The first term on the right hand side is simply the mass of gas contained 

in the volume dV at pressure P and temperature T The second term is 
the change in mass of gas contained in a volume V - V (the volume remain- 
ing in the cold cylinder) when the pressure is increased by dP. 

ch' 

e 

The corresponding equation for the mass of gas entering the hot 

cylinder, dMe, is slightly more complicated, because this space is adia- 

batic: 

PdV + VdPIy 
d M =  

e RTe h 

This equation was a basis of the numerical cycle analysis done by 

Qvale and Smith9 and is also a result contained, although in a somewhat 

disguised form, in the original Finkelstein equations for nonideal Stirl- 

ing cycles. 

Physically, the first term on the right hand side represents the mass 

of a volume dV of gas when it leaves the heater at a temperature T and 

pressure P. 
eh 

The second term represents the change of mass in a volume V when the 
pressure changes by dP: it is really a combination of the fractional in- 
crease in density - dP/P - caused by the pressure increase and the frac- 
tional decrease in density - dT/Teh - caused by the adiabatic increase in 
temperature. The temperature increase is given by the usual relationship 

dT dP 
y = ( y  - 1) p , 

and the net result is a fractional increase in density given by 
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The total mass of gas in the system is constant. Therefore, the mass 
leaving the cold cylinder must equal the mass entering the hot cylinder 

(i.e., dM = dMc) or e 

PdV - (V - V)dP PdV + VdP/y e 

1 1 V V V 

Tch Teh Tch 7Teh Tch 
.*. PdV (- - -) = dP (-L + - - -) ; 

dP (1 - z)dV . .  - -  - 
P v - V(1 - z / y )  e 

(17) 

Integrating from the starting point of this phase, when the displacer is 

fully leftward and P = P,, we find 

(1 - r)dV P=P v=v 
v - V(1 - r / y )  - e 

Both sides can be integrated, yielding a relationship between P and 

V: 

-- 'e 
ve - V(1 - z / y )  ' x log 

and 

(18) 

. 
The work done at the hot end of the displacer piston during this phase is 
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W e 2 .  where 

P=P2 

W e2 =rZve PdV . 
v=o 
P=P, 

S u b s t i t u t e  f o r  P from Eq. (18)  

Y ( l - 5 ) / ( y - c )  
dV . 1 

= 6' (1 - V ( 1  - t / y ) / V e  

Despi te  i t s  r a t h e r  overwhelming appearance,  t h i s  i n t e g r a l  i s  an e l e -  

mentary one of the form ( a  + bxIcdx and is e a s i l y  performed, wi th  the a i d  

of a handbook of  common i n t e g r a l s l O  i f  necessary .  The gene ra l  r e s u l t  i s  

( a  + bx) c + l  
C 

b ( c  + 1) ' ( a  + bx)  dx = 

i n  t h i s  case 

a = l ,  

V 
- ~ ( l - ~ ) / ( y - ~ ) + l  e 

--I- 1 O 

r 1  - V(1 - 5 / Y ) / V e 1  

(1 - z/y) . 
[ - y ( l  - t ) / ( y  - 5 )  + 11 - 

'e 

:. w = P, e2 
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and by substituting from Eq. (16) for P , we can write W in terms of 

the initial conditions: 
2 e2 

By making the substitution x = t(y - l)/(y - 
as 

[(t/y)x - 11 
W = -P V (1 + k) 

(1 - t)X ea o e  

As y-1 and the gas behavior in the cylinder 

space is considered adiabatic or isothermal, 

(1 + k)zx - 1 1 imi t limit - w =  
y-1 e2 x-o (1 - z)x 

It is known (e.g., Ref. 11) that 

= loge a , limit ax - 1 
x-0 x 

and therefore 

t), Eq. (19) can be rewritten 

becomes the same whether the 

x-0 : 

limit log z 
= - P V  ( l + k ) - .  

y-1 'ea o e  1 - Y  

This expression is, as we should expect, in exact agreement with the value 

given by Eq. ( 5 )  for an all-isothermal machine. 

The pressure in the system at the end of this phase is P, where, from 

Eq. (181, 
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P 

To carry out the calculation of pressure and work output during the 
next phase of the cycle, we need to know the temperature of the gas in the 

expansion cylinder at the end of Phase 2, T . 
ea 

From the ideal gas law 

P V  P V ( l + k )  

T 
z e  o e  

2e 
- =  

Tch 
# 

(21) 

At this stage, a new variable can be defined to simplify the equa- 

tions: 

When 7-1 (i.e., when the heater and cooler are kept at the same 

temperature), ~ ~ - 1 .  

the same whether the space is considered isothermal or adiabatic, then 

Furthermore, when y-1, so that the gas behavior is 

T~--Z, and the new variable fills the same role as the actual heat ex- 

changer temperature ratio. The variable z 2  represents the actual heat 

exchanger temperature ratio modified by the effect of the adiabatic space. 

, P a ,  and With this substitution, we can rewrite the equations for W e2 
T in more convenient and compact forms: 2e 
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(1 + k) , 
P = P  

a O ‘a 
( 2 4 )  

Equation (25 )  may be thought of as a physical definition of the modi- 

fied temperature parameter T ~ .  

Phase 3 .  With the displacer stationary at the cold end, the power 

piston is withdrawn so that the compression-space volume increases from 

zero to V . During this phase, gas is always leaving the expansion cyl- 

inder; the gas remaining in the expansion cylinder therefore does not 
P 

receive any admixture of gas from the outside, so its behavior is simply 

adiabatic. If the temperature of the gas in the hot cylinder at any mo- 

ment during this phase is T then from the usual adiaba.tic gas law e’ 

1-l/y 
.*. T e = Tae (k) . (26) 

The change of mass in the hot cylinder as the pressure falls can be 

calculated by the same methods used during the Phase 2 analysis, with the 

additional simplification that volume of the expansion space does not 

change during Phase 3 :  

During this phase the pressure is always falling, that is, dP is 

actually a negative quantity. 

The compression space is isothermal, and the gas in it is always at 

temperature T so that calculation of the increase of mass at the cold ch’ 
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end of t he  machine i s  easy :  

i 

PdV. VdP 
dM = - + - ,  

RTch RTch 

Once aga in ,  t he  mass l eav ing  t h e  exdans ion .space  must a l l  e n t e r  t he  com- 

p r e s s i o n  space.  Therefore  

V dP PdV VdP 
e + -  + - = o  

YRTe RTch RTch 

. .  

From the  i d e a l  gas  law 

Pv PV , Pave e - + - - -  - 
ae T e Tch T 

, 

(27 )  

P V  w P 

e e ae 
P 

F i r s t ,  s u b s t i t u t e  f o r  T from Eq. (26) e 

2e ae 

Then, s u b s t i t u t e  for T from Eq. (25) 
ae 

e 

(28 )  

1-1 / y 

E P - (2) ] Ve . (28) 
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Now, substitute this expression for V into Eq. (27 ) :  

1-1 I y t P  
PdV = -dP [F - z a  (>) + $]v e . 

Substitute for T from Eq. (26) e 

1-lly 1-117 

PdV = -dP[ta (>) - z z  (>) + k- yTa e (>) ] ve 
Finally, substitute for T from Eq. (25 )  ae 

1-lly - 1  P 

PdV = dP r~ (f) - > ] z  a e  V . 
The work done on the power piston during this phase is W , where 

P3 

and by substituting for PdV from Eq. (30) this integral becomes 

1” y - 1 yPl/Y 
y Pa1lY 

----logP 

pa 

. 
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Substitute for P from Eq. (24) 
2 

. 

i 

Returning to Eq. ( 2 9 )  and writing V = V to find the pressure/volume rela- 

tionship at the end of Phase 3 yields 
P 

l-l/y 

v P = Z  2 [;+) ]ve 

a 
P 

3 

Substitute this into Eq. (31) 

To find P3/P2 we numerically solve Eq. (321, that is, 

Only in special cases is it possible to solve this equation analytically. 

The gas temperature in the expansion cylinder at the end of this 

phase, T , may be found by substituting P /P 3e 3 1  for P/P 2 in Eq. (26) and 
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then using the expression for T in Eq. (25): 2e 

A new temperature ratio z3 can be defined for convenience such that 

Tch 
z3 = - -  

3e T 

( 3 5 )  

( 3 6 )  

With the aid of these relationships, Eq. ( 3 3 )  can be rewritten in terms of 

the gas temperature rather than gas pressure, a form that may sometimes be 

more convenient. 

Phase 4. We now have enough information [in Eqs.  (15) and (3311 to 

calculate the work output from the power piston for the cycle, but to cal- 

culate the efficiency we need the work input as well; therefore, we must 

continue the analysis through Phase 4. The gas in the expansion space 

continues to behave adiabatically, so we may continue to apply Eq. (26); 

therefore 

From the ideal gas law 

PV P(V, - VI PV P V e (1 + k )  

T e Tch Tch Tch 
+ - =  -- + - 

(P - P)Ve(l + k )  
0 -- . 

..* pv ( l e  T - - ':h)= Tch # 
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l/Po - 1/P 

The work done in the expansion cylinder during this phase is W , where 
e4 

w -  PdV . e4 

Integrate by parts 

W = -P V - /VdP e4 3 e  

and substitute for V from Eq. ( 3 9 )  

[ l/Po - 1/P 
W = - P V  - P V ( l + k ) J  o e  l--T ,T dP 

ch e e4 3 e  

1/P - 1/P 
1 - Tch/Te 2 + 1 d.) 0 .  

P 
= -P V (1 + k) o e  

2 

Substitute for P, from Eq. (24 )  

l/Po - 1/P 
W e4 = -P o e  V (1 + k) [;(>)+ I1 - Tch/Te . dP] . 

a z  
( 4 0 )  

The integral is most conveniently evaluated by using expansion-space gas 

temperature T as the primary variable: 
e 

1/P - 1/P dP dP 
0 

P(1 - Tch/Te) dP = - 
0 

1 - Tch/Te P 1 1  - Tch/Te 
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and for an adiabatic gas 

e dP . y dT 

P 7 - 1 T  ’ e 
- - - - .  - 

Tch 
T -  
4e dP 7 

log T - -- J =  k 0 JI - T ~ ~ / T ,  7 - 1 3e - Tch ’ 
(41) 

The variable T is the temperature of the small amount of gas re- 4e 
maining in the expansion space as the displacer piston approaches its 

extreme leftward position. At the time, the gas pressure approaches P . 
Therefore, from Eq. (38) 

0 

Substitute for Po/Pa from Eq. (241, and substitute for T from Eq. (25): ae 

1 4e T 
- - -  - 

t ‘ch 2 

(+.l-1/7 , 

and we may define a new temperature ratio z4 such that 

*ch 
= - -  - 

4e 4 T  

1-t - 
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The right hand term in Eq. (41) can now be rewritten in terms of 

the temperature ratios t3 and t4 and the result substituted back into 

Eq. (40): 

Y 
w = - p v ( l + k )  e4 o e  

+ -  . (43) - x log r ( 1 - t )  
4 3 

The remaining integral looks more straightforward than it is: 

dP 1 
dP 

1 - Tch/Te P 0 e P 
T=T- 3e 

dP 

e - Tch 

3 
P 

--.- + -  
P P  
3 2  = I - - -  

e P 

Substitute for P /P from Eq. (24) and insert the resulting form of  
2 0  

(44) 
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Eq. (44 )  back into  Eq. ( 4 3 ) :  

( 1  + k) Y 
- -. 

W e4 = -P o e  V (1 + k )  [>ft)+ 2 2  1 -k) 2 t 2 Y - 1  

T (1 - t dP 
3 4 Tch 

x log 
z (1 - r3) Po 

4 

From Eq. (38 )  we have 

y /  (y-1) r T  
:. P = P2 (e) ; 

Y / ( Y - l )  dT 
e Y 

. .  ' d P = - P 2 ( % )  Y - 1  - Te 

S u b s t i t u t e  for P, from Eq. (24)  

. 
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. 

We can use this relationship to evaluate the integral in Eq. ( 4 5 ) :  

Under certain circumstances, the integral can be expressed in terms 

of elementary functions. Fortunately, these circumstances include the 

cases of most interest in this analysis. For an ideal monatomic or di- 

atomic gas, y = 513  or 7 1 5 ,  respectively; the exponent of T in the nu- 

merator of the integral is then 3 1 2  or 5 1 2 ,  and the integral may be evalu- 

ated using reduction formulae given in tables of standard integrals (see 

Ref. 10). 

e 

For a monatomic gas the integral becomes 

T -  
+ 2‘Tch T4e 1 I ¶  4 0  Tch ch re 

-T - T  
x l o g  - 6 6 -  l o g  

T -  
i e  Tch -Tch - T + 2- 

re ch i e  

1 4 a ) t  r , ( l  - z 4 )  t 3 ( l  - r4  
+ l o g  - l o g  

r4(l - 5 ,  i 1 a ) a  r 4 ( l  - 5 , )  
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Substitute this back into Eq. (451,  while setting y = 513: 

11 2 1 1 2 )  Z3(1 - 5 1 Z 3  (1 - Z 4  
4 - - 

x log z ( 1 - T I  + 5(1 + k)Zil2[log T4 11 a (1 - Z, 1 1 2 )  

4 3 

+ (-$ - ; - )  +! 3 (-L = 4  - +)]I ; 

3 3 / 2 ]  
k P  

e4 o e  Z P  W = -P V (1 + k) 1 - -  - -  511 + (1 + k)t, 
2 2  

3 3 / 2 ]  
k P  

e4 o e  Z P  W = -P V (1 + k) 1 - -  - -  511 + (1 + k)t, 
2 2  

Equation ( 4 7 )  is valid for  a monatomic gas only. 

For a diatomic gas the integral in Eq. (46) becomes 

T’VT 

e X f4e T e- ich dT 
3e e 

. 
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Equat ion  (48 )  i s  v a l i d  f o r  a d i a tomic  gas  only .  

Qork o u t p u t ,  i n p u t ,  and e f f i c i e n c y .  The work o u t p u t  i s  t h e  sum of  

t h e  work done on t h e  power p i s t o n  du r ing  Phases  1 and 3,  which may be 

ob ta ined  from Eqs. (15 )  and e i t h e r  (33)  o r  (37 ) .  

From Eqs. (15)  and (33)  

= -p v (1 t k ) l o g ( l  + k )  o e  w + w = Wout 
Pa P3 

r P k P l  
2 

W = PoVe(l + k )  
3 2 2  

o u t  
(49)  

In e v a l u a t i n g  Eq. (491,  t h e  tempera ture  r a t i o  t, must f irst  be ca l -  

c u l a t e d  from Eq. (221, and P3/Pa i s  then  c a l c u l a t e d  by s o l v i n g  Eq. ( 3 4 ) .  

According t o  Rios  and Smith8 t h e  h e a t  i npu t  t o  t h e  h e a t  exchanger  i s  

equa l  t o  t h e  i n d i c a t e d  work done i n  t h e  a d j a c e n t  a d i a b a t i c  c y l i n d e r .  The 
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work input is therefore the sum of the work done in the expansion space 

during Phases 2 and 4. These values may be taken from Eqs. (19) and 

either (47 )  or ( 4 8 ) .  

For a monatomic gasI the work input is 

l/Z4 - 1 
, / a  3 1 2  

z2 
- 

x 11 + (1 + k)3/2s21 log llz, - - 5 (1 + k) 

For a diatomic gasI the work input is 

k P  3 7 11s. - 1 
- l + - -  + - x [l + (1 + k)f/2~2] log 

l l z ,  - 1 Z P  2 
2 2  

1 / z p  - 1 
- 7 (1 + k) 

1 
+ -  ( - - -  : I 2  Z;/.) + (% - *)]I (51) 

= 4  5 T4 



3 4  

In evaluating Eq. (50) or (511, z 2  is obtained from Eq. (221, and 

P, /P ,  is calculated by solving Eq. (34). 

are then calculated from Eqs.  (36) and (42). i 

.) 

The temperature ratios tj and z, 

The efficiency is simply W /Win, obtained from Eqs.  (49) and (50) out 
or (51) as appropriate. 

c 
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4.  SOME CONCRETE EXAMPLES AND PHYSICAL INTERPRETATIONS 

'. 

. 

Consider first an engine in which the displacer and power piston 
swept volumes are equal, so that the compression ratio (i.e. the ratio 

of maximum to minimum volume) is 2:l. Pressures and volumes will be ex- 

pressed in terms of the initial pressure and displacer swept volume, re- 

spectively (i.e.. Po = 1, V 

the vertices of the diagram are defined by Eqs. ( 3 1 ,  (61, and (9). For a 

similar engine with an adiabatic expansion cylinder, the vertices are de- 

fined by Eqs. (161, (20), and ( 3 4 ) .  A particular example, with a heat 
exchanger temperature ratio of 3:3, corresponding to hot and cold and tem- 

peratures of -650 and 35OC,  respectively, is given in Table 1 and plotted, 

for a monatomic working gas, in Fig. 4 .  Note that the P-V diagram shows 
that a three-cornered approximation of its shape can be quite a good one, 

especially for the adiabatic cylinder engine, because the pressure does 

not change very much during the final displacement phase. 

= 1, and V 
e P = 1). 

The P-V diagram of the all-isothermal engine is easily calculated; 

Table 1. Cycle pressure and power output 

Adiabatic expansion 
Isothermal cylinder . 

cylinders __I--- 

Diatomic Monatomic 
-.I__- - 
Po 1.00 1 .oo 1 .oo 
P I  2 .oo 2.00 2.00 

p3 

p, 6.00 7.02 7.65 

1.50 1.37 1.31 

Wout 1.39 1.33 1.28 

Note also that the adiabatic expansion cylinder machine with a mon- 

atomic working gas gives about 10% less output, but has almost 35% higher 

peak-to-peak pressure, than the all-isothermal one when both machines have 
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Fig. 4 .  Adiabatic and isothermal P-V loops. 

., 
the same initial pressure and volume (i.e., the same mass of working 

fluid). 

Figure 5 shows the work output as a function of heater temperature, 

assuming that the cold-end temperature is 35OC, comparing the all-isother- 

mal case and the adiabatic expansion cylinder machine. The work output of 

the isothermal machine does not fall to zero until the temperature dif- 

ference between hot and cold ends has fallen to zero, but the adiabatic 

machine then has a negative output (i.e., work must be done to drive it). 

At some higher temperature ( 8 5 O C  in this case) the power output from the 
adiabatic machine will be zero. At higher temperatures still, it will be 
positive. 

We can calculate the temperature difference at which the work output 
will fall to zero by setting the left hand side of Eq. (49 )  equal to zero: 

1 
= ( y  - l)(k/T,)(P,/P,) . log (1 + k)(P,/P,) 

Substitute for (k/z,)(P,/P,) from Eq. ( 3 4 )  

Y 

( 5 2 )  
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Fig. 5. Work output vs heater temperature. 

This equation can be solved for P,/P, and the result substituted 

into Eq. (34 )  to give the value of t2 for which the work output is zero. 

Finally, this value of z 2  can be inserted into Eq. (221, which is then 

solved to give the heat exchanger temperature ratio ‘t: for zero output. 

Some results are given in Table 2 and plotted in Fig. 6. 

To understand the reason for the negative work output of the adia- 

batic machines at small temperature ratios, consider how the P-V diagram 
changes as the heater temperature is reduced (Fig. 7). At.a moderate 

heater temperature, for example 35OoC, the work output is positive. At 

a somewhat lower temperature - 17OOC in this case - the extra reduction 
of pressure in the expansion stroke due to adiabatic cooling lowers the 

pressure during Phase 3 as far as the original pressure. The cycle be- 

comes three-cornered, but the work output is still positive throughout 

the cycle. With a lower heater temperature (such as the 85OC example 



38 

Table 2.  Beat exchanger temperature for 
zero work output 

Heater Tempera tare 
temperaturea differenceb 

(OC) ( O C )  

Temperature 
ratio 

Monatomic gas 

k = 0.5 0.910 65 30 
k = 1.0 0 .861  85 50 
k = 1.5  0.828 99 64 

Diatomic gas 

k = 0.5 0.940 55 20 
k = 1.0 0.905 67 32 
k = 1 . 5  0.882 76 41  

-___I___ _I_--- I ----- - ----___-- 
a 

bDifference between heater and cooler temperatures. 

Assuming a cooler temperature of 35OC. 

I- 

I- 
3 

80 
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F i g .  6 .  Heater temperature at which work output falls to zero. 
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Fig. 7. P-V diagrams for various heater temperatures. 

shown), the pressure on the expansion stroke actually falls below the 

initial pressure, and in part of the cycle the loop is traversed in a 
counter-clockwise direction, therefore requiring a work input. In the 
example shown for 85OC, this negative work exactly compensates the work 

output available from the first part of the cycle, leaving zero net out- 

put. When the heater temperature is lowered further still, the area of 

the negative work portion of the loop exceeds that of the positive por- 

tion, and instead of the machine running as an engine, a net work input 

is needed to drive it. 

For a machine operating across a small temperature difference then, 

the work output (which may be negative) is the relatively small difference 

between the larger quantities represented by the two parts of the loop 

traversed in opposite senses. Consequently, the net output will be rather 
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sensitive to even relatively small additional irreversibilities in the 

cycle. The same problem may occur in a Stirling machine operated as a 

heat pump. 

The effect of adiabatic heating and cooling is greater, the greater 

the compression ratio (i.e., the greater the ratio of power piston to dis- 

placer swept volume). The compression ratio is simply equal to 1 + k, and 

Fig. 8 shows the work output per cycle as a function of compression ratio 

for a monatomic gas. As expected, increasing the power-piston swept vol- 

ume gives a larger output when the heater temperature is reasonably high. 

1.5 

1 .o 

n >: . 
I- 

5 0.5 
0 
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(r 

2 
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0 

-0.5 

ORNL-DWG 81-20093 ETD 

HEATER TEMPERATURE ( K )  
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I 

0 100 200 300 400 500 600 

HEATER TEMPERATURE ( O C )  

Fig. 8. Work output vs heater temperature with various compression 
ratios . 
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More surprisingly, however, the work output is actually reduced by in- 

creasing the power-piston swept volume (and thus the mass of working 

fluid) when the temperature difference is small. This result has impor- 

tant implications for machines, such as heat pumps or engines designed to 

operate with flat-plate solar collectors, that must operate with a small 

temperature difference between heater and cooler. 

Consider next the heat input required. Figure 9 shows that the heat 

input required is higher for an adiabatic expansion-cylinder machine than 

for an all-isothermal one. The increase is 10-1596 (if the working fluid 

is monatomic) when the displacer and power-piston swept volumes are equal. 

The increase in heat input and the reduction in work output combine 

to drive down the efficiency. Figure 10 shows that the ideal efficiency 
is considerably lower for the adiabatic expansion cylinder machine than 

2.5 

2.c 

>: a 
c 
z 
a 

3 
a 

I- 
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I 
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Fig. 9 .  Heat input for isothermal and adiabatic cases. 
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F i g .  10. Efficiency for isothermal and adiabatic cases. 

for the isothermal one even in this ideal case where the practical losses 

(e.g., flow losses or transient heat transfer losses) are ignored. 

reduction is naturally proportionately larger at the smaller temperature 

differences, and at high compression ratios i t  is also absolutely larger 

for small temperature differences, at least for a monatomic gas (Fig. 11). 

Again, there are important implications for machines operating across 

small temperature differences. 

The 
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5 .  CONCLUSIONS 

Integration around the P-V loop of a Stirling-like machine with an 
adiabatic cylinder is possible. The problems of such a task arise mainly 

from the complications caused by having a mixture of adiabatic spaces and 

isothermal spaces exchanging gas with each other throughout the cycle. 

The actual cycle treated is not that of a real Stirling engine, which usu- 

ally has a near-sinusoidal variation of cylinder volume with time, but it 

is much more realistic in some important respects than the isothermal cyl- 

inder approximation that is usually made to facilitate analysis of the 

Stirling cycle. 

The effects of the adiabatic cylinder include a reduction in power 

output and thermal efficiency but an increase in the heat input required, 

for a given quantity of working fluid. 

the temperature difference between the heater and cooler is relatively 

small. The peak pressure in the engine is increased considerably when the 

expansion cylinder behaves adiabatically rather than isothermally. 

These effects are most marked when 

For small heater-to-cooler temperature differences, the P-V loop is 
still fairly large for the adiabatic cylinder case (unlike the all-iso- 

thermal machine, for which the loop closes up completely at zero tempera- 

ture difference) but consists of a figure-eight shape with the two por- 

tions traversed in opposite senses. The net work output is the difference 

between these two larger areas, which explains quite clearly why the out- 

put of an adiabatic expansion cylinder machine is so sensitive to even 

small additional irreversibilities when the temperature difference is 

small. 

The results clarify some of the difficulties that have been encoun- 

tered or that are to be expected in operating Stirling engines or heat 

pumps with a low temperature difference between the hot and cold heat 

exchangers. The results also help to provide a physical background and 

explanation for some of the effects that are routinely observed when 

running computer models of Stirling engines, models that invariably use 

numerical integration of the gas behavior equations in adiabatic spaces. 
The cycle analyzed is a version of the ideal Stirling cycle that does 

not allow for the near-sinusoidal piston movements of most real machines, 

c 
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but the same general effects and trends must be present in both cases, 

although their magnitude will probably be reduced by the merging of dif- 

ferent parts of the cycle that takes place when the piston movements are 

continuous. The magnitude of the adiabatic effects will be considerably 

reduced, although they will neither be eliminated nor (probably) qualita- 

tively changed, when allowance is made for the presence of the heat ex- 

changer volumes; preliminary work shows that finite-volume heat exchangers 

can be included in this type of analysis, and a future report may attempt 

to do so. 
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Appendix 

ADIABATIC COMPRESSION SPACE 

Although less interesting practically than the adiabatic expansion 

cylinder machine, the case of an engine with an adiabatic compression 

space turns out to be much simpler mathematically. Some of the results 

are derived in this Appendix, using the same nomenclature as the main 

text. 
The analysis can be conveniently begun at Point 2 on the P-V loop 

when all of the gas is at the temperature T of the isothermal expansion 

space. 
eh 

Phase 3 .  The process is similar to that for the case already 

treated, except that the gas in the expansion cylinder is always at tem- 

perature T eh' 

. .  

. .  

. .  

. .  

VedPly VdPIy + PdV 
= o  - + 

Teh Tch 

(sVe + V) dPlr = -PdV ; 

dP 

log PIP, = log (tv; V I  ; 

P = P2 (%v; v] 

The work done, W , is given by 
P3 

W =  PdV = P, dV 

(A.1) 

(A.2) 



48 

w = P V  -1 
P3 a e t  t + k  (A.3) 

The pressure at the end of this phase, P3, may be obtained by substi- 
tuting V = V into Eq. (A.2): 

P 

p3 = pa (5Y (A.4) 

Note that when the heater and cooler are at the same temperature, t = 

1, the pressure ratio during the expansion stroke is simply (1 + k)', as 

it would be if all the gas were expanded adiabatically. The gas tempera- 

ture in the expansion cylinder, however, remains at T during the expan- 

sion, and so is higher than it would have been if the gas had all expanded 

adiabatically. To offset this, the gas temperature in the compression 
space at the end of this stroke must be lower than it would have been in a 

purely adiabatic expansion. In fact, if the temperature in the compres- 
sion space at the end of the stroke is T , then (for t = 1) 

eh 

c3 

P V  P V  P V  
a e  3 e  3 P  + -  - - -  - 

T '  Teh Teh c 3  

Substitute for P3 from Eq. (4) and substitute T - eh - Tch: 

- k 
T = Tch 

(1 + k)' - 1 c3 
( A . 5 )  

Phase 4. The displacer piston is moved leftwards through a volume V, 
moving gas from the expansion cylinder into the compression cylinder, 

which it enters with the temperature T imparted by the cooler. ch 

(V - V)dP/y - PdV (V + V)dP/y + PdV 
e P - + ----- - - 0  

Teh Tch 
(A.6) 

c 

L 

. .  -yav - dP . .  - -  
t + k  
1 - t  

# 

P -  ve + v 
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integrate both sides, and 

1 

I+-- 

Substitute for P, from Eq. ( A . 4 )  

t 

The pressure at the end of this phase, Po, is obtained by substituting 

V = Ve, corresponding to the displacer in its far leftward position with 
all the gas in the compression space 

P =Pa(,,'. t 

0 
(A.8)  

Phase 1. The gas, now all in the compression space at an initial 

pressure P is compressed adiabatically by moving the power piston 

inwards. From the usual adiabatic gas laws 
O D  

P(V + V)Y = P 'Ve + Vi) e 0 

V (1 + k) 
. .  * P = P  0 ( e v e + v  ) .  
Substitute for Po from Eq. ( A . 8 )  

( A . 9 )  

( A .  10) 
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The work done on the power piston during this phase is W , where 
Pl 

/.P=P1 
v=o ~ 

PdV = P, (tVe) 
Pl 

P=Po v=v P . .  
P 

and 

1 

(1 + k)'-' 

t w = - P V  - Pl a e y - 1  (A.11) 

The pressure at the end of this phase, 

V = 0 into Eq. (A.10) 
P,, is calculated by substituting 

(A.12) P, = P,t Y , 

Work output and P-V L O O D .  The work output Wout is the sum of the 

work done on the power piston during Phases 3 and 1, given by Eqs. (A.3) 

and (A.11): 

2 e  
Pl 7 - 1  1 - (Aj7 

- t  ' [ 1 - (Ly-l]l l + k  . (A.13) 

With the aid of Eq. (A.13) we can also calculate the temperature ratio for 

which the power output falls to zero. The work output Wout = 0 when 

z + k  l + k  t 

c 

v 

E 

P 
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or 

s + k  l + k  s 

that is, when 

1 1 1 
( A . 1 4 )  

By inspection, this equality is fulfilled when t = 1,  that is, when there 

is zero temperature difference between the heater and cooler, When the 

temperature difference is positive, the work output is positive. Table 

A . l  lists the ideal output for an all-isothermal machine and an adiabatic 

compression-space machine when both have the same mass of monatomic work- 

ing fluid and the same cooler temperature ( 3 5 O C . 1 ,  such that MRTch = 1 .  

When the temperature difference is moderately low (less than about 400 K), 

the adiabatic machine gives more output than the all-isothermal one. 

The vertices of the P-V loop are given by expressions ( A . 4 1 ,  ( A . 8 1 ,  

and ( A . 1 2 )  for the pressure at the end of each phase. The shape of the 

P-V loop may be obtained from Eqs. ( A . 2 )  and (A.10) relating the pressure 

and volume during the expansion and compression phases, respectively. The 

constant volume transfers are represented by vertical lines joining the 

vertices P , P and P , P . 
3 0  i a  

Table A.l. Comparison of power output 
for all-isothermal and adiabatic 

compression-space engines 

Output power 
Teh 
(OC) I so thermal Ad iaba t ic 

35 
100 
200  
3 0 0  
400  
500  
600  
700  

0.00 
0.10 
0 .24  
0 . 3 6  
0 . 4 7  
0 . 5 6  
0 . 6 5  
0 . 7 3  

0.00 
0.13 
0 . 2 8  
0 . 3 8  
0 . 4 8  
0 . 5 5  
0 . 6 1  
0 . 6 6  
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