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ABSTRACT
The basic properties of curvilinear coordinates are reviewed.
Some applications to the description of threé-dimensional magnetic
confinement geometries are cited. The notation used here attempts to
be consistent with the literature, and the relation to differential

geanetry is stressed,






1. CURVILINEAR COORDINATES

Let any point P be denoted by its Cartesian coérdinates
(x,y,2z) = (x1,x2,x3). Then, provided the transfopmation of the
coordinates xy = ii(u1,uZ,u3) has.a unique»andldiffereﬁt;able inverse
uy = ui(x1,x2?x3), the curviliﬁear cbordipates of P are Qefined as
(ug,uy,u3). |

The surfaces u = ¢y, where c¢; = constant, are cgordinate
surfaces. The curve along which a pairbof surfaces u; = ¢4 and ujl= Cj
intersect is a w, coordinate curve (with 1 # j # k). Thus, for
example, a Uy coordinate curve is a .curve along which uziand uz are
constant but along which U varies (see Fig. 1).

.
2. 'COVARIANT AND CONTRAVARIANT BASIS VECTORS
Consider the position vector P = xjfj to the point P, where fj are

the orthogonal unit Cartesian coordinate vectors, The cqvariant basis

<. .
vectors €4 are defined as

> -
ei = (1)

Since the derivative is taken along the u; coordinate curve (i.e., with
uj and u, held fixed),_gi is the tangent vector to the uy curve through
P (see Fig. 2). Note that 31 and gj

vectors (i.e,, for i # j, éi . 3j # 0) nor are they unit vectors (i.e.,

are generally not orthogonal

31 . 31 # 1). The contravariant basis vectors 31 are defined as the

vectors normal to the uy coordinate surfaces:



b Vug . l _ (2)

Since 31 is tangential to the surfaces of constant uj and Uy s and
8l is normal to the constant u; surface, it follows that & < &J = 0
for i # j. In fact, since éi = (axk/aui)fk, where ﬁhe summation

convention on repeated indices is implied, we find upon applying the

chain rule duj =_(8uj/8xk)dxk that

‘ : X du; \ du '
> 2 k J _ 3 _ )
ST (3“1) (‘”‘k) " duy %y -

Thus, 31 and &J are reciprocal, or adjoint, vectors:

‘ei e ev = Gij . . : ’ (3)

In particular, for any cyclic permutation (i,j,k), Eq. (3) implies

3 = 75 (@ x )

n
®)
~~
<]
=4
(3%

where vg = (81 « & «x g3)-1 - (Vuy « Vu, x Vu3)'1 will be shown to be
ﬁhé Jacobian of the transformation from Cartesian coordinates to
curvilinear coordinates (ui). Taking the cross product of 31 and 33

and using Eq. (4) yields



Thus, Eqs. (3) and (5) impiy

/é=€1 xgz '33

> > >
- :r x :r . :P, , : (6)
U1 U2 U3

which shows that vg is, indeed, the Jacobian.
Using the adjoint relation given in Eq. (3), it is possible to

.’
decompose any vector A in terms of the basis vectors 31 or &l;

o . : s
A= Aigi = Aigi "y ' (7
where
+> +>
alog o8- ey ‘ (8a)
and
+> > > .
A=A +e; = 7gA e Vuy x Yy . (8b)

The coefficients Ai or Ai. are the contravariant components or the

+
covariant components of A, respectively. In Eq. (7), and in what

follows, summation over repeated indices is implied,



3. VECTOR OPERATORS IN CURVILINEAR COORDINATES

For any scalar funétion ¢, the gradient operator V¢ is defined as

ad

) s | , . i
deo =E dui= Vo « dr , (9)
where
at= 2 qu, = 8,0 : = (10)
r-= u; du; = ejduy . .

Equating coefficients of duj in Eq. (9) yields the covariant components
of Vo 31 ¢ V& = 3%/3uy. Thus, using Eq. (7) yields
d »i ad

V¢:3—31=8—Vui . (11)
aui ouy

A mnemonic for Eq. (11) is obtained by setting ¢ =z u from which the

ir
identity Vui = Vui results,

~ Now, consider the vector identities:

v . (8-1/2'61) = 7 o (Vuj x Vuk) =0 ' ' (12a)

and

v x&l- v «x (Vu;) =0 . : (12b)




> . .
Then, using Eq. (7) in the form A é'(g1/2Ai)(g'1/23i), together with

Eq. (12a), yields the curvilinear formula for the divergence operator:

V.= g V28 . ovg)/2h

B st S 12)
/éaui(@” . (13)

Using Eqs. (7) and (12b) yields the curl operator

> oA
Vxa= VAy x & = 7;;1 &l x & (14a)

or, using Eq. (#),

> A
L -3 2 :
Vxh=—=e¢ € - 14b
X vg 1k du; k (14b)

Finally, the Laplacian operatob A® = V « (V®) can be obtained by using

Eq. (13) with al - (3¢/8uJ)Vui . VuJ. Denoting P2 S & = giJ yields

M:Lfg—ﬁ—(@ giJ—L") : | (15)



4, METRIC TENSQR AND DIFFERENTIAL GEOMETRY RELATIONS

The differential arclength d32 = df * df can be written [using
Eq. (10)]

d82 = gijduldUJ ’ (16)

where the covariant metric tensor components are

gy =8 + 358y - (17)

Alternate and useful forms for 3ij follow from the various forms for

2.

For example, g:: may be computed from the following relation:
1)

axk 3xk

J . duy duy

Using 8ij' the covariant base vectors 31 may be linearly decomposed in

terms of the contravariant base vectors Eiz.l

Similarly, using gij = 31 . EJ, which was introduced in Eq. (15),
yields

€y - _ (19b)

The gij matrix is the inverse of the metric tensor gij, since from



_ : 233k L 2 KkJ '

Eq. (3) €&; - -8, = I g et e e, =13Ig . Note that when

i TP T T, BikE AR U'S

g #0, gij can be computed in terms' of the metric tensor elements by

using Eq. (5) to express 2l ang 33_in terms of the adjoint vectors.
Equation (19a) can be used to express the Jacobian Vg in terms of

8ij. From Eq. (6), note that

g = 81187383k & x & .
- -1/2 _ 1
= eijkg.l 152j33k3 = 7z det giJ . (20)
Therefore,
g = idet gyl . | | (2

Now, the element of the line segment d§i along the coordinate

curve uy is given by

> or \ > . .
dSi = <Wi>dui = eidui . ' - (22)

(Here, there is no implied summation,) The element of surface area dai

directed normal to the coordinate surface u; = constant is

1~ 3uj duy 7k

= g,j x gkdu\jduk . . ' . (23)



Using Eq. (5), this becomes (with 1,j,k comprising a cyclic triplet)
dai = Vgéidﬁjduk . - ’ | (24a)
Note from Eq. (23) that

1d &, | ggj

x €k= dquuk

(Sngkk - g%k)1/2dujduk . (24b)

Finally, the element of volume is given by

> > >
dv = or du; x or -du, - s du3
aU1 3u2 BU3

5. TOROIDAL DIFFERENTIAL GEOMETRY
Let (R,¢,2) be a cylindrical coordinate system, with ¢ the
toroidal angle, R the major radius measured from the center of the

torus bore, and Z the height measured from the torus midplane. Then,

£z Rcos ¢x+ R sin ¢y + 2z = Rr + Zz . : (26)

Now, let (u1,u2,u3) represent an arbitrary flux coordinate system, and
consider the map (R,¢,Z) + (u1,u2,u3). The metric - elements

gy = (3?73ui) . (BF/auj) are readily evaluated from Eq. (26), noting



(3%/3uy) = (R/dug)r + (R3¢/3uy)$ + (3Z/3uy)z, where ¢= ar/d¢p is a

unit vector orthogonal to ; and 2. Thus,

R R _ p2 96 3¢ 92 37

855 = 7 — (27)
i3 aui auJ aui auj aui auJ T
Using Eq. (6) for the Jacobian yields
_9o(R,¢,2) . :
- p —AR.0.Z) (28)

3(u1,u2,u3)

6. APPLICATION TO MAGNETIC GEOMETRY
Now consider the MHD equilibrium equétions, which determine the
magnetic flux coordinate geometry.i Let u{ = p (flux-surface labél),
W = Bb(poloidai angle) , and u3 =vc (toroidal angle)'be cyclic flux

coordinates. From the pressure balance equation

> > :
VWp=J xB , (29)

> +> +
note that B - Vu1 = dJ ° Vu1 = 0. Thus, from V «B = 0 in curvilinear

coordinates yields

—53—(@2) +—53—( /@3) =0 , o (30)
L) Uz :

from which
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B2 - _ -1 9on (31a)
/g 8u3 ‘ . 7
and
3 - L 280 | . (31b)
V’é 3U2 ‘
Since B2 and B3 must be periodic functions of -the angles 4 and
uz, n= -xuz + ®uy + fuy,u,,u3), where A is a periodic function of

(u2,u3);.x(u1) and ®(uq) are (within numerical ‘factors) the poloidal
and toroidal magnetic fluxes, respectively, outside or enclosed by the
surface u; = constant; and prime denotes 8/3u1. For example, the

U1 > u1
toroidal flux is &p(uq) =/ ' B ° d83 = [

du{fi1T du, /g g>° &3, where
dd; is given in Eqg. (23). Using Eq. (31b), it follows that
¢p(uq) = 2w fu1 duq®” = 2n®(uy). Note that only the secular part of n
contributes to the enclosed flux, .

- ‘ . .
Using this form for n, the contravariant representation for B

becomes

> ~ '
B= ¢°Vu, x Vu, + X"Vuz x Vuy + Vuy x Vn. (32a)

It is always possible to eliminate the last term in Eq. (32a) by a
change of variables (e.g., u; = u, + W¢7, uz = u3). Then, in the
primed coordinates, the magnetic field lines are straight on each
magnetic  surface, since dué/dug = B2/B3 = X /¢ = 1(u1) (i.e.,

uj - 1(u1)u§ = constant). Here, 1(u1) is the rotational transform,
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which is the change in poloidal angle for each unit change in toroidal

angle, In this straight line system, Eq. (32a) reduces to

<>
B = B2, + B3, » (32b)

with B2 = y’/vg and B3 = ¢°//g. Note that the covariant components
+> +> :
Bi = B ¢ e; can be readily expressed in terms of B! by taking the inner

*
product of Eq. (32b) with ej, yielding
By = B%gy, + Blgy3 (32¢)

where Sij.is the metric tensor. This relation will be subsequently

used to determine the metric elements.

Let us digress moﬁentarily and compare these relations with the

= )
well-known expression for B in an axisymmetric torus:

<>
B

X'VE x Vu; + F(uy) Vg

X‘VC X Vu1 + /éR-Z F(U1)VU1 x V6 0 (333)

where vg = (Vu1 + VO x V;)'1, 1vz = R (z is the geometric toroidal
angle), and V¢ -« Vu, = Vg - V6 = 0. Here, F(u1) = RBp 1is a flux
> > :
function by virtue of J ¢ Vu; = ¥V xB ¢ Vu; = 0. (Sometimes, the
radial coordinate u, = y is wused, so that x” = 1.0.) Apparently,
1
Eq. (33a) does not represent straight field lines unless
Vg R~2 = f(u ), which is not generally the case. However, comparing
1 _

with Eq. (32a), note that n= -x"C + </g R"2, F(u))6 + 7, where
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F=Fluy) S@ (VBR2 - <Vg R )de, ¢ = <Vg R"%>, F(uq), and <A>g =
1 I 8 g F(u, 8

(2m=1 2™ A de. Thus, transforming to the angle
o

0
07 = 0+ [ /g ™2 -1>de
</g R

in Eq. (33a) yields

>
B= X'V x Vu; + ¢°Vuy x Vo~ (33b)

The Jacobian in this straight field line system is /E‘ = R2</§ R"2>e.
In this coordinéte systenm, duidezd; = (JE‘)‘id3x ~ R~2d3x; hencé;
u ~ Jf R-2d3x ~ f B, ° V¢d3x. Thus, the surface coordinaté uq is
broportiénal to4the vacuum magnefic flux, thch is nearly an adiabatic
invariant. 2 Also note | that fhe .safety factof | é(u1) =
/= g R'2>eF(u1)/x‘ = F(u1)<R'2(g . ve)'1>e reduces to its
well-known value rBT/RBp in the large aspect ratio,.circular surface
limit. |

Now consider the calculation of the_current. Since 3 e Vuy =0
aﬁd V . 3 = 0, the contravariant form for 3 follows in analogy with

Eq. (32a):

ES
J

Vu; x Vv + J°Vu, x Yu, - I“%u; x Vu3’

528, + 338, o | (34a)

where
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(I° - 3v/3uy) 4
2 _ 3
P# e , (34b)

(37 + 3v/3uy)
& ) » 4 . (3"@)

J3

I'(uj): and J7(uq) are the poloidal and toroidal current densities,
respectively, and v is an arbitrary periodic function of Y and us.
(The Hamada choice of coordinates makes v= 0, but this unnecessarily
restricts the Jacobian to be constant.)

>

>
Next, the Ek components of Ampere's law V x B = J yield, using

Eq. (14b),

JB
Lk oy = B o | | )

Solving Eq. (35) using J! = 0 and Eq;. (34b,c) yields

B = V¢ - VVU1 + JVu2 - IVU3 = Bie ’

where
By = vt | | (36a)
duy
B, = J + 24 y . (36b)
, . A

and
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. 1 . 20
By = -I+ dug . _ (36¢)

->
Here, ¢ is the scalar magnetic potential (B = V¢ in the absence of

internal currents I = J” = 0). Let

x= =Iuz + Ju; + ¢ , (37a)

where ¢ can be chosen to be a periodic function of u, and us. (Any
"secular part of ¢ can be absorbed into the flux functions I and J.)

->
Then, the covariant decomposition of B becomes

+> : .

B= Vx+ B8 Vo , (37b)
where = =V - J'u2 + I’u3. [See Ref, 3, where g = -i, I 1is the
parameter J, and By = -v. In Ref. 3 ¢ = 0, which gives a special value

for the Jacobian, as shown in Eq. (43).]

Equating Eq. (32c) with Egs. (36a-c¢) yields

-1

_ g2
u, = 5812t B3gy3 (38a)
3¢ _ g2 : |
I+ gy T Bea2 e B3gy3 (38b)
and

BU3
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Recall that B2 = x°//g and B3 = ¢°//g. [These are Eqs. (16)-(18) of
Ref. 1.] These equations determine the flux coordinates oﬁce v, J,'I,
and ¢ are prescribed. For example, the metric elements giJ may be
evaluated in terms of (R,¢,Z) using Eq. (27’, Then, Eqs. (38a-c) are
three coupled partial differential equations for the inverse
equilibrium coordinates (as a function of the flux coordinates). These
equations form the basis of a variational moment method for obtaihing
inverse equilibria. [See Ref. 4 for a tyo-dimensional solution of Eq.
(11); Ref. 5 generalizes this method to three dimensions,]

Finally, let us determine v from the pressure balance Eq. (29).
Note  that vp = &lp-, where prime denotes 3/dp, and
: (3 x g) e 1 « 33 - Jipd - JIBL, Taking the 31 components of Eq. (29)

and. using Eqs., (3) and (4) yields

For i = 2 or 3, this yields a trivial identity, since B! and J! both

vanish. For i = 1, Eq. (39) yields

>
B p“= I70" - J°x" - /gB Vv , o (40)

>
where vgB « V= x"3/8u, + ¢“3/8u3. Integrating this equation over a

field line yields a solubility constraint:

PV = I7¢" - J°x" , (41)
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where V° = Jf ¢§du2du3 = </g>. Subtracting Eq. (41) from (40) yields a

magnetic differential equation for wv:
> . X
B e Yv= p‘(@- 1> ’ v . (42)

which is Eq. (12) of Ref. 1. [To see that this is also Eq. (23) in

Ref. 3, it suffices to note that for Ref. 3, B = (1J - I)/V&. 1

' >
general, 1BI2 = 5252 + B3B3 = 3'1/2(x‘J - ¢°I) +B ¢ V¢ or

.. >
XJg - 0 .
/é= J QI+VIéB V¢

=B=2 L] .' E ) (u3)

It should be noted that the equilibrium Eqs. (38a-c) and (40) can

be obtained from variational principles. For example, the variation of

the Lagr‘angian6
. 52
L=/ (5 -p)a (4Y4)

>
with respect to the flux coordinates (p,0,7), when B is written in the

contravariant form given by Eq. (32b), yields
> > : ' '
- XJ Vg &°J « V8 -p“ =0 _ (45a)
and

>
J+W%=0 , ~ (45Db)
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> s ) ' ’
with J = V x B. Equations (45a,b) are the only nontrivial components

+
of the pressure balance equation, since B °* Vp = 0 is built into
Eq. (32b). Equation (44) can also be used to obtain the

three-dimensional inverse equilibrium equations: 5

3 ) >
B2:§+B3 ;3-B-val+p‘,=o | (46a)

and

These equations, with the covariant components B; given by Eq. (32¢)
in terms of the metric coefficients, can be used to determine the
inverse equilibrium (i.e., the real coordinates X in terms of flux
coordinates) .

Finally, another variational pr‘inciple7 minimizing
B2 '
W=/ ? +pjldav , (47)

<>
with respect to ¢, v, and p when B is expressed in covariant form

>
[(Eq. (37b)] yields V = B= B * Vp = 0 and the equilibrium equation

>

+> +> )
B *Vv+ J°B*V8-IBeVg+p =0 |, (48)
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+
which 1is a generalization (to systems where B is not straight) of

Eq. (40).
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FIGURE CAPTIONS
FIG., 1. Curvilinear coordinate surfaces (ui = ci) and. coordinate
curves in the neighborhood of the point P(x,y,z).
FIG, 2. Covariant and contravariant basis vectors ‘(51 and 31;

respectively) at the point P(x,y,z).
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