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UNIFIED CREEP-PLASTICITY CONSTITUTIVE EQUATIONS FOR
2-1/4 Cr—1 Mo STEEL AT ELEVATED TEMPERATURE*

D. N. Robinson R. W. Swindeman

ABSTRACT

Unified creep/plasticity constitutive equations are
provided for 2-1/4 Cr—1 Mo steel in a post-weld heat-treated
condition. These equations are recommended for trial use
in inelastic design analyses for breeder reactor components
at high temperature. The range of applicability of the
equations is approximately 250 to 600°C in temperature and
strain rates not in excess of about 0.04/min. ‘The model is
multiaxial and nonisothermal and accounts for both rate-
dependent plasticity and creep. The results of several cal-
culations based on the unified equations are included to
provide a test of the correct implementation of the model
and to demonstrate the predictive capability of the model.
Also, a discussion is included regarding general properties
of solutions to structural problems when employing the uni-
fied equations. ‘

Keywords: viscoplasticity, constitutive equations,
high-temperature plasticity, creep, structural analysis,
rate sensitivity, time dependency.

1. INTRODUCTION

. The purpose of this report is to document for trial use the Oak Ridge
National Laboratory (QRNL) unified equations for the liquid-metal fast
breeder reactor (LMFBR) steam generator material 2-1/4 Cr—1 Mo steel.

The model parameters have been determined to represent the elevated-tem-—
perature behavior of a vacuum arc remelted (VAR) heat of 2-1/4 Cr—1 Mo
steel (heat 56448) in a 40-h post-weld heat-treated (PWHT) condition.

An exact specification of the material composition and heat treatment,

as well as the results of numerous characterization tests, are found in

*Work performed under DOE/OBTP AF 15 40 10 3, Task No. OR-1.1, High-
Temperature Structural Design Technology.



Refs. 1 and 2. The chosen heat and post-weld heat treatment are.proto—
typical of tﬁe LMFBR steam generator material and conditions.

" As the present data base is largely exploratory and thus somewhat
limited, the range of applicability of the model as specified here is
limited to about 250 (482) to 600°C (1112°F) in temperature and strain
rates below about 0.04/min. This range includes most important thermal
transients relating to LMFBR steam generator design.

A complete multiaxial and nonisothermal specification of the consti-
tutive model is presented with numerical values for each of the material
parameters. As previously discussed,® the ORNL unified equations are of
the Bailey-Orowan type and make use of the earlier experimental and theo-
retical work of several authors including Rice, " Ponter and Leckie,’
Mitra and McLean,® Lagneborg,7 and Onat.® The relationship with those
works has been discussed at length?® and will not be repeated here.

As the unified model admits analytically different mathematical de-

3,8 guidance is pro-

scriptions in various regions of the state space,
Qided for numerically smoothing across the boundaries of these regions.
The smoothing procedure described herein is intended primarily as an
example; it was used with satisfactory results in implementing the uni-
fied equations in the ORNL finite element code PLACRE by W. K. Sartory

of ORNL.

The results of several calculations are given for two reasons —
first, to provide a convenient check on the correct implementation of the
unified equations in a structural ‘analysis code, and, second, to furnish
further comparisons with experimental data to demonstrate the-accuracy
of the model in representing both rate-dependent plasticity, on the one
hand, and creep behavior on the other. Included in these calculations
is a two-bar ratchetting problem. For comparison, the results of the
corresponding two-bar experiment have been presented in Ref. 9 and in an
appehdix of NE standard F 9-5T'? where they are used as verification of
the F 9-5T a-reset option for 2-1/4 Cr—1 Mo steel. The a-reset option
introduced in F 9-5T is but a time-independent specialization of the

time-dependent recovery mechanisms built into the unified equations.




Also presented are solutions to two prototypical structural problems{
one illustrating the redistribution of stress during creep of a thick-
walled cylinder under constant internal pressure and the second involving
the (nonradial) response of a cylinder subjected to a thermal shock.

Finally, a discussion is given of the general properties of solutions
of structural problems when employing the ORNL unified constitutive equa-
tions. Such questions as the sensitivity of solutions to the prescribed
initial stress and state fields, uniqueness of solution, and shakedown

are discussed.



2. THE UNIFIED EQUATIONS FOR 2-1/4 Cr—1 Mo STEEL (PWHT)

The constitutive equations recommended in NE standard F 9-5T'° for
2-1/4 Cr—1 Mo steel are claésically based and rest on the assumption that
the inelastic strain can be decomposed into two additive contributions,
one time independent (plasticity) and one time dependent (creep). Ex-
perimental evidence does not generally support this aésumption, howevgr,
and suggests representatidns in which creep and plasticity are charac-
terized as occurring simultaneously andvinteractively (unified). The
constitutive equations presented in this section are unified in that
sense.

A complete statement of the unified equations for VAR heat 56448 of
2-1/4 Cr—1 Mo steel is as follows.*

S ..
it 3 F>0and §..2.. >0
/J—z _ g 1d
2ueij = _ ' s (2.1)
0 ; F<QOor F>0and S..2..<0
= _ id%id =
aij '
2uhe..—r—~ ; G>G and S..0..>0
o 1J T

1d /f; Jd Td

aij = ’ (2.2)
aij
2uh €. —p —% G<G orS..a..<0
0 —
0 1d /T o g id
where
F= (Ja2/k?) — 1, , (2.3)
¢ = /I./x? , (2.4)
Jo =% 31..1.. (2.5)
2 "1371g .
1

Iz 'z’ ai,jaij ’ (2.6)

*#Following the usual Cartesian tensor notation, repeated subscripts
imply summation. '
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Here, éij denotes the inelastic strain rate, Zij the effective stress

(i.e., Z..=8..—0..), and S.. the deviatoric stress.*
) 1d 1J J -

The state variables are aij and k; however, the scalar threshold
(Bingham) stress, k, is taken to be constant k = 0.82 ksi-r because of
the almost total absence of isotropic hardening in this alloy in the
PWHT condition.? '

All of the characterization testing was conducted on the isotropi-
cally saturated material, which was obtained by cycling over four to

1,2

five cycles at the test temperature. Numerical values for the parame-

ters appearing in Eqs. (2.1) through (2.8) are:

p=3.61 x107; W =u exp 61) , . . . . (h)

n =4,

m=17.73 ,

g=1.5,

R=9.0x10"%exp (02) 5 + « « « «- . . (ksi/h)
H=1.37x107%, . . . .. .. ..... (ksi/h)
G = 0.14 ,

0 .

with

8; = (23.8 6 — 2635) (/811 —1/6) , (2.9
6, = 40,000 (1/811 — 1/8) . _ (2.10)

Here, 6 is the absolute temperature in Kelvin (K).* As noted, the other
parameter values are consistent with physical units of ksi+ for stress

and 2 for time.

*This formulation is given in the context of infinitesimal strain.
In the case of finite strain, the equations should be interpreted as
relating the Euler rate-of-deformation tensor to the Cauchy stress.!!

+6.895 MPa = 1 ksi.
for = 9/5 (K — 273) + 32.



The inequalities in Eqs. (2.1) through (2.8) define boundaries across
which the flow [Eq. (2.1)] and evolutionary [Eq. (2.2)] equations change
form discontinuously. Although the inelastic strain eij and the state
variable qij remain continuous, their rates of change are idealized as
having possible discontinuities. This permits modeling of observed phe-
nomena such as hesitation periods in creep (or stress relaxation) follow-
ing partial stress reductions and the rapid readjustment of internal
state (dynamic recovery) that accompanies remobilization of dislocations
under reversed streséing. The latter‘has a direct bearing on the cor-
rect modeling of cyclic response that ié so- important in breeder reactor
applications. Of course, there is strong precedent in applied mechanics
for idealizing boundaries of rapid change as analytic discontinuities,
e.g., as in classical plasticity.

For numerical purposes the discontinuous state boundaries can be:
smoothed as follows. A smooth spline function P(x) is first defined on

(—1,1) according to*

P(x) = (1 + x)?/2 ; 1<x<0 (2.11)
Ple) =1— 1-2?%/2; 0<c<l (2.12)
P(x) = 0 s oz o<l | (2.13)
Plz) = 1 ;o x>1 . ' (2.14)

The function F in Eqs. (2.3) and (2.1) can then be replaced by F defined
by:

Si.zi. '
F=p ——%q—i- <F> , (2.15)

where Wi is a smoothing width selected by the analyst and the angular

brackets denote

<x>=x ;>0 4 ' (2.16)

*Note that smoothness can be carried to higher derivatives if nec-
essary.



and
<x>=0; x <0 . (2.17)

The use of Eq. (2.15) appropriately smoothes the discontinuity in éij

across Sijzij = 0 and, as well, eliminates each of the inequalities ap—.
pearing in the flow law, Eq. (2.1).
The discontinuous nature of &ij in Eq. (2.2) can be smoothed by first

replacing the sharp G .cutoff by a gradual one, e.g.,

G ; G > 26 | (2.18)
> 26, ‘
G,= G2 » .
ZE; +G, 5 G<26, | (2.19)

and then calling

S..0..
_ . 1J 1J
G (& GO)Z’< s > + Go . (2.20)

Equations (2.7) and (2.8) may then be written

" .
h=h == (2.21)
1] GB

and

RGTR (2.22)

r =r
o

so that the evolutionary law, Eq. (2.2), reduces to a single expression
providing a smooth transition across Sijaij = 0 in the state space and,
once again, no inequalities.

As before, Ws is a smoqthing width chosen by the user. Values for
W1 and W, used in the finite element code PLACRE in conducting most of

the analyses reported in the following section were

Wy = Wp = 10~% (ksi?) = 0.475 (MPa?)



3. CALCULATED RESULTS USING THE UNIFIED EQUATIONS

Several calculations based on the foregoing constitutive relations
have been made and their results are included in this section. It is
suggested that at least some of these results be reproduced to verify
the correct implementation of the constitutive model into a given .analy-
sis code. Comparative experimental results are shown with some of the
calculated results as a measure of the predictive accuracy of the model.

Figure 1 shows predictions (solid lines) of stable hysteretic loops
generated over a strain range of approximafely #0.32% at strain rates of
0.04, 0.004, and 0.0004/min and at 538°C (1000°F). Also shown is a sam-
pling of experimental data for the same coﬁditions and spanning the range
of strain rates. The model is seen to capture the viscoplastic strain-
rate dependence at the reference temperature 538°C (1000°F) very well.
This is not unexpected as data of this type were used aé part of fhe
data base in characterizing strain-rate dependency.l’z’12

The strain rate 0.004/min is considered fast in LMFBR technology.
The model, as characterized here, thus allows for an order of'magnitude
aboﬁe that strain rate.

A comparison of predicted and observed creep—time curves correspond-
ing to a stress range of about 55-103 MPa (8-15 ksi) and a temperature
of 538°C (1000°F) is shown in Fig. 2. The creep curves show a relatively
short transient creep period followed by steady-state creep. The pre-
dictions generally show higher initial creep rates in the transient
period; however, these are known to be strongly dependent on the loading
ramp rate. This was not known precisely in the experimeﬁts. The loading
ramp rate in the predictions was taken as 0.06%/h.

Measured and predicted secondary creep rate and total creep strain

compare very well in Fig. 2. Once.again, regarding the secondary creep

rate, good agreement is to be expected in as much as steady-state creep

data were included as part of the characterization data base.!?

It is,
of course, essential that steady-state creep rates be represented accu-
rately in constitutive equations for LMFBR applications. Additional

evidence demonstrating the appropriate modeling of secondary creep rates
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Fig. 1. Modeled (solid lines) and experimental (dots) stable hys-
teretic loops for Ae ~ *0.32% at various strain rates. The temperature
is 538°C (1000°F). (6.895 MPa = 1 ksi)

at both the reference temperature 538°C (1000°F) and at 510°C (950°F) is
shown in Fig. 3. '

Because most critical structural problems related to the design of
LMFBR components are nonisothermal, it is necessary that the thermo-
mechanical behavior of the structural alloys of interest be appropriately
modeled. To this end, both isothermal tests at several fixed tempera-

tures — such as those referred to earlier in the case of secondary creep —
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(6.895 MPa = 1 ksi)
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Fig. 3. Steady-state creep rate vs stress at 538°C (1000°F) and
510°C (950°F). Solid lines, modeled; dots, experimental. (6.895 MPa =
1 ksi)

and truly nonisothermal tests have been included as part of the data
base for the unified equations. An example of the type of nonisothermal
experiment used is shown in Fig. 4. Here, a uniaxial specimen initially
at 811 K (538°C — 1000°F) and zero stress is constrained axially; the
temperature is then cycled at a rate of 50°C/min (90°F/min) between the
initial temperature 811 K (538°C — 1000°F) and 573 K (300°C — 572°F).
This cycle causes appreciable yielding and gives rise to the stable hys-
teretic 1oopbin&icated by the dots in Fig. 4; the solid line represents

the predicted response. Data of this type were included in the selection
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Fig. 4. Predicted (solid line) and measured (dots) response for
nonisothermal test conducted between 811 K (538°C) and 573 K (300°C)
at v50°C/min. (6.895 MPa = 1 ksi)

of the material parameters in the Arrhenius forms of Eqs. (2.9) and
(2.10). The prediction of this test is quite satisfactory and provides

a useful result for checking the proper implementation of the nonisother-
mal aspects of the unified model.

Figure 5 shows the predicted redistribution of hoop (circumferential)
stress with time in an internally pressurized'cylinder. The cylinder
dimensions are prototypical of LMFBR steam generator tubes, hav1ng an
inner radius of 4.06 mm (0.16 in. ) and an outer radlus of 6.35 mm (0.25
in.). The load1ng history con51sts of a 10 s ramp up to an internal
pressurization of 25.17 MPa (3 65 ksi) followed by a hold perlod at that
pressure. The temperature is constant at 566 C (1050 F). Figure 5 shows
the predicted distribution of hoop stress at several times follow1ng

pressurization (zero time denotes the end of the loadlng ramp) The
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Fig. 5. Predicted redistribution of hoop (circumferential) stress
with time in a cylinder under constant internal pressurization. Tnner
radius = 4.06 mm (0.16 in.), outer radius = 6.35 mm (0.20 in.), and
pressure = 25.17 MPa (3.65 ksi). (6.895 MPa = 1 ksi)
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behavior appears typical, exhibiting an initially rapid redistribution%*
of stress followed finally by a stress distribution essentially constant
in time (e.g., that labelled 108 s).. Note that a reference stress of
about 45 MPa (6.5 ksi) is indicated at a radius of roughly 5.2 mm (0.20
in.). ‘

Despite the appafent simplicity of the problem depicted in Fig. 5,
it is one that exemplifies the potential numerical stiffness of this
class of constitutive equations. The simultaneous presence of a rela-
tively fast transient and a slowly varying steady-state-like response
can, with some governing equations and under some integration schemes,
lead to serious numerical instabilities and/or require extended use of
very small (and costly) integration step sizes. No such difficulties
were encountered here nor was a speciél stiff integrator used.

The most common structural problem associated with LMFBR steam gen-
erator design thét necessitates detailed inelastic analysis is that of
a cylinder (pipe) under inhomogeneous thermal transient loading. Such
problems rise in connection with potential reactor scrams and other ab-
normal shutdowns. A good experimental approximation to the behavior in
such situations — including creep-enhanced ratchetting — and one in
which the stresses and strains are directly measurable, is the two-bar

ratchetting test. A series of two-bar tests?s 1?0

were conducted using
2-1/4 Cr—1 Mo steel (PWHT) under a variety of thermal shock conditions.
In these tests, two uniaxial specimens are tested simultaneously in two
servocontrolled electrohydraulic machines which are linked together in
such a way that the sum of the loads in both bars is held constant (main-
taining equilibrium), while the extension of the two bars is kept the
same (maintaining compatibility). Initially, an equal axial stress is
applied to both bars. Then, the temperature in bar 1 is ramped downward
from the maximum temperature, Tmax’ to a minimum, Tmin' Subsequently,
the temperature in bar 2 is ramped downward while the temperature in

bar 1 is kept at Tmin' After bar 2 reaches the minimum temperature,

both bars are heated tbgether to Tmax' The temperature is then held

#The initial rate of stress redistribution depends strongly on the
loading time. Following a less rapid load up the initial redistribution
would likewise be less rapid.
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constant at Tmax for a prescribed time interval and the sequence is re-
peated. The response of the two bars roughly simulates the behavior of
material elements at the inner and outer radii of a cylinder (pipe) under
analogous conditions.

One of these tests (test Al in Ref. 9) is included in Appendix A of
Ref. 10 as evidence to substantiate the use of the a-reset option in
thermal transient analyses involving this alloy, and furthermore, to
demonstrate the qualitatively incorrect predictions made by the consti-
tutive equations of Sect. 4 of Ref. 10 in the absence of the a-reset pro-
cedure. A prediction of that test using the unified equations is given
here, and the results are shown in Figs. 6 and 7. The conditions of the

test are T = 538°C (1000°F), T . = 300°C (527°F), the initial stress
max min

ORNL-—-DWG 82-6222 ETD

200 — ’ —

_ 100 }— —
3]
a
=3
w
[72]
w
[e
-
wn

0 —
~100 |— . —

0.2%
STRAIN (%)

Fig. 6. Predicted stable stress—(total) strain ratchetting cycle
for two-bar test Al in Refs. 9 and 10. (6.895 MPa = 1 ksi)
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Fig. 7. Predicted and experimental ratchetting strain vs cycles
for two-bar test Al of Refs. 9 and 10.

is 58.6 MPa (8.5 ksi), the temperature ramp time is 10 min in each case,
and the hold time at Tmax is 11.5 h.

Figure 6 shows the predicted stress—(total) strain response for each
of the bars over one complete cycle. The cycle shown is typical of all
cycles after about the first three, during which there is a small amount
of transient adjustment. The stress peaks and the general shape of the
stress—strain response in Fig. 6 compare favorably with the experimental
results of Ref. 9. A key feature of the predicted results is that the
peak stresses and the ratchetting strain per cycle remain essentially
constant. Figure 7 shows the ratchetting strain vs cycles for the cal-
culation and the experiment; both show a basically constant ratchetting
rate and quite good agreement. The prediction just slightly overestimates
the ratchetting strain.

In contrast to the features of Figs. 6 and 7, calculations made using

the kinematic hardening model of Ref. 10 without the a-reset option are



17

qualitatively different and invariably predict saturation of ratchetting
after a few cycles, thus substantially underestimating the ratchetting

strain.13

The unified equations predict the correct qualitatijive response
with good accuracy and without the ad hoc a-reset option. As indicated
earlier, the a-reset procedure is but a time-independent idealization of
the recovery mechanisms inherent in the unified theory.

The final calculation is that of a pipe under thermal ratchetting
conditions. This calculation was made in connection with the design of
the eighth in a series of pipe thermal ratchetting and creep-fatigue
failure tests (TT-8) and aimed at assessing design analysis methods and
failure criteria. The TT-8 test is proposed for testing in the Thermal
Transient Facility .at the Energy Technology Engineering Center. The
a priori prediction given here will provide an excellent check* on the
unified equations upon completion of the experiment.

The dimensions of the TT-8 pipe are 12.7 mm (0.50 in.) in wall thick-
ness and a 178-mm (7-in.) inside diameter. The assumed conditions are
generalized plané strain and uncoupled thermomechanical behavior. Ther-
mal and mechanical properties for 2-1/4 Cr—l‘Mo steel other than those
inherent in the constituti&e equations were taken from the Nuclear Sys-
tems Materials Hdndbook.lk

The mechanical loading conditions for TT-8 are an axial end load
of 0.60 MN (135,000 1b) with zero internal préssure. The outer surface
of the pipe is taken to be ideally thermally insulated. The cyclic ther-
mal shock history at the inside pipe surface is as follows: from a uni-
form maximum temperature Tmax = 538°C (1000°F), the inner surface is
rapidly cooled at a rate of 33°C/s (60°F/s) to a temperature Tmin = 260°C
- (500°F); it is then reheated at 56°C/h (100°F/h) back to the hold tem~
perature of 538°C (1000°F) for a 16-h hold period, completing the cycle.
This represents a severe thermal transient loading condition that will
be repeated to failure in the TT-8 test. The stress path (in circumfer-

ential vs axial stress space) followed by elements at both the inner and

*Comparison of predicted and measured ratchetting rate provides a
valid check on the unified constitutive equations. Comparison of pre-
dicted and actual cycles to failure involves uncertain failure criteria
and should not be used as a direct assessment of the unified equations.
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outer surfaces is nonradial, providing a good test of the constitutive
equations and analysis procedures. |

Figures 8 and 9 show the predicted axial stress-strain behaviof at
the extreme inner and outer elements of the pipe, respectively. Shake-
down to a repetitive hysteretic loop occurs after only three or four
cycles, with the peak stresses remaining constant thereafter. The mag-
nitudes of the stress peaks are critical in the determination of creep
damage using the ASME recommended damage accumulation rule of linear-
time-fractions. Unfortunately, stress measurements are not possible in
the pipe wall, as they are in the two-bar tests discussed earlier, and
cannot be compared with predictions. The only directly comparable fea-
ture is the strain at the outer surface of the pipe. Figure 10 shows
the predicted axial strain at the outer surface against time. Again, a
transient response of three or four cycles is evident, after which the

ratchetting rate becomes essentially constant at about 0.02%/cycle.
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Fig. 8. Predicted axial stress vs axial strain for inner pipe ele-
ment of TT-8 experiment. (6.895 MPa = 1 ksi)
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Although the hysteretic loops of Figs. 8 and 9 cannot be compared
to experimental results, they will be useful for comparing with calcu-

lated results obtained using other finite element codes.
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4. GENERAL PROPERTIESVOF SOLUTIONS USING THE UNIFIED EQUATIONS

Much attention has been paid in this and in bast writings to the
materials aspects of the unified equatiohs, to their detailed predictions
of observed behavior, and to their co-relationship with physical and
metallurgical models. However, also important from the standpoint of
conducting structural analyses are the continuum aspects of constitutive
equations relating to well-posed structural problems and well-behaved
stable solutions to these problems. For example, it is of importance to
the structural analyst to know how strongly his solution to a given struc-
tural problem, based on a given set of constitutive relationships, is
influenced by the assumed initial stress and inelastic state fields.
Looked at another way, he must know whether the solutions to two struc-
tural problems, whose histograms and conditions are identical except for
the initial stress and state fields, eventually converge or perhaps even
diﬁerge. If the latter is true, he must seriously ask whether the real
structure being modeled behaves in that way or whether the constitutive
relationships being used are inappropriate. If the structure does be-
have in that way, there is little hope for detailed structural analysis
as a useful tool because it is generally impossible to know the initial
stress and inelastic state distribution; indeed, the structure is usually
analyzed before it is built. Fortunately, there is evidence that real
structures undergoing inelastic deformation, particularly at elevated
temperature, do have a fading memory of their initial stress and state,
and eQentually respond uniquely to a given loading and temperature his-
tory. This being the case, it makes sense to require that mathematical
models of structural behavior also possess such properties.

In this section, we investigate some of the general properties of
solutions of structural problems that can be expected when using the ORNL
unified constitutive equations. To that end, an expression relating con-
ditions for two distinct solutions will first be derived. This expression
will be used subsequently in demonstrating general properties of solu-

tions.
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For small changes in stress at constant state, Eqs. (2.1) through
(2.8) satisfy the condition*

do..dé..>0; «o,.= const. 4.1)
g 1J — Rz

Similarly, for small changes in the state at constant stress, those equa-
tions satisfy

<0 ; g.. = const. (4.2)

do..dd. .
1 td — 1J

Following analogous arguments to those of Ponter, 3

use 1is made of

Eqs. (4.1) and (4.2) in deriving an expression that links the conditions

at two generic points in the state space (Gij’aij)' We consider a

straight-line path between the two points (o{.,a%.) and (0%.,&%.),Athat
17 1d g td

is to say, we consider a path for which (doij’daij) has a fixed direc-

tion. The monotonic progress of the point (Oij’aij) along the path can

be characterized by

1 2 1
and
— 1 2 1
% = % + k(aij aij) R A (4.4)

where ) increases monotonically from zero to one, i.e.,

0<Xx<landdr>0. (4.5)

The differentials dgij and daij at some point on the path are then

- 2 1 ,
dOij = dk(oij Gij) 4.6)
and
_ 2 1 :
daij = dk(aij aij) . : | 4.7

Multiplying Eq. (4.6) by déij and Eq. (4.7) by d&ij and making use of

*Equation (4.1) is equivalent to the extended form of Drucker's
stability postulate (in the small).
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Eqs. (4.1) and (4.2), we get

2 — l & ' '
(cij oij)deijdx_z 0 4.8)
and
2 1 . :
(aij aij)daijdx <0. (4.9)

Adding Eqs. (4.8) and (4.9), we have, corresponding to any point along
the straight-line path,

2 1l oNgL 2 1 N y
[(Oij Gij)deij (aij aij)daij] dx >0 . (4.10)

Integration along the path then yields
2 __ 1 2 sl N _ (.2 1 22 gl :
(Gij Gij)(sij Eij) (aij ozij)(OLiJ aiJ) >0, (4.11)

where &!. and £€2%. are the inelastic strain rates, and 4. and &2%. are the
1J 1d ' 1d (]

rates of change of inelastic state at the respective state points

1 1 2 2 5 : ' . .
(Oij’aij) and (Oij’uij)" Equation (4.11) relates the pertinent field |
quantities at two generic points in state space.

Equality in Eq. (4.11) holds when the state poiﬁts coincide (i.e.,

when 2. = g}, and a2, = u%.), which, in turn, implies that g2, = g,
1J 1J 1J 1J 1d 1J
and &zij = u%j. Alternatively, equality holds under the rather special

circumstance that &2%. = &1. and £2. = ¢t.
o] z ] ZJ

through (2.8), we see that these conditions imply o

02, # ol.. The condition £2. =
1d 1d 1d

= 0. Examining Eqs. (2.1)
2

id
= 0 corresponds to shakedowrn which

= ol. but allow
d

et .

1J

will be further discussed later in this section.

A convenient starting point in this discussion of general properties
of solutions is, as discussed earlier, the question of convergence of
solutions of structural problems that differ only in their initial condi-
tions. We consider two problems in which the structures are identical
and each is subjected to an identical loading and temperature history
for time ¢ > 0. In one case, the initial stress distribution is given
by c%j(xk,O) and the initial inelastic state distribution is given by
a%j(xk,O). Let the solution of that problem be represented by the
stresses o;j(xk,t), the inelastic state field a;j(xk,t), the inelastic
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strain rates e (x »t), and the displacement rates u Lz ,t) In the
second problem, let the initjal stress and state dlstrlbutlons be
o%.(x ,0) ‘and u (xk,O), respectlvely, and the corresponding solution
be denoted by 0 (xk,t), a (xk,t), (xk,t), and u 7/(ack,?;).

The difference in the stress fields (oéj'— o%.) is self equilibrat-
ing because each stress field is in equilibrium with the same loads.
Furthermore, the differences 1n the total strain rates (g2 ii —-el .) and
‘the displacements rates (u — uk ) are kinematically adm1381ble* s1nce

-1 1

zg’uz and ezg,ﬁé are each klnematlcally admissible. Here, we take

the total strain rate as the sum of the elastic strain rate'é?., the

thermal strain rate Gij’ and the inelastic strain rate éij’ i.e.,

e

eij = Eij + Sij + Eij . (4.12)

The principle of virtual work then states:

2 1 y(n2 ol _ .
/(Uij Gij) (eij eij)dV 0 . (4.13)
4 ' '

Making use of Eq. (4.12) in Eq. (4.13), there results

e

l. 1 2 1
fz AT RCHDIC R L
14
f (Oij — 071:!7.) (é72:j — é;j)dV =0, (4.14)
14
where the cijkl in the first term are the elastic constants in Hooke's

law.t As the temperature histories in the two problems are identical,

the thermal strain rates éij do not contribute to Eq. (4.14). Combining

*By kinematical admissibility it is meant that the strain rates are
compatible, i.e., derivable from the displacement rates, and that the
displacement rates satisfy the kinematic boundary conditions.

tHere the elastic constants C Jk1 are ‘taken to be functions of tem-

perature. For full isotropy, there are only two independent elastic
constants, say E and v. The reason for retaining ‘the full CﬂJkZ here

is not to achieve full generality but only for -convenience of notation.
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Eqs. (4.14) and (4.11), there results

é_ .l | 2 __ L1 2 _ 1
22 /V‘ [2 Ciix19%5 7 % kT %) *

1.2 _ 1 2 1
5 (aij aij)(aij aiji]dV <0 . (4.15)

Denoting the integral in Eq. (4.15) by I, we write

I <0. (4.16)

The first term in the integral I represents the elastic complemen-

tary energy of the stress difference (ozj-— 0;

nient scalar measure of the stress difference in the two solutions. The

j) and serves as a conve-

second term can be viewed similarly as a measure of the difference in the

inelastic states (azj —-a%j). Thus I, which is a positive definite quan-
tity and zero only when ¢2. = ol. and a2. = al. everywhere in th t -
v y i i i3 i ywhere the struc

ture, provides an integrated measure of the difference in the two solu-
tions. Equation (4.16) states that I can only decrease in time or re-
main constant, i.e., the solutions cannot diverge under the unified
equations.

Equality in Eq. (4.16), i.e., i = 0, corresponds to equality in Eq.
(4.11) being satisfied over fhe entire volume of the structure. Based
1

on the discussion earlier in this section, this occurs when oéj = Oij
1

and aéj = aij everywhere, i.e., the same condition for I = 0. This says

that 7 = 0 only when I = 0, or that the two solutions continue to con-
verge until they coincide and remain in coincidence thereafter.
As also indicated earlier, an alternative condition for equality in

Eq. (4.11) is &éj = 4%, and £2., = €1, = 0. Although Eqs. (2.1) through

id J 1
(2.8) permit éij = 0 in certain regions of the state space, it is not
generally possible for this to be satisfied throughout the entire volume

1

of a loaded structure.* However, with &ij = aij 2 = ¢l

and €. = €1, = 0 in
1d 1d

*Equations (2.1) through (2.8) permit éi' = 0 only when the effec-
tive stress is below the threshold k, i.e., when J, < ¥ (F < 0), and at
points where partial stress reductions have occurred. Under the latter
conditions, éij = 0 only for a finite time.
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isolated regions and oéj = 0;3 a?d aij ='a%j elsewhere, we can have
equality in Eq. (4.16) and have I = O with I # 0. In other words, it
is hypothetically possible to have convergence of the solutions every-
where except in isolated regions where é;j = e.j = 0.* These special
circumstances are of no practical importance and therefore will not be
discussed further.

Thus, it can be stated generally that the two solutioms, having ini-
tially different stress and state conditions, eventually converge in the
sense of Eq. (4.16) under the ORNL unified equations. This affords some
comfort to the structural analyst that his assumed, and no doubt errone-
ous, initial conditions may nevertheless 1ead to the correct stress and
strain fields.

It is of interest at this point to briefly compare some other well-
known constitutive relations in. the present context. For example, for
an elastic perfectly—plastic model Eq. (4.2) is trivially satisfied, or
equivalently the second term in Eq. (4.11) vanishes because aij z 0.

The remaining term of Eq. (4.11), alternately derivable directly from
Drucker's postulate, leads to a development for perfect plasticity simi-
lar to that given above for the unified model, showing that solutions to
structural problems differing only in their initial stress distribution
converge. However, for the perfectly plastic model, this holds true
only for continued plastic deformatien; under shakedown conditions, the
shake&own stress state is generally dependent on ;he assumed initial
stress field. ’

Going a step further to the linear kinematic hardening plasticity
model, we have aij # 0. 1In this case, Eq. (4.2) cannot be shown to be
valid, and it appears that no general statement can be made indicating
convergence of solutions in the sense considered above. However, it is
expected that for the linear kinematic hardening model modified by the
a-reset option of NE standard F 9-5T,%? a statement analogous to Eq. (4.2)

can be made and that convergence can be demonstrated. Proof is left to

future work.

*This is entirely analogous to the sitﬁation in classical plas-
ticity.
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Returning to the consideration of the unified equations, we observe
that Eqs. (4.15) and (4.16) imply that if the initial conditions in the
two identical and identically loaded structures are the same, then both
I =0 and } = 0 for all time, i.e., the solutions always remain identical.
In other words, there is a unique solution, under the unified equations,
corresponding to a given set of initial conditions, loading, and tempera-
ture histories. Uniqueness may be an assured property of the real world,
but it must be.demonstrated in the case of mathematical idealizations
of real behavior.

Many important structural problems related to the design of LMFBR
components involve cyclic histograms of temperature and loading. For’
this reason it is of interest to consider in some detail the properties
of cyclic solutions when employing the ORNL unified constitutive equa-
tions. This can be addressed by interpreting Eqs. (4.11) and (4.16) in
a slightly different way. Here, instead of considering two identical
structures, we consider only one that is subjected to a periodic loading
and temperature history. Calling the period of loading 1, the solutions
designated (1) and (2) in Eqs. (4.11) and (4.15) can be identified with
conditions at time ¢ and t + T, respectively. That is to say, ol, =

d

o0..(x,,t) and 2. =2 o..(x,,t+1) and similarly with the inelastic state
1 Tk o i3k ;
ol. 8 a..(x,,t) and a?. = a..(x,,t+1). With this interpretation, all the
1J J 7k 1] 3k
arguments behind Eq. (4.11) and those leading up to Eq. (4.16) remain
valid. ‘ ,

As the structure responds to the cyclic loads, the integral I will
decrease, according to Eq. (4.16), whenever equality in Eq. (4.11) is
not satisfied at all points in the structure. As the quantity I cannot

become negative and thus cannot continue to decrease indefinitely, it is

expected that there will be a time, corresponding to the passage of n
cycles, that equality in Eq. (4.11) will be satisfied everywhere, i.e.,
for £t > nt, I = 0 and I becomes constant.

As in the earlier convergence argument, the only meaningful set of

conditions leading to f =0 is 02, =0}, and a2. = al.
1J 1J 1J 1J

.structure, corresponding to I = 0. Here, this means that oij(xk’t) =

oij(xk’t+T) and aij(xk’t) = qij(xk’t+T) for ¢ > nt. 1In other words, the

everywhere in the

stress and inelastic state fields also become periodic with period t.
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This further implies that a limit cycle is inevitably reached in the
state space (Oijfaij) for t >bnT. Intuitively, it would seem necessary
that such a limit cycle be reached after a sufficiently large number of
loading cycles.* The predicted response of TT-8, depicted in Figs. 8,
9, and 10, provides a good example of a cyclically loaded structure
reaching a state limit cycle (not shown) although the stress-strain re-
sponse clearly has not. |

2 1

As indicated earlier, o 1 2 el

3 = Oij and aij = aij imply that éij = eij’
so that the inelastic strain rate field also becomes periodic. As we
are considering the case where generally éij # 0, there are continuing
inelastic strains for ¢ > nt, which themselves may become periodic, cor-
responding to a condition of alternating inelastic deformation, or non-
periodic leading to a condition of incremental inelasticity or ratchet-
ting. The former may ultimately lead to a low-cycle fatigue failure in
the structure. The latter, exémplified in Figs. 8, 9, and 10, may
é?entually lead to failure resulting from unbounded deformation.

As noted before, a second set of conditions theoretically satisfying
equality in Eq. (4.11) includes é;j = é%j = 0, corresponding to shake-
down. Also as argued earlier, this condition cannot practically be sat-
isfied everywhere in the structure under the unified equations. Thus,
shakedown in the strict sense cannot occur; however, a pseudo-shakedown
state can be reached as relatively large, short-term plastic deformations
give way to creep deformations under continued loading. More on the
subject of shakedown and the extension of classical shakedown theorems
relative to the ﬁnified equations is presently being investigated and
will be the subject of a future report. '

A special case of the périodic 1oading is thaf of constant external
loads and a constant temperature distribution. In this case, thé stress

and inelastic state fields eventually become constant in time. With &ij

and the elastic strain rate éij everywhere equal to zero, the total

*This is not generally the case if the inelastic strain itself is
included as a state variable, which is effectively the case for linear
kinematic hardening plasticity.
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strain rate is, according to Eqs. (2.1) through (2.8),

. r\ %4 .
2u€ij “(ﬁ')E s (4.17)

and depends only on the inelastic state aij' Moreover, at steady state,
the stresses oij (or deviatoric stress Sij) and aij are also directly
related through Eq. (2.1) so that the response is equivalent to nonlinear

viscous behavior.
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5. SUMMARY AND CONCLUSIONS

A multiaxial, nonisothermal statement of the ORNL unified constitu-
tiﬁe equations has been presented with material parameters specified for
a VAR heat (heat 56448) of 2-1/4 Cr—1 Mo steel in a 40-h PWHT condition.
This heat and condition were selected as being prototypical of LMFBR
' steam generator material and conditions. Specific results of characteri-
zation testing have not been included nor has a detailed description of
the procedure through which the model parameters were determined from
the test results. These topics have been cbvered in previous publica-
tions.ls2512,16

The unified equations have already been implemented into the ORNL
finite element code PLACRE and exercised to a limited degree. It is
anticipated that with the publicatidn of this report, the unified equa-
tions may find their way into some of the larger, user-oriented codes )
such as MARC or ABAQUS. Only then can the equations be realistically
exercised and a meaningful assessment be made regarding their eventual

adoption in NE standard F 9-5T.'°

A number of calculated results using the unified constitutive equa-
tions have been given ranging from predictions of simple uniaxial behav-
ior to the complex multiaxial, nonisothermal response of a cylinder (pipe)
under thermal transient conditions. It is recommended that several of
these results be reproduced to verify correct implementation of the uni-
fied model into a given analysis code.
A conspicuous omission in this report is that of multiaxial test re-
sults in support of the multiaxial concepts embedded in the ORNL unified
theory. Quality high-temperature, multiaxjial experiments involving stat-
ically determinate stress states and independently measured strains are
in desperate need for assessiﬁg, not only the unified equations, but any
multiaxial formulation, including the F 9-5T!° constitutive equations.
With the recent development of a precision, high-temperature, multiaxial .
extensometer at'ORNL,17 such experiments are just now getting under way.
Results of these experiments will be presented in a subsequent report.
Preliminary analysis of some biaxial results show favorable support of

the ORNL unified model.
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Also discussed in this report are general properties of solutions
to structural problems when using the ORNL unified constitutive equations.

Conclusions drawn from that study may be summarized as follows.

® The stress and inelastic state fields corresponding to a given
loading and temperature history eventually become independent
of the initial conditions of stress and inelastic state (fading
memory) .

® The stress and inelastic state fields are unique for given ini-
tial conditions and a given loading and temperature history.

e Periodic loading and temperature histories eventually lead to
periodic stress and inelastic state fields. A limit cycle in
the state space is assured.

e Constant loading and temperature eventually lead to a steady-

state response equivalent to nonlinear viscous behavior.
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