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ABSTRACT

An evaluation was made of the mathematical and economic basis for

conversion processes in the LEAP energy-economy model. Conversion pro

cesses are the main modeling subunit in LEAP used to represent energy

conversion industries and are supposedly based on the classical economic

theory of the firm. The study arose out of questions about uniqueness

and existence of LEAP solutions and their relation to classical

equilibrium economic theory. An analysis of classical theory and LEAP

model equations was made to determine their exact relationship. The

conclusions drawn from this analysis were that LEAP theory is not con

sistent with the classical theory of the firm. Specifically, the capacity

factor formalism used by LEAP does not support a classical interpretation

in terms of a technological production function for energy conversion

processes. The economic implications of this inconsistency are subop-

timal process operation and short term negative profits in years where

plant operation should be terminated. A new capacity factor formalism,

which retains the behavioral features of the original model, is proposed

to resolve these discrepancies.



I. INTRODUCTION

The present study grew out of an investigation of the uniqueness and

existence of solutions to the underlying equations of the LEAP energy

modelling system.^"^ In the previous work, the investigation of uni

queness was based on the behavior of the supply curves arising in the

generic LEAP processes for conversion and allocation of energy products.

The particular proof of uniqueness for solutions to the conversion pro

cess equations required certain conditions to be met related to profit

ability in process plant operation. Although these conditions are usually

met in the classical economic theory of the firm, the behavior of certain

solutions to large LEAP modelling problems^»5 sheds some doubt on the

mathematical and economic basis of the LEAP conversion process equations.

The present study was therefore undertaken to better understand the con

nection between LEAP conversion process modelling assumptions and the

classical economic theory of the firm.

Although other theoretical discussions of the economic basis for the

equations in LEAP have already been published by the authors of the

model,6»7 it is not at all clear that the actual modelling assumptions

implemented in the GEMS* or LEAP-EMS2 codes are consistent with this

theory. This confusion makes it difficult to understand the results of

some major LEAP results^ and affects the proofs of existence and unique

ness of LEAP model solutions.^ Since the conversion process is central

to all large scale models, this problem clearly needs resolution.



To illustrate the theoretical problems encountered in the LEAP con

version process, the basis for this process module will first be devel

oped along classical lines. This entails reviewing the classical econo

mic theory of the firm in the context of generalized equilibrium

modelling. The central conclusions concerning plant profitability and

operation under classical assumptions will be analyzed in some detail.

This theoretical foundation will be developed in Section II.a; the par

ticular manner in which this theory is applied in the LEAP code will then

be discussed in Section II.b. The possible weaknesses of this latter

approach, compared with classical theory, will then be examined in

Section III and the economic consequences of these deficiencies in

solving the LEAP model equations will be explored in Section IV. A

modified theory retaining both the essence of the practical LEAP approach

and the conditions needed to meet classical constraints is then offered

in Section V. Conclusions will be drawn about the usefulness of the

current version of LEAP and the potential for its improvement with imple

mentation of the proposed changes.



II. ECONOMIC BASIS OF CONVERSION PROCESS EQUATIONS

A. Classical Theory of the Firm

The basis for the LEAP conversion process equations has been discussed

at great length by several authors and reviewers. 1>2,6,7,8 xne m0(jei

used is intended to repesent an optimized aggregate production unit con

sistent with the classical theory of the firm.9 Since details of this

theory can be found elsewhere,*>>7»9 it is only appropriate here to review

this theory briefly to establish notation and understand the optimal con

ditions which must exist in the equilibrium market.

The LEAP code system consists of a series of generic processes linked

together to form a network of interacting economic activities. The LEAP

conversion process, as it might be imbedded in such a network appears in

Fig. 1. This module takes a vector of input quantities^, at prices "w,

per unit of input and builds plant capacity Nw, sufficient to convert the

inputs into a vector quantity of final products TJ, at prices "p~, per unit

of output in order to meet a specified demand.

CONVERSION

PROCESS

PLANT SIZE, Nw
-»•-»•»->•>->•»-»•

Fig. 1. LEAP Conversion Process Module



In the LEAP model the problem solved by the basic conversion process

can be stated in terms of the following optimization problem for the

behavior of the process firm. Given the unit input prices of the factors

of production w", the final product prices ~p~, and the unit cost of capi

tal Nc, the conversion process in LEAP attempts to model an optimally

operated firm which seeks to find the quantities of input factors "Ql» and

the plant capacity per unit final product Nw, which maximizes long-term

profit tt, over the life of the plant.

For the sake of notational simplicity, the discussion to follow will

deal with the specific case of an energy conversion process plant with a

two-year lifetime. The plant will be considered to have been built in

year 1 and operated in years 1 and 2. The profitability of the plant can

be written for this case as follows.

,r = piQi - W!QIsi - E wijQ^ij - NCNW

+ P2Q2 - w2Qi,2 - E «2,jQl,2,j •
J

In this notation the subscripts 1 and 2 refer to the year of plant opera

tion and j denotes factors of production other than the primary energy

source. The first four terms on the right-hand side of Eq. (1), repre

sent the plant profit in the first year of operation and the next three

terms represent the profit for the second year. The form of the equation

is such that all capital investments are made in the initial year of

operation and only the prices and quantities of energy input and output

linked to other LEAP process modules are considered in the optimization

process. Thus, the two summation terms over j represent the costs of



factors of production other than energy which are specified exogeneously

to the process module. Also, ir is considered to be the net present value

of profit in LEAP with a discount factor for capital being specified exo

geneously. For simplicity in this case, the discount factor was assumed

to be unity (i.e., a zero discount rate) and therefore does not appear

explicitly in the equation.

In order to formulate a classical profit optimization problem from

the profit definition given in Eq. (1), the conversion process must obey

a technology or production constraint. This constraint determines the

aximum output which the conversion technology can produce from a given

quantity of the factors of production fed into the process. It therefore

represents a relationship between input and output for the particular

technology of production. For all LEAP conversion processes, this tech

nology production constraint is assumed to be one with constant

returns-to-scale.6 The definition of a constant returns-to-scale pro

duction function in the itn year is, for this case, is given by the

following,

m

V'Mi.i.V.'if&^.i) - o (2)

That is, the relationship between input and output in any given year is

independent of plant size Nw; it depends solely on the technological

constraints relating unit input to unit output.



Now define the following parameters and variables

x. = Q./Nw (3a)

*1 =Ql,i/Nw= 9i(xi) '(3b)

♦l =J Wi,J QI,i,J/Qi (3c)

J

where x-j is the output per unit plant size, yn- is the input per unit

plant size, g. (x-j) is the functional form relating input to maximum out

put (i.e., in this form it is the inverse production function) and <$>j is

the constant operating cost per unit output for the input factors of pro

duction other than energy, all in the itn year. In terms of these new

variables, the classical profit maximization problem for a firm with a

constant returns-to-scale production function can be written as follows:

Maximize ir = NwE(p1-(|.1)x1-w1y1-Nc

+ (P2-<t'2'x2"w2y2-1

subject to the constraints

fl<xi.yi) = ° = yr9i(xi) (5a>

f2(x2,y2) = 0 =y2-g2(x2). (5b)

Eliminating Qr from consideration by using the constraint relation

ships (5a) and (5b) directly, Eq. (4) can be written in terms of 7 and



N in its simplest form as,

Maximize tt = Nw[(p1-^1)Xl-w1g1(Xl)-Nc

+ (p2-*2)x2-w2g2(x2)]
X,NW (6)

The conditions under which a local extrenum exists for Eq. (6) are

the following

ll_= 0 i*_ = 0 iL=0 (7)
9Xi 3x2 3NW

The equations for extremum solutions can therefore be derived by dif

ferentiating Eq. (6) with respect to the independent variables xi» x?»

and Nw. This results in the following equations for the extremum solu

tions xfi x£> and N£:

il_= o = (Pi'+^-Wig^xf) (8)

|l_= 0 = (P2--|)2)-w2g2(x^ (9)
°X2

•15-- o=(Pi-tiixf-Wig^xfJ-Nc

+ (P2"<t'2)x2"w2g2(x2) (10)

where g:(x.) =dg^dx^
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Rewriting these equations substituting the relationships given in

Eqs. (8) and (9) in Eq. (10), the final conditions for optimal production

can be written as follows,

g{(xj) -fll^L (ID
11 w.

g'(x*)=^!i (12)
w2

w^gftxfixf-g^xf)] + w2[g£(x!)x2-g2<x£>] = Nc (13)

The three equations here are similar to the classic Kuhn-Tucker

conditions!0 for operation of the firm at maximal profit. The first two

conditions [i.e., Eqs. (11) and (12)] are the short run optimal profit

conditions of prices being equal to the marginal cost of production. The

third condition [i.e., Eq. (13)] represents the long-range profit optimum

of zero profit in firms with production functions displaying constant

returns-to-scale.

It is important to note here that the present value of profit [i.e.,

tt in Eq. (6)] is a linear function of plant size Nw as a result-of the

production function having constant returns-to-scale. In this case,

therefore, no real extremum condition represented by the partial deriva

tive 9tt/3N exists. Equation (13) simply represents a relationship which
w

must exist between the prices "p~ and ~vf, so that any plant size yields an

optimum. Prices are therefore constant with respect to plant size and

N can be eliminated when considering optimal plant operation.



If all the prices are given (i.e., p" and "w are known), then Eqs.

(11) - (13) represent three equations in the two unknowns xf and xf*

All the prices ~p and w" cannot therefore be independent. The optimality

conditions allow only three of the four prices p,, p2, w,, or w2 to be

specified independently in order to solve for the fourth price and xt

and Xo- Note also that the unknowns y? and y* can be obtained directly

from xt and x2 once the functional form of the inverse production functions

g^x) and g2(x) are given.

A closer look at Eqs. (11) - (13) reveals that these are very general

conditions for an extremum in the profit function. In order for a profit

maximum (as opposed to a minimum) to exist and be unique and for profits

to be positive to offset the plant capitalization N , certain additional

constraints must be placed on the behavior of the inverse production

function g(x)« It is clear from Eq. (13) that the profits in each

individual year are governed by the terms g'(x*)x*-g(x*) and for yearly

positive profits to exist under all circumstances it is clear that:

g'(x*)x* > g(x*) for all x* > 0 (14)

In addition, Eqs. (11) and (12) require g'(x*) > ° for yearly positive

profits to exist. For a profit maximum to occur the second derivatives

of the production function must be such that

gf(xf) > 0 and g;j(x£) >0 for all x* > 0 (15)

The inverse production function must therefore be a monotically

increasing function of x and g'(x) must take on all values from 0 to » in
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the region of optimum output x* in order for a positive profit maximum to

occur. If these conditions are not satisfied, the possibilities exist

for multiple extrema, negative profits, and profit minimization.

When all three extremal conditions are satisfied [i.e., Eqs. (11) -

(13)], together with the yearly positive profit maximization conditions

given by Eqs. (14) and (15), the resulting maximization problem can be

displayed graphically as shown in Fig. 2. The solution to this set of

equations is unique and requires only that the input prices vt-^ and w2

together with one additional variable (either p1 or p2 or p^/p^ be spe

cified to solve for the remaining price and xf» x£» yf» and y|. The case

displayed also exhibits the desirable property of decreasing returns-to-

scale for output as a function of input. That is, it takes increasingly

more units of input to produce a unit of output as the quantity of output

increases.

B. LEAP Form of Classical Theory of Firm

To put the optimality conditions of the classical theory of the firm

into the framework of the LEAP code, Eqs. (11) - (15) must first be

expressed as a single first year equation for plant operation. Since all

future years are assumed to satisfy a positive profit constraint and a

short run optimization condition of price equals marginal cost, the first

year equations equivalent to Eqs. (11) - (13) are the following (dropping

first year subscripts),



g(X)
INPUT

g2(x|)

Ql <xj)

PROFIT CONSTRAINT

^1 * ^2 = Nc N(J

ASSUMPTION

g,(X)=g2(X)

X, OUTPUT

0RNL-DW6 82-10253R

SLOPE

S2<X*)= w

SLOPE

9i(x >- Wl

.,„*,_ *2T*Z

Fig. 2. Generic Behavior of equilibrium solutions to conversion process equations
for classical inverse production function, g(x)
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(p-*)x* - wg(x*) = k (16)

g'(x*) = 2z± (17)
w

where

k = Nc - [(p2-4.2)x£ - w2g2(x^)] (18)

In LEAP the above equations are simplified even further by defining

the following variables,

/
§ = <}> + wg(x*) average operating cost (19)

x*

Cr = 5_ = x* average capacity factor (20)
r N

w

where $ is the average constant operating cost for non-energy factors of

production (i.e., labor, materials, etc.) and C^ is the plant capacity

factor. The final form of the LEAP equations for the first year of

operation are, therefore,

(p-$)Cf = k (21)

g-(x*) =£± (22)
w

where

x* = cf y* = g(x*) (23)

These equations are now in the form in which the authors of LEAP

interpreted the classical theory of the firm for use in conversion pro

cess modelling.I'H
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For the sake of further discussions, it should be noted here that

Eqs. (21) and (22) constitute two equations in two unknowns (i.e., x* and

p) which can be solved once w, k and <f> are known. Given such a solution,

Eq. (23) can then be used to calculate y*, while N can be obtained from

the condition of constant price with respect to plant size in meeting

final demand Q. The procedure for determining k given w? is the only

complication in this approach. This, however, is handled by a separate

model for future year prices beyond the range of years with which the

LEAP model deals directly, called the terminal value model. 1»H

Although considerable documentation on the relationship between the

classical theory of the firm and LEAP conversion process equations

existed before the current study began, the theoretical foundation of the

actual code equations was never made specifically clear. The major

reason for the difficulty in making this connection lies in the manner in

which LEAP defines and uses the capacity factor C^. In most classical

theory applications, the basis for any particular model has traditionally

been the choice of the functional form for the conversion process produc

tion function. Several familiar classical forms used in modelling pro

duction are, for instance, the Cobb-Douglas, CES, or Leontief models.9

Given such functional forms, the defining equations for either marginal

or average capacity factors can easily be derived. This approach however

was not taken in the case of LEAP. What was done instead was to define a

functional form for the capacity factor itself, thereby implying an

underlying functional form for the basic production function. This

choice has profound affects on the results produced by this model. The

rationale for this choice together with its economic and mathematical

implications for LEAP are discussed more fully in the next section.
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III. IMPLEMENTATION OF CLASSICAL THEORY OF THE FIRM IN LEAP

The major divergence of LEAP modelling from other classical approaches

is the choice of a functional form for the capacity factor Cr. In LEAP,

the authors attempted to build a model which had a certain behavioral

relationship not present in other models. In particular, a capacity fac

tor was sought which was bounded by some maximum operation level and one

which varied as a function of prices and operating costs so as to

increase capacity when profitablity was high and decrease capacity when

profitability was low. To this end a behavioral relationship for the

capacity factor of the following form was chosen,H

Cf = g (24)

where 3 is the maximum fraction of plant capacity which can be used under

optimum conditions (usually 0 < e < 1), p and f are the price of final

product and average constant operating cost for the plant, and a and 6

are behavioral parameters which determine how sensitive the capacity fac

tor is to the ratio $Vp.

As can be seen from Eq. (24), the capacity factor is a fractional

quantity (a fraction of the plant total capacity) which is strictly posi

tive and has an upper bound of g (i.e., 0 < Cf <b). When prices are much

higher than average operating costs and plant profitability is high

(i.e., p » $), then Cf •> & and the plant operates at maximum capacity.

Likewise when p « $, the plant shuts down as Cf -»• 0. This model also

has the flexibility, through the 6 parameter, to approach a pure Leontief
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input-output model9 in the limit as 6 + ». This feature is an important

one for comparing LEAP results to those derived from the more traditional

approach of choosing a production function to model the conversion

process.

Looking more closely at the form of Cf given in Eq. (24), it becomes

clear that a conventional analysis of the LEAP conversion process is

possible if the capacity factor form chosen implies a conventional

underlying production function [i.e., if the inverse production function

g(x) can be derived from Eq. (24)]. The procedure for uncovering the

inverse production function is to couple Eq. (24) to the short run opti-

mality condition for g'(x*) [i.e., Eq. (22)] to form a differential

equation for g(xK It should be noted, however, that in order for g(x)

to be a classical inverse production function it should only involve a

relationship between output, input, and any parameters which describe the

technology of the conversion process itself (i.e., no costs or prices

should be involved).

In order to uncover the inverse production function implied by Eq.

(24), this equation must first be rewritten in terms of x* and g(x*) for

use in setting up a differential equation for g(x). Noting the defini

tions of $ from Eq. (19) and Cf from Eq. (20), the capacity factor

equation can be rewritten as follows,

*= § (25)x =

a

1 +'
t,W9(f)
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This equation is trancendental in x* out can easily be solved for g(x*)

to give,

g(x*) = x*
W a \ x* / W

If several new variables are now defined as follows,

n =1 r = £ s = L
w w

Eqs. (26) and (22) can be finally written as,

g(x*) = x*
a \ x*

g'(x*) =>-s

(26)

(27)

(28)

(29)

From these two equations it is clear that the single equation

defining the capacity factor [i.e., Eq. (20)] is not sufficient to uni

quely define a classical production function which is not a function of

prices or operating costs. If g(x*) were a function of r-s [i.e.,

g(x*) = g(r-s,x*» parameters)], then Eqs. (28) and (29) would be suf

ficient, since g'(x*) in Eq. (29) could be substituted into Eq. (28)

generating a differential equation in g(x*)> x*> and the parameters a

and n which could be solved for g(xK The functional form of Eq. (28),

however, is not sufficient for this procedure and another independent

equation in r and s is needed to uniquely define a production function.

This additional equation together with Eq. (29) could then be used to
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solve for r and s in terms of g'(x*h g(x*) and x*» which could then be

substituted into Eq. (28) to obtain the necessary differential equation

to solve for g(xK

The LEAP conversion process does have a third equation associated

with it to complete the set of equations needed to solve for the three

unknowns p, x*> and y* given w. The complete set of equations are as

follows,

(p-$)Cf = k (30)

X* = Cf =_J (31)

y* = g(x*) = CX* (32)

where Eq. (32) is the new defining equation for output y* in terms of

a fixed input-output coefficient C. Thus, LEAP uses a long term zero

profit condition, Eq. (30), a capacity factor definition, Eq. (31), and a

fixed input-output relationship, Eq. (32), to form a complete set of

equations to solve for prices and quantities in conversion processes.

The two key questions which immediately arise are: what is the rela

tionship between the fixed input/output equation and the equation

defining the capacity factor/and are both of these consistent with the

short run optimality condition given in Eq. (29)? To see these rela

tionships more clearly Eqs. (31), (32) and (29) are rewritten in terms of

r and s as follows:
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g(x*) = x
JL /e-xv (33)

g'(x*) = r-s (34)

g(x*) = ex' (35)

It should be immediately evident that Eq. (35) is not a function of r and

s and therefore does not satisfy the criteria needed for a third indepen

dent equation in r and s to complete the set of equations defining a dif

ferential equation for the production function g(xK Furthermore since

the parameter C is an exogeneous constant, g(x) can be inferred directly

from Eq. (35) to be a linear inverse production function without the need

for any differential equation. This however is totally inconsistent with

any short run optimality condition given by Eq. (34).

The inescapable conclusion to be drawn from this analysis is that

since LEAP uses Eq. (30) - (32), no short run optimization condition is

in use in the LEAP conversion process. Furthermore, since short run

optimization is unavailable, no production function within the framework

of classic economic theory is consistent with the defining equation for

the capacity factor. Both of these observations have never been clearly

explained in the documentation of the LEAP code. To the contrary, all

material published to date strongly implies that the equations in the

conversion process are consistent with classical economical theory. The

implications of these inconsistencies are of great practical importance

and are explained more fully in the next section.
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IV. ECONOMIC IMPLICATIONS OF USE OF LEAP EQUATIONS

The most immediate consequence of the choice of Eqs. (30) - (32) for

use in LEAP is the fact that the short run optimality condition [i.e.,

Eq. (34)] is not consistent with the three conversion process equations.

This clearly implies that LEAP can operate plants at sub-optimal produc

tion levels in the short run. Also, strict positive profit constraints

no longer apply to the short run behavior of LEAP solutions. Since short

run optimality conditions lie at the heart of many theoretical proofs of

existence and uniqueness in equilibrium economics, the failure of LEAP to

meet these conditions can give rise to economic behavior not customarily

found in solutions to equilibrium modeling problems.

The implications of the use of the LEAP conversion process Eqs. (31)

and (32) are best explored graphically. Figure 3 shows the generic beha

vior of these two relationships for an arbitrary set of exogeneous para

meters. Note that while the g2(x*) curve (representing the capacity fac

tor equation) changes in magnitude as a function of prices p and w (i.e.,

r and s), the general shape of the curve remains the same. Since g2(x*)

represents the locus of all solutions to the conversion process equations

as g^x*) traces out all values of the input-output coefficient C, its

shape gives it the property of increasing returns-to-scale up to the peak

of the curve and the somewhat unsatisfactory behavior of decreasing to

negative returns-to-scale past the peak. Note also the range of profits

on the g2(x*) curve vary from maximum losses at x*=0 to maximum profits

at x*=3 with zero profit somewhere in between near the peak of the curve.



g(X*)
OPTIMAL INPUT

-£S

X*. OPTIMAL OUTPUT

ORNL-DWG 82-10252R

g(X*) =CX*

*\= v*g2(X*) =X [*(«•-»]

0

Fig. 3. Generic behavior of equilibrium solution of conversion process equations
for LEAP production function g2(x) and input output function g-.(x)

ro
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From this figure it is clear that for some values of the parameter C,

LEAP admits losses in the operation of a plant in its startup year. This

in general will be the case when the parameter C is large and the slope

of 9i(x*) is steep. Since Eq. (30) is also used by LEAP, long run profit

will still be zero because short run losses will be made up by profits in

future years. This behavior is not typically that predicted by simple

classical theories, although it is more realistic in some instances. In

the case of LEAP, however, this situation arises from poorly conceived

economics rather than more realistic marketplace behavior. Plants are

operated at a short term loss in LEAP because of sub-optimal behavior

rather than the optimal balancing of future profits and short term losses.

While the modeling of sub-optimal short run losses early in plant

life is in some sense a tolerable practical feature of the LEAP

equations, the reverse situation is equally possible and this latter

situation is most unsatisfactory as far as the economic theory of the

firm is concerned. In the most widely used models constructed by the

LEAP system,4 this latter effect is clearly seen. High positive profits

early in plant life are generated, eventually to be offset by losses in

all future years of plant operation.4»^ Such behavior is clearly econo

mically unsound, since the plant should be shut down immediately upon

incurring the first future year loss so as to avoid further losses. It

is difficult to imagine an economic theory which would justify running

plants at losses for the remainder of their useful lifetime without the

possiblity of further profitability. The distortion caused in

equilibrium price solutions as a result of such plant operation clearly

needs further investigation if LEAP results are to be useful in energy-

economy modeling.
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V. ECONOMIC CONSISTENCY WITHIN LEAP FRAMEWORK

A. Behavior of Exogenous Parameters

The major conclusions of the last section are that, 1) the LEAP con

version process equations yield sub-optimal solutions in which short term

losses are possible, and 2) no classical production function defining the

technology of plant operation is implied by the form of the LEAP

equations. Looking at Eqs. (30) - (32), however, it is clear that under

certain circumstances the LEAP model can be made consistent with classi

cal theory. In particular, the limit as the parameter 6 + «> (or n ->• 0)

is one in which the capacity factor approaches the discontinuous behavior

characteristic of a Leontief or input-output production function of

classical economics.9 In this limiting case, when p <$ the capacity

factor is zero, and when p > $ it is equal to its maximum, s. If, in

addition the parameter a = 1, then both Eqs. (33) and (34) become con

sistent since g(x*) can be made a function of r - s. This fact allows

the short run optimality condition [i.e., Eq. (34)] to again become an

operative constraint in the LEAP formalism [i.e., Eqs. (30) - (32)],

restoring classical optimal behavior to LEAP solutions. This latter fact

prevents short term losses from occurring and maintains both short and

long run optimality and short term positive profits. In many important

economic sectors of large scale modeling problems like Model 22C4 these

conditions are closely approximated and the solutions behave much like

those arising from a classical Leontief model of the firm.
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B. Alternate Formulation of Capacity Factor

To avoid the difficulties present in the current formulation of the

LEAP conversion process equations, an alternate approach can be taken.

This alternative preserves the positive behavioral features of the origi

nal LEAP capacity factor formulation while at the same time unifying the

model with classical economic theory. In this light, an appropriate

behavioral relationship defining the capacity factor will be chosen which

is consistent with the short run optimality condition of classical

equilibrium economics. Once this is accomplished a classical production

function can be derived for this particular form of the capacity factor

and a completely consistent classical set of equations for optimal short

run production can be derived.

To begin, the following functional form, closely akin to the original

LEAP formalism, is suggested for the behavior of the capacity factor.

Cf 5
1 + wg(x*)/x* _ (36)

5fp-$- aW9(x*>
)T

where 3, 6, and a have the same definitions as parameters as they had in

the original capacity factor equation, except that a is assumed to be a

very small positive number (i.e., a = 0) for reasons explained later.

Note here that this capacity factor definition has the same behavioral

characteristics as the original one. Namely, for p » $ the capacity

factor approaches its maximum (i.e., Cf •* 3) and when p -> f (with a =0)

the plant shuts down (i.e., Cf -• 0). Also, when 6 -• » the capacity fac

tor approximates a Leontief model as was observed before.
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Rewriting Eq. (36) in terms of the variables r and s the differences

between the new capacity factor and the old one became more readily

apparent.

C* = J_

1 +~r
1

(37)

x*(r-s)

L 9(x*)
(1+cO

From Eq. (37) it is clear that the major difference between the new and

old form is the functional dependence on r and s. Eq. (37) is a simple

function of r-s. This simple behavior makes it possible to couple Eq.

(37) with the short run optimality condition given in Eq. (34) to derive

a unique production function for LEAP which is consistent with classical

economic theory.

The two equations of interest here are,

C* =

9'(x*) = r-s

x* s

1 +

^-- (1+ct)fx*(r-
L 9(x*

(38)

(39)

which when coupled together yield the following differential equation for

the underlying inverse production function g(x)»

g-(x) =3kl
x

Note here that, as before n =— •
6

n-l_+ (i+0) (40)
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Solving this equation for g(x) with the initial condition g(0) = 0

gives the following inverse production function,

vl+a
g(x)=-2L— («>

(e-x)n

The behavior of this function is such that it takes on all values from

0 < g(x) < °° when x varies between 0 and 3. It is also easily shown that

the slope of this function varies between 0 < g'(x) < °° when x varies

between 0 and 3 for a > 0. The production function, defining output x*

as a function of input, y* therefore has decreasing returns-to-scale over

the whole range of equilibrium output values 0 < x* < 3. This latter

property allows both short-and long-term profit optimization conditions

to be satisfied at all operating price levels, thereby assuring the con

sistency of the new model with positive optimal profit conditions and

classical economic theory.

Using the results given in Eq. (41), the final alternative LEAP con

version process equations are the following,

(p-$)Cf = k

1 +
1

x*(r-s)

L g*(x)

g(x*) =
(x*)

1+0

(e-x*)n

g'(x*) = r-s

- (l+a)

long-run zero profit

capacity factor

(42)

(43)

inverse production function (44)
at optimum

short run profit optimum (45)



29

The major differences between the equations here and those currently used

in LEAP are not behavioral in nature but the fact that Eqs. (44) and (45)

are consistent with classical economic theory.
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VI. CONCLUSIONS

The major finding of this study is that the particular functional

form chosen for the capacity factor in LEAP is not consistent with

classical economic theory. This fact leads to sub-optimal production

levels and the possibility of plant operation at negative profits. The

key element missing in the LEAP conversion process is an underlying

classical production function for the conversion technology. A valid

production function would allow the LEAP equations to satisfy both short

and long run optimal profit conditions which would preclude negative

profits.

Under certain conditions related to the limiting values of several

parameters, however, the LEAP conversion process can be made to approxi

mate a Leontief model of the firm. In this limit all optimality con

ditions are restored and losses do not occur. Unfortunately the Leontief

model is restrictive and reduces the capabilities of LEAP to model more

complex behavioral processes.

The easiest way to remedy the problems in the code is to modify

slightly the behavioral relationship for the capacity factor. A

suggested alternative was presented in this paper by choosing a very

similar but functionally different form for the capacity factor and then

deriving the underlying production function consistent with classical

economic theory. The form suggested is close in behavioral charac

teristics to the original LEAP capacity factor definition, but it has the

property that it satisfies all the optimality conditions in both the

short and long run. Its implementation in LEAP, although time consuming,

should not be a major chore.
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