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ABSTRACT

This document presents 11 invited papers and the deliberations of four working groups
at a Workshop on Cognitive Modeling of Nuclear Plant Control Room Operators that was
held in Dedham, Massachusetts, under the sponsorship of the U.S. Nuclear Regulatory
Commission. The purpose of the workshop was to review the status of "cognitive model
ing" and to recommend to the NRC whether it should support research directed toward the
development of a cognitive model of a reactor operator that could be useful by itself or as
a part of a larger model of the human-machine system. It was the consensus of the invited
papers'and the working groups that some cognitive models developed for other types of
systems can be adapted to the reactor operator under limited and precisely defined condi
tions (and, indeed, some already are being used). However, the development of a
comprehensive model for the reactor operator should be preceded by an improved under
standing of the task. In the meantime, the need for further applied research in operator
cognition is apparent, as is the need for supporting data collection. Work in these areas
could begin immediately.

IX
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INTRODUCTION

Roger A. Kisner
Oak Ridge National Laboratory

Thomas B. Sheridan

Massachusetts Institute of Technology

In an effort to facilitate the operation of nuclear power plants under both normal and
non-normal conditions, the Nuclear Regulatory Commission has sponsored a number of
research projects that are aimed at simplifying the operator's task and improving his per
formance. These projects include the addition of control room aids; more and better train
ing, especially for handling emergencies and to provide more detailed understanding of the
plant; the development of better control room procedures; and increased automation. As
the research program has progressed, it has become increasingly apparent that the focus
should not be on the performance of the operator in isolation but rather on the functioning
of the operator within the human-machine system as an entity. It is important not only to
know the capabilities and limitations of the two major components — the human and the
machine — but also to understand the interactions between them and the consequences
of those interactions. With the human and the machine both acting properly, the conse
quence is a smoothly operating plant. But with improper performance by one component,
the consequence could be a serious degradation of the system that could be made worse or
mitigated, depending on the response of the other component.

In contemplating this human-machine system we are awed by its complexity. The
plant alone consists of many subsystems which in turn are made up of numerous large and
small components. To predict the outcome of the improper performance of just one com
ponent of the plant, we must postulate all possible sequences of events that might be trig
gered by its failure. The increasing degree of computerization in sensing and control has
not made the plant any simpler.

Even so, the greater complexity is with the human element of the system. While it is
relatively easy to measure and predict the physical movements and time spans required for
a particular operator to perform a specific manual task, it is far more difficult to measure
and predict his cognitive behavior — that is, the sequence of mental events prompted by
given stimuli and culminating in the decision to perform (or not perform) a specific
manual task. Thus, we cannot anticipate with confidence how an operator will react to a
given set of circumstances, especially if those circumstances are outside his experience,
which is most likely to be the case in emergencies. In such situations, normal automation
is inadequate and we are more dependent on operator cognition.

The problem of viewing the human-machine system as an entity is not unique to
nuclear power plants. It has been studied for many years in relation to the operation of
aircraft, spacecraft, and ships, as well as the operation of various process plants. However,
the adaptability of this earlier research to the operation of nuclear power plants is not
obvious. In particular, it is not clear that the cognitive models that have been developed to
study human-machine interactions in other (usually simpler) systems are either appropriate
or adequate for the study of human-machine interactions at a nuclear power plant. More
over, it is not clear whether the cognitive sciences yet have the knowledge required to
develop the needed models. While some speculative models are available, it is generally
agreed that the data needed to test them are not sufficient.



In an attempt to better understand the status of the cognitive sciences and their rela
tionship to the study of the performance of a reactor operator, the NRC sponsored this
Workshop on Cognitive Modeling of Nuclear Plant Control Room Operators on August
15-18, 1982, at the MIT Endicott House, Dedham, Massachusetts. Organized by Oak
Ridge National Laboratory and attended by 42 invitees, the workshop included a
presentation of 11 invited papers and the deliberations (and reports) of four working
groups. This document collects the proceedings of the workshop, as well as some pertinent
additional material prepared by some of the participants.

Prior to attending the workshop, the participants were informed that the workshop was
to be a follow-on of a study conducted for NRC by a team from Bolt, Beranek, and New
man, Inc., on the feasibility of applying a "supervisory control modeling technology to the
study of critical operator-machine problems in the operation of a nuclear power plant."
The result of the BBN study was a "conceptual model that incorporates the major ele
ments of the operator and of the plant to be controlled." The essence of this model is
included in these proceedings as Paper No. 2.

As stated in the letter of invitation, the objectives of the workshop were: (1) to iden
tify the applicability, validity, and usefulness of cognitive modeling to the licensing and
regulation of nuclear plants, (2) to survey available cognitive modeling techniques,
including the capabilities, limitations, data requirements, structures, and theoretical con
structs on which each model is based, and (3) to recommend research directions for the
NRC.

Some of the specific questions that the four working groups were to address were:
1. Does the NRC need information about cognitive models for regulation of nuclear

facilities and what are the major purposes of these models?

2. What reactor operator cognitive behaviors do we need to predict? Can these
behaviors be listed in order of importance?

3. How would such predictions or other outputs from cognitive models be applied by the
NRC in the areas of plant design, procedures, management, training, licensing, etc.?

4. What are the principal cognitive modeling approaches in use now, and how are they
used in other applications or fields?

5. At what stage of development do models become useful?
6. What taxonomies apply? (Consider, for example, normative vs. descriptive, control

vs. decision, mathematical vs. verbal, deterministic vs. stochastic.)

7. What data are presently available to use for generating models? What data are miss
ing? Do we have means of collecting the needed data?

8. What sources of data can be used to calibrate or validate cognitive models of nuclear
power plant operators? [For example, do we need anecdotal data, LERs (licensee
event reports), simulator data, etc.?]

9. What are the current obstacles to (a) developing the status of cognitive modeling of
nuclear power plant operators, (b) calibrating and validating the models,
(c) putting the models to use, and (d) learning from experience?



During the two full days of the workshop the four working groups met between sessions
in which several invited papers were presented. Thus the groups were able to progressively
consider the contents of the papers and select the information they considered to be useful
for their own reports, which were given on the final half day of the workshop on the fol
lowing topics:

Groups 1,2: Survey of Development of Models as
Applied to Nuclear Plant Operators

Group 3: Use of Cognitive Models of Nuclear
Plant Operators in Design and
Operation

Group 4: Use of Cognitive Models of Nuclear
Plant Operators in Regulation and
Licensing

In the proceedings that follow we present first the 11 invited papers in the order that
they were given. We then present the working group reports which were given orally at the
workshop but largely documented later. These reports are followed by the closing remarks
made by three members of the NRC and two members of the workshop committee. A
final section includes "reflections" on the workshop of four participants and one nonpartici-
pant.

We believe that these proceedings will be valuable both to the NRC as it attempts to
"get a handle" on what cognitive research is needed and to the participants as they attempt
to understand the scope of the problem and to direct their cognitive abilities to its solution.





A CHARGE TO THE WORKSHOP PARTICIPANTS

James P. Jenkins

U.S. Nuclear Regulatory Commission

What are the compelling reasonsfor this workshop?

What are the origins in NRC concern for cognitive explanations of opera
tor behavior, models about cognition, and predictions of cognitive perfor
mance?

What are the expectations for this workshop?

These three questions are at the root of your sponsor's interests for this workshop. We
have a viewpoint of our own within the NRC and it has been stated many times: We need
to understand and ultimately to predict and account for the variance in operator behavior
attributable to cognitive error to no less extent than we need to account for total human
performance error. The watershed event in the NRC's involvement in human performance
prediction and modeling was the conclusion about remote and proximate contributing
human factors to the accident at Three Mile Island Unit 2 in March 1979, and, in retros
pect, to all other incidents which have had human error as a contributing or common
cause.

If you reflect on the specific actions taken since TMI-2, you will perceive a continuing
concern for the subject matter of this workshop. Let me mention some major decisions
and programs to reinforce this point. In December, 1979, an NRC-sponsored Workshop
on Human Reliability was held at Myrtle Beach (MB-I) to coalesce the regulatory and the
research directions for human error and human factors. Two publications were specific
products of that workshop — a handbook authored by Alan Swain and Hank Guttmann
that describes the model called THERP (Technique for Human Error Production) and its
application (NUREG/CR-1278), and a workbook for identification of man-machine inter
faces that are or can be critical failure events in a fault tree or system event
(NUREG/CR-2254).

In FY80 an upgraded human reliability research program was established by NRC.
Sandia National Laboratories was tasked to develop the two important documents I have
just mentioned and also to begin a series of research tasks that have resulted in the iden
tification of various models to be used for maintainer reliability prediction. In other
research projects the types of human failures in the operation and maintenance of pumps,
valves, electrical and electromechanical instruments have been identified, and human
failure rates have been analyzed. A human performance data bank also is being evaluated
under this program, and an independent evaluation of human error data has been started.

In August 1981, a second workshop, titled the Workshop on Human Factors, was held
at Myrtle Beach. A major purpose of that meeting was stated in the Foreword of the
proceedings as follows: "In the area of human performance, which was more in line with
the scope of the original (i.e., MB-I) meeting, a need was shown for the development of a
taxonomy or model to structure future data gathering and the need of models or data to
address the issue of cognitive behavior."



One of the first efforts following MB-II was a research task assigned to ORNL to
implement a system-based plant-specific man-machine model. Under subcontract to
ORNL, Bolt, Beranak and Newman, Inc. (BBN) developed a concept which you will hear
about during this workshop. And in April, 1982, a decision was reached that a symposium
— I use the word in its classical sense in Greek to mean a meeting of the minds for an
exchange of ideas — on cognitive models was mandatory before proceeding further. Com
pelling reasons for this workshop, for which we are all gathered here, were the following:

• To bring the best available thinking to bear on the problem of cognitive performance
and human reliability assessment.

• To ascertain in which direction a composite research program should lead. That is,
should it be data collection? analysis of available data from a new nomothetical net
work? alternative model development? cognitive performance prediction and model
validation?

• To establish a firm basis, by way of the conclusions reached in this workshop, for the
specific direction we finally choose.

When one reflects on the issues, we find not only models of cognition which span dif
ferent explanations of cognitive behavior, but also many underlying concepts of cognition.
The model developers have provided a range of models. To name a few, we have
Rasmussen's Rule- Skill- and Knowledge-Based Performance Model; Sheridan's Super
visory Control Model; Siegel's Man-Machine Simulation Model a la Newell and Simons;
OATS-Weatherall's Operator Action Tree Model; models which are properly called
mathematical models, such as Shannon and Weaver's model of communications; engineer
ing models like the BBN model; computer models as represented by the field of artificial
intelligence; conceptual models like the model of information processing contained by the
S-O-R* paradigm; and psychological models.

If this workshop had its genesis in academia we would be expected to have vigorous
discussions about the attributes and deficiencies of the models, or the clarity of the
intermediate-level construct and what is the underlying theory of cognition, or perhaps the
discussion would focus on the problem of criteria and construct validation. If this
workshop were focused on engineering solutions we could expect discussions on how much,
how extensive or what quantifications are required for model application. However, this
workshop is directed neither toward academic-only nor engineering-only. Rather, the
objectives of the workshop are to provide a framework and context for our discussions. Let
me repeat them:

• To identify the applicability, validity, and usefulness of cognitive modeling to the
licensing and regulation of nuclear plants.

• To survey available cognitive modeling techniques, including the capabilities, limita
tions, data requirements, structures, and theoretical constructs on which each model is
based.

• To recommend research directions for the Nuclear Regulatory Commission.

*S-0-R = Stimulus-Organism-Response.



In closing, I would like to offer some guidelines or standards whereby we can evaluate
the models and cognitive behavioral concepts which will be discussed at the workshop. If I
may call them criteria, then they are intended to differentiate among models and concepts:

(1) The degree of acceptance of the model by the using community is a major meas
ure of the adequacy of the model. Its utility should be recognizable.

(2) The model must possess the characteristics of verisimilitude. It must show the
quality of human experience.

(3) The validity of the input data is critical. Requirements for data and availability of
data to be manipulated by the model are needed.

(4) If the model requires simulation, then the model must be appropriately docu
mented with structural programming in a common language. The translation of data from
a behaviorial statement to elements of a computer program must be carefully documented,
along with program specifications or flow charts.

(5) The ultimate credibility of the model lies in the validity of the underlying con
structs. The multi-trait, multi-method analysis for convergent and divergent validity is
recommended.

(6) The output of the model should provide results at the appropriate level of detail
consistent with the objectives of the user. If decisions are to be made as a consequence of
modeling, then information output should be in a form which allows that decision to be
made with minimum translation of the model output.

(7) The interface between the model user and the model should be easy to use. This
means documentation free from error of omission and fact and easy to understand.

This is your charge. I expect you to meet it by your papers and discussions and
through the conclusions and recommendations you will make.
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Paper 1

THE ROLE OF COGNITIVE MODELS OF OPERATORS
IN THE DESIGN, OPERATION AND LICENSING

OF NUCLEAR POWER PLANTS

Jens Rasmussen

Riso National Laboratory, Denmark

1. INTRODUCTION

Cognitive models of the behavior of nuclear power plant operators — that is, models
developed in terms of human properties rather than external task characteristics — are
assuming increasingly important roles in plant design, operation and licensing. This is
partly due to an increased concern for human decision making during unfamiliar plant
conditions, and partly due to problems that arise when modern information technology is
used to support operators in complex situations. In support of the workshop discussions,
some of the problems we have identified during our work on interface design and risk
analysis are described.

First, the question of categories of models is raised. (For a definition of cognitive
models see Fig. 1.) Different types of models match the various problems met during sys
tems design and operation, and rather than seek a general, quantitative model of human
behavior, the use of different types of models is advocated, together with a conceptual
framework serving to interrelate the use of the various specific models.

Next, the use of cognitive models for system design is discussed. It is argued that not
only do we need a development of such models, but also we need a more consistent iden
tification of the control requirements of the plant and a related design of the overall plant
control strategy.

The use of the available cognitive models for more effective operator training is also
advocated. Until recently the planning of operator training has been rather unrelated to
the cognitive models developed, and mainly has depended upon the use of high-fidelity,
large-scale simulators.

The need for using cognitive models in risk analysis is also emphasized. The impor
tance of quantitative probabilistic models for risk analysis is well known, but some prob
lems related to emergency performance are mentioned, and the problem of identifying the
potential for systematic coupling of otherwise independent events {system interaction) due
to human decisions and actions is discussed. The value of risk analysis depends upon the
degree to which the models and assumptions behind the analysis are controlled and main
tained during plant operation, that is, upon risk management by feedback control based on
analysis of event reports. To serve as reference for this feedback control, the models used
in the risk analysis — including the cognitive models of operators — must be explicitly
stated.

Finally, the sources of human performance data, that is, event reports, incident
analysis, experiments, and training simulators are mentioned, and the need for a consistent
framework for data analysis based on cognitive models is discussed.

13
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Fig. 1. Definition of Cognitive Model. Human behavior and resource/demand conflict
can be modelled at several levels. Here cognitive models are taken to be models at the lev
els of information processing and psychological mechanisms, in contrast to behavioristic
models in external task terms.
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2. CATEGORIES OF MODELS OF HUMAN BEHAVIOR1

A discussion of models of human behavior raises immediately the distinction between
qualitative and quantitative models. Frequently, qualitative models are considered merely
to be premature, descriptive models which after further work will develop into or be
replaced by proper quantitative models. However, this is not necessarily the case. In
several respects the two kinds of models have different and equally important roles for
analysis and prediction of performance. This difference in significance is related to the
distinction between categories of behavior and the members of such categories, that is, the
specific behavior in particular situations. Bateson2 discusses this distinction in detail with
reference to Whitehead and Russell's logical types: "...there is a deep gulf between state
ments about an identified individual and statements about a class. Such statements are of
different logical types, and prediction from one to the other is always unsure" (p. 46). The
fact that "the generic we can know, but the specific eludes us" (p. 45) has different impli
cations, depending upon the purpose of the modelling effort.

For systems design, qualitative models will serve important purposes if they are able to
predict the category of behavior that will be activated by different possible interface confi
gurations and display formats. The model will then support the choice of an interface
design which will activate a category of behavior having limiting properties compatible
with the functions allocated to the human operator. In a way, research on human perfor
mance to support system design should not focus on modelling actual performance in exist
ing environments, but rather on possible performance in optimal, future systems, as has
been discussed by Sloman3 in a philosophical context. ' Qualitative models identifying
categories of behavior and the limiting properties of the related human resources will serve
designers a long way in the design of systems which allow humans to optimize their
behavior within a proper category.4

Compare this with Norman's arguments5 for the importance of considering the proper
mental image for design of "friendly" systems and the need for a profession he calls "cogni
tive engineering." The distinctions between models of categories and of particulars have
different implications, depending also on the cognitive level of behavior considered. At the
skill-based level we are considering highly trained people, similar to experimental psycholo
gists' "well trained subjects" who have adapted to the particular environment. In this
domain, models of optimal human performance are mainly models of the behavior of the
environment, as seen through the man. Therefore, generic quantitative models of human
performance in well-structured tasks can — and have — been developed at this level of
performance. At the level of knowledge-based behavior, however, we are dealing with indi
vidual reactions to unfamiliar situations, and models will be more a question of qualitative
matching of categories of system requirements with human resources. For unfamiliar
tasks, these resources depend on a specific person's subjective preferences, experience, and
state of training. There is a long tradition within vehicle control to use quantitative
models for systems design and performance analysis, such as the models based on optimal
control theory. During recent years attempts have been made to extend these models to
higher level human decision making to conform with the increasing levels of automation in
aviation, and to transfer such models for process control applications. Whether this
approach is fruitful depends on the nature of the human task. The optimal control part of
the model may not be needed if the manual acts are no longer an integral part of the con
trol task, but merely a general interface manipulation skill. In that case, an independent
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development of a decision model may lead to a more direct approach. What we need is
not a global quantitative model of human performance, but a set of models which is reli
able for defined categories of work conditions, together with a qualitative framework
describing and defining their coverage and relationships.

To be useful, both the qualitative and the quantitative models must reflect the structure
underlying the mental processes: the internal or mental models; the kind of data dealt
with by the processes; and the rules or strategies used to control the processes. In addi
tion, the models must reflect the limits of human capabilities so that human "errors" are
also modelled properly.

This question of also modelling errors properly leads directly to the issue of using
analogue parallel processing models versus the sequential digital models of human informa
tion processes offered by the artificial intelligence (AI) community. Can holistic human
perception, for instance, be properly modelled by the sequential "production rule" systems?
In the present context of models for system design and evaluation, the fundamental ques
tion appears not to be whether a model is implemented for experimental evaluation by
means of one or another physical information processing system but whether or not there
exists an intermediate level of concept, actually a theory, linking the actual human perfor
mance and the particular computer implementation of a model under study, that is, a
framework having a one-to-one correspondence to human mechanisms, their processing
limitations and related failure mechanisms.

A map of different cognitive levels of human behavior illustrating the relationship
among various more specific models is shown in Fig. 2.

3. THE ROLE OF COGNITIVE MODELS IN SYSTEMS DESIGN6

In our work, our concern is with the timely development of models of human perfor
mance which can be useful for the design and evaluation of new interface systems. For
this purpose, we do not need a single, integrated, quantitative model of human perfor
mance but rather an overall qualitative model which allows us to match categories of per
formance to types of situations. In addition, we need a number of more detailed and
preferably quantitative models which represent selected human functions and limiting pro
perties within the categories. The role of the qualitative model will generally be to guide
overall design of the structure of the system (including, for example, display formats),
while selective quantitative models can be used to optimize the detailed designs.

In many cases, the use of quantitative models for optimizing a design can be replaced
by experimental evaluation. Unfortunately, however, it is the categories of performance
for which experimental evaluation is most feasible — that is, skilled- and rule-based per
formances — which are most readily modelled quantitatively. A major difficulty is the
modelling of the knowledge-based control of performance during unfamiliar situations, as
well as the interaction among the different levels of performance, depending upon the state
of training. In particular, it is very difficult to study experimentally, or analytically, the
interference from overlearned routines during situations calling for knowledge-based
responses. Several problem areas for research can be identified.

The first problem we meet in design of interface systems based on modern information
technology is the tradition from the one-sensor—one-indicator technology that the operator
task is expressed in terms of actions on the system, the state of which the operator is sup
posed to "figure out for himself" from readings of a number of physical variables and his
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Fig. 2. Map of Human Information Processing at Three Levels of Behavior. Examples
of models are indicated to illustrate their interrelation.

training in system fundamentals. However, if computer technology is to be used to optim
ize man-machine communication, information presentation must be structured according to
the nature of the control tasks the operator is supposed to perform. To do this properly, it
is necessary to design the hierarchy of functions called for in the control of complex sys
tems as one consistent whole — regardless of whether the individual functions are
automated or allocated to operators. In a supervisory control task, the operator will have
to face tasks at several levels in the hierarchy of control functions; that is, the concepts
used in a proper description of the various tasks will vary in level of abstraction between
physical implementation and overall system purpose4-7-8 (see Fig. 3).

In order to plan the formats of data presentation and the integration of measured data
needed to derive the related variables, it is necessary to have a formalized description of
the categories ofcontrol tasks at the various levels of abstraction. An attempt to develop
such a description is given by Lind.9 In addition, information on the subjective human
preferences or performance criteria which will control the selection of strategy in a given
environment is necessary for design.
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ABSTRACT FUNCTION

Causal Structure, Mass, Energy and
Information Flow Topology, etc.
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Electrical, Mechanical, Chemical
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PHYSICAL FORM

Physical Appearance and Anatomy,
Material and Form, Locations, etc.

Fig. 3. Levels of an Abstraction Hierarchy. The properties of a technical system can
be described at several levels of an abstraction hierarchy representing the physical struc
ture and design intentions in different proportions.

During design of the process plant itself, the functions of the system and its physical
implementation are developed by iteratively considering the plant at various levels of
abstraction and in increasing degree of detail (see Fig. 4).

During this design process, the physical system is identified, that is, the implementation
of those causal structures depending on mass and energy relations. However, as the degree
of physical detail increases during the design process, so does the number of degrees of
freedom in functional states. Therefore causal links by means of control paths relating
desired states with necessary control actions must be introduced to constrain the possible
operational states.

In this way, the desired states of functions and equipment will be identified during
design at different levels of abstraction, and the necessary information or control con
straints will be identified in terms of the conceptual framework related to these levels. In
general, a skilled designer will immediately be able to identify suitable and familiar control
system concepts. A consistent systems design including operator control functions can,
however, be performed more systematically by means of a generalized decision model and
a consistent formulation of the control requirements.6

The system's control requirements are derived from the necessary relations between the
actual states, the desired states or changes of states, and the required actions on the sys
tem. This means that planning of control actions involves the rational decision sequence of
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Fig. 4. Plant Design by Considering It at Various Levels of Abstraction. The design of
a physical process plant can be viewed as an iterative transformation up and down an
abstraction hierarchy coupled to decomposition into parts and components.

Fig. 5, covering state identification, goal evaluation, and prioritizing, in addition to the
planning itself. Depending upon the control task allocation, the decision sequence — or
parts of it — will be performed by the designer himself, the plant operator or the process
computer. The conceptual framework within which decisions are taken will usually depend
upon the background of the person, that is, whether he is the designer or operator, and
upon the immediate context of the decision. However, to have a consistent overall design
and to be able to formalize the decision functions to be performed by the computer, ad-hoc
decisions throughout the design process should be replaced, or at least reviewed, by con
siderations based on a uniform description of the necessary constraints and the related con
trol requirements which are expressed in a suitable language. For this purpose, we con
sider a transformation of the desired functional states and the necessary conditions, sup
plies, and constraints emerging during the various phases of design specification into a uni
form description of specified functional states at the level of energy and mass flow struc
ture — the abstract functional level of Fig. 3. The result is a consistent hierarchical
description of target states and intended functions, that is, a goal or specification
hierarchy10 as shown in Fig. 6.

To design the control system, including the role of the operators, the functional specifi
cation hierarchy is taken as the top level in a design hierarchy in which the decision func
tions needed are identified in device-independent terms before tasks are allocated as opera
tor or automatic functions, depending upon the respective resource/demand characteristics.
This systematic design depends on proper cognitive models as well as on consistent identifi
cation of the control strategies (see Fig. 7).
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Fig. 6. Goal or Specification Hierarchy. In a complex process plant there is a many-
to-many relation among purposes, functions, and equipment which can cause "systems
interaction" problems. (From Lind, ref. 9.)



22

AGGREGATION - DECOMPOSITION -o PARTS

CONTROL SPECIPItATlON HIERARCHY

jr IMPLEMENTATION j,

(IDENTIFICATION. EVALUATION.
PRIORITIZING. PLANNING)

(DEDUCTION; INDUCTION;
SEARCH: RECALL OF
STORED SOLUTIONS)

EXTERNAL
TASK

DECISION
TASK

INFORMATION
PROCESSES

(HUMAN. ELECTRI- FUNCTIONAL
CAL OR MECHAN- IMPLEMENTATION
ICAL FUNCTIONS)

EOUIPMENT OR
ANTHROPO
METRICS

Fig. 7. Control System Design Process. A consistent design of an overall plant control
strategy implies an orderly identification of decision tasks and strategies before tasks are
allocated operators and automatic equipment by demand/resource considerations.

4. THE ROLE OF COGNITIVE MODELS IN OPERATOR TRAINING

In the present context, operator training means development of the necessary resources
for coping with situations at all the three levels of behavior shown in Fig. 2, that is, sup
plying the operator with a proper repertoire of possible behaviors for both routine and
unexpected situations. Until recently, training of industrial operators has not been based
on models of human behavior compatible with those discussed for system design. How
ever, explicit use of models for matching categories of system requirements and human
resources to plan training programs has been made by Rouse11 and his group, and this
approach has proved promising.

Distinctions between categories of behavior similar to those of Fig. 1 have been pro
posed previously. Fitts12 distinguishes between three phases of learning a skill: (1) the
early or cognitive phase, (2) the intermediate or associative phase, and (3) the final or
autonomous phase. If we consider that in real-life tasks there may be various degrees of
training depending on variations and disturbances, the correspondence with the three levels
in the present context is clear.

The strategies for decisions and the representations of the environment (that is, the
plant), the rules, and the behavioral patterns forming the operator's resources at the three
levels can be expected to be developed effectively by different methods of training, and the
extensive use of large-scale training simulators as the main tool of training within the
nuclear industry should therefore be considered.
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In the skill-based domain, learning is based on behavioral patterns of movements stored
during performance of the task under the control of either higher level cognitive functions
or of an external teacher with his "hand on the bicycle saddle." The process computer has
led to the development of "high-fidelity" dynamic training simulators which generally are
considered important for training of aircraft and space-vehicle control during emergency
situations, since the task is a time-space multivariate control task. However, it does not
appear to be evident that high-fidelity dynamic simulators are necessary for training of
skill-based behavior in most process industries. Transfer of "process-feel" seems to be
rather effective within time constants and gain characteristics of the same ranges and sim
ple dynamic simulators could serve that purpose.

Training within the rule-based domain typically depends on rehearsal of the cues and
rules of the game. It is important to know the locations of sources of cues and of knobs
and switches, but static mockups or magnetic board displays have proved efficient13 for
training by exercises or "talk-throughs" (Swain, private communication). Unfortunately,
people are moldable and learning is not restricted to the formal training periods. The
plant itself continues their training very effectively and, ultimately, the rule-based behavior
will depend upon interface characteristics rather than formal training. It is therefore
important to support rarely used rules and to arrange the interface in a way so that opera
tional optimization of frequently used rules does not violate risky, but latent conditions.

Operators have no chance for developing empirical rules for infrequent occurrences,
and work instructions cannot be preplanned for all possible situations. Furthermore, one of
the recent "lessons learned" from TMI has been that it cannot be assumed that an instruc
tional system for major accidents will take care of the less critical situations and thus help
operators to cope with these. Consequently, in modern large-scale industrial installations,
reliable operation to an increasing degree depends upon the operator being able to perform
in the knowledge-based domain, that is, to form the necessary rules ad-hoc in the actual
situation. Very little is apparently known about the content and means of training opera
tors for knowledge-based performance; the dynamic and visual verisimilitude of expensive
simulators is not related to the necessary knowledge of operators for performance in this
domain, and training in the theoretical, physical description of plant function alone is not
adequate. Special training schemes aiming at general problem solving and diagnostic skills
have been tested experimentally by Duncan14 and by Rouse15 and should be considered
seriously as an addition to full-scale simulator training.

5. THE ROLE OF COGNITIVE MODELS IN RISK

ANALYSIS AND MANAGEMENT16

The feasibility of a probabilistic risk analysis (PRA) by decomposition techniques
depends on particular design features in nuclear power plants which lead to a rather highly
structured course of accidental events. Figure 8 illustrates such a generic accident and is
useful for discussion of the human interaction.

From Fig. 8 it is seen that the accident propagation is subdivided into several subse
quent phases by several independent counter-measures, based on different physical princi
ples. This "defense-in-depth" design philosophy makes it possible in a realistic way to
achieve very low probability of an accident with moderate requirements to the failure pro
babilities of each phase under the condition of independence of the different counter-
measures. Therefore, the failure probability of the individual phases can be verified empir
ically, even though this is not the case for the overall risk probability directly.
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Fig. 8. Generic Accident Sequence. In nuclear power plants like other industrial
processes, major accidents have a common structure of propagation due to the design phi
losophy applied.
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With reference to the generalized sequence, typical categories of human contributions
can be identified. As causes of accidental chains of events, the simple human errors are
generally not very significant for the result of a PRA because (1) their effects are typically
equivalent to technical component failures in the system the human operates, (2) their fre
quencies will not significantly change the overall result based on component data (consid
ering the uncertainty of such data) or their effects are included in the data on component
fault rates, and (3) human errors performed on active systems are often immediately
recognized and corrected. Special consideration must instead be given the categories of
human errors which influence the generic structure of the accident, such as:

• Human acts which cause couplings between different phases of Fig. 8, for example,
human acts which at the same time initiate a transient and disturb the protective func
tions.

• Errors in the design of protective systems which affect the capability of the protective
system to handle a subset of transients, including errors in work planning and schedul
ing related to maintenance and refueling periods.

In all systems based on feedback design principles, the performance is very sensitive to dis
turbance of the feedback path. For PRA this means that human interaction with the
safety functions is a key problem. Several analytical problems can be identified:

• Estimation of the reliability of protective functions allocated to human operators.
Since such functions are required under possibly stressing conditions, a meaningful
quantitative reliability estimation can be made only under special assumptions regard
ing interface design and training.

• Estimation of the probability that, due to misunderstanding or conflicting requirements,
operators will interfere with the operation of-automatic safety functions during emer
gencies. Such interference can be caused systematically by high similarity among ele
ments of different tasks or procedures or because the same equipment may be used tor
different purposes and, therefore, appear in different situations.

. Influence of human reliability on the maintenance, test and calibration of protective
systems Problems are in particular related to systems with extreme technical reliabil
ity specifications, such as redundant systems for which complex situations during work
planning and maintenance may give rise to "common mode" errors.

Seen from a modeling point of view, the use of the well-known probabilistic reliability
models like THERP* causes no fundamental problems when applied to the normal, well-
trained task repertoire. In fact, these models are more empirical models of task sequences
in normal work settings, which can also supply the necessary data, than they are cognitive
models. However, to deal with the three problem areas mentioned above, real cognitive
models in terms of human decision mechanisms are required.

The first problem, estimation of the reliability of human protective functions in
response to emergency conditions, depends upon the development of models of decision
making in unfamiliar situations under the influence of emotional stress. It is doubtful
whether in the near future it will be possible to predict the course of decisions and actions

*THERP = Techniques for Human Error Rate Prediction.
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taken in such a situation. Probably, reliability prediction will have to rely on boundary
considerations based on the probability of error detection and correction (the feedback
design principle).

The second problem, prediction of the probability that operators will interfere with the
automatic protection and thus introduce a systematic coupling between a transient condi
tion and failure of protective functions, requires an independent systematic analysis. In
particular, a formal analysis must be able to identify possible decision errors which may
provoke systematic interactions due to the existence of instructions for activities aiming at
different purposes for the same system. An unacceptable act can be the result of a mis
take caused by similiarities between the actual situation and another task context of which
the act is a natural part. This similiarity may be found at any level of the abstraction
hierarchy of Fig. 3; that is, the mistake may be caused by a similiarity in terms of location
or appearance of equipment, of the physical function, of the purpose of the systems in
overall plant goals or in terms of action sequences. A way to specify the kinds of sys
tematic interference ("systems interaction") caused by the existing many-to-many mappings
among purposes, functions and equipment, which should be taken into account in an
analysis, can be to base the analysis on a proceduralized search in a consistent and docu
mented description of plant properties at the various levels of the abstraction hierarchy
(see Fig. 6).

The feasibility of such an analysis to identify potential for deterministic "systems
interactions" violating the assumptions for probabilistic risk analysis depends not only on a
model of human decision making, but also on a consistent description of plant properties at
the levels of purposes, functions and equipment. The concepts and tools developed for
CAM/CAD* should be carefully considered for this purpose.

Finally, the third problem, that of test and maintenance activities on safety systems,
should be considered. The basic analysis of performance during these tasks is not posing
serious modeling problems. This is, however, the case with the more complex interactions
caused by "common mode errors" and errors due to inappropriate decisions taken during
work planning and scheduling, for instance, for particular periods like refueling and major
overhauls. The decisions in this work condition are much less constrained than the deci
sions related to control of a causal, physical system, and prediction of performance relies
on the development of quantitative models of decisions in management organizations,
which is a long-term project.

At present the only solution seems to be to support work planning by normative models
and analysis of the potential for deterministic conflicts caused by the many-to-many
mapping between equipment, functions and purposes mentioned above, and then to control
the risk level obtained by feedback based on analysis of event reports.

Explicit formulation of the models used for risk analysis, including the models of opera
tor performance, is important for consistent risk management. Figure 9 illustrates how the
risk imposed by an industrial process plant, for instance, a nuclear power plant, is con
trolled in two ways: first by a plant construction based on a risk analysis; and second by
risk management (RM), that is, administration of the preconditions of the risk analysis
which act as requirements for plant construction and operation. In addition, through the

CAM/CAD = computer assisted manufacturing/computer-assisted design.
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Fig. 9. Control of Risk Imposed by an Industrial Process Plant. The risk contributed
by the operation of an industrial plant is composed of an accepted risk identified and
analyzed in advance and a risk due to incomplete analysis and insufficient regard to
preconditions for the risk analysis. The latter risk is to be controlled by risk management
functions comprising quality control, functional tests, inspection, training and instruction of
personnel and including analysis of operational experience as a feedback link.

plant lifetime, the preconditions for risk analysis can serve as references for inspections,
tests and analyses of operational experience. Decisions made from systematic analysis of
abnormal event reports can lead to risk management by means of a "feedback" control
function serving to maintain the designer's safety design targets and to reveal oversights
and design errors.

The result of a PRA is a calculated risk figure which, if accepted, covers the accepted
risk. If not accepted, the design has to be modified until acceptance has been achieved.
Due to incompleteness and errors during performance of a PRA, however, an additional
risk may exist, which is not included in the accepted risk. Contributions to this additional
risk can also originate from the fact that the real plant and its operation may depart from
the PRA preconditions because:

• Components employed do not belong to the populations providing the PRA failure
data.

• The real plant does not correspond with the models of the plant used for PRA.

• The real plant is not operated and maintained according to assumptions made in the
PRA.

After the calculated risk has been accepted, the PRA assumptions, models and data
sources are to be used as requirements and references for construction, modification and
operation during the lifetime of the plant, that is, as references for the risk management
(RM) functions.
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Some important means for control in RM in order to make sure that the plant is kept
in agreement with these references are:

• Quality control.

• Functional tests and inspections.

• Training of operators.

• Issuing instructions for operation, etc.

In order to close the loop from theory to practice, that is, from the PRA to the plant in
existence, RM should comprise analysis and evaluation of failures and abnormal
occurrences by comparison with the references provided by the PRA for deciding whether
the abnormalities are included in the accepted risk or whether they indicate circumstances
overlooked in the PRA or flaws in risk administration requiring adjustments of practice.

The use of the PRA, including its preconditions as references for RM, obviously
requires explicit and user-oriented documentation of the PRA, including preconditions,
models and data sources. Particularly, documentation of the coverage of the analysis and
search methods, that is, what has been included in the search for risk contributions, is
important for evaluating operating experience as a basis for RM decisions in the feedback
control. The well-documented model and description of the risk identification strategies of
the PRA are necessary to decide whether an individual occurrence falls within the
accepted risk and, therefore, should contribute to statistical verification or whether it indi
cates oversights or operational problems which call for special precautions. In this respect,
documentation of coverage is considered more important than attempts to reach high
degrees of completeness, which may lead to undefined boundaries depending on the
creativity of the analyst.

The major part of the human decision making and administrative functions involved in
operations management is not accessible to formal analyses with the present state of the
PRA art. However, errors of management may be significant sources of common mode
errors and, therefore, can be important candidates for risk management by feedback con
trol. This feedback control should depend not only on the formal analysis of abnormal
event reports by authorities, but also on the systematic in-house analysis of log-books,
repair reports and similar sources by the plant staff itself.

In conclusion, to have a risk analysis of a nuclear installation and a risk management
by means of inspections and event reports — which together form an integrated system —
it is necessary to have an explicit formulation and documentation of the predictive or
descriptive models used for risk analysis and of the search strategies used for identification
of the risk potential which is analyzed. Concerning the models of operator performance,
this involves formulation of empirical models of the task performance in frequent rule- or
skill-based tasks and cognitive models applicable for knowledge-based decisions during
unfamiliar situations. The more complex and unstructured tasks are represented in the
risk analysis as assumptions and preconditions, as, for example, the decision making in
management and task scheduling which is unaccessible for analytical assessment. To have
a consistent risk control, these assumptions and conditions must be interpreted as
normative models for planning of plant operation and maintenance. By means of inspec
tions and analysis of event reports, it is then the aim of risk management to evaluate the
adequacy of the descriptive models used for the analysis and the fulfillment of the norma
tive models used for operation management.
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17,186. SOURCES OF HUMAN PERFORMANCE DATA

There is a growing need for human performance data for design of man-machine inter
face systems based on new control room technology and for quantification and prediction
of human performance in high risk systems and situations. Several different sources of
data are at hand, each of them with particular features with respect to problems of data
collection and the quality of data it is feasible to collect. The following is a attempt to
summarize the features of data collection and analysis as we have met them during a
number of cases. The purposes are to provide a basis for the coordination of future ana
lyses and to interrelate results from different sources.

6.1. Data Sources and Data Types

Data sources may belong to either of two categories: (1) nuclear power plants or (2)
simulators of nuclear reactors. Within each of these categories, one may distinguish
several different types. Here the following distinct sources of data will be considered.

Routine event reports or plant events. Examples of these are the Licensee Event
Reports (LERs) which are standardized reports about incidents in US nuclear power
plants. The raw data in plant reports are normally checklists and free text comments and
are concerned only with the incident in question.

Special human factors post-incident studies of events or plant interviews. These
represent a more thoroughgoing analysis of an incident by human factors (HF) specialists
and technical specialists. The raw data include, in addition to the raw data from the plant
events, interviews with plant personnel, expert assessment of critical parts of the incident,
special checklists, computer logs, time line printouts, etc. This kind of studies can follow
real plant incidents or simulated incidents on training simulators.

Training simulators. The raw data available from training simulators are normally
computer logs and various automatically generated recordings of the operator's perfor
mance, as well as the instructor's evaluation thereof. This may be supplemented by check
lists (for the instructor), debriefing interviews and discussions based on replays of critical
situations, and possibly the operator's self-evaluation.

Research simulators. This category includes experimental studies of operator perfor
mance during selected, simulated tasks. A research simulator normally simulates a typical
plant rather than a particular plant, and the control console will not be a replica of any
particular control room. Research simulators are quite often used to study experimental
control rooms. The raw data available from a research simulator include the raw data

available in a training simulator, but the recording of the data is normally more flexible, to
honor the requirements of various special purpose investigations. In addition to this,
research simulators may provide data about operator verbalizations and comments, includ
ing operator-experimenter dialogues, tape recorded during the experiment, as well as data
from self-confrontations, that is, the operator's retrospective comments made during a
replay of the experiment.

6.2. Data Analysis

Just as the types of raw data may vary from one source to another, so may the purpose
of the analysis of the raw data depend on the context. In plant events, the purpose is to
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identify the characteristics of the situation and of the event that adequately account for
what occurred and to identify possible needs for improvement of work planning or instruc
tions.

In plant interviews, the purpose of the analysis is to identify the critical decision
sequence which led to the observed performance; this is not radically different from the
purpose of plant event analysis, although the emphasis may be put on a understanding of
human performance rather than the correction of specific work conditions.

In training simulators, the purpose of the analysis is, of course, to improve the training
by improving the feedback the instructor can give to the operator. And in research simula
tors, the purpose is either to gather data about a particular problem or to evaluate a
specific hypothesis or assumption.

This means that the way in which the raw data are analyzed depends upon their type
as well as the purpose. Fortunately, this does not lead to, in this case, four completely dif
ferent types of analysis, but rather several modes of analysis which have a considerable
overlap and which are based on the same conceptual background. An important benefit to
be gained from a common analytical frame of reference will be the possibility of cross
checking results and the availability of data from all sources for the research on operator
performance models. One may, in fact, suggest a common description of the analysis
along the lines described below, where each analysis typically has a number of discrete
steps with intermediate results which can be characterized as follows. (See also Fig. 10.)

Raw data. This is the basis from which the analysis is made. Some examples of vari
ous types of raw data have been mentioned above. The raw data may be regarded as
performance fragments in the sense that they do not provide a coherent description of the
performance, but rather the necessary building blocks or fragments for such a description.

Intermediate data format. This represents the first stage of processing of the raw data.
In this stage the data are combined and ordered along a time line to provide a coherent
description of what actually occurred. It is thus a description of the actual performance,
but given in the original terms, that is, as a professional rather than an expert description.
The language used is the language from the raw data, rather than a refined, theoretically
oriented language.

The step from the raw data to the intermediate data formats is relatively simple, since
it basically involves a rearrangement rather than an interpretation of the raw data. Hence,
special translation aids are not required.

Analyzed event data. In this stage the intermediate data format and the raw data have
been transformed into a description of the task or performance using formal terms and
concepts. These concepts reflect the theoretical background of the analysis, typically a
combination of an information processing theory and a theory for decision making. The
description of the performance is still ordered along a time line which is specific to the
situation in question. The transformation has, however, changed the description of the
actual performance to a formal description of the performance during the specific event.

The step from the intermediate data format to the analyzed event data may be quite
elaborate, since it implies a theoretical analysis of the actual performance. The translation
is one from operator task terms to formal terms. The emphasis is also changed from pro
viding a description to providing an explanation as well. Special translation aids (tools,
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methods, and concepts) are therefore required, and the analysis depends on the model
framework adopted.

Conceptual descriptions. At this stage of the analysis, the description is no longer
specific to a particular event but rather aimed at presenting the common features from a
number of events. By combining formal descriptions of performances one may end up with
a description of the generic or prototypical performance. The prototypical performance
may still be described as a sequence of activities ordered along some time line, but this is
more a time axis than a time line referring to a actual situation. On the other hand, a
description of the performance in a specific event may be seen as a example or a variation
of the prototypical performance. Thus, generic descriptions of human error mechanisms
are, in fact, descriptions of typical deviations from the prototypical performance. The step
from the formal to the prototypical performance is again one which is quite elaborate, and
depends heavily upon the models adopted.

Competence descriptions. This is the final state of the analysis which combines the
conceptual description with the theoretical background. The description of competence is
concerned with the basic concepts, such as mental models, decision strategies, performance
criteria, preferences, problem solving strategies, etc., which in a given situation are com
bined to produce the performance. The description of competence is context-free; it is a
description of the behavioral repertoire of the operator independent of any particular situa
tion — though, of course, still restricted to a certain class of situations. As soon as a con
text is provided, the description of the competence can become a description of the proto
typical performance and, pending further information, a description of the typical perfor
mance. The competence description is thus essentially the basis for performance prediction
during system design.

As before, the step from the conceptual description to the competence description may
be quite elaborate and require that the analyst has a considerable knowledge of the
relevant theoretical areas, as well as a considerable experience in using that knowledge. It
is not so much a question of knowing particular tricks and tools, as of being able to con
sider the conceptual description in a broad theoretical context.

6.3. Application of the Results of Analysis

The various types of situations (data sources) will normally be analyzed until a level of
analysis is reached which is appropriate for the situation. This means that the results at
the various levels of analysis may have different applications, both with regard to situa
tions of different types and with regard to situations of the same type. The application of
data from training simulators at the different levels of analysis is illustrated on Fig. 11. It
is the intent to demonstrate that the analysis necessary to derive generic model data from
research will also serve to evaluate various aspects of the training program. Similarly, Fig.
12 illustrates how results from different data sources can be useful together for specific
applications at the various levels of analysis.

Since the different data sources are generally studied by separate groups having their
own particular purposes, transfer of results and mutual evaluation of models can be diffi
cult, if data analysis is based on ad-hoc models developed separately. The conclusion is
therefore that a common conceptual framework and a set of compatible models should be
sought to make it possible to derive generic model data from the various programs and to
facilitate transfer of results among the various human factors programs within authorities,
industry, and research institutions.
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A FRAMEWORK FOR MODELING SUPERVISORY CONTROL BEHAVIOR
OF OPERATORS OF NUCLEAR POWER PLANTS

S. Baron, C. Feehrer, R. Muralidharan, R. Pew, and P. Horwitz
Bolt Beranek and Newman, Inc.

1. INTRODUCTION

The importance of modeling the human-machine system has long been recognized, and
many attempts have been made to estimate the operator's effect on system performance
and reliability. Traditionally, in the nuclear industry these efforts have focused on reliabil
ity modeling and have involved estimates of human "error rates" which, together with event
tree and fault tree analyses, have led to numerical predictions for the frequency of
occurrence of particular incident scenarios. Reliability models have made major contribu
tions to analysis, and considerable effort is still being devoted to obtaining data concerning
human error for such models.

The development of reliability models has been aimed at providing the means for
exploring the physical consequences of specific classes of human error. However, the total
impact of human performance on system operation and the adequacy of existing design
and operating standards cannot be adequately captured or assessed by simple error proba
bilities or even by the combination of such probabilities. The behaviors of relevance are
supervisory in nature, with a substantial cognitive component. They include planning,
monitoring, control, detection and diagnosis of failures, etc. Moreover, these behaviors are
dependent upon, and intricately entwined with, the system itself (that is, the plant design,
the displays, the procedures, and the training methods).

The broad requirements for a model of such human supervisory control are extensive
and suggest that a highly sophisticated computer model will be needed. This model must
address human cognitive and psychomotor behavior in both continuous and discrete tasks.
The model must be capable of generating meaningful estimates of crew performance and
workload. Moreover, the crew model must interact with the elements of the system model
in a closed-loop fashion, so that the temporal interaction associated with accomplishment
of the various activities engaged in by the crew is affected by the system variables (and
changes in them), and conversely.

Fortunately, the need for computer models of this type has been anticipated to some
degree. In recent years, and in a parallel development concentrated largely in the
aerospace industry, important strides have been made toward the development of models
for the performance of the human component of a system. This research has matured
beyond the simplest "human-as-servomechanism modeling" that characterized its early
years to the point where tasks involving multivariate control, monitoring, and decision
making have been modeled successfully (see, for example, refs. 1-5). Recently, efforts
have focused on models for supervisory control in multitask environments that involve a
broad range of operator behaviors and interactions between operators.6 8
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The approach to modeling human supervisory control that is emerging from this effort
has several features that suggest that it can provide quantitative performance data for set
ting of standards relating to the impact of training, computer aids in the control room,
procedure specifications, etc. These quantitative results appear to go well beyond any that
can be derived from task analysis. Furthermore, the approach treats the human cognitive
processes and activities in ways that can account for human error, but in a considerably
more sophisticated and casual manner than by simple data statements concerning that
error.

The purpose of this paper is to provide a brief overview of the approach employed in
developing such supervisory control models; of some proposed specializations and exten
sions to adapt them for the nuclear power plant case; and of the potential utility of such a
model. A more detailed presentation of this material is given in ref. 9.

2. THE PROPOSED SUPERVISORY CONTROL MODELING APPROACH

There have been several approaches to modeling human performance in the control of
complex systems and each has advantages and disadvantages with respect to quantitative
analysis (see refs. 10, 11 for reviews). The reliability, network and HOS (human operator
simulator) models12-15 are adept at dealing with procedural activities and discrete actions
and attempt to synthesize molecular human performance data concerning these activities.
They are much less capable of dealing with human cognitive activities and do not attempt
to deal at all with dynamic, closed-loop behavior of the person-machine system. On the
other hand, control-theoretic models (as described in refs. 1-5, for example), have
emphasized the goal-oriented, continuous, closed-loop interaction of the operator with the
environment (in an information-processing and decision-making sense, even when continu
ous control is not required), but have largely ignored discrete actions and procedures.

The supervisory control modeling framework that is suggested as a basis for developing
a model for a nuclear power plant operator/crew is an attempted symbiosis of some of the
features of several previous modeling approaches. Very briefly, the approach begins with
top-down, control-theoretic, holistic models of monitoring, detection, decision making and
control and imbeds them in a closed-loop simulation framework that includes a model of
the system. This permits external events as well as the decisions of the operator model to
trigger contingent response and activities. Those activities of a discrete nature are treated
in a manner that is analogous to the treatment of subtasks in the network approach —
that is, a task completion time is associated with the activities.* It should be emphasized
that discrete activities arid the corresponding completion times are generally aggregated at
a much greater level than in bottom-up models; during the time the operator is engaged in
any of these activities it is assumed that s/he is "locked up" and cannot perform other
functions or tasks.7

In addition to the holistic subtask models that are the starting point for these super
visory control models, the approach retains the formalized goal structures associated with
the control-theoretic models. In particular, the selection of activities to which processing
resources are assigned is based on the maximization of expected net gain (the difference
between the expected gain for an action and its expected cost, including the potential cost
of delaying other actions).

*As a rule, it is assumed that there are no errors in execution of discrete actions or procedural steps. If
such errors are of interest, they are introduced directly (that is, preprogrammed) and the subsequent responses
of the model are observed to evaluate the consequences.
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The proposed approach also incorporates procedures and rule-based activities in the
model. In general, the procedures have the form: IF (SITUATION), THEN (ACTION);
or IF (SITUATION), THEN (SITUATION). These procedures are based on informa
tion available in manuals and/or from operator interviews. In the model, the determina
tion of whether a particular situation obtains is based on the human's (model's) assessment
as determined from the information-processing models. Thus, the assessment reflects
human information-processing capabilities and limitations. If more than one situation is
deemed to be "true" at a given time, then a decision is made as to which procedure to
execute, based on the perceived consequences of execution or deferral and the goals of the
operator. Procedures involving continuous behavior maintain their own time scale, whereas
those involving discrete actions use input data for completion times. This view of the
model suggests that it may be considered to be a complex version of the production system
concept employed in Artificial Intelligence (AI) and in the qualitative problem-solving
models.16-17

A final point of convergence between the proposed approach and that of more psycho
logically oriented methods is the use of preliminary task analysis for initial definition of
procedures and goals and subgoals. It is likely that the kind of task and protocol analysis
utilized by cognitive psychologists and AI specialists would be an important component of
premodeling analysis for the proposed system-oriented supervisory control model of the
nuclear power plant operator.

An analysis of fundamental human operator functions in a variety of tasks related to
system operation suggests a basic commonality that is summarized in the following list:

1. Monitoring the display variables, according to an attention allocation
strategy dictated by the needs of the task.

2. Assessing the present situation, based on the monitored information,
the operator's inherent knowledge of system operation, and a
knowledge of alternative situations.

3. Deciding to take (or not take) some action and making this decision on
the basis of the assessed situation, the basic task objectives, the pro
cedural and other means available to effect this decision, and the
expected consequences of the various actions.

4. Acting to implement the decision, either in terms of communicating
the intent of the decision, or by directly observing or controlling the
system in an appropriate manner.

This verbal description can be given somewhat more substance by casting it in a block
diagram or flow chart form, as shown in Fig. 1. As drawn, the "system" comprises the
upper portion, while the "operator" comprises the lower. The system is affected both by
the direct actions of the operator and, perhaps, by the actions ofothers (for example, other
crew members). The system displays include not only an indication of the system states,
but also procedural information provided by manuals (and/or advanced displays) and the
communications channels for obtaining relevant information from other operators, or from
the system itself (for example, an auditory alarm). The portion of the diagram represent
ing the operator is deliberately simplified to show the basic structure of functional process
ing. Thus, it should be recognized that various pathways can interconnect the several
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functions shown and allow the result of one function (for example, decision making) to
affect the way(s) in which another is carried out (for example, monitoring).

The generic framework and structure has been used recently to develop specific super
visory control models for an en route controller of (multiple) remotely piloted vehicles; the
air crew of a commercial aircraft executing the procedural and control activities associated
with descent, approach and landing; and the commander of an anti-aircraft artillery team
confronted with the problems of assessing the threat situation and selecting an appropriate
mode for the weapon systems in response to this situation.6-8

It is important to note that the models developed within this framework are not
designed to deal with the "knobs and dials" questions of human engineering. Rather, they
focus on the cognitive and procedural aspects of the operator's interaction with the system.
Thus, they are intended to address questions concerning the availability of appropriate
information for decision making and control instead of, say, the size of the numbers on a
display or the viewing angle, etc. In particular, the models are suited to an examination of
the effects on closed-loop performance and operator workload of plant dynamics and con
trols, alternative information sets, priority and/or goal structures, different mental concep
tions of the system, and variations in procedures.

3. A CONCEPTUAL MODEL FOR THE NUCLEAR POWER PLANT OPERATOR

3.1. Overview

A block diagram illustrating the major facets of the closed-loop system of interest is
presented in Fig. 2. Here, the control room operators are shown to communicate with the
plant and its control, protection and safety systems through two interfaces. One of these,
the "information interface," is intended to include all the visual displays (including manu
als), auditory warning, and other sources that can convey information to the operators con
cerning the processes and status within the nuclear plant and the control, protection and
safety systems. The other interface, the "control interface," includes all of the actuators,
such as push buttons, switches, control handles, communication devices, etc. that can be
employed by the operators to affect the plant behavior.

We have indicated in the operator block that more than one member of the crew can
be considered in this fashion. We do not intend to be specific with respect to different
crew members in our subsequent discussions, but we do believe that it is important and
feasible to model multioperator crews. To specialize the model to a given member of the
crew, we must restrict his/her task appropriately and define the portion of the system s/he
interacts with and the procedures applicable to his/her role. Then, one must provide for
communication between the crew members, something that has been done in the previous
supervisory control model (see refs. 7-8).

In subsequent sections, we indicate the nature of potential models for the
plant/environment and for the operator. More details are given in ref. 9.

3.2. Mathematical Model of the Plant Environment

It is necessary to include a mathematical description of the nuclear power
plant/environment in the supervisory control simulation model. The degree of detail and
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ment.

the level of complexity of the plant model will depend on the specifics of the issues to be
addressed. However, in general, the plant model must include those factors that are
needed to perform a closed-loop system analysis, as listed below:

• A state-variable description of the processes, including automatic control
and engineered safety features.

• A description of potential disturbances (known and unknown).

• A description of the instrumentation and display information provided
for the crew (including information content, alarm set points, instru
ment or sensor noise, update rates and failure nodes).

The model must provide for simulation of normal and off-normal conditions of interest.
It is probably unnecessary to simulate accurately the very fast responses of the plant that
are beyond the ability of the operators to control. Finally, though a "First Principles"
model is desirable, empirical models can also be used.

The state-variable description of the plant will consist of differential (or difference)
equations describing the time evolution of plant states (such as temperatures and pressures
in various parts of the plant) in response to both control and disturbance inputs. In ref. 9,
a reasonably complex plant model, including models for the reactor, primary coolant pres
sure and feedwater control systems, is derived; this model involves 30-40 state variables.
The information available to the operators on the various displays, alarms, etc. must also
be defined, along with an indication of the relative location of various displays and con
trols.
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3.3. Model for the Human Operator

The conceptual model for the nuclear plant operator is illustrated in Fig. 3. In what
follows, we discuss briefly the elements of this model. It is always difficult to "parse"
human behavior, and one might well imagine breakdowns different than those shown and
discussed below. Certainly, major activities like situation assessment transcend the boun
daries indicated. However, we believe that, on the whole, it is important, for clarifying
thinking about behavior, to adopt some structure. The one we have selected here has pro
ven useful before.7-8

3.3.1. Display Processor

The display-processor portion of the model has two functions: it implements the "cons
cious" observation decisions of the operator by selecting the appropriate displayed quantity,
and it accounts for sensory and processing limitations associated with observation.

It is generally agreed that humans are severely restricted in the number of activities
they can perform simultaneously. We assume that the operator is a single-channel proces
sor of information. In terms of observing displayed information, we will assume that only
one information "display" can be "attended to" at any time. The selection of a particular
source of information is governed by goal-oriented processes: thus, it will depend on the
purposes for which information is being gathered.

As illustrated in Fig. 3, the operator processes both visual and auditory information
coming from the various displays and the communication channels. There are several limi
tations associated with the acquisition of displayed information. Obtaining visual informa
tion requires fixation of the display, and this may involve a significant amount of time in a
large control room. In addition to the acquisition time, there will be a perceptual noise
associated with observation of visual information; this noise may be based on the observa
tion noise model used in the Optimal Control Model.1

Auditory information is treated in a different manner than visual information. Briefly,
we assume that auditory information is acquired instantly and that the correct message is
stored in a short-term memory buffer (but is not "processed"). At the same time, the event
detector (see below) is "notified" that a message is waiting to be processed. The subse
quent processing of this message will, in general, depend on the nature of the message
(alarm or communication) and on the time elapsed since its occurrence. If the message
has a sufficiently high priority, the operator's activities will be interrupted and the auditory
display will be selected for processing. The information in the buffer may also disappear
or degrade in reliability with time, depending on the nature of the message. This
treatment of auditory information has the advantage that alarms are priority interrupts,
but that they may be missed or "unattended to" during times of high activity or workload
stress (for example, when there are many alarms).

3.3.2. Information Processor

The information-processing portion of the model incorporates important extensions of
previous models for this application. It uses a basic predict/correct logic based on a men
tal model of the plant. The logic is analogous to that of the Kalman filter model used and
validated in previous models for operator control and monitoring.1"5 However, assump
tions on linearity and on the mental model have been eliminated. The logic provides a
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plausible algorithm for state-estimation and prediction. The mental models may be used
for fast-time prediction (or "thought experiments") to evaluate alternative options for
action. Thus, some of the planning functions described in Sheridan18 and in Kisner, Full
erton and Frey19 can be incorporated. Furthermore, the effects of different mental models
(as might result from different training regimens or different roles) on overall performance
may be analyzed.

A discrete-event detector is also part of the information-processor portion of the model.
The envisioned event detector is more complex than those employed in the models
described in refs. 3-8 in that it is expected to employ a range of detection algorithms that
vary with respect to computational sophistication. The simplest algorithms involve "attend
ing to" and processing an out-of-tolerance condition, whether annunciated or not. The
more complex algorithms are expected to be drawn from previous detection models (for
example, refs. 4-5) or from other system-theoretic approaches to failure detection (for
example, refs. 20-21). These methods all employ the mental models of the plant to gen
erate expectations about plant behavior. The differences between the two, called residuals,
are tested statistically, in any of several ways, for systematic deviations. The range of
information-processing algorithms incorporated for event detection will allow for the
modeling of most or all of the monitoring functions described by Kisner, Fullerton and
Frey.19
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3.3.3. Situation Assessor

The situation-assessor portion of the proposed model is also an expansion of the previ
ous models. As with the event detector, a hierarchy of algorithms is contemplated for
situation-assessment activities associated with the diagnosis of a problem. At the lowest
level is a template-matching scheme which checks symptoms against a template that is
part of a procedure residing either in a manual or in memory. The more sophisticated
assessment algorithms would employ alternative mental models corresponding to the
hypothesized situations and, by comparing the observed data with model outputs, would
select the most likely hypothesis. The range of algorithms provided for situation assess
ment should provide the capability for systems-oriented modeling of both the symptomatic
and topographic search strategies discussed by Rasmussen.22

The model of the diagnostic process viewed in toto could exhibit or predict known
human errors under appropriate conditions. For example, under time stress, a diagnostic
decision may be forced before evaluation of an adequate number of template elements has
been accomplished — thus leading to an error. Or, at the opposite end of the spectrum,
operator biases or uncertainties may lead to an unwillingness to abandon a given
hypothesis or to make a decision without "more data," that is, to cognitive lockup.

3.3.4. Response Selector/Formulator

The "procedures" are the means by which the operators organize and carry out their
monitoring, situation assessment and control responses so as to accomplish their objectives.
Procedures exist in "manuals" or they reside in memory, having been learned through
training and/or experience. We allow both highly structured formal procedures and other
less structured, but goal-directed, responses (which we will also call procedures, for con
venience).

A formal procedure is a specific sequence of tasks or actions (perhaps of length one)
together with the "situations" that trigger those actions. Example procedures of this type
are Immediate Action Procedures and Safety Injection React Procedures.

Informal procedures are those responses that are to be formulated and employed when
the existing situation does not "fire" a known formal procedure. They are included partly
in an attempt to model some knowledge-based behaviors and partly for modeling conveni
ence. Examples of informal procedures are: selection of control laws; monitoring to detect
anomalies during normal (unalarmed) conditions; situation diagnosis when procedural
diagnostics fail to resolve a situation; and message decoding (the process of "reading" the
auditory buffer).

Major decision making at several levels takes place in the procedure
selector/formulator block. The decisions are primarily concerned with continuation or ter
mination of a response or a procedure and with selection among competing or alternative
procedures or options to achieve a given goal. In all but the immediate-action case, the
operator is confronted with competing alternatives. The choice he makes is assumed to be
rational and would be computed in the model on the basis of an expected net gain (ENG)
calculation, as was done in the supervisory control models described in refs. 6-8. The
ENG from a particular action is obtained by subtracting the cost of that action from its
expected gain. The expected gain itself is the difference between the expected cost of
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events when no action is taken and the expected cost of events that may arise after the
action is taken. The rational choice is to select that action which has the greatest ENG.
In evaluating these alternatives, the model would have to "predict" the consequences of
various actions using its mental model.

3.3.5. Response Effector

The selection and execution of a procedure or other response results in an action or a
sequence of actions. Three types of actions are possible: control, observation and commun
ications. The control actions include any continuous manual control inputs to the plant
(such as varying boron concentration or auxiliary feed flow) and discrete control settings
(set points, switches, etc.). Monitoring requests result from requirements for specific infor
mation; these requests are input to the display processor which selects the particular
requested information source. We note that verifying that a variable is within limits may
not require an actual instrument check if the operator already has a "confident" internal
estimate of that variable. Communications are verbal requests or responses resulting from
interactions with other crew members. Mostly, they involve requesting or transmitting
state or situation information.

Associated with each action is a time to complete the required action. (It is possible to
allow for a probabilistic distribution of action times.) When the operator decides to exe
cute a specific procedure, it is assumed that he is "locked in" to the appropriate mode for a
specified time. For example, if the procedure requires "checking" a particular instrument
and it is assumed that it takes t seconds to accomplish the check, then the display proces
sor will not attend to other information for that period, nor will another procedure be exe
cuted. The one exception to this rule is that certain high-priority auditory alarms can
interrupt the activity. Note that the time required to obtain information would depend on
the action required (eye movement, walking to another part of the plant, communications,
etc.).

3.3.6. Memory

The various processes considered in the model require information (event and situation
lists, templates, mental models, etc.) that is presumed to reside in the operator's memory.
It is not our intent to model the storage and retrieval of information as a process, at least
initially. Rather, memory will be viewed essentially as a "storehouse" of information that
can be referred to, added to, or modified.

Limits on short-term memory of auditory information and other detected events are
included in the model. In addition, "memory" of the state estimate will degrade with time
following an observation. However, the time and "mental effort" required to retrieve infor
mation from memory have not been considered. It may be possible to estimate these quan
tities based on psychological considerations, but we suspect their impact on problems of
interest to be of secondary importance, as compared to the short-term memory limitations
that will be incorporated.

3.3.7. Goal Formulation

The goals of the operator play a very significant part in determining the assessments,
decisions and control strategies of the modeled operator. In previous applications of the
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proposed approach, it has been largely possible to employ aunitary goal structure In this
application, amore hierarchical goal structure is probably required. An example of such a
structure was included in the discussion.

4. CONCLUDING REMARKS

It is interesting and useful to note that the model proposed is capable of generating
examples (or analogs) of the skill-, rule-, and knowledge-based behaviors of Rasmussen s
qualitative model. Skill-based behavior is evidenced when an "alarm or a event is
detected that dictates an immediate (and assumed to be well-known) response. Many of
the procedural activities, including several associated with detection and diagnoses will be
examples of rule-based behavior. Finally, the model will exhibit knowledge-based behavior
as it ascends the hierarchy of detection and assessment algorithms to those that use mental
models of the plant. Such behavior will be evidenced as well in planning and decision
making functions, which are also based on mental models and on the complex goal struc
tures to be incorporated in the model.

It should also be mentioned that there should be no difficulty in using the model to
simulate manual control as, for example, in a startup. We have not discussed this portion
of the problem because it was deemed to be of secondary interest at this time and because
of its closer relation to past work.

The model could provide a number of interesting and useful outputs. Because it is a
simulation model that includes the plant, it can provide time histories of all plant variables
included in the model. Activity time lines showing operator actions would be available to
determine periods of excessive demand or activity, etc. These time lines would be signifi
cantly different from those traditionally employed in human factors analysis in that they
would be generated in a closed-loop fashion.

Of course, the simulation results can be analyzed to derive a number of important
operator performance metrics. Thus, it would be possible to compute error rates, task
completion rates and frequencies via Monte Carlo simulations. It must be emphasized that
the errors that occur are predicted by the model and arise as a result of the interaction of
cognitive limitations and task-related parameters. Thus, for example, the presence of
time-stress will be predicted, as will the errors or "near-errors" that result from that stress.

Also available would be a number of model outputs that could be extremely useful for
diagnostic purposes. Some of these would be difficult, if not impossible, to measure experi
mentally, but all could be examined in the model. Many would provide insights into
operator "margins" that are analogous, in some sense, to plant margins. Table 1gives a
sample of some unusual performance measures that might be available from the model and
the relationships of the measures to some human factors issues.

Abrief analysis of the data requirements for the model suggest that much of what is
needed may be found in the literature. Plant model data of the type required is available
Tseverriources. Because the operator model draws on previously validated submodels
or many tasks, there exists appropriate operator data for these task. Most of the remain

ing data requirements probably can be satisfied by premodeling task analysis and through
operator interviews. Naturally, as the model evolves, we do expect unmet data requi -
ments.will emerge, but we do not expect that these will be more demanding than for alter-
native approaches.
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Table 1. Some Potential Performance Measures

Human Factors Issues

Crew Complement, Organization,
& Management

• Increase in number of personnel
• Centralized vs. decentralized

control

• Preassignment of crisis locations

• Procedure Design & Accessibility

• Lengths of diagnostics
(size & content of templates)

• Memorized vs. written procedures

Gross Characteristics of

Control Room Layout

Display Design

• Filtering of secondary and
tertiary alarms

• Scaling
• Extent and nature of

instrument redundancy
• Raw vs. higher order data

(+ prediction)

Training

• Thoroughness of plant
knowledge

Major Focii in Model

Memory
Situation processor
Procedure selector/formulator

Information processor
Situation assessor

Display processor
Response effector

Memory
Information processor
Situation assessor

Procedure selector/formulator

Mental models

Goals formulator

Performance Measures

Accessibility of signals
in aggregate memory

Number and variety of hypotheses
considered in situation assessment

Appropriateness of procedure
selected/formulated

Probability of interruption

Accuracy of diagnosis

Probability of interruption

Accuracy of estimates

Response execution time

"Lockup time"

Accuracy of estimates

Number of elements contained

in memory

Number and variety of hypotheses
formulated

Content of event detector

Appropriateness of procedure
selected/ formulated

Accuracy of estimates

Accuracy of diagnosis

Appropriateness of procedure
selected/formulated

In summary, the proposed model seems feasible to develop, embodies important
features of a variety of approaches to human performance modeling, and should prove use
ful for analyzing a wide range of human factors problems of concern to regulators and
designers. We close this paper with a brief discussion of some of the potential applications
areas for the model.
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We have identified six areas within NRC's mandate that we believe would benefit sub
stantially from a supervisory control modeling capability of the type we envision: risk
assessment, procedure evaluation and certification, control room design certification, train
ing and licensing requirements for operators, crew organization and post-incident analysis.

Risk Assessment. There are two basic approaches to estimating the effect of human
error on the probability of particular accident scenarios. One of these starts by breaking
down the role of the operator into elementary actions (which may include instrument mon
itoring, procedure lookup, and communication, as well as control actuation) and estimating
the probability of faulty execution. A complementary approach, little used in practice for
reasons of expense, is to run as many trained operator crews as possible through a given
accident scenario on a simulator and tabulate the results. This has the advantage of being
more realistic, particularly with respect to common-mode failures or high-level errors such
as misdiagnosis of the problem, but it is difficult, time-consuming, and expensive to collect
enough data in this way to enable one to draw reasonable conclusions.

The development of a closed-loop simulation model of the type proposed would provide
a very important tool for performing risk analyses. It would make possible, at reasonable
cost, the sort of Monte Carlo calculations (in which identical operators are run many times
through identical transients) that are difficult or impossible to perform with real operators.
To be sure, the results obtained with the numerical model would have to be validated
against real human performance, and might, in fact, differ in some degree. Nevertheless,
experience with similar models obtained in other areas of application give one the expecta
tion that a sufficiently high level of realism is obtainable to make possible the sort of risk
assessment studies that we are contemplating.

An added advantage of using a model, rather than a human subject, to perform risk
assessment studies lies in a model's ability to shed light on the critical question "how close
did the crew come to having a major accident?" In reviewing performance, it is not possi
ble to estimate reliably how close human subjects came to making a mistake — they either
make it or they don't.* To the extent, however, that a numerical model "becomes con
fused" when, for example, its situation assessor comes up with two or more equally likely
hypotheses, or input data are received that appear to be inconsistent with a currently
hypothesized situation, a detailed examination of the operation of the program during the
run will reveal a potential source of difficulty.

Procedure Evaluation. The important effect that alternative procedures can have on
the overall safety of a plant is well recognized, but, paradoxically, exceedingly difficult to
verify quantitatively. The use of human subjects suffers from the major methodological
deficiency that subjects retain information about the procedures they have been taught,
and cannot easily be "reprogrammed" to forget the old set and use only the new. Precisely
such reprogramming is made possible by the use of a model, and numerical experiments
involving both subtle and radical changes in procedures are thus made possible.

•Detailed data analyses and interviews conducted soon after the performance of tasks may provide insights
into available margins of safety, but they are rarely accomplished.
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Diagnostic procedures are often written in imprecise terms (for example, pressure
increasing rapidly). An appropriate model can simulate the effects of different interpreta
tions of such statements and evaluate the need for more precision.

The supervisory control model we have described is sophisticated enough to allow
experimentation with alternative high-level goals as well. The inevitable tension, for exam
ple between the often conflicting goals of safety and availability of the plant can be
mapped into such models, and the effects of a shift in emphasis on operator performance
can be examined.

Control Room Design. Much of the human factors work currently sponsored or con
templated by NRC centers around the issue of improvements in control room design. A
difficulty encountered in evaluating alternative proposed improvements stems from the fact
that there is little reliable quantitative data on which to base such evaluations. While such
highly subjective (and idiosyncratic) considerations as, for example, a preference for ana
log over digital displays may not be taken into consideration by the proposed model, its
emphasis on information processing and situation assessment, along with its ability to
simulate the effects of cognitive overload and attention sharing, make it an excellent tool
for guiding the thrust of research directed at improved control room design. In particular,
proposed operational aids could be examined with regard to their impact on both specific
operator functions and overall operator/system performance.

Training and Licensing of Operators. A great deal of attention has been given to the
question of just what a licensed reactor operator should know in order to do his job effec
tively. Although a de facto consensus on this point has been arrived at over the years
within the nuclear power industry, the Three Mile Island incident has thrown the validity
of traditional training courses and certification requirements into considerable doubt.
Since any model necessarily contains within it a body of "knowledge" of plant characteris
tics, operating procedures, and the like, which in its human counterpart are the result of
training, it provides an excellent laboratory for experimenting with the effects of that
training on performance. In addition, the numerical simulation may be used as a norma
tive model for performance based on training, and, as such, may prove useful in devising
suitable measures of performance to be used in licensing of reactor operators.

Crew Organization. Several alternative structures for crew organization are possible.
The optimum organization will depend on the plant characteristics, the control/display
design, the procedures and training adopted, and the interaction between operators.
Because of this interdependence, it is a very difficult systems analysis problem to deter
mine the best organization. Although the supervisory control model is not likely to exam
ine social questions regarding crew organization, it can be used to study the impact of
alternative structures on the individual and collective information awareness of the crew
and on the distribution of workload.

Post-Incident Analysis. An important contribution to safe operation is made by the
careful analysis of operational incidents occurring at reactor sites in this country and
abroad in order to derive lessons for the future. During such post-mortems, simulators are
extensively used to model the behavior of the plant under the presumed emergency condi
tions. In the case of TMI, a mockup of the control room of the plant was constructed, and
operators were "walked through" the incident. Such techniques have shed light on the part
played by human factors in the occurrence and evolution of the incident. It is perhaps
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obvious that possession of a model for the operating crew would enable one to perform
much more extensive post-incident analyses that might help to answer the many "what if"
questions that inevitably arise in such circumstances. In addition, the data collected from
such incidents would serve as extremely valuable input for the refinement and elaboration
of the model itself.

In summary, although it certainly cannot be a universal panacea, we believe that the
application of the supervisory control model to the crew of a nuclear power plant would
provide the NRC with data otherwise obtainable, if at all, only from an extensive series of
simulations using actual crews. Where this is not possible, or where effects such as
changes in operator training are to be modeled, we believe that the supervisory control
model could be extremely valuable.
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Paper 3

COGNITIVE MODELS AND COMPUTER AIDS
FOR NUCLEAR PLANT CONTROL ROOM OPERATORS

Thomas B. Sheridan

Massachusetts Institute of Technology

INTRODUCTION

This paper reviews what is usually meant by a cognitive model of a control room opera
tor in a nuclear power plant. It emphasizes the idea of internal (that is, mental) represen
tation of external events and the use of such representation for the cognitive steps of
attending, recognizing or learning, assessing and deciding.

The internal models of real control room operators of nuclear power plants surely
include, in some form: piping and instrumentation diagrams; logic or fault tree diagrams;
procedures; verbal rules of thumb (such as, "never let the pressurizer go solid"); images of
the control board; visual or verbal stipulations of thresholds and limits of variables;
diagrams (for example, the pressure-temperature saturation curve); a few abstract formu
las (such as the perfect gas law); or recollections of scenarios experienced or imagined.

As external observers/analysts/modelers, we not only make assertions like those above
about the operator's mental models but we also use more abstract or mathematical gen
eralizations about such internal models, in effect, public models of the operators' private
models. These take forms such as the Kalman filter observer or predictor, utility theory,
the relative operating characteristic, etc. These ideas help us develop normative
models — what is optimal or ideal under given specific constraints and
performance/safety criteria. They serve as norms to evaluate descriptive models of "what
is" (as best we can infer it) and to develop more coherence between procedures, control
room design, control room supervisor practice, training, and licensing.

As computers play an increasingly important role in nuclear power plants, especially as
cognitive aids to human supervisors of highly automated control systems, it is important
that the software and computer interface characteristics be compatible with the operator's
internal model. Specific examples discussed in this paper are in the monitoring and predic
tion of the plant state and in the detection and diagnosis of failures. Current trends in
SPDS (safety parameter display system) and failure detection/location systems will be dis
cussed in this regard.

WHAT IS A COGNITIVE MODEL?

A cognitive model is a formal representation, in mathematics, words or graphical sym
bols, of a person's mental events (attention, recognizing, learning, remembering, assessing
and deciding) that is suitable for describing in a general way his or her observed mental
behavior and for predicting future such behavior.

52
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It is evident that the cognitive or mental aspects of behavior cannot be separated neatly
from sensory and motor aspects, since independent unobtrusive measurements cannot be
made between sensors and brain and between brain and muscles. Nevertheless, in tasks for
which the required sensing and motor behavior is "easy" (for example, there is no diffi
culty in seeing or hearing the displays, or in operating the hand controls per se), we may
attribute a person's response time, inaccuracies or errors and style of behavior to "cogni
tion."

Fifty years ago psychologists avoided constructs like "cognition" or "mind." They
sought to emulate the operational physics of the day. All that could be known was the
stimulus and the response. "Behaviorism," as fashioned by Watson and Skinner, was com
monly accepted. Introspection was taboo. It was meaningless to hypothesize variables inter
vening between stimulus and response because they could never be dealt with explicitly and
in a vigorous experimental fashion. For all practical purposes they didn't exist.

Computers, along with the inherent human drive to explain what one is conscious of,
have changed that. Computers make it much easier to represent complex attention, learn
ing, memory, decision, pattern recognition and "artificial intelligence." One starts with a
set of input and output data and some programmed structure or transfer relationships to
map the inputs into the outputs. Then a computer can be set to trying systematically to
adjust parameters in the model to "optimize" with respect to least squares deviations of the
data from the model — or some other criterion. And presto, a cognitive model!

It's easy and fun —perhaps a bit too much so. The trouble is that a great variety of
model structures may give "reasonable" fits to the data. Thus the modeler is obliged to
invoke "Occam's razor" — Sir William of Occam's principle of least complexity in expla
nation. A simpler model which does the same job is better.

Few modelers purport to be explaining the mechanisms of mind, which would imply
that real brains work just like the computer programs. They seek primarily to find a com
puterized structure or model which is:

1. capable of characterizing or describing a broad class of input-output data, data de
vised under a variety of conditions, and therefore a model which is robust in predict
ing outputs for new inputs,

2. simple to explain in words and symbols,

3. efficient in computer time and memory,

4. (sometimes) fits in with some broader explanatory theory or criterion of what is ideal.

Models in general are sometimes classed as "descriptive" or "normative," and this also
holds for cognitive models. Adescriptive model is based on the first three objectives above,
with the emphasis on the first. A normative model adds emphasis on the last objective. It
seeks to explain how things should work, what should happen if behavior is optimal with
respect to the given theory or criterion. Examples of descriptive models are Skinnerian con
ditioning and the McRuer crossover model of manual control. Examples of normative
models are Bayesian probability estimation and the Kleinman-Baron-Levison optimal
manual control model.
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It is natural for engineers and scientists to aspire to mathematical and computer
models of the control room operator's cognitive behavior. However, we may have to be
satisfied, for some time, with models that are at least partially verbal, that is, partially
qualitative. A verbal model, of course, may be said to "fit" a broad class of events, but
there is no vigorous test of goodness of fit.

A simplest quantitative model has mutually exclusive and collectively exhaustive
categories of events according to which simple numerical counts and correlations are made.
A well-organized table of data is such a model. Swain's human error models are of this
type.

As a boolean logic or simple algebraic relations fit the data, we move upward in the
hierarchy, and finally we get to complex logical structures and high-order differential or
difference equations. The more parameters, however, the more arbitrariness, and the
greater the universe of models which are equivalent in describing or predicting.

Finally, in a special category are those models which seek to fit not only the input and
output data, but also claim to explain just what the process is by which actual input deter
mines actual output — such that a probe could be put anywhere on the actual process
and a corresponding variable could be found in the model. Such models are common for
the physical plant. We are rather far from that in modeling cognitive behavior of human
operators.

WHY COGNITIVE MODELS OF CONTROL ROOM OPERATORS
OF NUCLEAR POWER PLANTS NOW?

Since the Three Mile Island accident formal concern for the human operator has
greatly increased. At first there was a burst of compulsive enthusiasm for transferring all
the military/aerospace human factors experience to the nuclear power plant control rooms.
More recent is the realization that control of nuclear power plants is essentially different
from the control of airplanes and fast-responding industrial and military systems, though it
may be similar to large slow-responding ships.

Probably that area of man-machine system theory that has been most successful (with
respect to both sophistication and usefulness) has been manual control theory. With this
theory, a low-order linear differential equation model can provide an excellent prediction of
operator response for simple, well-defined, man-in-the-loop continuous control tasks.
Unfortunately there are few such simple and continuous manual control tasks in the
nuclear plant control room. Steam generator water-level control probably comes closest,
but even that amounts to somewhat intermittent coordination of at least two levels of con
trol valves for each of several steam generators while observing and integrating information
from displays of water inflow, steam outflow and level for each. Mostly in nuclear power
plants the operator's control is a matter of following a procedure, more or less, for discrete
operation of pump and valve controls while monitoring a great many variables of a highly
nonlinear, slow-responding dynamic system with a number of automatic control loops built
in and multiple control criteria.

It seems evident that the operator has little difficulty reading those displays he chooses
to attend to and read. The question is which one he attends to and when. The same is true
of the controls: his neuromuscular reaction time is not a critical factor. Thus the sensory
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and motor characteristics of the operator are not critical. What seems to be critical is how
the operator attends, learns or recognizes, remembers, and decides — those "internal"
experimentally less accessible aspects of behavior we choose to call "mental" or "cognitive."

Experimental laboratory research on these components of cognition is hardly new.
There has been some success in isolating them by carefully synthesizing the experimental
conditions. However, to combine all these factors into a simple cognitive model and to
apply such a model to a complex real-world situation is a bit heady — just now.

For present purposes we may assume, in conformance with the writings of a number of
investigators in this area, that a more or less ordered series of cognitive steps occurs:

1. attending to stimuli (including deciding what to attend to and doing so),

2. recognizing familiar patterns, learning or acquiring new information and remembering
it (three very closely related constructs),

3. assessing the environmental situation with respect to a remembered structure of
knowledge or "internal mental model" of reality and the values (or criteria or objec
tive functions) associated with it, plus updating of this "internal model,"

4. deciding what response to make, if any.

I make no claim that this series of steps constitutes a model of cognition, that the steps
are mutually exclusive or uncoupled, or that they are collectively exhaustive, that is, that
cognition includes nothing else. Surely, however, these are mostly what we mean by cogni
tion.

If we could develop a sufficiently robust model of these activities with reference to
nuclear power plant operation, we might then be more able to understand how operators
make errors and how design of control room instrumentation, layout, and procedures con
tribute to such errors. Then we could design the hardware and software at the man-
machine interface to reduce error and improve performance. We could train and license
operators to ensure proper cognitive behavior as calibrated against such a model.

WHAT MUST BE INCLUDED IN THE CONTROL ROOM OPERATOR'S
MENTAL MODEL OF REALITY?

We might return for a moment to the real world of the control room operator and ask,
leaving aside the jargon of the cognitive modeler, what does the operator think about his
task? What are his images of the reality surrounding him? Some of these surely are:

1. hardware configuration of the plant and control panel (from process and instrumenta
tion diagrams, books, classroom instruction and direct observation of equipment),

2. dynamic behavior of the plant variables (from immediate or earlier simulator or
actual control room experience in observing transient instrument behavior and infer
ring how plant variables are changing),

3. nominal operating procedures (from reading and using procedures documents, plus
learned rules of thumb such as "never let the pressurizer go solid"),
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4. control criteria or objectives (follow procedures, keep the plant running to generate
megawatts, don't damage equipment, maintain coolant inventory and chemistry, main
tain containment isolation, don't damage the core, be known as a good operator, etc.),

5. abstract event relations (PV = RT and the saturation line in PT space,

h = fqAdt, E = IZ, some fault trees, some event trees, etc.),
6. administrative procedures and management policies for assigned duties, shift turn

overs, tagging, communications, storage and use of emergency equipment, coke
machine and washrooms.

These are the mental images the trainers seek to implant. This is the information the
NRC inspectors test for. Therefore this must be the substance of the operator's internal
model, represented as shown to the left in Fig. 1. There must be another part of the cog
nitive process which uses the internal model to attend, recognize, learn, assess, update and
decide how to respond, as shown to the right.

UTTERANCES

BEHAVIOR C=>
PUBLIC

COGNITIVE

MODEL

Fig. 1. Relationship of Operator's Internal Mental Model and Processes to Observer's
Public Cognitive Model.
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Operator attention behavior has been the subject of a number of modeling efforts. We
know that people cannot consciously attend very well to more than one new thing at a
time, though such a statement must be qualified by our knowledge that people can coordi
nate many unrelated "overlearned" activities. People can plan ahead several steps in a
dynamic process, but can get themselves too committed in doing so and not be responsive
to new unexpected opportunities.1

Differential recognition is good for only a few stimulus patterns that are coded by only
one or two dimensions,2 but as dimensions and redundancy become large (for example, as
with faces and voices), the number of recognizable items becomes large.

Though the origins of the internal model go back to the Greeks, it really is the Kalman
filter (or "observer") of control theory which has made explicit use of this idea. Here a
dynamic computer model of a controlled plant is driven by the same input that drives the
plant, and any discrepancy between model and actual plant outputs is used to bias the
model input. Intermediate state variables as measured by the model are then used to per
form optimal control. Man-machine modelers have had considerable success in adopting
this idea to manual control systems.3 Computer scientists and psychologists collaborating in
the field of "knowledge representation" have devised knowledge structures from hierarchi
cal trees and lists which have arrows to related items on other lists. In the nuclear plant,
which has a slow, complex type of man-machine control task, the best use of the internal
model still eludes us, though we take as an article of faith that some such internal model is
an important ingredient.

As to human decision making, we know about various human biases and risk aversions
that occur in risky choice behavior.4 We also know that people try to confirm incorrect
hypotheses and do not make best use of negative information.5 We have fair evidence on
many reasons why people make errors.6,7

THE MODELER'S ABSTRACT MODEL OF THE
OPERATOR'S MENTAL MODEL

The discussion above has characterized a cognitive model as a formal representation of
the activities of mind and suggested that this is useful for predicting human error and for
designing hardware and software at the operator interface. The last section further sug
gests that the operator carries in his head a variety of mental images which are the subject
matter of any cognitive model.

Now it is necessary to confront a problem of compound modeling:

1 Hypothetical^ the operator has internal to his head a model of the plant, its
hardware and software and how it operates (Fig. 1). This internal representation
plays a key role in each of the processes of attending, recognizing (or learning),
assessing (and updating) and deciding.

2. The engineer and/or human factors analyst seeks to represent, within his overall cog
nitive model of the operator, the operator's internal model. This must be an explicit
publicly understandable representation.
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Thus we have a compounding — to model (in mathematics or diagrams or words) what
we hypothesize is the operator's internal model of his external reality. In other words a
model of a model: a public model of the operator's private model.

In order to achieve this feat, it would be helpful to have good hard empirical data
regarding the operator's mental model. How to get such data? In what form? Earlier it
was argued that the inputs and outputs from the operator's cognitive processes are not
available directly and explicitly, that necessarily sensory functions prefilter the cognitive
inputs and motor functions postfilter the cognitive outputs. Further, inputs and outputs do
not occur in a neat continuous stream as in continuous control systems, so that conven
tional signal and control theory seems inappropriate except in a limited way for a very few
specific tasks like steam generator water level control, synchronizing the turbine generator
to the line voltage and bringing the reactor critical.

One approach to getting such data on cognitive function and the internal images or
models of operators is the so-called "verbal protocol." This is a generic name for a class of
techniques which in effect have the operator tell in words what he or she is thinking while
performing operating tasks. One embodiment of this is the "talk-through," now being exe
cuted in many power plants as part of the NRC-mandated control room review. In effect,
an operator steps through a written procedure, telling one or more observers what he is
thinking and doing, while the observer notes for each step the objectives and criteria, the
decisions made, the displays and controls used, and the consequences of error. The
operator's utterances are the data most proximate to his mental model. The observer's
entries and any subsequent analysis and graphing become the public model of the
operator's private internal model of his external reality.

At Public Service of New Hampshire, some far-sighted computer engineers who are
developing a computer-based alarm and graphic display system for the Seabrook plant
have asked the operators to produce a set of abbreviated diagrams and alpha-numeric
alarm-response checklists which for them constitute the most important information about
the plant. The computer engineers will then make these diagrams computer-accessible and
in part active (symbols and numbers change color, flash, etc.) in response to plant dynam
ics. These graphics, produced out of the operators' heads, constitute another representation
of their mental models.

The modeler seeks to represent the operator's mental model in a form which is clear
and public and unique, that is, in a form which is simple and efficient of graphic or com
putational resources and for which there is no ambiguity regarding what is meant. As
noted earlier, the intention is robustness and predictability. Thus the form of the model is
important since some forms are not amenable to characterizing certain attributes. The
same is true of the occasional need to make the model fit into some broader theory.

Table 1 lists a variety of popular forms of model representation, with an indication of
what theoretical attributes they embody. As often as not, in attempting to model a com
plex phenomenon like cognitive activity the modeler will resort to some combination of
these modes, perhaps using a block diagram to show the logical order in which input-
output transformations occur.
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Table 1. Some Forms of Representation Useful for Cognitive Models

Attributes

Metric Which

Can Accommodate:

Continuity
in Time

Probabilistic

Events

Nonlinear

Transforms

Feedback

Loops
Value

(Good-Bad)

Types of Modeling
Approaches Nominal Ordinal Interval Memory

Verbal descriptions X X

Categorization X X

Graphs and diagrams X X X X X

Interpretive structural
modeling

X X

Fault/logic trees X

Event/decision trees x X X

Markov graphs X X X X

Fuzzy set theory X X

Classical and bayesian
statistical inference

x X X X

Information theory x x X

Queuing x x X X

Game theory X x X X X X

Estimation theory x X X X X X

Control theory x X X X X X X

Multidimensional scaling x X

Multiattribute utility x X X X

Computer simulation and
artificial intelligence
(which can include any
or all of the others)

x X X X X X

Thus the cognitive modeler must infer from the operator's verbal utterances and overt
stimulus-response behavior what are his or her mental images and associated processing of
the type described in the previous section. Then the modeler must decide how best to
characterize this by means of techniques such as those listed above. The degrees of free
dom are many.

COMPUTER AIDS AND SUPERVISORY CONTROL:
"EXTERNALIZED INTERNAL MODE"

THE

Increasingly the computer is finding its way into nuclear plants for on-line process
monitoring and logging, for generation of alarm displays and associated response pro
cedures, for storage and display of reference graphics, for failure-detection and location,
for post-accident analysis and for control. Mostly these functions are what would be called
"cognitive" were the operator to do them.

By having the computer aid the operator by "off loading" many monitoring, logging,
failure-detection and control tasks, the operator becomes a supervisor of multiple lower
level intelligent systems.8 His supervisory functions are to (1) plan use of the computer
aids, (2) teach or initialize the various programs to be used, (3) monitor to ensure that
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they are functioning properly once executed, (4) intervene to redirect the computer if it
completes the assignment or to take over direct manual control in the event of failure and
(5) learn from experience.

One of the most promising aspects of the computer aid for the nuclear power plant
control room is the implementation within the computer of a model of all or parts of the
plant. Such a model can be used for a variety of functions (ref. 8), including estimation,
prediction, control, sensor validation, failure detection and location, and training and test
ing of the operator. An ideal is to run such a model in real time in synchrony with the
plant, but this is not always practical or necessary.

My colleagues and I have implemented a system which includes a 47th order model of
a fossil steam plant including all major systems modeled physically and including major
feedback control loops. Based on discrepancies between key model variables (selected on
the basis of state-variable power bonding) and measured variables of the actual plant, we
can detect and locate failures of either sensors or components.9 We have experimentally
evaluated several alternative displays and output data formats for this system, believing
that it is important that the interface for such a computerized aid be compatible with the
operator's cognitive model.10

The SPDS (safety parameter display system) has been much talked about within the
nuclear power industry. A few most critical plant variables are to be presented to the
operator in a form from which he can make a quick appraisal of the overall health and
safety of the plant, or generally where the plant is abnormal. Because it is on its way to
becoming a requirement, many vendors have solutions to offer. Unfortunately we have as
yet no solid human engineering experimental basis for what such a display should include
or how it should be designed or used. In most embodiments the SPDS will be computer-
based. As asserted above, it is most important that the SPDS be consistent with the
operator's mental model of the plant.

One might generalize and assert that the operator's active cognitive function mediate
between the actual plant (its procedures, its controls, its system dynamics, and the conse
quences of control actions and other inputs which reveal themselves in the displays) and a
corresponding set of elements which constitute the internal mental model. This is shown in
Fig. 2. If an "externalized cognitive model" is now computerized, it appropriately takes
its place alongside the others, as shown at the bottom of the figure. Obviously it is most
important that the two forms of model and the actual plant be consistent with each other
in terms of images, coding, communication, etc. Discrepancies in consistency, if not caused
by failure of one, are almost certain to produce human error at some time. This diagram
can be extended to include additional operators who must communicate with each other,
and additional computers, on or off line.

CONCLUSIONS

Summarizing the above arguments, and in conclusion, I make the following assertions:

1. Operating a nuclear power plant is neither a sensory nor a motor skill. It is a cogni
tive skill.

2. Engineering designers, procedure writers, operator trainers and regulators could bene
fit from having even simple cognitive models of control room operators that can be fit
to simulator data and are sufficiently robust and predictive.
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Fig. 2. A Framework for Modeling Human Diagnostic Behavior. M and m are mani
pulated variables for real and model plants, respectively; S and s are corresponding sen
sory variables; m' and s' relate to a computer-based model. (From ref. 7).
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3. No satisfactory model of cognitive behavior of the nuclear power plant control room
operator is available. Very limited models exist for specialized tasks.

4. It is likely that efforts will mount to develop useful cognitive models of the control
room operator. These will start out being qualitative, special purpose and patchy. Fits
to simulator data will occur in time. The idea of an "internal model" representing the
operator's mental image of the environment has potential as a component of the cog
nitive model.

5. The computer will play an increasing role as a cognitive aid for monitoring,
remembering and recall of data, failure detection and location, and analysis and con
trol in both normal and emergency conditions. This can include an additional "inter
nal" model of the plant.

6. It is of utmost importance that an operator's internal mental model of the plant and
its behavior be consistent with that of other operators, with the externalized plant and
process models embodied in process computers, and especially with the actual plant.
Having available some validated cognitive models of the operator will assist in ensur
ing that this is true.
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Paper 4

VISUAL MOMENTUM: AN EXAMPLE OF COGNITIVE MODELS
APPLIED TO INTERFACE DESIGN

David D. Woods

Westinghouse Research and Development Center
Pittsburgh, Pennsylvania

1. INTRODUCTION

The growth of computer applications has radically changed the nature of the man-
machine interface. Through increased automation, the nature of the human's task has
shifted from an emphasis on perceptual-motor skills to an emphasis on cognitive activities
(e.g., problem solving and decision making). The result is a need to improve the "cognitive
coupling"1 of person and machine. (See Norman,2 Hollnagel and Woods3 for discussion of
the implications oftechnological developments for human-system interaction).

The goal of this paper is to describe how knowledge from cognitive psychology can be
used to provide guidance to display system designers and to solve human performance
problems in person-machine systems. The mechanism is to explore one example of a princi
ple of man-machine interaction — visual momentum — that was developed4 on the
basis of a general model of human "front-end" cognitive processing."

2. WHAT GUIDES OUR GLANCES

Parallel (that is, simultaneous) presentation of data is often claimed to be superior to
serial presentation. Serial modes of data display (for example, CRT displays) provide only
a narrow "keyhole" to view the total data base. This degrades user information extraction
because "the human is used to having his total information system displayed and being
able to sample and timeshare from his system by a movement of the eyes and his interpre
tive skills" (Pope,5 words italicized by author for emphasis in current discussion).

However, the narrow field of view (2°) of the high-resolution portion of the retina (the
fovea) constrains the amount of data a viewer can acquire in a single glance. This is no
limitation under naturalistic viewing conditions because there are psychological mechan
isms which convert a serial input (i.e., a succession of eye fixations) into what we com
monly think of and experience as parallel data acquisition. In other words, the advantage
attributed to parallel over serial data presentation is a function of human perceptual and
attentional mechanisms rather than the mode of data presentation. This means user data-
acquisition skills can be improved if knowledge from cognitive psychology about the above
characteristics of perception and attention is applied to display system design.

Studies of scanning patterns (for example, those by Mackworth and Morandi6) show
that people tend to look at (fixate on) "informative" areas in a visual scene or picture. But
how does one identify informative data without first processing all of the available data?

""Front-end" cognitive processing emphasizes processes of information acquisition as opposed to response
selection and execution.

63
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Furthermore, which data are informative will depend on the context, for example, on the
viewer's task or expectations.7 It is informativeness defined as some relation between
viewer and the scene (such as importance, expectation, predictability), rather than as only
a property of the scene, that is the important determinant of visual scanning patterns.

There are two mechanisms which support the ability to find and fixate on informative
areas: (1) an analysis of the global properties of the stimulus,8 and (2) a
concept-driven or top-down analysis, which begins with information the viewer already
possesses.

The global analysis process organizes the visual field into the psychological units (that
is, figures and ground) that attentional processes operate on. Global analysis is based on
figural cues (such as shape, color and location) that help define relationships across the
stimulus field; in other words, it determines which stimulus elements belong together and
which belong apart.9

A concept-driven analysis will help to determine quickly the gist of a scene. This form
of analysis is based on information or knowledge that the system already possesses in the
form of schemata or internal models.6 Concept-driven analysis controls viewer data-
sampling behavior through cognitive and semantic factors; for example, an object
incongruent with the active schema is informative.7

A pattern of eye fixations is like an exploration route of the visual scene. Like any
explorer, the process will be much more organized and efficient if a map or representation
of the area being explored is available for guidance. Concept-driven analysis utilizes a map
or schema of the available and potentially available information in the stimulus world to
guide and control data-gathering activities.

One corollary of concept-driven behavior is that the word "observation" is an empty
term unless accompanied by a notation of what guides and/or activates the observation
process. Observation looks for something, i.e., is guided by knowledge, and, therefore, is
informational only when the guiding factor is included. Even browsing activities are
guided — for example, I might look for a book I would enjoy to read in the science fic
tion section of a library. This example also points out that the factors guiding the observa
tion process can range from the very specific (I am looking for one book in particular) to
the general (any science fiction book or even any "interesting" book). This is very often
overlooked in interface design where the designer assumes, usually implicitly, that the user
searches with a very specific question in mind.

The above conceptualization of visual information processing as a perceptual cycle
(Fig. 1) represents a model of cognitive processing, not as a fixed series of linear stages,
but as a recursive set of operations including both bottom-up/data-driven activities (that is,
analyses arising from information which comes from the environment) and top-
down/concept-driven activities (that is, analyses which start from information which the
viewer already possesses) (c.f., Norman and Bobrow12 and Kubovy and Pomerantz9). This
view emphasizes that perception is an active, inherently selective process of data gathering,
that is, part of the cognitive processing mechanisms, rather than a process of passive
reception and transmission prior to cognitive processing.

*A schema is an integrated representation of the relationships in a scene. But schemata are not internal
images; they also function as plans for obtaining more information about objects and events (c.f., Hochberg10
and Neisser11).



65

Owg. 7766A94

STIMULUS WORLD

(Available and Potentially
Available Information)

Activate; Sample;
Modify Explore

SCHEMATA

'(Internal Representations
of the Relationships

within the

Stimulus World)

Fig. 1. The Perceptual Cycle. (Adapted from Neisser.11)

3. VISUAL MOMENTUM

The concept of visual momentum describes the level of compatibility between the
characteristics of a computer display system and the characteristics of perceptual process
ing and selective attention that direct our glances and help to integrate data across succes
sive glances. Visual momentum is a measure of the distribution of attention. When visual
momentum is high, the viewer's attentional mechanisms can identify highly informative
areas because the display system structure provides a visual frame of reference that
describes the relationships among data points as well as the data points themselves. When
visual momentum is absent, there are no perceptual cues available to support the global
and concept-driven processing activities for guiding information acquisition. Instead the
user must rely on other, lower capacity mental processes, such as memory, to generate
where to look and to determine how the data acquired from one "glance" into the data
base relates to data examined in the past and to data that might be examined in the
future.

When high capacity perceptual mechanisms are bypassed due to interface characteris
tics, there is a mismatch between the system's image of the user's cognitive skills and his
actual skills. Mismatches in the man-machine cognitive system increase the user's mental
workload because demands are increased on lower capacity processing systems (for exam
ple, memory) and because additional, irrelevant mental tasks are imposed on the user.13

One example of the effects of low visual momentum is memory bottlenecks such as the
"getting lost" phenomena reported in large multiple display networks.14 Getting lost in a
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display network means that the user does not have a clear conception of relationships
within the system, does not know his present location in the system relative to the display
structure, and finds it difficult to decide where to look next within the system. The result is
inefficient and incomplete utilization of display system data resources.

The breakdown in the viewer's attentional processes represented by low visual momen
tum can also be seen in what has been described as "cognitive tunnel vision."15 Cognitive
tunnel vision occurs when the user's attention is locked onto a subset of variables to the
exclusion of others. This decrease in the size of the field of attention (or deviation from
optimum sampling patterns) can lead to monitoring failures, especially when the unex
pected occurs or when correct state identification is a function of integrating data from
several sources.

In general, then, consequences of low visual momentum can included

• Cognitive tunnel vision, that is, decreases in the size of the viewer's field of attention or
functional field of view.

Impaired ability to locate "important" data 16,7

• Getting lost in display networks; that is, finding it difficult to decide where to look
next.14

• Memory bottlenecks due to increases in mental workload.13'17

• Decreases in problem-solving performance.18

Low visual momentum is the equivalent of serial data presentation. High visual
momentum, on the other hand, represents what is meant by parallel data presentation —
not simultaneous data presentation, but support for the user to sample data based on "a
movement of the eyes and his interpretive skills."5

4. CONVERTING SERIAL DATA PRESENTATION TO PARALLEL

DATA PRESENTATION

What techniques can be used to eliminate the problems associated with serial data
presentation? Figure 2 represents visual momentum as a psychological dimension of
display systems that describes the level of compatibility between display system charac
teristics and the psychological mechanisms that support selective attention.

Based on studies of how people integrate data across successive views, there are a series
of techniques available to increase the visual momentum in a display system.19,20 The key
element in all of these concepts is to provide the viewer with visual data about the location
of one view with respect to another or, more generally, with data about the relationships
across display frame. The goal is to help the user construct and maintain a cognitive map
or schema of the data structure. It is this internal model that results in the simultaneous

representation of information.

cSee ref. 4 for more extensive discussion of consequences.
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A long shot or establishing view provides an overview of the available data as well as
summary status data. It establishes the relationships among data and acts to funnel the
viewer's attention to the "important" details. Essentially, a long shot is a picture of a
schema, that is, a map of the relationships between individual display elements. As a result
of the pictorial representation of the schema, the viewer does not have to remember or con
struct a model of the data structure in his head. For this to be an effective technique, the
display system structure must explicitly incorporate the set of relationships that are impor
tant to the user's tasks to be portrayed in the long shot. Merely summarizing data is insuf
ficient for effective across-display information extraction.

Another technique to join together successive views is to provide landmarks.21 Clear
landmarks help the viewer integrate data by providing an easily discernible feature in order
to establish a relative frame of reference for inter-data element relationships. Landmarks
are "features that are visible at a distance and that provide information about location and
orientation" (ref. 21, p. 23), that is, features recognized through the global analysis
mechanism. When some feature or object is immediately recognizable in a scene, schemas
can be quickly activated to guide subsequent looking behavior. "Once an object is
identified in a scene, we may quickly know the kind of company it keeps" (ref. 16,
p. 239).

When the subject is computer display systems, there is another type of glue to enhance
comprehension across display transitions. In one sense, a display system is one large
display of the entire data base that the user examines in discrete chunks or frames. From
this point of view, the design of individual displays is the process of cutting the large data
representation into pieces that will fit onto the available display surface. The viewer is
helped to integrate the individual pieces back into the complete representation through a
simple technique that overlaps the pieces. Physically overlapping displays is a standard car
tographic technique to increase viewer comprehension. Just as in maps, the overlap sections
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should not be presented at the same level of detail as the main portion of the display
frame. Only those features needed to establish across-display relationships and to call the
viewer's attention to other data and display frames should be incorporated as display over
lap. In other words, display overlap can be used to support the global analysis mechanism
in human perceptual function, although analysis of the viewer's decisions and tasks is
required in order to effectively choose the size and content of the overlap area.

Functional display overlap can be used in addition to physically overlapping display
frames. Functional overlap is a technique to present pictorially the functional relationships
that cut across display frame boundaries. For example, displays of functional rather than
physical form have long been used to portray electronic circuits.22 In process control appli
cations each display frame often presents data on the status of one system. Functional
overlap occurs when each display contains not only data on the status of the system in
question but also data on other systems that affect system operation and data about the
functions or goals that the system is meant to support. If a system is designed to transport
material to maintain inventory in some reservoir, the display should show data about sys
tem operation (for example, is there flow?) and about goal achievement (is inventory
increasing?). However, functional overlap can be implemented only if the functional rela
tionships among the data points are specified; that is, how the data relate to the user's task
must be known. By identifying and incorporating relationships between data and user tasks
into the display system structure, the user can more easily locate important and informa
tive data.

The long shot, landmark and overlap techniques all increase visual momentum by pro
viding data about the "location of one view with respect to another — for example, they
show the physical or functional relationships between successive views. These techniques
help to establish a spatial representation or frame of reference that describes the relation
ship between individual displays.

Spatial organization of data (spatial coding) is a potent aid to human cognitive
processing.23,24 The priority of space as an organizing principle is so compelling that non-
spatial data is often given a spatial representation to improve user comprehension. Taxo-
nomic trees in biology or computer program flow charts are examples. Spatial organization
translates the normative user internal model into a perceptual map. The user sees, rather
than remembers, the organization of data in the system and can move within the system
just as he moves in an actual spatial layout. Spatial representation is important because it
helps make the process of finding data a high capacity perceptual function rather than a
limited capacity thinking function. In other words, it reduces the mental load imposed on
the user, freeing limited mental resources to deal with the underlying process or system
rather than with the characteristics of the display mechanism.

The goal of the visual momentum concept is to produce display systems that support
the perceptual and attentional mechanisms that make viewing real world scenes so effec
tive. These mechanisms include the global analysis process and concept-driven analyses.
The various techniques to increase visual momentum are means to put into display systems
the special cues that these mechanisms utilize.
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5. DATA SAMPLING BEHAVIOR

Visual momentum provides a mechanism to improve operator data sampling behavior.
What is the relationship of visual momentum to other models of sampling behavior? Based
on the Sampling Theorem of Shannon, an optimum frequency of data sampling can be
determined.25 Optimal sampling models have been expanded to include the effects of
payoff structure,26 the proximity to error boundaries,27 and the data-acquisition time for
each sample.28

Moray expanded the view of optimal sampling by considering the characteristics of the
data that describe complex systems such as a nuclear power plant (ref. 15, p. 187):

• There are multiple, dynamic data sources.

• The data elements are richly interconnected (and therefore vary in degree of correla
tion).

• The data elements are diagnostically ambiguous (in general, the state of one variable is
insufficient to characterize the state of the system).

Moray uses these observations (particularly the second) to note that operator sampling
should vary as a function of the correlation between data points and the results of past
samples (is system state normal or abnormal?). In other words, sampling behavior is also a
function of the relationship between user tasks and the state of the data sampled.

The concept of visual momentum carries Moray's analysis further by noting two other
characteristics of the available data in complex systems:

• Data elements can be indirect measures of the to-be-controlled quantity (for example,
is pressurizer level always a direct measure of inventory?).

• The relevant interconnections between data points can vary with system state and
operator task. (For example, in nuclear power plant normal operations, when the pri
mary task is to control boron concentration, inventory control can be a side effect;
when the primary task is inventory control, boron concentration control becomes the
side effect).

This means optimum data sampling is a function of the user's ability to distinguish
relevant from irrelevant data. As discussed earlier, what is relevant depends on the rela
tionship between user expectations/tasks and the data, that is, concept-driven behavior.
Visual momentum captures knowledge about the cognitive activities that support the iden
tification of relevant data in human perception so that the display system design will sup
port an effective distribution of attention.

6. DISCUSSION

Visual momentum is one example of principles of human-machine interaction.29 These
principles'' are a mechanism to translate knowledge (data/models) from cognitive psychol
ogy into a form useful to designers (see Fig. 3). They describe how characteristics of the

''These concepts are called principles because they are not guidelines that can be rotely or directly applied;
rather they are meta-guidelines which the designer can use to derive the specific guidelines to match the
specific application.
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interface affect or interact with the user's cognitive skills. For example, visual momentum
relates several human performance problems to a single underlying mechanism and identi
fies techniques that can be used to help solve them. The result is that the process of
developing improved forms of human-machine interaction becomes principle-driven.
Knowledge from cognitive psychology is used to identify places and means that are likely
to improve person-machine performance; experience becomes an evaluation/confirmation
tool.

The concept of visual momentum broadens the scope of the display design process.
Traditionally, display design attempts to ensure that human sensory limits are not strained.
However, if the design process stops at this point, there is an implicit assumption that if
the viewer can potentially see/read the data, then he will and should find all of the "right"
data at the "right" time. Phenomena like the keyhole, getting lost, and cognitive tunnel
vision effects, as well as events like Three Mile Island, show that this assumption is unwar
ranted.

Visual momentum points out that questions of information acquisition must also be
considered in display system design. To accomplish this, the designer must understand the
set of potential relationships among data points and how those relationships map onto user
tasks (Fig. 3, system control/decision requirements). Visual momentum asserts that
building these sets of relationships into the display system through spatial representations
will contribute to improved cognitive performance.
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THE MAN-MACHINE INTERFACE
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1. INTRODUCTION

The 1979 accident at Three Mile Island has caused us to look at many items associated
with nuclear power plants in a new light. In particular, the evaluation of the accident has
shown that it would have been helpful to the operators if they could have more easily
determined the safety state of their plant. In order for this to be possible, however, the
interface between the man (nuclear plant operator) and the machine (control board instru
mentation) would have to be improved.

A group of utilities from the Westinghouse Owners Group was formed in early 1980 to
examine the interface requirements and to determine how they could be implemented. The
products available from the major vendors were examined early in 1980 and judged not to
be completely applicable. The utility group then decided to develop its own specifications
for a Safety Assessment System (SAS) and, later in 1980, contracted with a company to
develop the system, prepare the software and demonstrate the system on a simulator.

The resulting SAS is a state-of-the-art system targeted for implementation on pressur
ized water reactor nuclear units. It has been designed to provide control room operators
with centralized and easily understandable information from a computer-based data and
display system.

This paper gives an overview of the SAS plus a detailed description of one of its func
tional areas—called AIDS. The AIDS portion of SAS is an advanced concept which uses
cognitive modeling of the operator as the basis for its design.

2. OVERVIEW DESCRIPTION OF SAFETY ASSESSMENT SYSTEM (SAS)

The major features of the SAS include several functional areas: (1) top-level displays
of key parameters used to assess the safety status of the plant; (2) trend graphs of groups
of related parameters; (3) the accident identification and display system (AIDS); (4) a
message area; (5) a safety system readiness monitor; (6) a safety system performance
monitor; and (7) a critical safety function monitor. One of the design criteria for the
SAS was to address requirements for a Safety Parameter Display System (SPDS) as
described in NUREG-0696, "Functional Criteria for Emergency Response Facilities,"
which describes the facilities and systems to be used by nuclear power plant licensees to
improve responses to emergency situations.
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The purpose of the SPDS is to assist control room personnel in evaluating the safety
status of the plant. Functionally, the requirements are:

• Provide a continuous indication of plant parameters or derived variables representative
of the safety status of the plant.

• Aid the operator in the rapid detection of abnormal operation conditions.

• Concentrate, in one location, a minimum set of parameters to allow timely status
assessment without surveying the entire control room.

• Incorporate human factors considerations for simplicity and pattern recognition.

• Identify faulty data.

• Display information during steady-state and transient conditions.

The minimum set of SPDS parameters from which the safety status of the plant is
assessed was not specified by NUREG-0696. However, it did define important plant func
tions which should be covered by the SPDS parameters. These functions are reactivity
control, reactor core cooling and heat removal from the primary system, reactor coolant
system integrity, radioactivity, and containment integrity.

The design of the SAS fulfills the functional requirements of the SPDS by providing
the control room operator a means of rapidly detecting abnormal operating conditions and
evaluating the safety status of the plant. In addition, the SAS demonstrates concepts that
go beyond SPDS requirements — in particular, the advanced diagnostic techniques used
in AIDS.

3. AIDS: SAS ACCIDENT IDENTIFICATION AND DISPLAY SYSTEM

The purpose of the SAS functional area AIDS is to identify the "most likely"
accident(s) to be occurring based on the behavior of current, measurable and operating
parameters. This is a concept completely opposite to the one which models the plant and
tries to determine the cause of abnormal parameter response by making changes to the
model, thus identifying the cause. Instead, the response of the plant parameters are exam
ined and analyzed, in a manner similar to how an operator performs this evaluation, to
determine the "most likely" accident(s). In order to accomplish this purpose, one needs to
construct a function which is composed of weighted response functions of independent vari
ables. The methodology is divided into two distinct areas: (1) the development of a
weighting factor or "importance" of a parameter to an accident type, and (2) the
development of an algorithm that models the perceived response to a parameter.

3.1. AIDS Functional Description

The AIDS module of the SAS calculates a weighted indicator for each of four major
accidents: loss of coolant accident (LOCA), steam generator tube rupture (SGTR), loss of
secondary coolant (LOSC), and inadequate core cooling (ICC). These weighted indicators
are then displayed to the operator as a bar height for each major accident. A target above
each AIDS bar indicates the status of the SAPs (see below) for that event.
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The inputs to AIDS are parameters derived (in most cases) from redundant plant sen
sor inputs. These parameters and their rates of change are used to indicate accident types
by a symptom-oriented algorithm based on previously analyzed simulator data or calcula-
tional experiments. For an SGTR or a LOSC, the logic includes information to allow
identification of the affected steam generator. For a LOSC, the break location (inside or
outside of containment) can be determined. The AIDS parameters are as follows:

• Primary AIDS Parameters (PAP)—Parameters which are positive indicators of an
accident and provide unambiguous information that an accident has occurred and, in
combination with other key parameters, will differentiate between the four types of
accidents (refer to Table 1).

• Secondary AIDS Parameters (SAPs)—Parameters which may anticipate a possible
condition, add confirmation to a key parameter's behavior, have low quality, or be a
casual condition for a particular accident. In general, this information needs to be pro
vided to the operator for evaluation, but may not give (by itself) a clear indication of
what is happening (refer to Table 2).

• Modifier—A conditional event that alters or qualifies the use of a PAP or SAP before
the parameter is valid as an accident indicator.

3.2. AIDS Displays

There are four supporting displays for AIDS. They are labeled, on the dedicated
function-keypad, as: LOCA, SGTR, LOSC, and ICC. The top half of each display lists
the PAP, SAP, and modifier status and their current values or conditions and trends, as
appropriate. The current bar unit values for the PAP are also displayed.

The bottom half of each display shows the trend of the appropriate bar height for the
last 30 minutes. There is a trend available for both the NORMAL and

HEATUP/COOLDOWN AIDS algorithms. Which one is displayed is determined by
which top-level display was selected last. Any one of the 14 trend groups can replace the
AIDS bar height trend if a trend group is selected next. There is no AIDS algorithm for
the COLD SHUTDOWN mode. Therefore, if COLD SHUTDOWN was the last top-
level display selected and any of the four AIDS supporting displays is selected, the right
side of the display will initially be blank. The left side will display only the date, time, unit
designation and the message MODE: COLD SHUTDOWN AIDS NOT APPLICABLE.
At this point, any of the trend graphs can be selected to be displayed, starting in the lower
right side.

3.3. AIDS Methodology

As stated above, the purpose of the AIDS portion of the SAS is to identify the "most
likely" accident(s) to be occurring based on the behavior of current, measurable and
operating parameters. In order to accomplish this purpose, one needs to construct a "rela
tive indicator" function that is composed of a weighted sum of response functions of
independent variables:

B. = y WO
uj Li rrj,i^j,i

i = l
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Table 1. Primary AIDS Parameters*

OCA SGTR LOSC ICC

Derived Parameter

NOR HU/CD NOR HU/CD NOR HU/CD NOR HU/CD

Reactor coolant system
pressure

Pressurizer level

Containment environment

Containment radiation

Secondary radiation

Steam generator level

Steam generator
pressure

Core exit temperature

Reactor vessel level

Modifiers:

X

xlb

X

X

X

X

X

Xlb A a

/. The reactor coolant system average temperature is computed as a volume-weighted average of the cold leg temperatures and the
core exit temperatures. An average density is then computed which is used to adjust the observed pressurizer level for change due
to temperature. If the change in the pressurizer level is due to a corresponding temperature change, then this parameter is
enabled for LOSC (la). If the pressurizer level decrease is due to mass loss (i.e., greater decrease than can be explained by the
temperature change), then this parameter is enabled for a LOCA and a SGTR (lb).

2. If the pressurizer level is decreasing due to a mass loss (see modifier /, above), then a lack of abnormal containment environment
conditions is enabled for a SGTR.

3. If there is no auxiliary feedwater flow to a steam generator, then steam generator level is enabled for a SGRT. Use the highest
steam generator level to determine the setpoint violation.

4. If all the reactor coolant pumps are on and the reactor vessel level reading is on scale in the narrow range, then the reactor vessel
level is enabled for ICC. If all the reactor coolant pumps are off and the vessel level is at the top of the core, then the reactor
vessel level is enabled for ICC. This modifier was established for use with a d/p-type vessel level instrument system, which is
affected by reactor coolant system flow.

5. For LOSC, use lowest steam generator level and pressure to determine setpoint violation.

LOCA = loss of coolant accident; SGTR = steam generator tube rupture; LOS
quate core cooling; NOR = normal algorithm; HU/CD = heatup/cooldown algorithm.

loss of secondary coolant; ICC = inade-
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Table 2. Secondary AIDS Parameters"

Derived Parameter

Pressurizer power-operated
relief valves position

Pressurizer safety valves
position

Pressurizer relief tank

pressure

Containment environment

Steam generator steam flow/
feed flow mismatch

Subcooling

Steam generator level
(lowest)

Source range power level*

LOCA

NOR HU/CD

SGTR

(None)

"See Table 1 for definitions of acromyms.
Enabled only if the reactor is tripped and the source range high voltage is on.

where

LOSC ICC

NOR HU/CD NOR HU/CD

X

X

bj

and

= bar height = "relative indicator" that accident type j is in progress,

= accident type (1 = LOCA, 2 = SGTR, 3 = LOSC, 4 = ICC),

= weighting factor (importance) of parameter i to accident type j,

= response function of parameter i for accident type j,

= accident indicator or parameter relevant to the identification of an accident.

For different accidents, i does not necessarily define the same parameter; i.e., if y = 1
(LOCA), xx = reactor coolant system pressure; ify = 2 (SGTR), xx = pressurizer level.
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The only condition imposed on the weighting factor is that for any accident type j, the
sum of the weighting factors of all parameters i must equal one. This condition is imposed
so that no accident type has a greater expectancy than any other accident type. However,
the weighting factor is to be constructed to reflect the importance of the parameter i to
accident type j. For example, containment humidity may be used as an indicator for both j
= 1 (LOCA) and; = 3 (LOSC), but it is more important for; = 1 than for; = 3. For
; = 1, the containment humidity is x4, while for; = 3, it is x2. Thus

^1,4 > ^3,2

and

i wu = i = i w3ti .

The weighting factors Wj4 can be developed in a number of ways. Initially they were
constructed by a method that is based on engineering judgment and experience and is
described below. (These factors can then be fine tuned based upon parametric studies and
test results.)

Each of the key parameters is evaluated as to whether it is:

• a direct indicator of an accident,

• an indicator of an accident,

• based on reliable instrumentation, or

• based on instrumentation that covers the range of accident conditions without changing
the number of channels used.

The key parameter is given a score of 1 for each true statement in this evaluation.

The weight of each parameter is then determined by the sum of these scores divided by
the number of different accidents in which it is a PAP. These fractions are then summed
for all parameters in each accident and the percentage is computed. This information is
summarized in Tables 3 through 6.

The response function Qjt is defined as the expectancy of accident type ;' based solely
upon the characteristics and behavior of parameter x,-. It is assumed that the response
function is composed of m independent, linearly combined functions where the independent
variables are xt{t), dxt(t)/dt, setpoints, etc.:

e,y = *}JW + ffi
dxi

dt
+ . . . + /*?>[*(*,)]

js
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Table 3. Primary AIDS Parameters—Normal Mode
(Weighting)

Description

Reactor coolant system
pressure

Weighting

LOCA SGTR LOSC

4/2 4/2
1,1,1,1 1,1,1,1

ICC

Pressurizer water level 2/3 3/3 2/3
1,0,1,0 1,1,1,0 1,0,1,0

Reactor coolant system
core exit temperature

Reactor vessel level

Containment environment 3/2 3/2
1,0,0,1 1,0,1,1

Containment radiation 2/1
1,0,0,1

Secondary radiation 3/1
1,1,1,0

Steam generator water
level

3/2
1,1,1,0

3/2
1,1,1,0

Steam generator pressure 4/1
1,1,1,1

Total 6.17 9.0 6.17

3/1
1,1,0,1

2/1
1,0,0,1

5.00

Table 4. Primary AIDS Parameters—Heatup/Cooldown
Mode (Weighting)

Weighting

Description

LOCA SGTR LOSC ICC

Reactor coolant system
pressure

Pressurizer water level

Reactor coolant system
core exit temperature

Reactor vessel level

4/2 4/2
1,1,1,1 1,1,1,1

Containment environment 3/2
1,0,0,1

Containment radiation 2/1
1,0,0,1

Secondary radiation 3/1
1,1,1,0

Steam generator water
level

Steam generator
pressure

Total 5.5 5.0

3/1
1,1,0,1

2/1
1,0,0,1

5.00
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Table 5. Primary AIDS Parameters—Normal Mode (Percent)

Percent (Maximum)
Description

LOCA SGTR LOSC ICC

Reactor coolant system
pressure 32.41 22.22

Pressurizer water level 10.86 11.11 10.86

Reactor coolant system
core exit temperature 60.00

Reactor vessel level 40.00

Containment environment 24.31 16.67

32.42

33.33

Containment radiation

Secondary radiation

Steam generator water
level

Steam generator
pressure

16.67 24.31

64.83

where g(x() is the desired conditioning of parameter x, to obtain the proper variable- i.e.

g(xA =
dx,-

dt

m

Qjj - 2 fiflgix,)] •
co=l

The only condition imposed on the response function is that it can vary only between
zero and one. This condition is imposed so that the contribution of a parameter to the bar
height of a given accident cannot be greater than the importance {Wjti) of that parameter:

0 < Qjj < 1
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Table 6. Primary AIDS Parameters—Heatup/Cooldown Mode
(Percent)

Description

Reactor coolant system
pressure

Pressurizer water level

Reactor coolant system
core exit temperature

Reactor vessel level

Containment environment

Containment radiation

Secondary radiation

Steam generator water
level

Steam generator
pressure

Percent (Maximum)

LOCA SGTR LOSC ICC

36.36 40.00

27.27

36.37

60.00

60.00

40.00

Additionally, since each functional component of the response function is independent,
it is required that each function's component vary only between zero and one. This condi
tion is imposed so that the contribution of a parameter to the bar height of a given
accident is strictly non-negative. Therefore,

0 < *jf[g(xt)] < 1

Now, the bar height (Bj) is determined as the sum of the products of the importance
(Wjj) and expectancy (Qjj) of a parameter (x,) to accident type;':
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Bj = £ WUQU
1 = 1

n m

2 J^tsC*,-)]
co=l

The response function should be constructed such that quick transients and slow
changes both contribute to the expectancy independently.

Qu = Fj])[g(Xi)] + Ijfigix,)] +. . .
Transient

Response

Proportional
Response

Next, expressions for the transient response and proportional response are derived. In
these derivations, it is assumed that the parameter setpoint is below the normal operating
value of the parameter. In a case where this assumption is invalid, the signs of some of
the terms change.

3.3.1. Conditions on Transient Response

The conditions to be placed on the transient response are as follows:

(1) The transient response should contribute only when a setpoint (R0) is violated.

KOnAg{xi)] = tf[*o-*/(oi

where H [...] is the "Heaviside" function,

H(x) =
1 , x >0

0, x <0'

and {...} represents other terms which are to be defined below. In the SAS implementation,
the Heaviside function is used for both upper and lower setpoints. For the upper setpoints,
it is defined as

H(x)
1 , x ^ setpoint

0 , x < setpoint
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where x is the parameter data. When checking lower setpoints, the logic is defined

H{x) =
I , x > setpoint
0 , x < setpoint

as

In both cases, H(x) = 0 reflects that the data are in a normal condition, and H(x) = 1
reflects that they are in an abnormal condition.

(2) The transient response should be proportional to the rate of change of the parame
ter

*#[*(*/)] = H[R0-Xi(t)]
dxt{t)

dt

(3) The transient response should contribute only when the parameter rate of change
is in one direction. This condition is imposed to prevent negative contributions to the
expectancy when the derivative changes sign:

*#[*(*,•)] = H[R0-xt(t)] H
dxt{t)

dt

dxAt)

dt

(4) The most recent data should be a more significant contribution to the value of the
transient response than previous data. Therefore, the data should be incrementally
decayed. As an example of incremental decay, assume a function A(t) which has an input
of a, at t = /,. Additionally, Aft) is a cumulative function and requires incremental decay:

Mt0)

A{tx)

A(t2) a2+ei'x-h)/T [fll +fl(>£?(<o-r,)/T
a2 +axe{t^)/T +a,e{t^),T

(tp-tK)/T

p = 0
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Because Aft) is a cumulative function, Aft) becomes cumbersome to calculate after a fairly
short time of plant operation. For example, after only four hours of plant operation, the
equation will require a sum of 14,400 terms for Aft) when the calculation occurs every
second. For a longer period of time, the equation becomes statistically infinite. Therefore,
the following method is used as an approximation:

p = 0

K~l (t -t)
A(tK) - aK + 2 V P "

p = 0

'W _ Jfo-'«-l)/T (*»-l-0/r
= aK + 2 a,

= aK +

p = 0

p = 0

,-Ai/t

where Af = r,-i is the time difference between two consecutive time steps, and the term
in brackets is actually A(tK-0 according to the definition. The equation for A{tK) becomes

A(tK) = aK + aK_{-e •At/r

The total response function equals the sum of the current response function A{tK) and the
response function of the previous time step A(tK-x) times the decay exponential e A'/':

rf}?[g{xiOK)}]=H[R0-x(tK)]H
dxt{tK)

dt

dxt{tK)

dt

.o-CXfr+Fft[g\xi{tK-X)\\e

Now, upon close examination of the expression for the transient response term, F?} [g(x,)l,
one can deduce the following:
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(a) If the derivative term dxi{tp)/dt is continuously increasing, the transient
response term is an unbounded increasing function.

(b) If the derivative term is a function which increases to a maximum and then
remains at that maximum, the value of the transient response term also
increases to a maximum and remains at the maximum. In other words, the
transient response term saturates to a value determined by the maximum
value of the derivative and the time constant r.

(c) If the derivative term is a function which increases to a maximum value and
then decreases to a constant value, the value of the transient response also
increases to a maximum and then decays away to a constant value.

(d) If the derivative term is a function which is continuously decreasing from
some initial positive value, the transient response increases to a maximum
and then decreases to zero.

Examples of each of the above observations can be found in Table 7 and in Fig. 1. In the
examples a represents the derivative term and Aft) represents the transient response.

(5) The saturation (equilibrium) value of the transient response term and the time to
reach saturation value of the transient response term are both a function of the time con
stant in the exponential term of the transient response. If the value of the time constant is
small, then the time to saturation is short, the saturation value is low, and the decay time
is short. If the value of the time constant is large, then the time to saturation is long, the
saturation value is large, and the decay time is long. The time constant should be con
structed such that:

(a) The time to reach the saturation value increases as the rate of change of the
parameter decreases. Amaximum time response should be established based
on the accident, parameter of interest, and parametric studies.

(b) The decay time response should be longer than the accumulation time
response. It should take longer to decay the transient response than it does
to build up the transient response. A minimum and maximum decay time
response should be established based on the accident, parameter of interest,
and parametric studies.

(c) The saturation value of the transient response for all parameters and all
accidents should be maintained within a range specified by a minimum and
maximum saturation value. This will ensure that slowly changing parameters
will derive the transient response term to one. Additionally, this will ensure
that the decay of the transient response will begin from some maximum value
so that the transient response is available to contribute to the expectancy
after plant conditions have been stabilized.

Therefore the time constant should be functionally dependent upon (1) the rate of change
of the parameter, and (2) changes in the rate of change of the parameter:
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Table 7. Examples of Cases a-d

(Assume: t,_i - t\ = constant = -2 sec, t = 6 sec)

Time

Case a Case b Case c Case d

(sec) a,- A(t) a,- A(t) a,- A(t) a,- A(t)

0 1 1 1 1 1 1 9 9

2 2 2.72 2 2.72 2 2.72 8 14.4

4 3 4.95 3 4.95 3 4.95 7 17.3

6 4 7.54 4 7.54 4 7.54 6 18.43

8 5 10.41 5 10.41 5 10.41 5 18.21

10 6 13.46 6 13.46 6 13.46 4 17.05

12 7 16.64 6 15.64 5.5 15.14 3 15.21

14 8 19.92 6 17.21 5.0 15.85 2 12.90

16 9 23.28 6 18.33 4.5 15.86 1 10.24

18 10 26.68 6 19.13 4.0 15.36 0 7.3

20 11 30.12 6 19.71 3.0 14.01 0 5.2

22 12 33.58 6 20.12 2.0 12.04 0 3.7

24 13 37.06 6 20.42 2 10.06 0 2.7

26 14 40.55 6 20.63 2 9.61 0 1.9

28 15 44.06 6 20.78 2 8.89 0 1.3

30 16 47.57 6 20.89 2 8.37 0 0.9

32 17 51.09 6 20.97 2 8.00 0 0.7

34 18 54.60 6 21.03 2 7.73 0 0.5

36 19 58.13 6 21.07 2 7.54 0 0.3

38 20 61.65 6 21.09 2 7.40 0 0.2

40 21 65.17 6 21.11 2 7.30 0 0.1

42 22 68.70 6 21.13 2 7.23 0 0.1

44 23 72.22 6 21.14 2 7.18 0 0.10

46 24 75.75 6 21.15 2 7.15 0 0.0

48 25 79.28 6 21.15 2 7.12 0 0.0

50 26 82.81 6 21.16 2 7.10 0 0.0

T = \p
dX:

dt

d X:

dt'

where \p = function which determines t. For SAS implementation, the time constant t is
actually dependent upon the transient response function:
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Fig. 1. Examples of Cases a—d.

T =

1 if transient response = 0,

2 if transient response ^ 0.

40 50

The transient responses should contribute only when the parameter rate of change is in one
direction. If the parameter rate of change is in the direction that will contribute to the
transient response, a 2-s time constant is used. Otherwise, a 1-s time constant will be used.
For example, the high setpoint for the reactor coolant system pressure is 2310 psig. If the
pressure increases from 2300 psig and passes the setpoint to 2350 psig, a 2-s time constant
will be used in this time period. If the pressure drops back to 2250 psig thereafter, the 1-s
time constant is used. In thi way, the decay of the transient response will be slower than
the buildup of the transient response due to the larger time constant. This also ensures the
decay of the transient response will begin from some maximum value.

(6) The transient response should be scaled so that it is dimensionless. The scaling
should be constructed such that it amplifies small rates of change but does not significantly
affect the magnitude (except for dimensional conversions) of large rates of change. There
fore, the scaling should be functionally dependent upon the parameter rate of change. An
example of such a scaling function is
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c,

dX;
+ C*

dx
+ 1

where Gft is the scaling function and Cx and C2 are constants determined by "trial
and error" from the Indian Point simulator transient data tapes. The best con
stants were determined to be Cx = 1.0 and C2 = 0.5. Thus, for a large rate of
change,

and for small rate of change,

GW
J,I

1

dXi

— dt

1

dX:

— dt

1 +
dX,-

dt

+ 0.5

+ 0.5 =s 0.5 ,

+ 0.5 ~ 1.5 .

Essentially, the constants chosen will not significantly affect the magnitude of a large rate
of change (0.5), but will amplify a small rate of change by 3 (i.e., 1.5/0.5 = 3). There
fore,

^)[sU,)]=2tf *o~*;('p)
P=o

H
dxt{t )

dt

For simplification of notation, the following definition is made:

*j]hg(xt)]= £
p = 0

dxt(tp)
dt

/7(O.J'p-'«VT
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(7) The transient response cannot be greater than one:

FftlgiXi)] = min
l P= 0

3.3.2. Conditions on Proportional Response

The conditions to be placed on the proportional response are as follows:

(1) The proportional response should contribute only when a setpoint Ri is violated:

F$[g(Xi)] = m^-xtit)}

(2) The proportional term should be dependent upon the difference between the
current value of the parameter and the setpoint R{:

i¥)\gW\ = mRi-xtO)] [*i-*/(oi

(3) The proportional response should be scaled so that it is dimensionless. The scaling
should be constructed such that if the parameter value goes below a predefined value R2,
the proportional response is driven to a value of one:

f¥)\&w\ = min \,H[Ri-Xi(t)]
Ri-xt(t)

R;~R

Now, by summing the transient response and the proportional response, the desired
response function (expectancy) will have been constructed:

QU = *#[»(*,)] + FftWx,)]

i.i[---]l + min •

p=o1 J]Qjj min l,H[R\-Xi(t)]
Ri-xt(t)

R\ R2

However the form of Qn given above violates the condition that the response function can
vary only between zero and one. The above form allows the response function to vary
between zero and two. In order to meet the range condition imposed on the response func
tion, one can relax the range conditions of the transient response and the proportional
response such that they are required only to be nonnegative:
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Qn = min
-it

tj])[g(xt)] + FJQ[g{Xi)]

The equation for the bar height Bjis

where

Q» = min 1,

*i = ?wj,iQj,i
i = \

#[*!-*,(*,)]
*i-*/('*)

R\~R2

Ro-Xi(tp) //
dxt{tp)

dt

dxttip)
dt

GW =
C,

JX;
+ C 2 '

l- + \
dt

f
dxt d2xt
dt ' dt1

4. CONCLUSION

C(l)Jtp-tK)/T

The models, algorithms and weighting factors were developed and programmed into the
SAS. The system was tested at a simulator using licensed plant operators under various
types of accident conditions. The AIDS portion of SAS performed very well considering it
was the very first time the concept was tested. In all cases, the AIDS properly identified
the accident in progress in a timely manner and the operator was able to use the AIDS
displays to augment and improve his response to the emergency situation.
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AIDS is intended to be a model of a good operator that is continually scanning and
evaluating the response of many parameters simultaneously. The AIDS displays are
designed to show the factors that are involved in this process, so that the operator is not
given a single answer he cannot confirm. It is the judgment of those involved in the pro
ject that the AIDS concept was successfully demonstrated during the testing program.
Also identified were some areas that could use additional work. Overall, the program was
very successful in demonstrating the usefulness of an advanced diagnostic technique.
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HUMAN COGNITION

Donald A. Norman

Department of Psychology and Institute for Cognitive Science C-015
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1. INTRODUCTION

The study of human cognition encompasses the study of all mental phenomena, from
the receipt and interpretation of sensory information to the final control of the motor sys
tem in the performance of action. The cognitive scientist examines all intermediary
processes, including thought, decision making, and memory and including the effects of
motivation, states of arousal and stress, the study of language, and the effects of social fac
tors. The field therefore ranges over an enormous territory, covering all that is known or
that should be known about human behavior. The reason I feel compelled to make this
statement here is that at the meeting that gave rise to this review of human cognition,
some thought it useful to distinguish between human skilled behavior and human cognitive
behavior. To the cognitive scientist, such a distinction is unthinkable. If behavior involves
mental mechanisms, it is by definition a cognitive behavior (although not necessarily
conscious cognitive behavior).

It should come as no surprise that we are far from understanding human cognition.
The task is extremely difficult, both because of the complexity of the human cognitive sys
tem and because of the extreme difficulty in making scientifically reliable observations of
mental operations. Still, considerable progress has been made in the development of
psychological models. We have our best understanding in peripheral areas (sensation, per
ception, and working memory) and our least understanding in the more central areas
(consciousness, motivation, emotion, social interactions, and thought).

It is not possible to summarize the current state of knowledge about cognition with any
great confidence that we know the "correct" answer about any aspect of the work.
Nonetheless, we have models that provide good characterizations of certain aspects of the
data and situations. Even if these models should prove to be incorrect, they do provide
good approximate descriptions of people's behavior in some situations, and these approxi
mations will still apply even when the underlying theories have changed. In the text that
follows, I provide a quick description of models within a number of areas of human cogni
tion and skill and some general theoretical frameworks with which to view human cogni
tion. The frameworks are qualitative descriptions that provide a way to view the develop
ment of more detailed, quantitative models and, most important, a way of thinking about
human performance and skill.

Figure 1 shows a sketch of the important components of the human information pro
cessing system.1 The figure is misleading in making an extremely complex system appear
simple. The human is not at all simple, which brings me to the following comments on the
assessment of human performance by means of a PRA.

92
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Fig. 1. Rough Model of Human Information Processing Structure. (From Norman,
ref. 1).
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Nuclear power plants are complex systems. They are often analyzed by means of fault
and event trees to determine the sequencing of operations and to get estimations of error
probabilities of the components, and therefore relative frequencies of major accidents and
plant damage [the procedure of Probability Risk Analysis (PRA)]. It is obvious that
human error — by operators, by plant maintenance personnel, by construction crews, and
by designers — can play a significant role in the cause of avoidance of accidents. Accord
ingly, there has been considerable effort devoted to the assignment of human error fre
quencies during PRAs. The Handbook of Human Reliability Analysis2 is designed to pro
vide information about the likelihood of human error in various conditions.

My complaint with the inadequacy of assigning simple probabilities to human error is
this. When the PRA is performed on the entire plant, millions of scenarios and operations
are considered. Within this analysis, it is tempting to treat the human as any other com
ponent, such as a pump. Just as it is important to know the likelihood that a pump will
fail, it is important to know the likelihood that a human will fail to read a meter or throw
a switch. But note:

The complexity of the human EXCEEDS that of the nuclear power plant.

Moreover, we can at least look at the plant and examine the components. We have the
designer's drawings and intentions and the operating characteristics of all the components.
Despite all this, the full analysis of the events and fault trees is quite difficult. Now ima
gine doing this for the human, where we do not have design drawings, we cannot get
access to the components, and we do not even know the fundamental principles of opera
tion of some of the more essential components (such as those systems shown in Fig. 1).
Actually, we don't even know what all the components and states are.

We are faced with the dilemma that one of the components of the plant analysis
exceeds the complexity of the entire plant. Just as one cannot assign a simple error proba
bility to the entire plant, it makes little sense to attempt to apply a simple error probability
to the human.

Humans have many internal states, limited memory and attentional capacities, and
varying motivational and physiological states. To determine the range of behavior requires
consideration of these variables. Error probabilities may range from close to zero to very
close to unity, depending upon the state of the person. If the state diagram of the human
were known, then it might be possible to get a realistically tight distribution of error esti
mates. At the least, we need a model of the human that approaches in complexity that of
the plant. That model should then be used in conjunction with the plant PRA to deter
mine accident probabilities.0

If we need an analysis of the human, what is the likelihood that we can get one? On
the one hand, this is an enormous research project, one that will take decades. On the

"The people who worked on the Human Reliability Handbook are aware of these issues and they
emphasize the need to consider the state of the human in making probability assignments. Essentially, they
suggest doing an informal state analysis of the human. I believe my suggestion is compatible with this philoso
phy, except that I urge development of a formal, quantitative model rather than the subjective rules-of-thumb
discussed in the Handbook.
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other hand, we may already know enough to allow us to make relatively simple, approxi
mate models. Even if it is known that these approximate models are incorrect and highly
oversimplified, if we can devise simple state diagrams of the human (with perhaps tens of
states and variables), we will have made a considerable advance in our ability to make
predictions. Yes, such a model will horribly complicate the task of analysis. But these
tasks are already horrendously complex just for the plant. It should hardly be surprising
that when we add the proper analysis of a component whose complexity is greater than
that of the plant (but which is still unknown), that the complexity of the analysis might
have to increase. In the next several sections that follow, I provide some of the informa
tion on human performance that will have to be considered in devising simple approximate
models of the human plant operator. In a final section, the implications of the various
aspects of human performance to design are discussed.

2. CONSIDERATIONS IN HUMAN PERFORMANCE

2.1 Attention

We are finite beings with finite processing capability. Among other things, this means
that we cannot process deeply all the sensory information that arrives, nor follow through
with much depth several trains of thought at any one time. Moreover, doing one task may
interfere with the doing of another. These limitations have been studied under the topic of
"attention," and the result has been to address a reasonable number of questions:*

What purpose does attention serve? Simplified Answer: Attention seems to
be needed for understanding, for memory, for evaluation and decision making,
possibly even to perceive properly. Attention does not seem to be required for
some kinds of monitoring and for the performance of skilled, routine tasks.

How many things can a person attend to at once? Simplified Answer: If by
"attend" is meant consciously, then the answer is "very few," perhaps only one.

Can one avoid distraction (interruption) from other events when attempting to
attend to one? Simplified Answer: Usually not, but on the other hand, one can
not count on being able to note other events. Here the answer is highly depen
dent upon the nature of the main task and of the distracting tasks.

Do all tasks require attention? Simplified Answer: Probably not. Highly
skilled performance of routine tasks can be automated, freeing it from the
requirement for continued attention.

Do all tasks compete with one another, or are there some that can be per
formed together without interference, while others cannot? Simplified Answer:
Not all tasks compete with one another for attentional resources. We believe that
there are a number of resource pools from which tasks draw.

Although we still are ignorant of many features of the human attentional system,
current work suggests that the human can be characterized as a limited resource system,

*For convenience, I provide some simple answers. Current research provides much more complex answers,
but these will suffice as reasonable approximations if it is understood that the answers apply only in limited
conditions and situations.
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although probably with multiple resource pools. Thus, if several processing tasks all draw
from the same resource pool, then once their total demands exceed the total available, they
will interfere with one another, a state called "resource limitation." Performance on a task
can be limited in several ways: by the amount of resources that can be applied to the pro
cessing (resource-limited processing); by the quality of the data available to the process,
even when sufficient resources are available (data-limited processing); and by output con
siderations (output-limited processing). When a single resource must be shared among
competing tasks, one gets a resource-operating characteristic, a function that relates per
formance on one task against performance on another, usually showing a tradeoff as
one improves, the other deteriorates (see Fig. 2). (For more information, see ref. 3.)

The relatively simple picture of resource tradeoffs is made more complex by the reali
zation that in the human there are probably multiple resource pools, so that one task may
draw from a set of resources that only partially overlaps the pools required of another task.
Moreover, there may be flexibility in the use of resources, so that a process that cannot get
sufficient units of one resource might be able to substitute resources from some combina
tion of other pools. This multiple pools picture is clearly more realistic, but it poses great
difficulties for the collection and interpretation of data on this topic. (This is discussed in
ref. 4.)

A further complication occurs because the very nature of human performance seems to
change in a qualitative manner as a person goes from novice or beginning performance of
some task to expert performance. Experts seem to have less dependence upon resource
limitations than do novices, although it is not clear whether this is because they use dif
ferent resource pools that are more specialized (and therefore less apt to be used by
competing tasks) or whether they have so specialized (or compiled) their processes that
they require little or no common resources.

Consciousness plays an important role in learning and in complex decision making
(which includes performance on complex tasks). However, we know almost nothing of the
nature of conscious and subconscious systems, and so the exact role in attentional limita
tions is not clear. One possibility is that most of the attentional limitations that have been
studied to date are really conscious limitations, and that although the conscious control
system is a single, limited resource system, the structures used by subconscious (and
expert) processes have multiple resources and are not so limited (see refs. 5-7). In sum
mary, therefore:

• Conscious control is a limited resource system.

• Systems can be limited in quality of performance because of data limits, output limits,
and resource limits.8

• There are multiple resources,4 and tradeoffs among resource pools are possible.

• There are cost-benefit tradeoffs in the focus of attention.9

• Attentional limits do not seem to apply for tasks that are automated (or they draw
from different resource pools).5
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Fig. 2b. Resource Operating Characteristic. The performance on one task (1) will be
affected by performance on another task (2) when the two tasks draw from the same
resource pool and the sum of the resources demanded exceed what are available. (From
Norman & Bobrow, ref. 3).
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2.2 Arousal and Stress

The role of stress on performance is not as well established as one would like, despite
the strong claims that are often made in the applied literature. The reason for this is
clear: it is difficult to get experimental situations which reproduce realistic stress or
arousal in such a way that controlled, systematic measurement of performance can be
made. As a result, our conclusions come from analyses of simple laboratory exercises in
which the arousal that is invoked does not correspond to real stresses in actual working
conditions, or from anecdotes and unverifiable accounts of performance under actual
stressful situations.0

The common assumption about performance under different levels of arousal is sum
marized in the Yerkes-Dodson curve. Basically, performance actually appears to improve
with an initial increasing level of arousal, but then, as arousal levels continue to increase,
performance deteriorates (Fig. 3). Along with this change in performance are several
qualitative assessments:

Narrowing. The traditional view is that under high arousal or stress, a person's ana
lyses focus upon a limited set of alternatives. This is thought to apply equally to both per
ceptual and mental analyses of the situation. The result can be enhanced performance if
the issues that the narrowed focus of attention concentrates upon are the most relevant to
the situation, but it can lead to deterioration if the issues are not relevant.

Repetition. The same response or analysis is apt to be repeated over and over again.
For example, if the door won't open, try again, only harder. The literature has a large
number of examples of situations where this behavior has led to disaster (such as cases
where death has resulted after continued and unsuccessful attempts were made to escape
fire by pushing against a door when it could have simply been pulled open). On the
decision-making side this is thought to lead to a rigidity of decision making, so that once
an interpretation of the situation has been determined, it will be maintained, even in the
face of contrary information (negative information is either not considered or is
discounted). I have come to call this cognitive hysteresis.

Stereotypical Behavior (and Reversion to Earlier Behavior). It is believed that stress
causes reversion to the most well-learned responses to a situation, even when these are not
necessarily the appropriate ones. Moreover, if one response pattern has been superseded
by a newer one, it is thought that the chance of erroneously returning to the earlier pattern
is increased when under stress. (Justification for this belief is intuitively strong, but scien
tifically weak. Thus, the justification includes stories such as: if you carefully learn a new
pattern of behavior for a task — such as a new grip for tennis — when in stress, the old
pattern — the old way of holding the racquet — is very apt to return.)

Decreased Resources. It is thought that there are decreased resources available to the
stressed person. There are two possible explanations. One is that the physiological aspects
of stress change the resources available. The other is that the mental resources are unaf
fected, but because a person starts devoting more and more attention to the stress itself,

cSubjective accounts of behavior, especially those offered long after the event, are subject to considerable
distortion. Moreover, in the absence of detailed study of the actual events and subject responses, it is usually
unclear exactly what alternatives were available and just exactly how performance was affected.
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Fig. 3. The Yerkes-Dodson Curve. Maximum performance occurs with some nonzero
amount of stress, but higher amounts of stress cause deterioration of performance. The
greater the skill of the person, the greater amounts of stress can be tolerated before
deterioration occurs (and the greater amount required to reach the maximum perfor
mance). These curves should be interpreted with caution, for the data that support them
are weak, and the relationship may not always hold. Adapted from Kahneman, ref. 10.

the result is a decreased availability of resources. In either case, the result is functionally
equivalent. In similar fashion, the initial peak of the Yerkes-Dodson curve may be a result
of increased resources, either as a result of physiological mechanisms or because the early
attentional focusing provides a more efficient use of resources.

The Role of Training. Systematic training and overtraining can minimize the effects
of stress on performance. Thus, if the person has been repeatedly exposed to the stressful
situation (for example, in simulators), the appropriate performance can be taught and
practiced. This is the standard procedure in commercial and military aviation. As a
result, when a real emergency occurs, performance is apt to be only minimally affected by
stress. There are three reasons for this: (1) If the appropriate response has been suffi
ciently well practiced, it can be performed with a minimum of resources (the result of
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"automating" responses). (2) If the responses are sufficiently well practiced, then it is the
proper response that is apt to be triggered by the situation. (3) If people have been
exposed to the situation often enough in simulation, then the familiarity with the situation
and the experience of handling it successfully tends to minimize the buildup of stress.
Stress results from the psychological interpretation of the situation, so extreme confidence
and familiarity can greatly diminish or abolish stress.

2.3 The Memory System

Approximate models for memory do exist, especially for sensory memory and working
(or short-term) memory (STM). Models of long-term memory (LTM) are more complex
and require knowledge of representational issues.

2.3.1 Short-Term or Working Memory. Short-term memory (also called working
memory) is that part of the memory system that allows us to maintain relatively active and
accessible information. STM has a limited capacity, estimated to be approximately 5 to 7
"items." It is easily disrupted by other activity or items "similar" to the information being
stored. STM seems to be modality specific, so that information about visual, spatial, audi
tory (and speech), and motor information all seem relatively independent of one another;
either they occupy independent STMs or they do not interfere with one another in a com
mon STM. The properties are easily summarized:

• The capacity of STM is about 5 to 7 "items."

• Information from one modality does not interfere with information from another.

• Meaningful information is much more easily retained than nonmeaningful or unfami
liar material.

Although the existence and properties of STM memory are extensively documented and
described, there recently has been renewed interest in attempts to describe the workings of
human memory without postulating any separate short-term mechanism. Whatever the
status of the theoretical debate, the behavioral phenomena seem clear. Humans have lim
ited working memories; we are able to get easy access to a limited amount of information
active at any one time.

Note that in the description of STM, capacity has been described in terms of "items"
and interference effects have been described in terms of "similarity." These are critical
terms. Do not think of STM as a mechanism with a certain fixed amount of space.
Rather, it is best to think of it as that part of the entire memory system that is temporarily
"activated." Moreover, the item should be thought of as a "pointer" to concepts and rela
tions that already exist within memory. As a result, the amount of information that any
given item refers to can vary considerably. This is why experts at any task seem to be able
to remember so much more than beginners at the task; the STM capacity is the same, but
because each item for the expert is in actuality a constellation of well-learned concepts, the
effective STM capacity is increased.
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2.3.2 Models of Long-Term Memory. Models of long-term memory (LTM) are more
complex than those for STM. LTM models require knowledge of three areas: (1) learn
ing (acquisition), (2) retrieval, and (3) knowledge representation. While all these areas
are undergoing considerable study, they are still incompletely developed.

We simply do not know very much about learning and memory retrieval. From a
practical point of view, it is perhaps best to consider the particular problems of memory
storage and retrieval more than the formal theoretical models.

The capacity of LTM is huge — probably measured in billions of items. However,
there is a major problem in LTM in getting access to information already there. Norman
and Bobrow8 suggest that retrieval is best described as an iterative process in which one
starts with a "description" of the information sought, retrieves something, evaluates it, uses
this information to refine the initial description, and then repeats the retrieval cycle. (You
can see that under stress, this iterated, resource-demanding retrieval process is apt to be
seriously disrupted.) One critical thing that determines the success of the retrieval is the
manner in which the information was originally encoded or "described." Various mnemonic
strategies can be thought of as providing well-established descriptions to aid in the original
encoding and subsequent retrieval.

A current way to view the representation of information in LTM is in terms of organ
ized units — schemas. Schemas provide structure to memory. Current psychological
views of schemas are closely related to the work on knowledge representation in artificial
intelligence (and to the concepts of "frames," knowledge representation languages, and pro
duction systems).

The important point about schemas for the current purposes can be summarized in this
way:

• A schema provides an organized method of representing information, including means
for representing the interrelationships among related concepts and beliefs.

• All new information is encoded in terms of previously known information by building
new schemas based upon those that already exist for the already known information.

• The structure of schemas provides default values and "inheritance" properties, thus
allowing partially specified information to have "typical" values filled in automatically.

The automatic filling in property of schemas (by default values and inheritance) means
that people may actually get only partial information, but may believe that they have
received full information. This can lead to error if the default values are inappropriate.

2.4 Decision Making

2.4.1 Short-Term Memory Limits. In making judgments, people are heavily influenced
by memory limitations. Short-term memory limitations prevent detailed logical reasoning
in depth without external aids. To follow a chain of reasoning requires holding in memory
considerable information. To evaluate several alternatives means to hold in memory
several such chains of reasoning. The game of tic-tac-toe (naughts and crosses) can exceed
the limit of short-term memory. By this statement I mean that if you attempted to work
out all possible paths mentally, you would not be able to do so: the number and the depth
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of the possibilities exceeds STM memory abilities. We do well at things such as tic-tac-
toe and chess by learning relevant patterns, by restructuring the situation so that reformu
lations and heuristics serve, and so on. In tic-tac-toe, expert players know the proper
moves and responses for the opening moves though experience and study. It has been
estimated that the chess master has acquired a "vocabulary" of 50,000 configurations that
can be retrieved from long-term memory to guide in the selection of a move and analysis
of the situation.

2.4.2 Long-Term Memory Limitations. Finally, LTM plays several roles in decision
making. As we have seen, the expert (as in chess) makes considerable use of experience
with a large repertoire of situations. Meaningful events are more easily handled than
abstract events, even when the logic of the two is identical. More and more evidence
shows that people make decisions based upon experiences, not upon logical deductions.
Worse, they make judgments based upon what they remember of their experiences, and
this therefore means basing decisions upon those events most available from memory, often
a biased sample of their actual experiences.

2.4.3 Use of Negative Information. People do not make good use of negative informa
tion. As a result, negative information is not as useful in human decision making as it
ought to be. Instead, people will hold on to an erroneous hypothesis for considerable time,
continuing to seek positive confirmation, even when negative information that could discon-
firm the hypothesis is readily available. (Positive evidence is often not logically as power
ful as potentially disconfirming evidence, but nonetheless, people tend to seek the positive
reassurance.) (The shortcomings in human inference are treated in refs. 11-13.)

2.5 Social Demands Upon Performance

One major group of factors that influences behavior is that of "social demands": peer
pressure, the person's perception of economic demands, the perception of the desires of
management, etc. These can lead to conflicting goals, for the behavior that has been
instructed or that appears in the manuals may conflict with what is good for peer prestige,
for the company, for the customer, or for society.

There are many pressures on people, including their understanding of what others
expect of them. These social (and societal) pressures are called demand characteristics
and they are especially important in complex systems. There are four major issues that
can be considered:

People may tailor their behavior for approval of their colleagues. Example: Piloting
a military aircraft into a dangerous situation and escaping successfully wins the admiration
of fellow pilots, even though it is a serious error and dangerous to enter the situation.
Steering the aircraft so as to go off the runway while taxiing is considered humiliating and
possibly detrimental to one's career, even though its consequences are minimal.14

People may avoid actions that do not appear to be approved by management. Exam
ple: The collision of two 747 aircraft at Tenerife was greatly affected by pressures on the
KLM pilot to take off in order to save KLM management hotel and crew costs, coupled
with the decision of the Pan American pilots to obey the ground controller against their
better judgments (after a few thwarted attempts to argue the point).15
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People may tailor their actions to protect their own reputation or self-image. Exam
ple: Operators may behave conservatively to avoid being blamed, even if the conservative
action is not the most appropriate. Military pilots, after crashing and while in danger of
fire, have been known to stay in the cockpit, resetting switches and memorizing panel con
figurations in order to protect themselves for the eventual crash review.

People may protect one aspect of system design at the expense of another. Example:
Commercial aviation pilots are so concerned for the comfort of their passengers that on
occasion they will not brake sufficiently hard, thus potentially leading to loss of life (a fac
tor in the American Airlines crash on the Virgin Islands16).

2.6 Human Error

Humans err, sometimes from lack of knowledge, sometimes because they have received
erroneous information, sometimes for extraneous reasons, and sometimes for internal-
processing reasons that are not easy to determine. In general, any given error usually has
multiple causes, and it is not easy to pin down a single reason. Much of modern techno
logical equipment seems designed to aid in the generation of error and oftentimes is rela
tively intolerant of error. It is my belief that many of the accidents that result from
human error should be blamed more on the equipment design, the social demands, and the
task requirements than on the operator. Elsewhere I have analyzed errors and attempted a
classification based upon information-processing causes.17-19 From these analyses, we can
learn certain design lessons. To simplify the story, major classes of errors are mode errors,
description errors, capture errors, and activation errors. The lessons from analyses of
these classes of errors can be summarized this way:

• Mode errors suggest the need for better feedback.

• Description errors suggest the need for better system configuration.

• Capture errors imply the need for better feedback.

• Activation issues suggest the importance of displaying the options and of providing
feedback.

• People will make errors, so make the system insensitive to them.

3. IMPLICATIONS FOR DESIGN

The various aspects of human performance discussed above contain a number of lessons
for design. It seems clear that one should design for the worst case, which means the
tired, stressed operator who is receiving a large amount of information about a situation,
thereby heavily taxing short-term memory capabilities. It is important to avoid having the
operator revert to stereotypical behavior, or to form premature hypotheses (which then will
receive considerable positive confirmation — even in the face of disconfirming, negative
information), and to avoid tasks that require heavy load on memory or logical reasoning.
These considerations mean that one should design for an operator with considerably
reduced capabilities.



104

Note that humans are remarkably capable, so that they can learn to perform well even
in the most poorly designed situations. The fact that the skilled operator normally per
forms well under many circumstances should not disguise the fact that the human operator
is still human. Under severe, worst-case conditions, the operator cannot perform as
expertly as usual, especially if the conditions are either novel or infrequently encountered.
But it is precisely these conditions that must be guarded against. Design should emphasize
the 1 out of a 1000, not the usual situation.

Social factors can determine performance as much as cognitive capacities and the phy
sical and operating system demands. Do not neglect the social and organizational struc
ture of the people who use the equipment. Make it possible for an operator to make deci
sions or ask for help without appearing to be stupid or to be flouting authority, or to be
sacrificing a social requirement for an operational requirement.

3.1 Conclusions Based on the Analyses of Stress

If the effects of stress are considered (and the mental capabilities are assumed to be
diminished), then often appropriate design can be incorporated to assist the operators in
times of stress. The point is, do not assume a fully alert, well-functioning operator, but
rather assume one who does not examine alternatives, does not seek out information, and
has diminished mental abilities. The situation can be designed so as to minimize the
effects of stress. If information about the situation is presented in a direct, meaningful
fashion, then decision making will be enhanced. Example: Because the immediate
response of people who are trying to exit a room while highly stressed is to push against
doors, fire doors are provided with a long, horizontal bar designed so that the door will
open, even when locked, by force against any part of the bar.

3.2 Lessons from the Analyses of Errors

An analysis of errors can provide help in avoiding some major problems. These ana
lyses must be supplemented with other methods, including an understanding of the nature
of a person's mental image of the system that is being used and an understanding of the
human information-processing capability of the user. The analyses presented in this paper
make several points:

• Feedback: The state of the system should be clearly available to the user, ideally in a
form that is unambiguous and that makes the set of options readily available so as to
avoid mode errors.

• Similarity of response sequences: Different classes of actions should have quite dis
similar command sequences (or menu patterns) so as to avoid capture and description
errors.

• Reversible actions: Actions should be reversible (as much as possible) and where both
irreversible and of relatively high consequence, they should be difficult to do, thereby
preventing unintentional performance.

• Consistency of the system: The system should be consistent in its structure and design
of command so as to minimize memory problems in retrieving the operations.

These considerations, coupled with similar analyses of the properties of the users' mental
models of the system, lead to other sets of rules for performance, including the notion of a
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system image. The system image should be the first thing set up by the designer, and all
commands, feedback, and instruction should be designed to be consistent with that system
image. However, this is another story — one that is still in the early stages of develop
ment and is not fully ready to be discussed here.

3.3 Design Philosophy

Start with a functional specification of the system that is to be designed. Specify this
from the user's point of view. Construct a model of the user, taking into account:

• The limited short-term memory of the user. That is, the likelihood that the procedure
will be retrieved depends upon the frequency with which it is normally used.

Implications: Provide STM memory aids such as on-line "help" services, reasonable
default values, menus, mnemonics, functional layout, and so on.

• Mechanical, perceptual, and motor limitations.

Implications: Follow established human factor guidelines.

• The limited attentional capability, both in capacity and in duration.

Implications: Minimize resource demands. Don't overload the user with alarms. (The
747 aircraft has 455 warnings and caution alerts.)

• The tendency to reason through prior examples, or through representative cases rather
than by a formal, unbiased analysis procedure. That is, decisions are affected by the
point of view given by the statement of the problem, which includes the way the
displays are configured (see ref. 11).

Implications: If decisions must be made by some explicit weightings of factors (and
history), provide the relevant information to the user along with decision-making tools.
Provide information with a focus chosen according to the desired decision bias.

• Norman's law: If there is potential for error, no matter how remote, someone will
make it.

Implications: If you believe Norman's law, then you will make the design tolerant of
error, with sufficient state information available to let the operator identify what has
been done and to allow reversible operations.
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1. INTRODUCTION

In a high-risk system, such as a nuclear power plant, the most critical property of its
control system is that it function correctly to keep the plant in safe operating states. This
is why, for example, so much effort is expended to validate the correct performance of crit
ical control software. But the human operator also has critical "mental software" for inter
preting the state of the plant and for controlling it. The question we raise is: why do we
not make an equally serious effort to validate this mental software?

The most obvious component of the operator's software is the standard plant operating
procedures; but another, less obvious, component is a conceptual model of how the plant
works. A conceptual model is necessary for the intelligent use of the operating procedures,
such as recognizing the appropriate conditions for their application and making small
alterations to them to adapt to specific situations. But the conceptual model is most crucial
for dealing with unanticipated situations, such as multiple faults, for which no standard
procedures apply. Given the critical role of the conceptual model in plant control, its most
important property is its correctness, especially in unanticipated situations—a property we
call robustness.

A crucial objective in plant operation (and perhaps licensing) ought to be to explicitly
train operators to develop, perhaps with computer aids, robust conceptual models of the
plants they control. The question is whether we are actually able to develop robust concep
tual models and validate their robustness. Cognitive science is just beginning to come to
grips with this problem. This paper describes some of the evolving technology for building
conceptual models of physical mechanisms and some of the implications of such models in
the context of nuclear power plant operation.

2. THE EXISTENCE OF QUALITATIVE CONCEPTUAL MODELS

Let us distinguish between two kinds of cognitive models. The first kind consists of
models of the behavior or performance of the power plant operator (perhaps embedded in
a larger model of the whole power plant system). This is the kind of model that most other
modelers at this conference are referring to. The second kind of cognitive model is a model
of the power plant that the operator is postulated to have in his head. This is the kind of
model we are referring to when we speak of "conceptual models."

Consider how an operator might think about a simple mechanism, for example, the
pressure-regulating valve diagrammed in Fig. 1. How might the operator explain its
behavior, that is, describe how it is able to regulate pressure? A likely explanation might
run as follows:
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Fig. 1. Diagram of aPressure-Regulating Valve. (From de Kleer and Brown, ref. 1).

An increase in source (A) pressure increases the pressure
drop across the valve (B). Since the flow through the valve
is proportional to the pressure across it, the flow through the
valve also increases. This increased flow will increase the
pressure at the load (C). However, this increased pressure is
sensed (Z>), causing the diaphragm (E) to move downward
against the spring pressure. The diaphragm is mechanically
connected to the valve, so the downward movement of the
diaphragm will tend to close the valve thereby pinching off
the valve. Because the flow is now restricted the output
pressure will rise much less than it otherwise would have
and thus remains approximately constant.1

The characteristics of this explanation that we want to emphasize are its qualitative
and causal nature. It is not given in terms of complex constraint equations, nor in even
vaguely numerical terms. The conceptual model behind this explanation is expressed in
terms of increasing and decreasing values and in terms of component parts and explicit
local, casual relations between those parts. It is our view that operators understand the
behavior of the reactor as a mechanism in just these terms and, further, that this kind of
understanding provides operators with the basis for learning, recalling, using, repairing,
and modifying the plant operating procedures.
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Learning is, by its nature, an incremental process. None of us expects a person to learn
a complex operating procedure in a glance. Rather, it must be acquired in bits and pieces.
The conceptual models come into the problem by providing some of the semantic glue to
connect the bits and pieces of the procedure together. If nothing else, we expect conceptual
models to serve as a useful learning tool.

Even if learning were a holistic process, recall is not.2 As a practical matter, if an
operator tries to recall the steps in a procedure, a great deal of patching must be done.
Inevitably, the operator forgets a step and must fall back on recalling some other fragment
of procedure to patch over what he has forgotten, or he must use various semantic struc
tures to restrict the set of possible next actions, or he must invent that piece of procedure
anew from a basic understanding of the mechanism or the constraints on the procedure
itself. Among the main sources of information for these recall and reconstruction processes
are the same conceptual models we expect to be useful in learning.

Even if one could recall a procedure in its entirety, its execution will almost inevitably
require some kind of adaptation to the particulars of the current context. Some step in the
procedure is bound not to be applicable or to be simply wrong. For example, in a reactor
casualty control procedure, how could it be known in advance that a particular detector
has been reading 10% high for the last 2 months or that it is in the midst of calibration
or that one of countless other plant conditions has been altered. In such cases we expect
people to use common sense to adapt to these minor variations of a basic task. But, even if
one had an exact operating procedure described for every anticipated plant condition,
operators would inevitably run into novel situations. And we want them to be able to react
at least plausibly (if not intelligently) in these unforeseen circumstances. This requires the
ability to construct new procedures on the fly. One obvious way to make this manageable
is to take a nearly right procedure and modify it or to compose a new procedure out of
known procedures that serve as fragments of the solution to the problem at hand.

3. CRITERIA FOR QUALITATIVE CONCEPTUAL MODELS

There are two kinds of criteria any modeler must be sensitive to: (1) criteria that
specify what phenomena are to be modeled and (2) performance criteria that specify the
dimensions along which a model is to be evaluated.

Our goal is not to model the operator's behavior directly, but to model the operator's
view of the plant, that is, to build models of the plant that capture the same kind of under
standing of the plant that operators seem to have with their mental models. Thus, we want
our models not only to predict the behavior of the plant but also to be able to produce
explanations of how that behavior is achieved. Further, we want our models to support
human-life epistemologies—that is, reasoning in qualitative, causal, and functional terms.
Note in the example of the pressure regulator that the qualitative terminology of the
explanation is there deliberately; it is not simply an approximation from some underlying
quantitative reasoning process. Ask an operator a quantitative question (for example, how
far the valve opens), and he will shift to a different form of reasoning, bringing in a whole
different set of factors. It is clear that such quantitative inferences are not the precursors
to the qualitative explanation.

Performance criteria for evaluating models fall into two categories: psychological and
logical. The psychological criteria include learnability (how readily can we teach the
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model to an operator?) and usability (given that an operator knows a model, how easily
can he use it to predict the plant's behavior?). The logical criteria include precision (how
accurately does the model predict the plant's behavior?), scope (what range of plant
behaviors does the model predict?), and robustness (how well does the model predict when
the model itself is perturbed to reflect an unanticipated state of the plant?).

It is our conjecture that the logical criteria ought to be the principal initial criteria for
constructing conceptual models of nuclear power plants and, especially, that robustness
(which we shall further discuss below) ought to be the primary focus.

4. THE EMERGING TECHNOLOGY FOR ANALYZING QUALITATIVE
CONCEPTUAL MODELS

There is an emerging technology for constructing models that attempt to satisfy these
criteria. Burton, Brown, and de Kleer,3 de Kleer and Brown,1,4-5 Forbus,6 Forbus and
Stevens,7 Williams, Hollan, and Stevens,8 and Reiger and Grinberg,9 among others, discuss
a variety of techniques for constructing qualitative models of physical devices (such as
electronic circuits, pressure regulating values, thermostats, heat exchangers).

One of the simplest examples is the door buzzer of de Kleer and Brown,4 shown in
diagram form in Fig. 2. The operation of the buzzer is quite simple: If the switch is
open, the spring holds the clapper down, and there is no current in the circuit. Once the
switch is closed, a current flows. The current through the coil causes a magnetic field that
pulls the clapper open. The opening of the clapper breaks the circuit, causing the current
to stop. The current stopping makes the field go away, permitting the clapper to close (due
to the force of the spring). As this causal chain cycles, the clapper repeatedly strikes its
contact, making the buzzer sound.

JJE

Fig. 2. Diagram of a Simple Door Buzzer. (From de Kleer and Brown, ref. 5).
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Figure 3 is a diagram of the simplified device topology of the buzzer, that is, the com
ponents out of which the buzzer is constructed and the connections between these com
ponents. Below the diagram are rules that specify the qualitative behavior of each of the
components, called component models. This model is precise, and it can be run to predict
how the components interact to produce the overall device behavior. Not only can behavior
be predicted, but also reasons can be assigned for the behavior, in terms of which events in
the running cause which other events, that is, causal explanations.

CLAPPER : OPEN:

II *= 0. 12 *= 0

IF Fl = 0 CAUSES: clapper will become CLOSED.
CLOSED:

II <= 1. 12 «= 1

IF Fl = 1 CAUSES: clapper will become OPEN.

COIL : ON:

Fl <= 1

IF 12 = 0 CAUSES: coil will become OFF

IF 13 = 0 CAUSES: coil will become OFF.

OFF:

Fl <= 0

IF 12 - 1 CAUSES: coil will become ON

IF 13 = 1 CAUSES: coil will become ON.

BATTERY : II <=» 13.

Fig. 3. Device Topology and Component Models of the Buzzer. (From de Kleer and
Brown, ref. 5).

Figure 4 is a diagram that sorts all of the possible causal relations derived from run
ning the model into a coherent casual structure. This capability of automatically deriving
the behavior of a system from the structure is one of the essential characteristics of this
modeling technology.
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Fig. 4. Causal Structure of the Buzzer. (From de Kleer and Brown, ref. 5).

An important characteristic of these models is that their derivations can be readily con
verted into plausible causal explanations. The explanation above of how the buzzer works
can simply be read off of Fig. 4. Such explanations can be useful in computer-based
instructional systems and operational aids.

In nuclear power plant operation, the operator's conceptual model is most crucial for
dealing with unanticipated situations, such as multiple faults, for which no standard pro
cedures apply. This, the conceptual model's most important property is its robustness.
Robustness refers to the ability of a model to predict correctly under perturbation (for
example, the replacement or removal of one of its component models) or in new situations
(as for an unanticipated set of input conditions).

There are a variety of techniques to test the robustness of a conceptual model. One
technique is to modify the topology. For example, removing the battery in the model of the
buzzer in Fig. 2 reveals that the model is not robust, since the model predicts that the
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buzzer still works. (We will discuss the nature of this problem below.) A second technique
is to fault one of the components by replacing it with a new component model of the
faulted component, say a ruptured diaphram in the pressure regulator, and test the
behavior of the modified model. A third technique is to test the model on new problems
beyond those it was initially designed for. For example, given a conceptual model of a
pressurizer, we might test its behavior under the new situation in which the reactor pres
sure vessel had drawn a bubble and the pressurizer was not dealing with a two-state fluid
on the other side of the surge line. This collection of techniques provides a partial mechan
ism to validate the robustness of a conceptual model.

The construction of robust models is difficult, but a number of principles for construct
ing them are emerging. The essence of the difficulty is that hidden assumptions are often
buried in the model. For example, in the buzzer in Fig. 2, note that the model for the
clapper switch assumes the existence of a battery. This is why the model predicts that the
device works even with the battery taken out. The principle that is being violated here is
the no-function-in-structure principle,4 which states that a robust model is one in which
there are no assumptions about overall behavior (function) of the device in the component
models and that the behavior must be derived solely from the interactions of the parts of
the structure. (This is why perturbing the topology is a good test of robustness.) One of the
significant features of qualitative models is that they can deal with such assumptions
within the formal language of the model; for example, the process of running qualitative
models involves careful management of assumptions in sorting out the possible behaviors.5
This feature gives qualitative models a considerable advantage over quantitative models,
such as a set of differential equations, where the assumptions are outside the formalism.

5. THE USABILITY OF QUALITATIVE CONCEPTUAL MODELS

Given a robust conceptual model of an entire power plant, there are a number of poten
tial uses for it. We could simply train, test, and evaluate operators on this model with the
assurance that if they use it they could understand the plant and operate it safely. How
ever, this presupposes that the model has the appropriate psychological properties, that is,
that it is learnable and usable.

Unfortunately, complex conceptual models of the type we have been discussing require
a great deal of effort to derive predictions of behavior. People tend to prefer simpler
models when they are adequate. For example, even though a nuclear power plant operator
may have a detailed understanding of the effect of the control rods on the neutron flux in
the core, he probably prefers a simple model of the qualitative reaction between the rods,
the neutron flux, and reactor temperature. This is adequate for many purposes. The trick,
of course, is to know when to abandon the simple model because its assumptions do not
hold, and this is just the kind of knowledge that an operator needs.

We are proposing that a single, complex conceptual model of the entire power plant is
not enough. We envision, in addition, a lattice of simplified conceptual models and their
associated assumptions, with a robust conceptual model of the entire power plant at the
root of the lattice (see Fig. 5), that is, all the simpler models being derived from the
robust model by adding assumptions. The robust conceptual model is probably too complex
for anyone to learn and too complex to reason with, even if one could learn it. Simplified
models could be generated by systematically degrading the robust model to produce models
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Fig. 5. Lattice of Simplified Conceptual Models and Their Associated Assumptions.

that are both learnable and useable in real-time reasoning processes. For example, if we
had a simplified model of the pressurizer, we would have associated with it an explicit
assumption that the reactor vessel is solid (i.e., the only steam bubble in the system is in
the pressurizer). The advantage of having the entire structure is that we would explicitly
know the assumptions associated with each simplified model, and the lattice shows which
(more complex) models we could resort to when the assumptions of the current model are
violated.
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Such a lattice of models provides us with another kind of training tool. For any given
simplified model that we teach to the operators, we know in advance exactly where they
will fail to hold (that is, where their assumptions are violated), and we can directly train
the operators to be aware of these crucial conditions. Thus, if we know that the conceptual
model of the pressurizer assumes that the rest of the reactor is solid we can: (1) expli
citly inform the operators of this, (2) train them for conditions where the plant is not
solid, and (3) provide an alternative (but more complex) conceptual model that works
under the assumption that the reactor is not solid.

The lattice of models can also be used to help us specify an effective training program.
The key notion is that most physical devices are based on a simple idea, represented by a
kernel model, that is elaborated to take account of various real-world complexities. The
idea is to relate this simple kernel model to the complex, robust model (representing the
real plant) by a series of patches on the kernel model that eventually transform it into the
robust model, the collection of patched models forming our lattice of models. Consider try
ing to understand an electronic circuit. Start off by choosing a very simple kernel circuit
that captures the core idea but is missing all the frills that really make it work in the con
text and under the conditions for which it is intended. Then identify a limitation in the
kernel circuit (an assumption that restricts its domain of applicability) which can be fixed
by patching the circuit. In the ideal case this means taking one component of the given cir
cuit and replacing it with a set of components. Note that if all the required patches are of
this simple form, then we have an ideal learning sequence of circuits, in which each com
ponent in the target circuit can be understood as either stemming from an underlying ker
nel or as a patch for a limitation in the kernel. Also, note that this kind of understanding
is useful for troubleshooting or reacting to casualties, since each component is understood,
in part, in terms of how the overall system might behave if that piece weren't there.

6. CONCLUSION

The two principal goals of this paper are (1) to give a brief tutorial on the status and
objectives of an emerging technology for constructing human-like conceptual models of
complex physical mechanisms, and (2) to present a conjecture that for the application of
this technology to nuclear power plant operation the property of robustness (correctness in
unanticipated situations) should be our principal initial goal.

Conceptual models are used to predict the behavior of a mechanism from the structure
of that mechanism. They use a qualitative, causal, and functional terminology and can be
used to generate plausible, human-like explanations of why a device works as it does. The
construction of conceptual models is more difficult than it appears on the surface, though a
set of principles for testing robstness is emerging.

We believe that the primary objective of the design of conceptual models for the opera
tion of nuclear plants should be the robustness of the models. Given that a robust model
can be constructed, there are a variety of techniques that can be used to enhance operator
training, support, and evaluation such that we can improve our confidence in the operator's
ability to cope with complex novel situations.
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1. INTRODUCTION

Man-machine interaction has been a topic of formal study for well over 50 years. The
earliest investigations focused on the environment as it affected the human operator's
safety and ability to perform his job. Later investigations began to consider also the design
of equipment in terms of identifying possible limitations and devising potential enhance
ments of operator performance. Much progress has been made in these areas, although a
great deal remains to be accomplished.

More recently, the impact of automation has come to be of increasing importance. In
aircraft, ships, process plants, transportation networks, and other large-scale systems, more
and more control loops that were once closed manually are now automatically controlled.
As a result, the human operator is becoming more of a monitor and supervisor of
automation.1

The possibility of failures is the primary reason for having humans monitor automati
cally controlled processes. If hardware and software failures could not occur and if the
automation were capable of handling all contingencies, then human operators would be
unnecessary. However, failures and design limitations are quite possible and, therefore, a
primary task of the human operator is to detect these events and deal with them appropri
ately. If the current trends continue, this task will come to dominate the human's
responsibilities.2

It seems reasonable to make the general claim that the manual activities of the human
operator will increasingly be supplanted by problem-solving activities. The objective of this
paper is to outline an overall model of human problem solving in detecting and diagnosing
system failures and compensating for them.

2. OUTLINE OF AN OVERALL MODEL

From a recent review of the literature,3 it is obvious that considerable effort has been
invested in the study of human problem solving in general, and in the study of human
detection, diagnosis, and compensation for system failures in particular. However, most of
the models focus on a single aspect of problem solving. Only a few of the models consider
the full breadth and robustness of human problem solving behavior.4-7 What is needed is a
model that, at least conceptually, captures the whole of problem solving and, at the same

"Much of this paper is excerpted from W. B. Rouse, "Models of Human Problem Solving: Detection,
Diagnosis, and Compensation for System Failures," Automatica, in press.
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time, can be operationalized within specific task domains. This paper proposes such a
model.

2.1. Pattern Recognition Orientation

A conclusion that surfaced repeatedly in the review of the literature3 was that humans,
if given a choice, would prefer to act as context-specific pattern recognizers rather than to
attempt to calculate or optimize. Obviously, life would be difficult indeed if one had to
constantly recalculate various things in order to make choices. Thus, human preference for
pattern recognition is justifiable both scientifically and practically.

However, if the human does not recognize a pattern, a mode of problem solving other
than context-specific pattern recognition must be employed. The alternative modes may be
called heuristic, analytical, topographic, etc. A common characteristic of these modes is
that the humans must go beyond the surface features of the problem. Since the focus of
this paper is on system failures, this notion can be more precisely stated as the human
must go beyond the system state and consider the system structure.

Figure 1 illustrates this fundamental concept. As can be seen, the human is assumed
to have a clear preference for proceeding on the basis of state information. The use of
structural information is definitely a less-preferred alternative. The mechanism depicted in
Fig. 1, which is elaborated upon throughout the remainder of this paper, is proposed as
the central and only mechanism necessary for an overall model.

2.2. Levels of Problem Solving

Considering the literature reviewed by the author,3 as well as a variety of studies of
human problem solving in aircraft, ships, and process plants carried out by the author and
his colleagues,8-15 it seems reasonable to conclude that problem solving occurs on several
levels. Perhaps the most obvious example of multilevel problem solving is the coordination
of compensation and diagnosis where the human must try to sustain system operations
while also attempting to locate the source of the problem. The concept of multiple levels is,
however, much more general than the idea of coordinating tasks.

It appears that three general levels of problem solving are needed to model human
behavior: (1) recognition and classification, (2) planning, and (3) execution and moni
toring. Recognition and classification involves detecting that a problem-solving situation
exists and assigning it to a category. Planning is the process whereby the approach to solv
ing a problem is determined, and execution and monitoring is the actual process of solving
the problem.

Table 1 summarizes how the basic mechanism in Fig. 1 applies to the three levels of
problem solving. At the highest level (i.e., recognition and classification), the human is
assumed to identify the context and category of a problem. If he finds the state informa
tion to match a familiar frame,5 problem solving proceeds on that basis. If an appropriate
frame is not in the human's repertoire, structural information might provide clues to an
analogy or be used to employ basic principles of, for example, the scientific method.

At the next level (planning), the human must decide how the problem will be attacked.
Based on the state information, he may conclude that the problem-solving situation is fam
iliar and the appropriate script6 or standard procedure can be employed. If no script is
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Table 1. Decisions and Responses for Three Levels of Problem Solving

Process

Level Response

Decision

State-Oriented Structure-Oriented

1. Recognition and classification Frame available? Invoke frame Use analogy and/or
basic principles

Formulate plan

Apply appropriate
T-rule

2. Planning

3. Execution and monitoring

Script available?

Pattern familiar?

Invoke script

Apply appropriate
S-rule

available, the human must use structural information to plan in terms of generating alter
natives, imagining consequences, valuing consequences, and so on.16

Actual problem solving occurs at the
lowest level (i.e., execution and monitoring)
where scripts or plans are executed and mon
itored for success. Familiar patterns of state
information may allow for the use of
context-specific symptomatic rules (S-rules)
that map directly from observation to
hypothesis or action (e.g., if the engine will
not crank, check the battery). If the pattern
is not familiar, structural information may
allow use of topographic rules (T-rules) for
searching the structure of the problem (e.g.,
if a component's inputs are good and its out
puts bad, the component has failed).

All of the responses noted in Table 1
(invoke frame, use analogy, etc.) invoke the
same mechanism as shown in Fig. 1. This
mechanism is recursively invoked until
actions are produced and the problem is
solved. Thus, in contrast to many of the
models found in the literature,3 the model
outlined here is very simple, involving a sin
gle mechanism that is recursively employed
for all aspects of problem solving.

PROBLEM

CONSIDER
STATE

INFORMATION

NO

CONSIDER
STRUCTURAL
INFORMATION

YES.
STATE

ORIENTED
RESPONSE

STRUCTURE
ORIENTED
RESPONSE

Fig. 1. Basic Mechanism of Proposed Model.
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2.3. Hierarchical vs Heterarchical Approach

If one views problem solving from an operations research or management science per
spective, one should hierarchically consider goals, objectives, attributes, alternatives, etc.
This hierarchical approach has often been adopted by computer scientists when designing
knowledge-based expert problem-solving systems.17 The model proposed in this paper cer
tainly could perform hierarchically by first invoking a frame or an analogy, then invoking
a script or planning, and finally acting via S-rules and T-rules.

It has been argued, however, that human problem solving is heterarchical or oppor
tunistic rather than hierarchical.18 In other words, the human does not solve problems in a
purely top-down or bottom-up manner. Instead, he appears to operate on all levels almost
simultaneously.

The proposed model can produce this type of behavior if one assumes that the three
decisions (i.e., frame available, script available, and pattern familiar) are constantly but
not necessarily consciously, being re-evaluated. Thus, for example, the model might be
using T-rules to plan on the basis of an analogy and suddenly realize the applicability oi a
script This could result in the preemption of planning and the rapid application of a
sequence of S-rules that provide new information and result in a familiar frame being
recognized, which, in turn, leads to a new script and so on.

If all three decisions are constantly being reevaluated, it is possible that conflicts will
arise in terms of which decision should take precedence. Such conflicts might be resolved
by giving more credence to closer matches (e.g., a very familiar pattern is more captivating
than a somewhat familiar script). Another method of resolving conflict is to place more
weight on alternatives that maintain the current direction of the problem solving. In other
words, the model could incorporate the assumption that the human would like to avoid
changes in frame, script, etc.

2.4. Behavior of the Model

Since the model outlined here represents a synthesis of the many concepts and models
discussed in the literature,3 it should not be surprising that it will produce the types of
behavior noted in this literature. The strength of the model is that a very simple mechan
ism and method of organization can produce such an impressive range of behaviors. Of
course, this possibility, from a slightly different perspective, has been investigated by
others.4

A particularly interesting aspect of the model's behavior, as well as that of humans, is
its potential for making errors. The model has two inherent possibilities for causing errors.
The first relates to the model's recursive use of the basic mechanism in Fig. 1. As the
model recursively invokes this mechanism, it needs a "stack" or some short-term memory
for keeping track of where it is and how it got there. If short-term memory is limited, as it
is in humans, the model may recurse its way into getting lost or pursuing tangents from
which it never returns. To constrain this phenomenon, it is probably reasonable to assume
that lower priority items in the stack are more likely to be lost first. For example, one is
more likely to forget one's umbrella than to forget to go to work.
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The second possibility for causing errors is the matching of irrelevant or inappropriate
patterns. For example, the model, or a human, may be captured by an inappropriate but
similar script or S-rule. As a result, the model may pursue an inappropriate path until it
suddenly realizes, perhaps much too late to be able to recoup, that it has wandered far
afield from where it thought it was headed.

The fact that the proposed model has inherent possibilities for making errors, particu
larly somewhat subtle errors, provides an interesting avenue for evaluating the model. Most
models are evaluated in terms of their abilities to achieve the same levels of desired task
performance as humans. A much stronger test would involve determining if the model
deviates from desired performance in the same way and for the same reasons as humans.
The proposed model can potentially be evaluated in this manner.

3. DISCUSSION AND CONCLUSIONS

Considering the relationships of the overall model outlined here to the models found in
the review of the literature,3 this conceptual model is, to a great extent, an outgrowth of
earlier work by the author and his colleagues19-24 and is also closely related to work by
Rasmussen.7-25-27 The frame, script, and S-rule aspects of the model are also fairly similar
to concepts proposed by Newell and Simon.4 The manner in which the model utilizes both
state and structural information and the recursive use of the same basic mechanism on all
levels of problem solving are perhaps the model's most unique characteristics. In this way,
it is potentially capable of dealing with unfamiliar problem contexts via analogies, T-rules,
etc.

The model's ability to operate almost simultaneously on several levels provides the
potential for representing the coordination of compensation and diagnosis, an aspect of
problem solving that few if any other models explicitly describe. Because of short-term
memory limitations, the model also allows for the possibility of errors in coordination (e.g.,
focusing on one task to the exclusion of the other). What is not clear at this point, and is
the topic of several current investigations, is the nature of S-rules, T-rules, scripts, and
plans relative to coordinating compensation and diagnosis. This important topic deserves
considerable study.

In this paper, an outline of an overall model of human problem solving has been pro
posed. This outline is, in a sense, a set of model specifications based on a synthesis of a
wide range of concepts and models as well as a variety of experimental results. Currently,
the software necessary to support this model is being designed. Initial evaluations of the
model will focus on coordinating of compensation and diagnosis of failures in process con
trol systems.
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Paper 9

MODELING HUMAN-COMPUTER INTERACTION

Thomas P. Moran

Xerox Palo Alto Research Center

(NOTE: The talk given by the author at the Workshop was based on a book that he has
recently completed. Because of the demands on his time in writing the book, he agreed to
participate in the Workshop with the proviso that he would not be required to prepare a
paper for the proceedings. As a result, only an abstract of his presentation is included
here.)

The main products of an applied cognitive psychology are cognitive performance
models. For such models to be both applied and scientific suggests that they be of a cer
tain form. In Chapter 1 of our book, The Psychology ofHuman-Computer Interaction?
S. Card, A. Newell, and I have laid out a view of "calculational" applied psychology
models, of which one model, the Keystroke-Level Model, is a good example. The
Keystroke-Level Model, described in detail elsewhere,2 is a simple model for predicting one
aspect of human performance: the time it takes an expert user to perform a given task on
a given computer system. It is based on counting keystrokes and other low-level opera
tions, including the user's mental preparations and the system's responses.

The Keystroke-Level Model does not exist in isolation, but rather is embedded in a
theoretical model of cognitive skill (actually, a series of embedding models: the GOMS
Model, the Problem Space Model, and the Model Human Processor). A psychological pic
ture of cognitive skill can be sketched in which mentally compiled methods (or procedures)
are the central units. Modeling the execution of methods, then, is the key to predicting
expert cognitive skill performance. It is also useful for calibrating skilled performance (for
example, to distinguish skill from problem solving). On the other hand, modeling the
complexity of methods seems to be important for predicting novice learning of cognitive
skills. A simple model of learning explains our observed correlation (between different sys
tems) between expert performance and novice learning.

We view the Keystroke-Level Model as a system design tool. A more complicated and
refined model could be formulated, thus increasing its accuracy, by relaxing some of its
serious restrictions (for example, a model that predicts methods or that predicts errors).
One of the great virtues of the Keystroke-Level Model is that it puts a lower bound on the
effectiveness of new models, any one of which must do better to merit serious considera
tion.
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Paper 10

COGNITIVE MODELS EMBEDDED IN SYSTEM SIMULATION MODELS

Arthur I. Siegel and J. Jay Wolf
Applied Psychological Services, Inc.

1. INTRODUCTION

If we are to discuss and consider "cognitive models," we must first come to grips with
two questions: (1) What is cognition? (2) What is a model? Presumably, the answers
to these questions can provide a basis for defining a cognitive model. Accordingly, this
paper first places these two questions into perspective. Then, cognitive models are set
within the context of computer simulation models and a number of computer simulations
of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cogni
tive modeling in the computer simulation context.

2. DEFINITIONS AND CONSIDERATIONS

2.1. Cognition

Cognition has been traditionally defined in a somewhat diverse and broad manner.
Guilford, who described the "structure of the intellect" as the result of extensive factor
analytic studies, provided the following definition of cognition:

Immediate discovery, awareness, rediscovery, or recognition
of information in its various forms; comprehensive or under
standing (Guilford and Hoepfner1).

The Comprehensive Dictionary of Psychological and Psychoanalytic Terms presents
the following primary definition of cognition:

1. a generic term for any process whereby an organism
becomes aware or obtains knowledge about an object ... It
includes perceiving, recognizing, conceiving, judging, reason
ing (English and English2).

Taft summarized the proceedings of a set of meetings on "cognition — theory,
research, promise" held at the University of Kansas as follows:

No one in this symposium on cognition has offered us a
definition of this concept. We could do little better than
refer to Martin Scheerer's definition in Lindzey's Handbook
of Social Psychology. He says that cognition is the process
of gaining information and understanding the world (Taft3).
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From these definitions it seems that the term cognition can be applied to mental
activity ranging from mere recognition to reasoning and understanding. In spite of this
diversity, there is a common core throughout the three definitions. Cognition appears to be
a generic term that describes the interaction of the human with that which is sensed, the
processing of these sensory data (called "information"), and the transformation of the data
into some meaningful form. It seems to include sensation, information processing, under
standing, and reasoning. Accordingly, cognitive models can include almost everything and
anything that would be included under the terms perception and higher mental functions,
as well as the processes which link the two.

2.2. Models

This paper is concerned with computer simulation models. Computer simulation models
have also been variously defined. Examples of current definitions are:

A computer simulation is a logical-mathematical representa
tion of a concept, system, or operation programmed for solu
tion on a high-speed electronic computer (Martin4).

A simulation model can be defined as an abstraction of
some real system that can be used for purposes of prediction
and control (Naylor et al.5).

...form a picture of (the system's) behavior by sampling
from all the ways it might behave (Kendell6).

The (simulation model) produces outputs resembling those
observed in the real world, and inspires confidence that the
real causal process has been accurately represented (Dutton
and Starbuck7).

A simulation model is an operator that generates a set of
variables X, given a set of variables Y, such that: (a) the
sets X and Y represent characteristics of the referent situa
tion, (b) the set of X is indistinguishable with respect to an
explicit criterion from the corresponding characteristics of
the referent situation, and (c) the operator itself represents
the causal process of the referent situation (Starbuck8).

The essence of these definitions appears to be that computer simulation models attempt
to mimic or to represent some aspect of real life and that the simulation process is embo
died in the form of a high-speed digital computer program.

Mere representation is not a sufficient goal in itself for a behavioral model. To be use
ful for more than descriptive purposes, the representation should be of such a nature that it
allows extrinsic (situational/environmental/equipment) or intrinsic (individual and group)
variables to be manipulated so as to determine the effects of the manipulation on some
output measure or on some other variable which exerts an affect on the output.
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Hence, we define a behavioral computer simulation model as a representation of
behavior and behavioral influences implemented on a digital computer so as to allow con
trol or prediction of an event, or event sets. This definition emphasizes both the structural
and the utility aspects of a behavioral simulation model.

2.3. Models vs. Theories

While a model will often be based on theory, a model of human behavior or of some
aspect of behavior is not, per se, a theory of behavior. The two should not be confused.
Table* 1 compares and contrasts models and theories. A model possesses a different pur
pose than a theory:

• Feigl9 proposed that the purpose of a theory is to state functional relationships. While a
model may include functional relationships within its structure, the goal of simulation
modeling, as stated above, is to allow for prediction or control of the effects of manipu
lating extrinsic or intrinsic variables on an output measure.

• Chapanis10 held that models are to be judged on the basis of utility while the test of a
theory rests on validity. The "utility" of a model means the extent to which the output
assists the decision maker in reaching a decision.

• Because they are fundamentally representational in nature, models are descriptive in
content. Because the goal of theories is to state functional relationships, as a minimum,
they must rely on some type of correlational content.

• Theories may postulate unknown or intervening variables of unknown or partially
known dimensions. In contrast, each variable in a simulation model must be defined
and be scalable, and its relationship to other variables must be clearly specified.

• Whereas models are highly quantified so that specific representations can be formu
lated with precision, in theories quantification is not essential.

Table 1. Comparison of Models and Theories

Purpose

Criteria of

acceptance

Content

Variables

Quantification

Generality

Behavioral Model

Predict or control behavioral

implications — "What
happens if"

Utility or assistance in
decision making

Descriptive

Measurable/scalable

High

From full to limited

Theory

Describe functional

relationships — "How
it works"

Validity

Correlational

May be hypothetical

Optional

Full
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2.4. Why Computer Simulation?

If any real-life situation is to be modeled, a rather complex situation is involved. This,in
turn, dictates that the internal structure of a model which represents the situation contain
numerous interactive internal variables. Implementation of such models has been made
practical because of the advent of the high-speed digital computer. The computer program
allows for a complex, interactive representation of the process which is modeled, and the
machine allows the process to be exercised expeditiously and under a wide variety of condi
tions.

When cognitive models of real-life situations are considered, it is hard to conceive that
the computer simulation approach can be avoided. For example, we have been analyzing
maintenance activities in nuclear power plants. Some of the variables which can impact the
cognitive processes of the maintenance personnel are:

Environmental Variables Personnel Variables

Temperature Ability
Acoustic noise Motivation

Radiation Supervision
Human factors situation Stress tolerance

Time limits Fatigue
Protective clothing Training
Procedures Number of persons
Spare parts availability Cross training

If such a number and variety of variables is to be represented and exercised interac
tively, there seems to be little option other than computer simulation. The option is entirely
practical because of:

• the exponential growth in the availability of computational power and reduced
hardware costs;

• the wide acceptance of and significant growth of educational processes leading to
today's computer scientist, which is related to

(1) the current acceptance of the computer field as a science rather than an art,

(2) the development of many theoretical underpinnings of the field (e.g., structured
programs, correctness proofs),

(3) the explosive growth of the number of trained personnel in analysis and
programming;

• the impact of on-line program development and maintenance, as well as on-line conver
sational program runs;

• the orders-of-magnitude reduction in the cost per bit of storage, the cost per bit per
second of long-distance transmission, and the basic cost of computation per unit
arithmetic/logical operation;

• the feasibility of transmitting large volumes of data over long distances;
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• the improved computer system reliability via redundancy, error correction, fault
tolerant operating systems, and component count reductions;

• the adoption of federal standards for programming languages, storage media, transmis
sion interface protocols and the like;

• the drastic reduction in the volume of space required by computing equipment coupled
with corresponding reductions in power (operating) costs.

Given that computer simulation is possible and practical, how good is it? Jenkins11 has
compared various cognitive models, including models based on the computer simulation
approach (Siegel-Wolf simulation). His results, which support the computer simulation
approach, are presented in Table 2. Similarly, both Meister12 and Adams13 have sup
ported the approach in the noncognitive domain.

Criteria

Table 2. Rating of Four Cognitive Models"

Sheridan

Rasmussen Siegel-Wolf Supervisory Artificial
S-O-R Simulation* Control Intelligence

1. Acceptance by the
user 3 4

Not

observed 3

2. Verisimilitude 5 4 4 3

3. Validity of input
data 3 5 5 4

4. Documentation to

support use

Not

observed 5

Not

observed 5

5. Model validation 1 4 1 3

6. Output at the level
consistent with the

objectives 5 4 5 5

7. Easy to use
interface 4 4

Not

observed 3

Total 21 30 16 26

Mean Rating 3.5 4.3 4.0 3.6

"From Jenkins, ref. 11; the higher the number, the better the rating.
^Computer simulation.



130

3. PRIOR COGNITIVE MODELS THROUGH COMPUTER SIMULATION

Over the years, Applied Psychological Services has been active in the modeling of
human performance in complex, real-life equipment systems. Within a number of these
computer simulation models, some type of cognitive modeling has been embedded. Our
cognitive models are possibly best characterized as input-output models. They attempt to
describe the probable output, given a variable input set. They do not purport to present the
underlying physiological, biological, or chemical processes. Because of our interest in
simulating real-life human performance and because of the effects of extrinsic and intrinsic
variables on human performance, selected cognitive model elements have been embedded
within larger models of total individual and group performance. As such, they have formed
their function at a subroutine level within a total computer simulation model (i.e., pro
gram).

The following sections present examples of various recent cognitive simulation elements.
Each of these is drawn from and constitutes a part of a total or larger simulation.

3.1. Decision Simulation

A decision module was developed14 to simulate the operator's decision processes
involved in an advanced electronic imagery system. The simulation logic follows from
Simon and Newell's problem-solving theory15,16 but expands on that conceptualization by
considering task complexity, decision utility, operator ability, stress, and Bayesian concepts.
The Simon-Newell theory describes the problem solver as stepping, node-by-node, through
the problem space until a solution (i.e., final decision) is reached. The node stepping
represents the decision process where each step involves data collection, analysis, and
evaluation and the problem space represents the size and structure of the decision task.

The decision subroutine is based on decisions involving up to five decision alternatives
(one and only one of which is correct) and six nodes (for a total of 11 states). The
representation, as shown in Fig. 1, may be viewed as a hexagonal structure which may be
initially entered at any node. From any node, 11 choices are possible; stepping to one of
the other five nodes, remaining at the node, or stepping to a solution state. Stepping to a
solution state completes the stepping process.

Decision time, within the simulation, is calculated by considering three variables: task
complexity, stress on the simulated operator, and the number of steps to reach a solution.
Decision correctness is determined by matching the solution reached (via the stepping pro
cess) to a given (input) correct solution. Within the step process, the step probability
values, initially supplied as input, are affected by: (1) operator ability, (2) utility, and
(3) a Bayesian process.

A top-level flow chart of the simulation process is presented as Fig. 2. After selecting
the most proficient operator on the basis of his speed and proficiency, the step probabilities
are first adjusted for operator ability (proficiency) and decision utility. Next (following
resets), the decision implement step is taken. If a decision state is reached, the correctness
of the decision is determined and the simulation proceeds to the decision time calculation
sequence (boxes 9 through 12). If no decision state is entered, the input probability
matrix is altered by a Bayesian process, and a probability ratio, required in the later com
plexity calculation, is obtained. Then, performance of the next step is simulated, and the
decision—no decision check is again made. This process continues until a decision state is
entered, or until the number of steps has reached the prespecified limit.



LEGEND

« •

131

TO ANY

OF 6 NODES^START]

= DECISION ALTERNATIVE OR SOLUTION STATE

VALID DIRECTIONS) OF DECISION MOVEMENT

= NODE

Fig. 1. Partial Representation of a Five-Solution, Six-Node Problem Representation.

The operator ability adjustment causes an increase (higher proficiency operator) or
decrease (lower proficiency operator) in the probability of a correct choice and in the time
to reach a solution. The utility function is included because the best solution is not neces
sarily the solution with the highest probability. Utility is calculated on the basis of:
(1) the importance of the decision on up to any three preselected mission goals, and
(2) the effects of each course of action on the goals. The resultant utility values are used
to adjust the input probability of moving toward each goal.

Monte Carlo processes are employed to complete the stepping process and the final
decision is compared with the correct decision to determine decision correctness. If the
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Fig. 2. Overall Flow Logic of Decision Subroutine.

completion of a step does not cause the simulated decision maker to enter a decision state,
at the conclusion of the step the input probabilities are further altered on the bases of the
Bayesian logic. This represents changes in the simulated decision maker's state on the basis
of the information gained during the step.

3.2. Recognition Model

Recognition of objects represents a cognitive activity which is important to almost every
real-life situation. The present recognition model14 was developed as a part of a total simu
lation of the actions of operators of an advanced radar system. The subroutine does not
include the search, detection, or tracking activities since these are simulated in other sub
routines. Only the object identification (classification) function is considered here.

The goal here was determining the capability of an operator to recognize one of several
predefined "primitive" objects. The model was based on the thinking of Reed,17 who indi
cated the relative ascendancy of "features analysis" over "template matching" because
features analysis rests on structuring the stimulus pattern in terms of primitive-
characterized strokes to correspond to environmental invariants.
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The recognition simulation first calls for determining an initial classification probability
on the basis of the number of strokes in the object under consideration. This first approxi
mation is based on the logic of Deese18 that "stimulus complexity and ease of identification
appear to be related as a U-shaped function." That is to say, features can neither be too
few nor too many and neither too similar nor too dissimilar to expedite the recognition of
pictorial images. The function employed in the simulation (Fig. 3) was developed on the
basis of the data presented by Levine and Eldredge19 who asked experienced photo inter
preters to classify a set of already detected targets.

This initial classification probability is then successively moderated (degraded) by four
functions: (1) deviation from primitive in number of strokes, (2) deviation from primi
tive in angle of main stroke, (3) deviation from primitive in length of main stroke, and
(4) deviation from primitive in curvature of main curved line.

The first of these functions, the deviation of the subject figure from the primitive in
terms of number of strokes (Fig. 4), is based on the conjecture that classification accu
racy will degrade as the detail in a representation deviates from learned or anticipated
detail. In a sense, a figure which is the same as a learned figure can be considered to be a
structured stimulus. The influence of structure in form perception was acknowledged by
Aiken and Brown,20 who asserted that "Thus it appears that the O, in dealing with rela
tively weakly structured stimulus configurations, will impose a consistent structure of his
own generation, to organize the stimulus configuration" (p. 282). Arnoult21 concluded
similarly. Empirical image evaluative studies22-23 in which the amount of structure
(learned detail) was varied also support this conjecture.

The function for deviation from primitive in angle of main stroke rests on the argument
that a shaped rotated out of the orientation in which it was learned is less readily recog
nized. As stated by Hake24 (p. 151):

Actually, the fact that recognition of forms and comparative
judgments of forms deteriorates when forms are rotated with
respect to the observer has been known for a long time.

Hake reported a number of studies which support the contention of modified association
value for slanted (rotated) figures. In the simulation, the results of Arnoult21 were relied
on to provide the basic function. Arnoult varied 10 nonsense shapes over eight angular
positions and asked subjects for "same" or "different" judgments when the rotated shape
was compared to a standard. Arnoult's data were smoothed and rescaled. However, the
shape of the Arnoult curve was closely approximated. The resultant function is shown in
Fig. 5.

The function for deviation from primitive in length of main stroke (Fig. 6) presup
poses that subjective response alternatives increase as the target size decreases so that the
match between stimulus and its mental template in memory is more difficult. That is,
guessing must be instituted until a correct "match" between current stimulus-input and
memory-pattern has been achieved when very small targets are involved. The constraints
that preexist in the real environment need to be discovered through successive trial-and-
error episodes until stimulus features correspond to predefined pattern features sufficiently
that the intended recognition response is obtained. Bruns, Bittner, and Stevenson25 in a
dynamic television identification task concluded that "Target effects were primarily related
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Fig. 3. Initial Classification Probability as a Function of the Number of Strokes in
Generated Target.
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Fig. 4. Degradation of Classification Probability as a Function of Deviation in Number
of Strokes.

to target size expressed either as target area or target diagonal." Their data, employed to
derive the function shown in Fig. 6, indicated an almost linear relationship (r = 0.98)
between slant-range identification and target diagonal, with a slant-range degradation ratio
of about 6:1 for "small" as compared with "larger" targets.

The fourth function, for deviation from primitive in curvature (Fig. 7), was similarly
based on the contention that deviation from an anticipated image will decrease classifica
tion accuracy. No studies were identified that reported data relative to the effect of curva
ture on recognition accuracy. Accordingly, the function was derived on the basis of the
best professional judgment of the developers of the simulation.

The recognition module also considers context, proficiency of the operator, and stress.
The context effect was based on the work of Miller, Heise, and Lichten,26 who reported a
range of context effects of about 30 percent. This effect is simulated by drawing and
applying a random number that is equiprobable in the range 0 to 0.30. Operator profi
ciency and the stress effect are simulated in much the same manner as for other models we
have developed.27
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The computer logic flow for the total recognition model is presented as Fig. 8. Here
RY represents a random number in the range of 0 to 1, STR(M) represents the stress
threshold, M specifies an operator, and F(M) represents operator proficiency.

3.3. General Nuclear Power Plant Decision Model

Finally, it is possible that the decision making for maintenance tasks in nuclear power
plants might be simulated through a trait approach. As the result of a set of job
analyses,28,29 it is known that work of maintenance personnel in nuclear power plants is
dependent on at least three primary mental abilities: (1) cognition, (2) problem solving,
and (3) memory. The level of each of these abilities required for performing various
instrument and control technician functions is shown in Fig. 9. In Fig. 9, the required
levels are scaled from 1 to 7, where a value of 1 indicates "no" requirement for the ability
when performing the function and a value of 7 indicates "very much" of a requirement for
the ability.

If one knows the required ability level for a function, it seems that the cognitive
processes can be modeled quite directly. Again, such a model would be best embedded
within a total performance model if a real-life situation is involved.
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The model for deriving the probability of a correct decision is drawn from prior
psychometric work in test construction and item analysis. The concept of the selected logic
is based on the model presented by Rasch30 for item analysis. Rasch pointed out that the
probability of a correct response to a test item depends on both the examinee's ability and
the difficulty of the item. The relationship is best described by the normal ogive function:

ex

l+e*
probability of a correct response ,

where x is the difference between the test question difficulty and the examinee's ability.
The equation holds that the difference between required ability and actual ability is the
key to success probability determination. The Rasch approach has been demonstrated to be
robust despite violations of its assumptions.31

To model the decision function using this concept requires estimates of decision diffi
culty and of the operator's ability. Data relative to decision difficulty can be extrapolated
from Fig. 9, where the "ability required" data can be constructed to represent "decision
difficulty level" for each function. Assume that a computer simulation model "knows"
(from parameter inputs) the level on each of the three mental abilities of the operator(s)
who must perform the function. The probability that the operator will successfully make
the decision is determined by comparing the "actual" (simulated) ability levels of the
operator with the levels required for function performance. The comparison is weighted by
the logarithm of the operator's ability plus the load (i.e., required ability):

D = (ability - load) log (ability + load) .

The weighting is based on a logarithmic logic because of: (1) the logarithmic nature of
many psychological functions,32 and (2) recent information about the exponential nature
of the distribution of errors in nuclear power plants.33

When a decision maker's ability exactly matches the function load, the resulting differ
ence is zero. Negative values indicate function requirements in excess of the operator's
ability. Positive values indicate that the decision maker's ability is greater than that
required by the task. These difference values are employed in the logistic model to provide
the success probability for the function.

If one assumes that the probability of a correct performance of a function or a decision
is 0.90 when requirements and ability match, the curve for the probability of a correct
decision which emerges is that shown in Fig. 10. This is accomplished by an assignment
for x = x + 2.2 in the ogive function for P above. Using this curve, the probability
for all combinations of required abilities and actual operator abilities can be found. These
are shown in Table 3. The computer logic is shown in Fig. 11.

4. DISCUSSION

The prior discussion attempted to set into perspective cognitive modeling within the
context of computer simulation. To this end, three examples of cognitive models that have
been or could be implemented within full computer simulation performance models were



141

1.0

.9 /^""~"

.8 /
to

/
CO .7 m

IU m

o m

o M
3 m

10
.6 g

li
es #

t /
_l .5 X
CD m

2 I
§ /
Q. • 4

I
.3 1
.2 /
.1

1 1 , 1 1 1 1 1 1 1 1 1 1

-4 -3 -2

ABILITY-: LOAD

-H +2 +3 +4

ABILITY > LOAD

D= (ABILITY-LOAD) log ( ABILITY + LOAD)

Fig. 10. Probability of Success as a Function of the Difference Between Subtask Load
and Operator Ability.

presented. Cognition is viewed as one aspect of human behavioral simulation. Certainly,
any total model must consider not only the representation of cognition but also the influ
ence of other variables on the cognitive process. Examples of these other variables for
nuclear power plant operation and maintenance were presented earlier. Because of the
interactive complexity of these variables among themselves and with cognition, it seems
that the computer simulation approach is the most promising for performance simulation.
Certainly, cognitive subroutines should be included within such total performance models.
Total performance models are within the state of the art, as is the incorporation of cogni
tive subroutines within such models. Cognition does not occur in isolation. It occurs in a
context. For this reason, any model which considers cognition in isolation from a total
situation or which contains no cognition elements is apt to be barren or insensitive.
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Table 3. Success Probability for Different Combinations of Subtask
Loading and Operator Ability (OA)

Subtask Loading

Success Probability

OA = 1 OA = 2 OA = 3 OA = 4 OA = 5 OA = 6 OA = 7

1 0.900 0.936 0.968 0.987 0.995 0.998 1.000

2 0.849 0.900 0.948 0.977 0.991 0.997 0.999

3 0.730 0.818 0.900 0.955 0.982 0.994 0.998

4 0.526 0.656 0.795 0.900 0.959 0.985 0.995

5 0.286 0.417 0.597 0.777 0.900 0.962 0.987

6 0.117 0.196 0.340 0.550 0.761 0.900 0.965

7 0.038 0.071 0.142 0.284 0.510 0.748 0.900

Computer simulation and behavioral modeling are dependent on the availability of
acceptable theories for the various psychological and psychosocial elements. Behavioral
models, including cognitive models, will prosper or suffer in accordance with the adequacy
of the theories on which they are based. Given adequate theories, models can be designed
to represent the theories. And, given adequate input data, the models can be validated and
implemented. The gaps in the available behavioral theory are probably greater than the
gaps in the computer modeling technology. This should not be construed to suggest that
such modeling should not take place. We have shown by example that, at least with
respect to cognition, adequate theories exist upon which to base simulation. It seems most
prudent, therefore, to make the best use of those theories and data we have, while at the
same time attempting to improve our theories and our data bases.
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Paper 11

A RULE-BASED APPROACH TO COGNITIVE MODELING OF
REAL-TIME DECISION MAKING

Perry W. Thorndyke
Perceptronics, Inc.

Menlo Park, California 94025

1. INTRODUCTION

Recent developments in the fields of cognitive science and artificial intelligence have
made possible the creation of a new class of models of complex human behavior. These
models, referred to as either "expert" or "knowledge-based" systems, describe the high-level
cognitive processing undertaken by a skilled human to perform a complex, largely mental,
task. Expert systems have been developed to provide simulations of skilled performance of
a variety of tasks. These include problems of data interpretation, system monitoring and
fault isolation, prediction, planning, diagnosis, and design.1 In general, such systems strive
to produce prescriptive (error-free) behavior, rather than model descriptively the typical
human's errorful behavior. However, some research has sought to develop descriptive
models of human behavior using the same theoretical frameworks adopted by expert-
systems builders (see, for example, articles in ref. 2).

This paper presents an overview of this theoretical framework and modeling approach,
and indicates the applicability of such models to the development of a model of control
room operators in a nuclear power plant. Such a model could serve several beneficial func
tions in plant design, licensing, and operation. First, the model could support the develop
ment of a task analysis of the operator's functions. Such an analysis would be useful in the
design and development of SPDS* displays or other procedures aids. Second, the model
could be used in a variety of training functions — to assist in the development of perfor
mance criteria, to model typical operator deficiencies and errors, or to embed in an
automated instructional system with a computer-based surrogate instructor. Third, the
model could be used as a surrogate operator in system experiments. Such experiments
would utilize a computer-based simulation of the operator in conjunction with a plant
simulation to evaluate the impact of new systems on plant operations. In such similar
experiments, the system configuration would be treated as an independent (i.e., manipu
lated) variable, the operator would be a controlled variable, and the overall performance of
the system would be the dependent (that is, measured) variable. Fourth, the model could
be used to evaluate proposed operator procedures. In this role, the operator model would
become the independent variable in system experiments, with operator behavior governed
by the alternative sets of proposed procedures. Fifth, the model could be used to conduct
sensitivity analyses on the impact of operator performance on plant operations. For exam
ple, the analyst might systematically vary the behavior of the simulated operator to exam
ine the effects of different skill levels, error types, or attentional failures on plant perfor
mance. Finally, the model might be used to design task allocations and organizations for
multiperson teams of control room personnel.

'Safety Parameter Display System.

147



148

These intended uses of a cognitive model of the control room operator place constraints
on the design of the model. As in other models and simulations of cognitive problem-
solving behavior, modeling the control room operator requires a realistic simulation of the
skills, actions, hunches, procedures, and heuristics (that is, rules of thumb) of the human
problem solver. Achieving realism in the simulation entails producing a functionally accu
rate and "reasonable" model of the operator's behavior. In order for the analyst to under
stand the reasons underlying the production of a particular behavior by the simulation, it
should model the intermediate states of the operator's memory and attentional field prior
to the generation of an action. This requires the model to represent and the simulation to
provide continuously available output of the operator's working memory at each point dur
ing the simulation. Such output of the simulation should be intelligible — that is, the sys
tem should be capable of providing rationales for produced behaviors. The capability of
tracing simulation behaviors to their sources allows the analyst to both understand the
dynamics of the operator's performance and to identify inadequacies or deficiencies in the
model. Finally, the simulation embodying the cognitive model should be flexible and
modifiable to allow easy incremental revision and experimentation with the governing rules
of behavior.

In previous work on expert systems, two techniques have been successfully applied to
the development of realistic, intelligible, and flexible simulations. First, researchers have
modeled cognitive behavior as a collection of discrete, interacting processes operating at
multiple levels of abstraction. The individual processes have unique triggering conditions,
operations they perform, and outputs they produce. Second, English-like programming
languages have provided the software tools for implementing complex cognitive models in
comprehensible, modifiable codes. These languages feature the use of IF-THEN produc
tion rules to represent the detailed operation in each component cognitive process. This
multilevel, rule-based approach has been applied to modeling such activities as planning,
tactical decision making, and air traffic control. Like power plant monitoring and control,
these activities will require time-stressed situation assessment, plan formulation, plan exe
cution and monitoring, and dynamic replanning.

The remainder of this paper will address four topics. First, the tasks of the control
room operator will be viewed as an example model-based situation assessment and plan
ning (SA&P).3 Second, a general framework for modeling cognitive performance on
SA&P tasks will be presented. This framework assumes that multiple cooperating "expert"
processes share common resources to achieve the task objectives. Third, we will describe
the advantages of rule-based systems for implementing the cognitive model. Fourth, we will
briefly review previous and current research projects in the area of rule-based modeling of
SA&P.

2. MODEL-BASED SITUATION ASSESSMENT AND PLANNING

Like many other cognitive tasks that require attention and response to conditions in the
external environment, the operator's functions comprise largely monitoring systems and
indicators, diagnosing problems when they occur, and developing and executing plans to
maintain desired states. Taken together, these tasks constitute examples of model-based
situation assessment and planning. A general form of this model is shown in Fig. 1. The
"model" comprises a set of concepts, facts, rules, procedures, beliefs, and heuristics in the
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WORLD MODEL

- Current state

- Beliefs

- Task knowledge
- Objectives

Projections

Actions

Fig. 1. Model-Based Situation Assessment and Planning.

head of the operator. This model constitutes the knowledge base the operator uses to carry
out the assigned functions.

During situation assessment, the operator receives sensor data or information communi
cated from other personnel and evaluates it against his current model of the external
world. That model supports the development of expectations about what observations to
anticipate — expectations that may or may not be met by the actual data. As the exter
nal data change, the operator must update his mental model to reflect the new state of the
environment. As the environment changes, the operator must determine which of the new
conditions invite or necessitate responsive actions. In addition, his assessment will involve
the generation of hypotheses concerning the causes of the new data he is receiving.

During planning, the operator must select one or more goals to be achieved, based on
the current situation assessment, the operator's model of the state of the environment, and
projections about how the environment will change over time. The operator must then syn
thesize one (or more) plans for achieving the objectives and refine them through the selec
tion of appropriate actions. If more than one plan exists, the operator must then evaluate
the probable outcomes of plan execution, evaluate the costs and benefits, and select the
best option.

During plan execution, the operator performs the actions specified by the selected plan
and monitors the resulting state of the environment, replanning as necessary to compensate
for surprising events or failed plans. Any or all of these functions may require communica
tion with other individuals or systems — either to provide status reports or to coordinate
plans and actions with other personnel.

Numerous applications of this model to real-world tasks suggest the robustness of this
general framework. In the military arena, real-time situation assessment of battle condi
tions requires analysis of sensor data, a model of force characteristics and tactics, and the
identification of threats and opportunities. Planning entails directing or redirecting forces
to meet the identified mission objectives. In air traffic control, the controller monitors
radar displays and voice communications to detect conflicts and clearance requests.4 Plan
ning requires the rerouting of aircraft to satisfy safety constraints and minimize delay.
Another application, motivated by chemists from Oak Ridge National Laboratory, involves
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the identification and location of hazardous chemical spills. The situation assessment prob
lem requires hypothesizing possible spill sources and identities, while the planning problem
concerns what to measure and where to perform the measurements.5

3. THE ORGANIZATION OF THE COGNITIVE MODEL

To model the organization of the various activities required for time-stressed SA&P,
we have found it useful to adopt the "cooperating experts" paradigm. This paradigm, first
proposed as a model of speech understanding,6 had been used to model planning,7 air fleet
control,4 and tactical decision making.8 It assumes that a set of independent processing
modules cooperate and communicate via a common world model, or data base. Figure 2
illustrates the particular version of the cooperating experts paradigm used to simulate the
real-time control of aircraft.4 Each ellipse represents a functional specialist with its own
scope of concern, goals, and procedures for accomplishing those goals. The arrows between
the ellipses indicate data or results transferred to or from the world model, around which
the specialists are organized. Each specialist uses the world model to support its activities,
and each alters the contents of the model as part of its actions.

GROUND

Fig. 2. Architecture of the Model for Air Fleet Control.
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The specialists adopted for the cognitive models of air fleet control and tactical decision
making include situation assessment, plan generation, plan evaluation, control, and com
munication. The situation assessment specialist interprets sensor data, recognizes altered
states of the world, and determines conditions that require the human to take action. The
plan generation specialist sets goals and designs a configuration of actions to achieve the
goal. The plan evaluation specialist determines the uncertainties and projected outcomes
associated with each plan provided by the plan generator, and selects the best of the avail
able plans. The control specialist performs the actions specified by the selected plan and
monitors plan execution. The communication specialist reports status to and coordinates
actions with other individuals participating in the problem-solving process.

Since only one process may be active at a time, a scheduling process must control the
allocation of processing control to the various specialists. Thus, three features characterize
models organized according to the cooperating experts paradigm: the number and type of
specialists, the structure and content of the world model, and the control regime for
scheduling execution of the specialists. The remainder of this section considers these three
features in more detail.

3.1 Processing Specialists

The expertise contained in each processing module is represented by a set of rules with
the form IF (condition) THEN (action). Each rule contains a number of predicates that
must be satisfied by the data objects in the world model and their relationships. If the tests
are satisfied, then the action associated with the rule may be performed. The predicates
include both actions performed by the operator, new facts or beliefs, or constraints on his
future behavior. For example, the following rule might be part of the situation assessment
specialist for a power plant operator:

IF PZR pressure is falling
AND PZR level is falling
AND PRT temperature is normal
AND PRT pressure is normal
AND CNTMT/AUX alarm is on

THEN create an emergency
AND assert that the type of the emergency is

loss-of-coolant-accident with probability .8
AND let the source of the emergency be unknown.

Other rules in the situation assessment module would recognize other types of plant mal
functions or reason about the sources of the problems.

Newly asserted information is recorded in the world model for inspection and use by all
of the processing specialists. For example, the plan generation module would contain rules
to set and achieve goals, given the current assessment. One such rule might be:

IF there is an emergency whose type is loss-of-coolant-accident
THEN assert that stop-coolant-loss is a goal whose status is unattained

AND whose posting-time is (the current time)
AND let the criticality of the goal be high.
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3.2 Structure of the World Model

The world model corresponds to the working and long-term memory of the modeled
human It comprises a relational data base of concepts, attributes of the concepts, and
relations among the concepts. For example, the following description of one particular con
cept might reside in the world model:

Emergency

ID = Event28

Type = Loss-of-coolant-accident

Time = 0947

Date = 072679

Source = Unknown

Depending on the particular application, the knowledge contained in the world model
may be organized in a variety of ways. For example, in B. Hayes-Roth's model of
planning,7 knowledge is partitioned among five conceptual planes, or knowledge bases: the
world knowledge plane, the plan plane, the plan abstraction plane, the meta-plan plane,
and the execution plane. Facts in the world knowledge plane record data and observations
about the world, as in the example above. Facts in the plan abstraction plane contain
knowledge of the desired attributes of the plan, without specifying actual planned actions
(for example, attend to the most critical emergency first). Knowledge in the meta-plan
plane describes how to approach the problem, what methods to apply, and criteria for gen
erating prospective plans. These types of knowledge all support the development of actual
plans to be executed. The executive plan contains knowledge useful in deciding how to
schedule the execution of the various specialists. This knowledge may include requests for
activation from the various specialists, information about priorities, or knowledge about the
expected results to be obtained from each specialist. Knowledge on the plan plane records
elements of the developing plan and actions the planner expects to perform. In this and
other planning models, these plan elements include decisions at multiple levels of abstrac
tion. At the highest level, the planner may specify the goals to be achieved by the plan. At
the next level of abstraction, the planner may specify the tactics, design, or approach by
which the objectives will be achieved. At the next lower level of abstraction, the planner
may indicate the sequence of procedures to be used to achieve the goal. At lower levels of
abstraction, the planner may specify the individual actions and operations required to carry
out the selected procedures.

3.3 Control Regime

Specialists monitor the state of the world model and, when appropriate, post requests
for activation and processing time. This knowledge is used by an executive specialist that
schedules the activation of other specialists based on these requests and a set of scheduling
heuristics. These heuristics take into account a procedural model of the operator's task
(that is, what tasks are prerequisites to what other tasks), priorities, emergencies, the
current focus (that is, activity), and the expected utility of scheduling various activities.
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This design leads to two features of the model that correspond to characteristics of
human processors in time-stressed decision-making situations. First, the human has limited
attentional and processing resources to allocate to the multiple tasks and the glut of data
he must assimilate. Thus, the executive specialist must determine the most cost-effective
use of their limited resources. Second, the decision maker does not engage in a strictly
sequential performance of the various activities he must perform. That is, he does not
merely assess the situation, develop and select a plan, and then execute the plan in strict
succession. Rather, the assessment of the situation is an ongoing process, whose partial
results contribute the development and evaluation of the plan at hand. As new actions are
performed and new data arrive, plans may be modified, discarded, or re-evaluated. Thus,
time-stressed decision-making performance is best viewed as a set of asynchronous
processes whose performance is mediated by a common memory (the world model) and
whose execution is coordinated by an executive scheduling process.

4. RULE-BASED SIMULATIONS OF COGNITIVE BEHAVIOR

Traditional simulations of complex systems are designed to be used in "batch" mode.
After the user specifies the initial values of the simulation parameters, the program runs to
completion, producing the simulation results (often an event history). The user then must
analyze this output to recover the results of interest.

Such simulations have a variety of shortcomings. First, they are often unintelligible,
comprising thousands of lines of, for example, FORTRAN code. In such systems, critical
assumptions and designs governing the performance of the model are buried in difficult to
decipher program code. Therefore, these simulations often lack credibility, because they
are unable to justify or display the underlying reasons a particular behavior was produced.
Furthermore, such systems are typically monolithic, inflexible, and difficult to modify.

The use of rule-based programming languages to engineer simulations offers the oppor
tunity to eliminate these shortcomings. By representing the system's behavior in rules such
as those illustrated above, the modeler provides a comprehensible, English-like encoding of
the expertise used by the simulation to produce its behavior. These rules may be readily
generated and examined by both researchers, subject matter experts, and individuals
interested in the knowledge used by the simulation. Since the rules are modular, it is rela
tively simple to modify portions of the model and incrementally refine portions of the
simulation without disrupting the integrity of the remaining rules. Such capabilities make
it possible for the subject matter expert to play a more prominent role in developing and
experimenting with the system than is possible with traditional simulators. Recently
developed languages for building rule-based systems include ROSS,9 ROSIE,10
EMYCIN,11 OPS12and AGE.13

The rule-based formalism provides the flexibility to represent many types of knowledge.
The rules can readily represent heuristics and nondeterministic events and outcomes, which
are essential to any realistic model of complex behavior. In addition, rules provide a con
venient language for representing routine and standard procedures, many of which are
expressed in IF-THEN form.
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Several of the rule-based programming languages provide facilities for examining
interactively and in detail the behavior of the simulation. Users may inquire why a particu
lar behavior was generated, and receive a trace of the rules that were executed in the
simulation that led to the action of interest. By altering specific rules or heuristics, the user
can conduct experiments or perform sensitivity analyses to determine the consequences of
adding or deleting rules, conditions, or values.

Computer simulations embodying rule-based models can serve both training and
test/evaluation functions. In a training function, the simulation can serve as a surrogate
instructor, generating responses to problem scenarios and contrasting them to the responses
selected by the trainee. Alternatively, the system might simulate the behavior of another
individual with whom the trainee interacts during task performance. For example, Percep-
tronics is currently developing a rule-based simulation of tactical decision making for use
as an automated opponent in naval training games. The simulation will develop offensive
and defensive strategies and tactics for use in simulated naval battles, and will direct forces
against a human player. A key feature of the system is the use of English-like rules to
encode the knowledge used by the situation assessment, tactics selection, and planning
modules of the system. By using modular rules to encode the rules of behavior, the instruc
tor will be able to manipulate the skill and behavior exhibited by the opponent by selec
tively editing or deleting particular rules.

In the test/evaluation mode, rule-based systems can simulate operator or system perfor
mance in a variety of experiments. For example, the ROSS (Rule-Oriented Simulation
System) developed at The Rand Corporation simulates strategic air battles.9 The system
users can postulate alternative sensor or weapons systems, force ratios, or tactical options
by editing the rules and knowledge base the system uses. These manipulations can then be
used to perform strategic assessments by running and examining the results of the battle
simulation.

A similar methodology could be applied to the evaluation of power plant system perfor
mance, in which operator behavior was simulated by a rule-based system. An interface
between this system and an existing or another rule-based system of plant equipment
operation would allow the evaluation of the combined human-machine system. Experi
ments could simulate plant performance and assess operator responses under a variety of
assumptions about operator skill, workload, error rates and types, and response speed.
These assumptions could be varied by modification of the rules used by the simulation.
Alternatively, the experiments could vary simulated plant conditions to determine likely
operator behaviors and overall performance of the combined system.

5. SUMMARY

Cognitive models of situation assessment and planning appear to offer promising
modeling tools for the development of detailed models of power plant operators. When
combined with the existing technology offered by artificial intelligence and rule-based sys
tems, such models can result in flexible simulations for modeling, analysis, and evaluation.
The research approach for achieving this capability has five major steps:
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1. Design and build the cognitive model.

2. Conduct experimental investigations to refine and validate the model.

3. Apply the model to the analysis of individual differences.

4. Apply the model to the analysis of errors and skill deficiencies.

5. Infer principles for systems design and operation (for example, selection, training,
plant design and procedures, automated aids, etc.).
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Working Group No. 1

SURVEY OF DEVELOPMENT OF MODELS AS APPLIED
TO NUCLEAR PLANT OPERATORS (I)

W. B. Rouse, Chairman

C. E. Feehrer

M. G. Johnson

J. Fragola
T. P. Moran

N. Moray
W. R. Nelson

J. Rasmussen

A. I. Siegel
P. W. Thorndyke

Working Group No. 1 attempted to catalog a variety of existing modeling methodolo
gies with regard to several attributes. First, the degree to which various models could rea
sonably be used to describe different aspects of human behavior was addressed. The
pursuit of this issue was structured in .
terms of one of Jens Rasmussen's concep- Evaluation
tualizations as shown in Fig. 1. Based on
this figure, the group decided to concen
trate on the behaviors above the wavy Imagining of Consequences
line.

Table 1 summarizes the attributes of
the models or methodologies discussed.
As is evident, there was a strong
emphasis on models that have been
applied to some engineering systems
and/or models that are obviously applica
ble in this way. As a result, many
psychological concepts and theories are
not included. This was not meant to
slight their importance. Indeed, they are
essential ingredients for the successful
application of the methods that are tabu
lated.

From this perspective, it should be
stressed that these methods are very
broad and can be specialized to a variety
of applications, incorporating a variety of
psychological and engineering concepts,
laws, etc., in the process. This leads to a
succinct conclusion: While the cognitive
modeling of the nuclear power plant
operator is a difficult problem, there are
a variety of robust and well-tested model
ling methodologies available.

Identification

of System State
and Configuration

Observation and

Sampling

Definition

foi Task

Formulation

of Procedure

Execution

Fig. 1. Simplified Map of Mental Activities
Sequence from Jens Rasmussen.
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Table 1. Summary of Attributes of Models, Methodologies, or Theories
for Various Applications

Model/Theory

Information theory

Queueing theory

Supervisory theory
(decision theory
based sampling)

Information theory
(time to decide)

Signal detection theory
(yes/no decision)

Statistical pattern recognition
(yes/no decision)

Optimal estimation/filtering
(yes/no decision)

Rule-based models

(yes/no decision)

Statistical pattern
recognition

Rule-based models

Fuzzy set theory

Attribute

For Observation and Sampling

- Has been applied to aircraft cockpit design and evaluation
- Closed form calculation is possible
- Has narrow range of applicability

- Has been applied to aircraft cockpit design and evaluation
and air traffic control

- Closed form calculation is often possible
- Has wide range of applicability

- Some applications to radar monitoring have been made
- Is potentially applicable

For Observation -• Identification (Detection)

- Has been applied to other problems
- Closed form calculation is possible
- Is potentially applicable
- Has narrow range of applicability

- Has been applied to medical decision making, sonar,
avionics maintenance, and process control systems

- Closed form calculation is possible
- Is potentially applicable

- Has been applied to medical decision making and
process control systems

- Closed form calculation is possible
- Has wide range of applicability

- Has been applied to other problems
- Has been applied to aircraft instrument failures
- Closed form calculation is possible
- Has narrow range of applicability

- Have many related applications
- Calculations are non-closed form
- Have wide range of applicability

For Identification (Diagnosis)

- Has been applied in medical diagnosis
- Has been applied in other judgement processes
- Closed form calculation is possible
- Has wide range of applicability

- Have many applications, especially in artificial
intelligence

- Calculations are non-closed form
- Have wide range of applicability

- Has been applied to medical diagnosis, fault diagnosis,
and process control systems

- Is "somewhat" obscure
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Table 1 (continued)

Model/Theory . Attribute
For Imagining of Consequences (Predictions)

Statistical pattern recognition - Has been used to determine medical treatment
- Closed form calculation is possible
- Has narrow range of applicability

Rule-based models - Have been used for air traffic control and other
applications, especially in artificial intelligence

- Calculations are non-closed form

- Have wide range of applicability

Semantic models - "Steamer" (qualitative simulator)
- Tighter than rule-based models
- Calculations are non-closed form

Stateequation models - Have been used with great success in manual control
- Have been used to describe plant
- Closed form calculations are possible
- Models are descriptive, but not necessarily explanative

For Evaluation (Models of Choosing)

Utility theory - (EV, SEV, EU, SEU)*
- Has many relevant applications
- Is normative

Prospect theory - Has substantial potential
- Is descriptive

Policy capturing - Tells how decisions were made __
Fundamental Tradeoffs

Range of applicability vs. tightness of formulation
Range ofcomprehensibility vs. tightness of formulation
Broadness of conceptualization vs. runnability —

*EV, expected value; SEV, subjective expected value; EU, expected utility; SEU, subjective expected utility.
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SURVEY OF DEVELOPMENT OF MODELS AS APPLIED
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J. G. Wohl, Chairman

S. Baron W. J. Luckas, Jr.
B. J. Bell D. A. Norman

A. M. Fullerton R. Pulliam

J. P. Jenkins M. Williams
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In its survey of the development of cognitive models, Working Group No. 2 first asked
the question: Is cognitive modeling/cognitive science a productive area for NRC to sup
port? The consensus of the group was that the answer should be yes — but with provisos.
While to date there have been few applications, those few have included some small-scale
uses with high payoff. Certainly more basic science/exploration is needed. In the follow
ing outline, the group suggests a possible approach to the problem. The format is that of a
series of questions and answers, the latter including recommendations for courses of
actions.

Question 1: What can/should NRC do?

• NRC should support both basic science and applications.

• It should decide on a level of investment in the profession.

• It should not attempt to develop global models.

• It should back off to projects that have

— scientific merit and

— can be applied with high payoff.

Question 2: What work would give a high payoff?

• Scientific research projects that

— advance the art in formal and descriptive models,

— develop part-task models,

— develop human subsystem models,

— apply modern methods (e.g., artificial intelligence, optimal control and estimation).

• Model applications to

— assist and help direct task analyses,

— provide cognitive science support to specific NRC problems [such as human
reliability/diagnostic error predictions (see Fig. 2 of addendum to this Working
Group Report)].
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Question 3: What are NRC's specific problems? [Note: We have been asked for a list of
models, that is, for a list of answers. Before we can provide the answers, we need a list of
problems specified at the proper level so that we can determine which existing models can
be applied and what new model developments and scientific investigations will be neces
sary.]

• Suggestion: NRC should form an interdisciplinary task group to identify those prob
lems ripe for immediate application.

Question 4: What kinds of problems can models be applied to? For what purposes are
models useful?

• Example (a): Determining adequacy of system; that is,

instrumentation,

displays,

Are operator resources \ procedures,
controls,

accurate and timely

detection,

adequate to ensure "safe" ) diagnosis, \ system operation?
action,

within acceptable workload,

Example (b): Determining effect of operator capabilities/limitations on system perfor
mance, looking at performance of human/machine system (HMS) both for "best"
operators and for "behaviorally deficient" operators, where the latter may denote

— inadequate mental model,

— failure to know or follow procedures,

— use of S-rules only (see addendum to this Working Group Report),

— inappropriate goals.
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• Examples (c): Possible early applications, such as

— procedural aids, that is, aids to

increasing j publication
difficulty I documentation/justification

I J modification
] j critique
T I evaluation

' generation

of operating, maintenance
and emergency procedures.

— conceptual simulations (for training),

— decision support for existing systems,

— redesign of HMS interfaces for existing and planned systems.

• Examples (d): Applying models in other areas, such as:
— methodology development,

— sensitivity analysis,

— hardware innovations for

— display engines,

— portable/low cost symbolic processors,

— software innovations for

— rapid prototyping.

. Example (e): Using task group approach as way to leverage scarce resources for max-
imum gain, for example,
— possible analysis of SPDS* as test bed for application of task group, with goal to

develop "lessons learned," as well a possible SPDS improvements.

Question 5: What is the data-model problem and its relationship to task analysis?

Data

Models

• We need data to apply models of cogni
tive activities/

• We need models to know what data to

collect/

• We need to specify HMS functions,
objectives, and decision requirements (see
Figs. 1-3 for details of approach).

'Safety Parameter Display System.
^See addendum to this working group report.
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HMS

Objectives/Goals

Functional

Analysis

Cognitive Systems Research
(e.g.: Problem solving performance
is a function of problem representation.)

Control

Functions/Requirements

Via HMS Principles
(e.g.: Visual
momentum.)

Via Studies of Domain-Specific
Cognitive Processes

(e.g.: Identify the problem
representations experts use
in the specific application.)

Domain-Specific
Cognitive Processes

Domain-Specific
Decision Requirements

I
Application-Specific Interface Guidelines

(e.g.: Display system guidelines
that highlight the experts' problem
representations.)

Fig. 1. Approach. (After Woods and Hollnagel.1)
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Fig. 2. Resolution of Functions. (From Woods and Hollnagel.')
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Question 6: How are we to get the necessary data?

• More than just funding will be required; for example, we will need access to

— subject matter experts,

— plants, simulators, and design shops.

Question 7: Where are we and in what directions should we be going?

• Current NRC program includes

— expert system/AI problem solving, display requirements, experimental evaluation,

— maintainer performance prediction model, task analysis, validation,

— evaluation of psychophysical scaling methodology, use of utility theory to predict
success/failure performance,

— THERPf upgrade and final documentation,

— human performance data collection from simulator training.

• We are further along than most people seem to believe, but big holes exist in the
knowledge base. Examples of fundamental cognitive research problems we need to be
working on are:

— mental models (operator's mental representation of system),

— mutual models (operator's mental models of each other),

— models vis-a-vis task analysis (must expand task analysis technology to include
cognitive activities),

— multiple mental models (M3) (operators exhibit not one but several overlapping
models which affect/determine their behavior),

— system's (designer's) model of the user (determining operator characteristics impli
citly assumed by the system and the conditions under which these characteristics
are beyond the capabilities of (1) the "best" operator and (2) the "behaviorally
deficient" operator),

— operator's cognitive activities,

— structure of the environment (required for model of user).

Question 8: What about our knowledge of the nuclear power plant operator?

• "Go to the operator, learn his ways, and be wise." We need to understand much more
fully the operator and "where he is coming from" (see Figs. 4 and 5).

^Technique for Human Error Prediction.
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Knows system intimately, has rich mental model of
relationships, can modify mental model to account
for events and can improvise new procedures in
unusual circumstances.

Knows system and rules, has simplified mental model
of relationships and detailed understanding of system
elements, and recognizes when rules no longer apply
and mental model is inadequate.

Is still learning system elements, knows rules and
when to apply them, and has primitive mental model
of gross system relationships.

Is learning system and rules.

NOTE: Many jobs/tasks are sufficiently simple not to require knowledge-based behavior.

Fig. 4. Relationship Between Types of Behavior and Degree of Expertise. (From
,V«1 2\Wohl.2)

Question 9: What are our conclusions?

• NRC should look for some immediate applications of cognitive modeling with high
payoff.

• NRC should use task group approach to select the applications and also to point out
directions for new research.

• A long-range approach to fundamental research issues should be taken (science before
engineering).

• Funding should be applied judiciously.

• Powerful results can be expected in "N" years from better understanding of cognitive
functions, depending on

— a maturing technology,

— an expanded profession.

• We must all keep asking the question "What is the best direction?"

References:

1. D. D. Woods and E. Hollnagel, Cognitive Task Analysis (in press).

2. J. G. Wohl, Mathematical Representation of Cognitive Processes in Human-Machine
Interaction (in press).
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Overburdening of Operator with Responsibility But with Little Authority Over



Addendum to Report of Working Group No. 2:

COGNITIVE CAPABILITY VS. SYSTEM COMPLEXITY

IN ELECTRONIC MAINTENANCE

Joseph G. Wohl
Alphatech, Inc.

Abstract

Diagnostic behavior is strongly influenced by the
interaction between the diagnostician and the failed
equipment. Previous research resulted in a model of
diagnostic behavior which predicts repair time distribu
tions and expected values. The present paper shows the
relationship between expected value of repair time,
equipment complexity and human cognitive limitations.

Background

In a previous paper1 a predictive theory of diagnos
tic behavior in electronic maintenance was proposed.
The theory was based on the following observations and
assumptions:

• Repair time distributions generally are highly
skewed, such that mean repair time is largely deter
mined by the degree of skewness (i.e., the tail of the
distribution of repair times).

• Very long repair times appear to be due primarily
to diagnostic difficulty. Since all data were
corrected for time spent waiting for spares, and
since data acquisition times per test tend to be less
than an hour, this assumption appears warranted.

• A failed component generates a first-order suspect
component set (namely, all those to which it is
directly connected) of size S and mean S = 7+1,
where 7 = equipment complexity index as defined
below.

• The time to test a member of the set is a random
variable with constant mean to.

• The time between successive tests, i.e., diagnostic
interpretation time, is a random variable with
geometrically increasing mean A„.

• The order of successive tests is not significant. It
can be based on experience, relative failure proba
bility, symptom familiarity, or random choice.

The relationship of t0 and A„ to the diagnostic process
is shown in Fig. 1.

The theory was embodied in an analytical model
involving the three variables 7, to, and A„:

7 = the average number of items (components,
modules, circuit boards, etc.) directly connected
to any one item.

FIRST SECOND

TEST TEST

THIRD

TEST

FOURTH

TEST

WHERE

AVERAGE COMPONENT TEST TIME (INCLUDES REMOVAL, TEST AND REPLACEMENT)

AVERAGE TIME BETWEEN SUCCESSIVE TESTS. I E.. TIM E FOR THE n*TH DIAGNOSTIC STEP

TOTAL AVERAGE TIME REQUIRED FOR n-TH TEST PLUS n-TH DIAGNOSTIC STEP

Fig. 1. Relationship Between Time Per Test and Time
Between Tests (Diagnosis Time). (From ref. 1.)

to = the average time in fractional hours to acquire
and process information for a single diagnostic
step or test.

A„ = diagnostic time (i.e., hypothesis generation and
action selection time) for the nth diagnostic test
step.

The first variable, 7, is a direct measure of the com
plexity of the equipment. It is an equipment design
characteristic and can be obtained by a simple
enumerative process applied to circuit diagrams.

The second variable, t0, is a direct measure of the
ease of diagnostic information access. It is a human-
machine interaction characteristic and can be obtained
by field observation.

The third variable, A„, was utilized for curve-fitting
as follows: Let n = number of tests performed. Then
for the nth test or diagnostic step,

A„ = T0[(l/a"-1)-l],0<a<l,n>l. (1)

no
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A„ is taken to include the time for cognition, hypothesis
development and analysis, and action selection. This
formula represents the assumed geometric growth of
diagnostic time (see Fig. 1). Simple variations in the
parameter a allowed adjustment of the model to data
(i.e., curve-fitting).

As reported in ref. 1, the analytical model was sub
jected to initial testing in both standard and expected
value forms with encouraging results (see Fig. 2, for
example).
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The solutions to the expected-value equations for
the overall model, as given in ref. 1, fell into three
separate domains:
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Issues

In retrospect, the analytical results raised several
important issues:

(1) Of the three separate domains defined in Eqs.
2-4 above, the first corresponded to the laboratory data
cases; i.e., for those instances in which laboratory data
were taken, the value of a required to fit the data was
always 1.0, resulting in a simple exponential
distribution of repair time. Why should the laboratory
environment produce this result, as opposed to the field
environment?

(2) The second solution domain (Eq. 3)
corresponded to the field data cases. For the 10
equipments for which field maintenance data were
available, the value of a required to provide a best
visual fit was found to be between 0.85 and 0.90. Why
such a narrow range of values? What is the signifi
cance of this parameter? Does it somehow represent
(or at least involve) some basic human characteristic or
limitation in the technician-equipment interaction?

(3) Most puzzling of all was the third solution
domain; for if the inequality of Eq. 4 holds, then mean
repair time is infinite. This means that there can be
cases in which equipment complexity is such that
human diagnosis will never be successful (or, more pre
cisely, that diagnostic time can grow without bound).
Can this be so? And if so, why?

(4) Finally, one of the consistent findings in ref. 1
was that all of the field maintainability data showed a
characteristic bimodality (see Fig. 2, for example).
Could this be related to fundamental differences in

search techniques such as those represented by
Rasmussen's symptomatic (5) and topographic (T)
search strategies?2 If so, how?

Results

With regard to the first issue, that of the
discrepancy between laboratory and field repair time
distributions, a discrete-variable differentiation of Eq. 1
shows that the rate of increase of A„ quickly
approaches the asymptotic value (1-a) as n increases.
Thus, for the laboratory data cases, in which it was
found that a=\, it would appear that A„, rather than
increasing geometrically with n, remains constant. This
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effect can be interpreted as follows. If a strictly ran
dom search of the suspect set S is made, then the prob
ability of locating the failed component on the «th "try"
is represented by a uniform distribution of range S and
uniform probability P„ = 1/5, 1 < n < S. If the dis
tribution of S itself is Poisson for any given equipment
(e.g., Equipment A in ref. 3), then this assumption
gives rise to the exponential distribution of repair time
typical of laboratory data. This effect is entirely
predictable as long as "rare events" such as "intermit-
tents" or unusual component characteristics, which
often account for the longer diagnostic times, are not
generally introduced in laboratory situations.

To address the second and third issues identified in
the preceding section, let us begin by solving Eq. 4 for
7:

7>
1

1-a
or7> k, where k =

1

1-a
(5)

This states, in essence, that if equipment complexity is
at least as great as some number (say, k), then T =
oo. This result in itself is suggestive. But what is the
value of this number k, and more importantly, what is
its significance?

The answer lies in the narrow range of values of a
among the 10 cases of field maintenance investigated in
ref. 1:

0.85 < a < 0.90 .

Substituting the extremes for a in Eq. 5, we obtain the
following direct interpretation:

If 7 > k,

then T = oo if

(a = 0.85)

(a = 0.90)

The meaning of this inequality now becomes clear: If
equipment complexity exceeds the technician's ability
to understand and deal with it, then T = oo indeed.
Hence the curve-fitting parameter a, along with its
derivative parameter k, must be related to a human
cognitive complexity limitation.

We suggest that k is, simply, the number of items
that can be simultaneously held in human short-term
memory. Thus if equipment complexity as measured
by the average number of connections per component
exceeds human "buffer storage" capacity, one may
expect eventually to experience maintenance situations
involving unsuccessful fault isolation over increasingly
long periods of time. Technicians often speak about
troubles that have defied diagnosis to the point where
equipment had to be either completely overhauled or
discarded; software "bugs" have been found to resist
isolation for years. So there is anecdotal evidence that
such cases have indeed occurred, if rarely.

The fourth issue is of interest from a design stand
point. Rouse and Hunt4 refined Rasmussen's taxonomy

of search strategies and defined their boundaries, cal
ling them S-rules and T-rules. S-rules are system-
determined and serve to map symptoms directly onto
system structure, i.e., failure sources, while T-rules are
context-free and serve as guidelines for searching or
analyzing the problem structure, i.e., the symptom
reasons. Since S-rules are efficient, they are generally
used in preference to T-rules and are abandoned only
after they are found not to work. The relative effi
ciency of S-rules can be presumed to account for the
early or accelerating part (i<1 hour) of the field main
tainability data plots in ref. 1 (e.g., as in Fig. 2) and
the T-rules to account for the later or decelerating part
of the plots. In addition, S-rules can easily be
automated, and much built-in test equipment and test
routines embody such rules. T-rules, on the other
hand, are much more difficult to automate, and it
would appear that future progress in designing equip
ment to reduce diagnostic time will occur as a result of
efforts in this area.

Discussion and Conclusions

An attempt has been made to explain some of the
puzzling consequences of the theory of diagnostic
behavior proposed in ref. 1. Of course, the theory itself
requires further experimental validation. But the fore
going results serve to simplify the theory by essentially
fixing one of the parameters, viz: k = 1 (ref. 5) or,
equivalently, a = 0.857. This leaves only the two vari
ables 7 and to to be measured experimentally and elim
inates the arbitrary curve-fitting parameter. It is also
clear that the theory proposed in ref. 1 applies only to
T-rule behavior. However, this suggests that applica
tions of the theory may extend beyond electronic
maintenance and into other human problem-solving and
diagnosis areas in which T-rules play a major role.

Finally, one of the potentially important and dis
turbing implications of the theory should be pointed
out.* The equipment for which repair time data were
available was representative of 1950's and 1970's tech
nology. Note that this equipment was all designed by
engineers with normal cognitive complexity limitations.
The electronics technology of the 1980's and 1990's is
moving increasingly towards Computer Aided Design
(CAD), for which no such limitations exist. What are
the implications of CAD for field maintenance in gen
eral, and in particular for system partitioning, test
equipment design (built-in and otherwise), diagnostic
procedures, personnel selection and training, and logis
tics and spare parts policy? It may be necessary, for
example, to require that CAD constrain the physical
partitioning of the resultant design such that its com
plexity index is less than 7. In any event, it will be
necessary to match the diagnostic abilities of future test
systems with the complexity of future electronic sys
tems.

*I am indebted to Dr. Joel Lawson, Chief Scientist,
C3 Division, U.S. Naval Electronic Systems Command,
Washington, D.C. for raising this issue.
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USE OF COGNITIVE MODELS OF NUCLEAR PLANT OPERATORS
IN DESIGN AND OPERATION

J. Wreathall, Chairman

W. R. Corcoran K. Murphy, Jr.
D. Farr R. A. Newton

J. M. Gallagher, Jr. T. Ryan
T. Hatcher J. W. Senders

The overall conclusion of this working group was that we could not reach any unani
mous agreement whether the development of models of cognitive behavior were worthwhile
on the part of the industry. The group found it difficult to understand how those methods
of cognitive modeling currently available and discussed both in the position papers and by
the other working groups could address the present concerns of the industry. In particular,
it does not appear that the concerns facing the industry, such as control room reviews (a la
NUREG 0700), the installation of safety parameter display systems, and the development
of alternative approaches to emergency procedures can be analyzed by the kinds of models
that have been developed for very different kinds of man-machine systems, such as
aircraft-tracking tasks.

Because the group could not see any potential payoff in these areas of concern, there
was a general reluctance to support the development of models of cognitive behaviors — at
least explicit, quantitative models. However, the group did recognize the need for a frame
work that would relate activities in the different areas of man-machine systems, such as
procedures development to training practices, display system design to both of these, and
so on — i.e., a framework of integration. This could be provided in part by inputs from
cognitive psychology in conjunction with systems engineering methods. In other words,
understanding from the field of cognitive (and other kinds of) psychology should not be
excluded, but neither should it be considered an answer in itself.

Examples of how information from cognitive psychology could be incorporated were
described in the context of task analysis, where the addition of cognition (what kinds of
decisions need to be made, and when) to the earlier and more mechanistic kinds of task
analysis enables a much more comprehensive identification of significant task-related fac
tors. However, until the system designers (in the widest sense) establish a sufficient defini
tion of the roles of operators (and this interfaces with other aspects of an operating sys
tem), only a piece-meal approach will result.

The group did recognize and implicitly expressed its concern over the very real difficul
ties of communications between designers of control rooms, procedures, and training pro
grams on the one hand and cognitive psychologists and mathematical modelers of human
behavior on the other. These two groups use entirely different vocabularies and a high
degree of confusion exists between them. There are no forums where the two groups
interact except at very infrequent specialist workshops (for example, at this workshop and
at the two Myrtle Beach workshops).
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The time scales of concern to the two groups also tend to be very different. Designers
generally must respond to the short-term needs of the industry and the licensing authori
ties. By contrast, much of cognitive psychology (which was first identified as a discipline
only in the mid-1950s) is a science of gradual developments. The work that has produced
existing models has largely been a result of concentrated effort and resources on relatively
small areas (for example, in the study of aircraft-pilot tasks) which are not necessarily the
areas of concern of the nuclear industry.

In view of these differences, there was a general feeling by both those from design
backgrounds and those from modeling backgrounds that unless the communication barriers
can be reduced, little progress can be made in the near future. The needs of the industry
must be stated sufficiently clearly to those in the cognitive psychology area —the capabil
ities of the modelers must be stated sufficiently clearly to the industry. If the NRC can
provide a possible link between the groups, it will be helping the industry to be safer. The
fact that the aerospace industry and defense industries have developed better ways of solv
ing their human factors problems should encourage the nuclear industry to expect a similar
return on their investment.

Below is part of a list jointly agreed upon by both the modelers and the potential users,
as a list of terms applicable to themselves:

Modelers Potential Users

• Ignorance * Arrogance
• Incompetence • Ignorance
• Insularity • Shortsighted/tunnel vision
• Lack of understanding

of needs of users • Pride
• Insularity

• Stupidity

• Pessimism

• Lack of perceived needs

This was our consensus point. It gives rise to an optimistic feeling that each group recog
nized its own failings —particularly the last item in each list —as well as those of the
other groups.

In conclusion, this working group demonstrated that significant gaps in communications
exist between the industry groups on one hand and the cognitive modelers on the other.
The modelers seem to have a limited understanding of what are the current problem areas
in human-system interactions in nuclear power plants, and those concerned with design and
operation in the industry often have little understanding of the insights into human perfor
mance which could be obtained from the modeling of cognitive processes. The NRC is in
a position to bring these two groups together by developing an interface process. Another
working group raised the possibility of organizing a small task force to act as an interface
between the groups. An alternative, which is already in place, is the IEEE/NPEC Sub
committee 7, Human Factors and Control Facilities, which includes representatives from
industry, psychological modelers and the NRC.

The process of communication and mutual education is as much a part of the overall
development and implementation of models as any structured modeling. It deserves its
share of any resources devoted to this area.
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USE OF COGNITIVE MODELS OF NUCLEAR PLANT OPERATORS
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Working Group No. 4 focused on the needs of NRC and the potential use of cognitive
models. It de-emphasized the state-of-the-art of modeling, though the subject was cer
tainly discussed with regard to what might be available on a "near-term" versus "long-term"
basis.

The working group operated by first having "mini-presentations" by several group
members on topics which were either of direct concern to the individual or were summaries
of information/knowledge from the individual's personal experience which could be shared
with the group. Those making presentations were:

(1) Dick Pew, who discussed some concerns about the emphasis on "reliability/PRA"
methods versus cognitive modeling and some obstacles to extended use of cognitive model
ing by NRC.

(2) Henry Halff, who addressed several questions relevant to regulation in the areas of
training and emergency procedures; he suggested that while complete cognitive models of
operator behavior might not be available for some time, there are several methodologies in
cognitive science that could be brought to bear on the questions both in the near-term and
in the mid-term.

(3) Fred Mynatt, who described the "pressurized thermal shock" problem, which is an
example of a critical issue now facing NRC that could benefit from cognitive modeling or
at least from input from cognitive science.

(4) Leo Beltracchi, who presented a possible iconic which could be incorporated into a
display to be used as an operator aid, this being an example of key concerns he has about
control room displays which could be addressed by cognitive science.

(5) David Embrey, who summarized the need for cognitive modeling to address critical
questions of operator reliability as part of PRA.

These five presentations provided a base for the group's discussions and in fact led to
specific examples of how cognitive modeling (or at least results/conclusions from the field
of cognitive science) could be applied to problems faced by NRC.

The overall conclusion of the group, based on group discussions and the presentations
and discussions of the total workshop, was that there is indeed a need for long-term
research. Cognitive science is in a relatively early stage of development, but certainly
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there are models and results of work in the field that are applicable to critical issues facing
NRC and are available on a near-term basis. Perhaps the most significant point made is
that NRC is already making use of "models" of cognitive behavior to make critical deci
sions about operator qualifications and training, control room design, operator aids, etc.,
but these models are, in general, not written down, not structured, and not validated. They
are, in fact, the "mental models" of NRC staff who are in the position of having to make
decisions now. It was the group's opinion that the need for a more structured application
of existing models and continued work to develop and validate models is obvious.

In the group's report to the workshop as a whole, three speakers discussed specific
areas currently being addressed by NRC for which cognitive modeling or at least the body
of existing knowledge in the cognitive science area would be beneficial. These areas, in
order of presentation, were:

(1) Review and evaluation of operator aids and, more generally, control displays. In
a brief "simulation," or role-playing, a "typical" display design for a proposed operator aid
was presented by a vendor to NRC for an acceptance review. The kinds of evaluation and
concerns of NRC and the way in which the body of knowledge available in cognitive sci
ence might help NRC in the acceptance review were brought out by the role-playing ses
sion.

(2) Requirements for operator training and for abnormal/emergency operating pro
cedures. Henry Halff reviewed the Office of Naval Research's experience in training and
procedures development/evaluation which appeared to be directly applicable to NRC
needs.

(3) Probabilistic risk assessment. David Embrey summarized the status of human reli
ability estimation as part of probabilistic risk assessments currently in progress, the
apparent criticality of "cognitive action" in event sequences, and some recommendations for
research in this area. As a specific example, he summarized the current evaluations of the
"pressurized thermal shock" problem, noting that resolution of this problem is considered
one of the most critical research questions facing NRC at this time, if not the most criti
cal, and that apparently some of the most critical questions involved with the sequences are
those associated with the operator's reliability in "cognitive action."

The material presented by these three speakers plus the introductory material presented
by the working group chairman are given in the addendums that follow.



Addendum A to Report of Working Group No. 4:

INTRODUCTION OF GROUP PRESENTATIONS

P. M. Haas, Group Leader

In thinking about NRC's use of cognitive models of
nuclear plant operators with respect to regulation and
licensing, we first asked ourselves what we perceived
NRC's regulatory and/or licensing activities to be.
The answer was that NRC is (1) to issue rules, regula
tions, and requirements for "things" that must be pro
vided or accomplished by the licensee and (2) to review
and accept or reject "things" that are submitted by the
licensee. In all cases the criteria used by NRC in car
rying out these activities must be defensible.

With regard to the operator in the control room,
NRC's activities include many specific items in a
number of areas. For example, NRC is concerned with
the design and layout of both the control room and the
display panels in the control room. It is also involved
with the evaluation of the procedures used in the con
trol room. And, of course, it is concerned with deter
mining control room staffing requirements and the cri
teria for qualification and training of the staff. Finally,
NRC has made a major commitment to the use of
PRA (probabilistic risk assessment) to identify and
quantify risk to the public, and human reliability
assessment is an integral part of PRA.

After listing what NRC's activities were to be,
those of us in the working group then asked ourselves

whether NRC needed information about cognitive
behavior and/or whether it needed cognitive models to
carry out these activities. The concensus was that
there are aspects of cognitive behavior that need to be
considered by NRC in each of these areas. Further
more, we agreed that NRC already has cognitive
models and is using them to make specific decisions
that will have a major impact on cost and (possibly)
safety. Examples are: determining the requirements for
SPDSs (safety parameter display systems), arriving at
symptoms versus event based procedures, and setting
education requirements. In general, however, these
models are implicit, ill-structured, and not formalized.
That is, they are NRC's "public cognitive models(s)" of
the operator and the rest of the system.

We believe that NRC needs a better basis for mak
ing decisions like those cited above and that cognitive
modeling would provide a better basis. We did not sys
tematically address costs and benefits of modeling; nor
did we discuss priorities of research. There was a con
census that long-term research requirements exist; how
ever, some capabilities are available and can be applied
to meet near-term needs (within one to two years).
Examples of possible uses (both near-term and long-
term) for cognitive modeling in addressing specific
NRC concerns are given in the following presentations.

Addendum B to Report of Working Group No. 4:

ROLE-PLAYING SESSION: PRESENTATION AND REVIEW OF
PROPOSED CONTROL ROOM DISPLAY

Vendor: L. Beltracchi

NRC Decision Maker: L. Hanes
NRC's Consultant: R. Pew

The following role-playing session was conducted by Working Group No. 4 to illustrate to the workshop participants
how NRC might use knowledge from cognitive science during an acceptance review ofa proposed operator aid. First a
rankine cycle iconic display is presented by the vendor to the NRC decision maker, who decides he needs advice from an
expert consultant. It is to be pointed out that in the actual presentation, the vendor did not use all the mjormation
included below.

Vendor: A temperature-entropy iconic display of
the Rankine cycle based upon the measured variables
of the secondary loop conveys the operating status of
heat transfer to and from the secondary loop of a
PWR. By processing and integrating data from each
sensor in the secondary loop, an iconic overview of the
process in the secondary loop is obtained. With the
addition of the primary coolant system parameters and
the condenser cooling water parameters, a heat source
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to heat sink process information iconic is obtained.
Finally, by adding the saturation line for water and for
steam, additional useful data on plant safety is possible.

A rough sketch of this type of iconic display for a
PWR at design power is shown in Fig. 1. For a PWR,
the primary coolant is a few degrees subcooled. The
line AB represents the primary coolant heat addition in
the reactor core. The line BA represents the heat
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removal from the primary coolant in the steam genera
tor. The small space between the line AB and the
saturated water line indicates subcooling of the primary
coolant but not the amount of subcooling. Data from
currently measured parameters, such as temperatures
and pressures, along with the thermodynamic properties
of compressed subcooled water, are needed to generate
the display.

At steady-state conditions, the primary coolant loop
pressurizer consists of saturated steam and nearly
saturated water. From measured water level, tempera
ture, pressure, and the volume of the pressurizer, the
density of steam, the density of water, the mass of the
steam, and the mass of the water in the pressurizer
may be estimated. From these, the computer calculates
the quality of the mixture in the pressurizer and this is
symbolized as point C in Fig. 1. The vertical distance

between point C and point B is the magnitude of sub
cooling for the average core exit coolant.

The secondary loop is shown in DEFGHIJ, a Rank
ine cycle with no reheat. Heat addition in phase
change from water to steam is represented by DE, heat
removal by FGH. Other details are standard thermo
dynamic fare and may be found in any good thermo
book. The tertiary loop, condenser cooling water, is
also shown in Fig. 1. This is the ultimate heat sink,
the environment.

The iconic display is based on a temperature versus
entropy diagram for the process. The issue of display
resolution between subcooled water and saturated water
for both the primary coolant and the feedwater is poor.
This is due to the nature of the temperature versus
entropy properties of subcooled compressed water.
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Fig. 1. Iconic Display: Heat Source to Heat Sink (Design Power).
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With a display designer's poetic license, the issue of
subcooled water data may be resolved. Figure 2
presents a modified display wherein the magnitude of
primary coolant subcooling is shown as a bar of vari
able width. For example, at core exit, the coolant is 40
degrees subcooled, whereas at core inlet, it is 100
degrees subcooled. Steam generator feedwater and
condenser cooling water are also shown in a similar
manner.

Figure 2, as an iconic display for the nuclear power
plant process, conveys a large amount of information to
the control room operator. It shape codes all coolant
temperatures into an easily recognized functional pat
tern that models the heat transfer from source to sink.
Since the shape coding of the information allows for
easy pattern recognition by the operator, he can, at a
glance, ascertain the status of the primary coolant sub
cooling. For example, a narrow bar means the loss of
margin to saturated liquid. Operator action may be
required to restore margin. Changes in the shape of
the subcooling bar are most important during tran
sients, which is discussed later.

PRIMARY

COOLANT
SUBCOOLING W *

\

The iconic display also supports pattern recognition
of failures in the heat transfer process. For example,
the magnitude of the space between the cold primary
coolant temperature and the steam generator tempera
ture (saturated water) is indicative of the magnitude of
heat transfer from the primary coolant to the secondary
coolant under normal conditions of operation. An
increase in the magnitude of the space might indicate a
failure of heat transfer between the primary and secon
dary system. It might also indicate a large increase in
power, which at design power would be undesirable and
a reactor trip should occur. Overheating of the pri
mary system is also undesirable. This pattern in the
iconic should be easily detected by the operator and it
defines a point where diagnosis of the problem should
begin.

Figure 2 also integrates safety information and nor
mal process information. One concern is whether wet
steam might damage the turbine. Sensors measuring
the steam quality at the turbine inlet provide data in
the display. Similarly, core inlet and exit coolant tem
peratures are provided, from which the operator can
determine whether the reactor core is being cooled.

0.6 1-0

ENTROPY (Btu/h-°R)

Fig. 2. Modified Iconic Display: Heat Source to Heat Sink(Design Power).
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Without specific data for transients, it is not possi
ble to structure the exact form of the iconic display for
transient conditions. However, some general trends can
be discussed and these will prove useful.

Figure 3 approximates a post-reactor-trip condition
with normal afterheat removal. The primary coolant,
about isothermal, is subcooled and the steam in the
generator dumped to the condenser via a turbine
bypass. The magnitude of the subcooling is now coded
as the length of the line terminating at A. Should the
length of the line decrease to zero, then the primary
coolant, is saturated liquid and localized boiling of
water may be occurring at core hot spots.

The status of the heat-transfer process from the pri
mary coolant to the secondary coolant may also be
evaluated over a period of time with the patterns from
Fig. 3. During afterheat removal, the space between
the primary coolant temperature and saturated water
temperature in the steam generator should decrease
with time, reflecting the decay of afterheat. Should
this space increase with time and the primary coolant
temperature increase, this pattern indicates the reactor
core is heating up.

From a conceptual viewpoint, the heat source to
heat sink afterheat removal display pattern is easily
evaluated. Deviations from this pattern should be
easily identified and could be used as a starting point
to diagnose the situation. After successful diagnosis,
the operator selects a course of action to mitigate the
consequences of the event. The impact upon the pro
cess from these operator actions can also be monitored
from the iconic. Thus, the iconic serves to aid in the
detection and diagnosis of events and also serves as a
monitoring device to evaluate mitigation efforts.

The iconic changes when significant boiling occurs
in the reactor core, and a mixture of steam and
saturated water is transported through the hot leg of
the primary system. Figure 4* presents the situation.
Under these circumstances, cooling the core may
become a critical problem when the primary coolant is
solely a vapor. In terms of process information, the
two-phase flow in the hot leg is important information
to the operator. Continued two-phase flow in
association with the loss of primary coolant mass even
tually results in loss of the ability to cool the core.
Detecting continued two-phase flow in the hot leg
would be useful to the operator as a symptom for ini
tiating measures which result in greater cooling of the
core. This information early in a event would be much
more timely and useful than waiting until one detects
and measures core water level.

Other paths of heat transfer from the core to the
environment are available. No attempt has been made
to evaluate if the iconic display would be feasible for
these paths.

The above type of model supports a mechanical
engineer in the analysis of the plant process. An
operator's model of the plant may be entirely different.

Figure 4 — Exact iconic display of this transient may not
be feasible.

However, the Rankine cycle presents a concise model
of the process which can be easily understood by opera
tors if properly trained. One benefit from this would
be the design of a data base. Such a data base could
be divided into the individual functions within the
cycle. Furthermore, sensor readings and system status
could also be organized into function-oriented data sets.
This type of data base would provide a firm foundation
upon which to add predictive type displays because
functions within the plant processes may be easily
determined.

Another potential benefit from this type of iconic
display is the coding of information from the heat
source (the reactor) to the heat sink (the environment).
By integrating data into one display, the operator's
workload in assessing the plant process is greatly
reduced.

Mimic diagrams of the plant process are also used
as models of the plant. Adaptive mimics which reflect
the measured process variables and the flow of coolant
are also useful to the operator. For these latter type of
mimics, added data to indicate two-phase flow in the
hot leg of the primary coolant could prove very useful
to operators in assessing whether the core is being ade
quately cooled.

NRC Decision Maker. Since we have not issued a
requisition for this display and had not anticipated pur
chasing this particular item, I do not have available a
set of criteria to compare it with. But since it is
related to safety, we are, of course, very much
interested in it.

I would like to know what prompted you to design
this display. Did it come from a sparkof genius, or did
you go through a systematic process? If you have
actually considered some of the cognitive tasks of an
operator during a control room procedures review,
perhaps going over that review would help me realize
that the operator's needs are not currently being met
and I would have some basis for evaluating your propo
sal.

We probably need an HRA (human reliability
assessment). It should be a low-level assessment.
Don't get into higher-level cognitive abilities. Orient it
toward the equipment operator rather than the system
manager. Some work in the cognitive area could give
the regulator criteria to evaluate a fancy HRA that
does look at some of these. We have a consultant in
cognitive science who may be able to help us evaluate
your design.

NRC Consultant. My role is to attempt to explain
how this display could be used. The level we focus on
is the way we envision this could be used at a higher
level than fundamental physics. I would focus on ques
tions such as: How do you imagine an operator would
conceive entropy? Give me a word recipe. What
knowledge structure does an engineer believe would
underlie this? What information is potentially com
municated to the operator? A feature of the display is
that it is presenting several dimensions in an integrated
way.



182

1.0

ENTROPY (Btu/h-OR)

Fig. 3. Iconic Display: Post Reactor Trip (Approximate).

l.o

ENTROPY (Btu/h-0R)

Fig. 4. Three Mile Island — Small LOCA.
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We also need to ask questions about the training
requirements necessary to help the operator understand
the display. We should collect protocols from the
designer and operator. We should ask the operator to
imagine that a steam tube rupture has occurred and to
tell us how he would interpret the information given on
the display and what information he would seek next.
We would try to understand the relationships of the
pieces of information.

Then we should attempt to structure this as well as
we could in terms of decision processes ~ still at the
paper and pencil stage. After that we would call on
our supervisory control model (for only a portion of the
plant - generic primary and secondary heat transfer).
We would abstract the classes of information we

believe are being presented by this display, and we
would then add to the model an additional source of
information (subcooling) as closely as possible to the
way we think the operator understands the display.

By this process we would see whether in a dynamic
sense this added information changes the way the plant
is brought under control. We could perform sensitivity
studies. I won't argue that this kind of modeling cap
tures in exact detail the whole process, but it can allow
us to evaluate whether it captures the essential
features.

In summary, a combination of task analysis, proto
col analyses, and understanding of cognitive processes,
in conjunction with plant procedures, is how we would
deal with this acceptance review.

Addendum C to Report of Working Group No. 4:

OPERATOR TRAINING AND OPERATING PROCEDURES -- ISSUES AND
POSSIBLE ANSWERS FROM COGNITIVE SCIENCE

H. Halff

Office of Naval Research

In our working group, and throughout this
workshop, we have been reminded that we should
address the needs of NRC with respect to the operator
in the control room of a nuclear power plant. We have
placed those needs in two categories: those related to
the procedures used in the control room; and those
related to the training of the operators. What I report
here is what we put together in two hours on a task
that Don Norman thinks a formal task group will
require six months to do.

Under the category of "Procedures" we first ask:
Can we make the certification of proposed procedures
more systematic, more precise, and more economical?
If we can do this, then we would reduce the possibility
of the regulatory agency and the industry going head to
head on judgment decisions.

Next, we ask: Can we evaluate global approaches
(for example, symptom-based versus system-based) to
the design of procedures? As a cognitive psychologist,
I do not think this is relevant, but it's the way NRC
wants to go.

One thing cognitive psychology can do is to deal
with procedures. We can use a formal (computer)
language to represent procedures, and we can deter
mine the human (machine) requirements for running
procedures. We can also establish the sufficiency of a
set of procedures for dealing with a set of problems.
Finally, we can estimate the attentional resource
demands for procedure execution. Of course, these are

not sufficient alone, but they can reduce procedures to
a technical exercise to help regulators.

Under the category of Training" we ask: How can
we determine requirements for system instruction, pro
cedure instruction, simulator training, part-task train
ing, simulator fidelity, novel instructional technology,
etc.? How can we ensure the relevance of training?
And how can we ensure the quality of training?

We would not ask questions like "how many hours?"
or "what is the proper mix of simulator in training?"

Cognitive psychologists have built a body of empiri
cal methods to evaluate training. We use qualitative,
empirical methods to characterize stages of learning
under particular regimes. We use discourse and cogni
tive task analysis to evaluate training materials and
methods. We use cognitive models to establish
knowledge requirements. And we use computer simu
lation to model learning and performance.

What differentiates novices from experts in real
world problem solving? It has to do with knowledge
representation. Powerful concepts are more central in
the expert's knowledge structure, in his problem per
ception, etc. It is difficult to do a cognitive task
analysis of an operator in the control room, but it is not
difficult to determine how a student understands a
diagram.

Cognitive models are important. Questions such as
those cited here are being asked about them, but there
are answers that people in cognitive psychology can
supply.
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Addendum D to Report of Working Group No. 4:

COGNITIVE MODELING IN

PROBABILISTIC RISK ASSESSMENT/HUMAN RELIABILITY ANALYSIS

D. Embrey
National Centre of Systems Reliability, UKAEA

Cognitive modeling in PRA/HRA has many defi
ciencies, but it is generally applied as a way to turn
qualitative issues into quantitative aids in decision mak
ing.

The current methods of modeling the human in
PRA are "inverted." That is, the operator is modeled
as a passive/reactive component at the bottom of the
fault tree. Cognitive failures, such as decision making
and diagnosis, that are higher up the fault trees are
much more significant than simple errors. In cognitive
models for PRA/HRA, we are concerned with the
abnormal condition rather than the normal condition.

The major concern is with human actions that initiate
transients and disturb protective functions and with the
degradation of ESF (engineered safety features)
through scheduling and maintenance errors.

"Common cause" failures (of the human) typically
are due to cognitive errors. The pressurized thermal
shock scenario illustrates the importance of cognitive
perspective. Many potential initiators and event
sequences are human failure events, with sequences
generally of 30- to 120-min duration. The operator
actions are crucial in that they may prevent damage in
a threatening sequence or they may cause damage in a
benign sequence. There is conflict between undercool
ing and overcooling ~ that is, whether or not to throttle
the high-pressure injection system. To illustrate this,
let's look at a possible accident sequence following a
main steam line break of a typical plant. As detailed
in the accompanying box, the sequences numbered 6, 9,
and 10 all have human factor components.

MAES STEAM LINE BREAK (ORNL Sequences SB1 to SBA2)

Summary Description:

The accident sequence initiates with a 34-in. steam-line
break coincident with reactor and turbine trips. The
forcing function for the accident is the delay by the
operator in isolating the feed water flow to the affected
steam generator, coupled with failure to throttle the
high-pressure injection flow and delay in restarting one
reactor coolant pump in each loop after 50°F subcool
ing is attained.

Initial Conditions:

1. Full reactor power.

2. Nominal temperatures and pressures in
primary/secondary.

3. Decay heat: 0.5 times the ANS standard.

4. Pressurizer spray/heaters operate as designed.

Sequence of Events:

1. Reactor trips coincident with break of 34-in. steam
line.

2. Turbine trips, turbine steam valves close.

3. Integrated control system attempts to run back
main feed water, as designed.

4. Protection systems on hotwell, condensate booster,
and main feed water pumps function as designed.

5. High-pressure injection actuates at set point (1500
psig).

6. Operator trips reactor coolant pumps 10 seconds
after high-pressure injection actuation.

7. Emergency feed water pumps start at low main
feed water pump discharge pressure.*

8. Emergency feed water system attempts to maintain
240-in. steam generator level.*

9. Operator isolates feed water to affected steam gen
erator nine (9) minutes into transient.

10. Operator restarts one reactor coolant pump/loop
ten (10) minutes after attaining 50° F subcooling in
hot legs.

11. Pressurizer goes water-solid.

12. Pilot-operated relief valve opens at set point (2450
psig).

13. Safety-relief valves open at set point (2500 psig).

14. Pilot-operated relief valve/safety-relief valves reseat
at their set points (2400 psig).

*Event is phenomenologically dependent.

Rationale:

Given a steam-line break (probability ~10-4), the sub
sequent events have a moderate probability of occurring,
are highly dependent upon operator action and interpre
tation of plant conditions, and lead to severe conse
quences with regard to thermal shock.

Calculation Restart Points:

1. High-pressure injection initiation.

2. Emergency feed water pumps start.

3. Attainment of 50° F subcooling in hot legs.
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The regulatory position with respect to the pressur
ized thermal shock problem is that screening should be
done based on the NDTT (the nil ductility transition
temperature), that plant-specific studies should be per
formed for the affected plant, and that plant-specific
fixes should be made when required. The plant-specific
fixes are accomplished via operator procedures and
training.

The major concern is that an event would occur
that is so rare that the crew would become confused or
misled and would perform in such a way as to cause
severe thermal shock and repressurization. A cognitive
operator model would facilitate analysis of conflicts
and potential areas for operator action in rare tran
sients.

The access and use of cognitive models (in a form
acceptable to and usable by the PRA community)
could lead to: (1) greater completeness of modeling
through improved search strategies, (2) direct involve
ment of the systems analyst in operator modeling, and
(3) the realization of the risk reduction potential of
aids to cognitive functioning (and possible quantitative
assessment thereof). Data collection strategies could be

structured to allow capture of data on cognitive
failures, and these data could be used for iterative
refinement of models and to check the adequacy of the
system model.

On the basis of the above, research in the following
areas is recommended:

(1) Review cognitive models which are available
now to assist the PRA analyst in qualitative modeling
(short-term).

(2) Investigate how models can be classified, sum
marized, and presented for compatibility with PRA
structure (short-term).

(3) Investigate use of dynamic models for "scenario
generation" (mid-term).

(4) Consider use of models for data generation
purposes (long-term).

(5) Investigate data collection requirements (mid
term).

(6) Determine the cognitive processes of the
analyst. (Consider possible biases which could affect
completeness of modeling.)
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... by Thomas G. Ryan, U. S. Nuclear Regulatory Commission

I would like to thank Tom Sheridan for the opportunity to address this closing session
of the workshop. I thank all of you for your thoughts, presentations and discussion of this
timely but controversial subject. During the past three days and evenings, I have learned a
great deal more about contemporary cognitive psychology and cognitive modeling, if not
about their potential applications in NRC human factors work on control room operations.
I hope that each one of you will be available in the future to advance the work that we
have begun here.

In the short time that I have been with the NRC Office of Research, having previously
been involved in military and highway safety human factors research and applications, I
recognize the formidable task the NRC has ahead of it in developing a human factors
technical base to adequately support the regulatory process, especially in the area of
nuclear power plant control room operations. I must confess that I come to this workshop
with some biases concerning cognitive modeling, having been weaned on the gospel accord
ing to Saint Art Siegel. With these thoughts in mind, I would like to comment briefly on
the remarks made earlier in the workshop by Bob Pulliam (BioTechnology, Inc.), Don
Norman (University ofCalifornia, San Diego) and Joe Wohl (AlphaTech, Inc.).

First, what can the participants in this workshop do for the NRC in the
future?

Bob Pulliam suggests that the NRC should make a commitment to cognitive modeling
in the very near future to ensure that substantive progress in this arena occurs to support
the regulatory process in a timely manner. I wish the NRC were presently in a position to
make such a commitment. Unfortunately, the NRC is just now attempting to determine
if, and how, human factors itself should be involved in the regulatory process. Since cogni
tive psychology and associated modeling techniques are primarily human factors tools
rather than policy issues, I hope that with your assistance, we at the NRC can define the
appropriate role(s) of cognitive psychology and modeling in a timely manner, coincident
with our determination of the role(s) human factors will play in the regulatory process,
especially as it applies to nuclear power plant control room operations.

Don Norman suggests that the NRC needs to define specific control room operator
problems and requirements before determination of potential applications of cognitive
modeling can be made. This is a good point. Quite often those of us in the human factors
field, armed with our repertoire of ready-made solutions, go around looking for problems
to fit those solutions, rather than the other way around. The participants in this workshop
can be very helpful as NRC seeks to better understand the kinds of human phenomena
(for example, information gathering, decision making, monitoring) that can be addressed
through cognitive modeling, and begins to formulate appropriate questions concerning
these phenomena within the context of nuclear power plant control room operations.
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Second, what can the NRC do for cognitive psychology and cognitive
modeling in thefuture?

Joe Wohl, spokesman for his working group, suggests that a task force be established
to investigate the potential applications of cognitive modeling and associated techniques in
control room operations. I agree and hope that my associates within the NRC Office of
Research will make this a high priority for FY 1983. Therein, the investigation of poten
tial cognitive modeling applications should be extended to the entire nuclear regulatory
process and should involve participation by experts from academia, industry, utilities, and
related regulatory agencies.

Again, I want to thank you all for participating in this thought-provoking workshop. I
hope we all have the opportunity to meet again under circumstances such as these in the
near future.

* * * * *

... by Kenneth G. Murphy, U. S. Nuclear Regulatory Commission

After spending three days listening to cognitive modeling experts, I have three observa
tions that can be epitomized in the words "compatibility," "communication," and "coopera
tion."

At present, I see little compatibility between past cognitive modeling efforts and the
needs of nuclear power plant safety. After all, we are not landing an aircraft where the
time frame of emergencies can be fractions of seconds to minutes; nuclear plant emergen
cies, as in the case of Three Mile Island, stretch out over hours and days. This fundamen
tal difference must influence, in large measure, the direction of cognitive research in the
nuclear industry. For example, for the slow-moving nuclear emergencies, operator-
machine interfaces may not be as critical as clearly written procedures and access to expert
direction. We are not talking about a pilot with a joy stick in his hand.

We must also make a second contrast between the aircraft and the nuclear plant. Both
have about the same number of operators (three in most cases); however, while a nuclear
plant is operating, more than 300 additional people are at work modifying, maintaining,
and testing equipment. A recent study of serious accident precursors shows that
maintenance-induced human errors are the highest single cause of multiple component
failure that bring down redundant systems. I expect, therefore, that a balanced research
program must consider not only the operating staff and how they react in emergencies, but
also the maintenance crew that is under pressure to keep equipment operational.

I see very poor communication between the nuclear safety engineer and the cognitive
modeler. Nomenclature is a barrier and the two disciplines are complex. In order to start
to deal with the real human problems in operating nuclear plants, the barrier to interdisci
plinary understanding must be removed. We need engineers that think cognitive and cog
nitive specialists that think engineering. Nothing useful can happen before these barriers
are broken. Research efforts should allow for this type of assimilation.
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As we start research in human cognition as it affects nuclear plant safety, we need to
appraise its potential value and where it can do the most good. Plant organization, worker
attitude modification, training, and procedures might be the first areas to determine feasi
bility and practicability of cognitive research. A critical look at the deficiencies in current
probabilistic risk analysis (PRA) as it concerns human activities should be high on the list
of initial research. After all, PRA has helped the safety engineer prioritize his reviews of
equipment and thus it should also be of help in prioritizing cognitive research. But before
that can be done, the treatment of the human in PRAs must be substantially improved.
(Because quantification of human error rates will, no doubt, continue to be problematic,
ways must be sought to gain the needed perspectives without a great dependence on PRA
quantification.)

The first tentative steps in cognitive research demands cooperation between the cogni
tive expert and safety engineers. In order to gain a balanced viewpoint and to ensure use
ful products, the initial research programs should be designed to ensure a team effort
between these diverse disciplines.

by Leo Beltracchi, U. S. Nuclear Regulatory Commission

This workshop has been beneficial as it has presented the state-of-the-art on cognitive
modeling. From the workshop, I have concluded that cognitive modeling is needed to
assist in the process of designing control rooms.

The process used to design reactor pressure vessels is well developed. The strength of
materials, the design basis of the core, the static loads, dynamic loads, thermal stresses,
etc. are well known and used in the design of a pressure vessel. In general, pressure vessels
have been designed and built and they are operating successfully in containing the process.

In contrast to pressure vessel design, the design process for power plant control rooms
with human operators and interfaces to process control systems has been less successful. A
major issue is the operators, as they have been backfit into the control room after the con
trol room has been designed and built. A cognitive model serves as a design tool, thereby
allowing the designer to integrate the operator in the control room design process. Dr.
Norman made a very good point when he suggested that cognitive factors be considered
during task analysis. These tools would also be useful for the detailed control room design
reviews.

In conclusion, with an improved control room design process, incidents such as TMI-2
can be avoided.
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... by Thomas B. Sheridan, Massachusetts Institute of Technology

As we conclude this workshop, it appears that we have a concensus on several points.
We agree that operating a nuclear power plant is largely a cognitive process. We also
agree that there are many approaches available for modeling the cognitive activity of the
operator — some qualitative and some quantitative, some normative and some descrip
tive, and some probabilistic and some deterministic.

We are not at the point where we can offer a complete model, so what we are doing is
selecting and applying pieces of available models. Such applications can be useful in a
number of ways: (1) to generalize what we think we know about how operators think;
(2) as an aid in defining the problem and identifying what is important; (3) as a guide
for collecting data; and, in limited cases, (4) to predict.

We know that we have a dilemma about operator errors. On the one hand, we want to
prevent them; on the other hand, we want to allow the operator some personal space to try
the system, to learn from small failures, and thus to gain understanding and confidence.

Finally, we recognize that we are still far short of where we would like to be in provid
ing NRC with useful cognitive models. As the saying goes, more research is needed!

I thank each of you and very much appreciate your efforts.

*****

... by Roger A. Kisner, Oak Ridge National Laboratory

As a control engineer, I see a need to couple humans and machines to form a total sys
tem capable of delivering the improved performance and reliability being demanded for
nuclear power plant operation. However, unless cognitive modeling can help to engineer
an improved total system, it will not be useful to those of us designing, constructing,
evaluating, or operating complex systems. The discussions these past three days have trig
gered some thoughts on the application of cognitive modeling to system modeling and
design, although much remains unclear to me.

Now that the workshop is over, it is easy to envision other ways that it could have been
organized; however, in this limited three-day time span and with this very diverse group of
individuals, some of you meeting for the first time, I believe that the format we have used
has been very productive, and the proceedings of this workshop will provide useful infor
mation to the NRC in forming a plan for future research.

I thank each of you for accepting our invitation. As we leave, I think all of us will
agree that similar dialogs should be carried out in the future as we work together toward
solving some ofthe problems confronting the NRC in the area ofcognitive modeling.
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ON PROBLEMS RAISED IN LETTER OF INVITATION
(July 26)

Erik Hollnagel,
Institutt for Atomenergi

OECD Halden Reactor Project

The following are some brief comments to the prob
lems raised in the letter of invitation to the Workshop
on Cognitive Modeling of Nuclear Power Plant Control
Room Operators. Even though previous engagements
will prevent me from attending the workshop, I would
like to give my contribution in this way. The topic is
central in the ongoing research on operator perfor
mance in nuclear power plant control rooms, and I see
the workshop as an important step towards integrating
much of this research. The topic fits well with the
activities of the Halden Project in this area, and my
comments thus reflect the basis of this work.

1. On Cognitive Modeb

Let me begin by disagreeing slightly with the title
of the workshop. The concern should not be with
models of operators, but instead with models describing
and explaining operator performance. We are
interested in models of human activity, rather than in
models of humans per se. Furthermore, we are not
really talking about models, but rather about a mixture
of assumptions, hypotheses, and (possibly) theories.
But I accept that the term "model" has come to be used
for this conglomerate, and shall stick to that. By
"model" we thus mean any kind of systematic analogy
which we use for consistent descriptions and explana
tions of operator activity.

Another point is that, properly speaking, we are not
discussing cognitive models, but rather models about
cognition. The models can be of any kind and need not
in their substance (i.e., their terms) have anything to
do with cognition. But they are about cognition, i.e.,
those parts of human activity which refer to human
cognition. We are thus really talking about models of
those aspects of human activity that can be explained
as cognition in a wide sense. This, by the way, indi
cates that Question 6 below should be extended to
cover also the proper definition of the terminology.

Types of Models. When this much has been said,
we may go on to list the common types of models of
operator action that have been used:

1. Mathematical models.

2. Engineering models.

3. Computer models/computer programs.

4. Information-processing models. [These can actu
ally be of two types, emphasizing either struc
tures (various types of memories or processing
stages) or processes (for example, production
rules).]

5. Conceptual models. [These models are
expressed in and refer to high-level cognitive
functions, such as strategy selection, problem
solving, etc.]

6. Psychological models. [These models include
psychological theories about human cognition.]

Distinctions may further be made between descriptive
and normative models, process and structural models,
and generic and specific models. These dichotomies
cut across the various types of models.

Models and Performance Types. It is important to
note that a type of model may be particularly useful
for a specific type of performance, using, for example,
the distinction between skill-based, rule-based, and
knowledge-based performance (the SRK-model). If we
are concerned only with skill-based performance,
mathematical or engineering models are often the most
precise. But if we are concerned with a knowledge-
based type of performance, as, for example, diagnosis,
a mathematical model may be inadequate, and a con
ceptual or psychological model should be used instead.

We thus need a repertoire of specific models for
characteristic activities, but we also need models that
can describe and explain performance on an overall
level. We particularly need models that describe the
learning of a specific activity and the transition from
one level of performance to another. Otherwise one
may feel tempted to generalize a specific model to a
range of phenomena for which it was not intended.

2. The Questions

After these introductory remarks, I shall comment
on each of the nine questions mentioned in the letter of
invitation.

Question 1: Does the NRC need information about
cognitive models for regulation of nuclear facilities
and what are the major purposes of these models?

The two parts of this question should be reversed,
since we must know the purposes of the models before
we can say anything about whether they are needed for
regulation. Given the purpose as described above, and
the state of psychological theories in general, I would
say that the question is premature. It is not possible to
make them sufficiently specific and detailed to support
regulations. They may, however, be used as support
for guidelines in various areas (cf. Question 3 below).

Question 2: What reactor operator cognitive
behaviors do we need to predict? Can these behaviors
be listed in order of importance?
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I do not think we need to predict activities (cer
tainly not "cognitive behaviors"), and if the experience
from psychology is worth anything, I further do not
think that it is possible to predict activity at any useful
level of detail. It is, of course, the ultimate purpose of
any theory to be able to give predictions of what will
happen under specific conditions. But there are few
psychological theories which can do that to any notable
extent. For instance, the attempts to predict human
decision making h. ve failed miserably. And models of
operator action are even less developed than theories of
decision making. What we can do is instead to identify
the possibilities for influencing activity, and hence
reduce the variability of human performance. A good
model of human activity may indicate how and
where/when information can be provided which will
change the course of actions. And that is far more use
ful than trying to predict behavior in a deterministic
sense.

The second part of the question should accordingly
be answered with the types of activity that we want to
gain control of. These types may be derived from the
performance models, e.g., the step-ladder model.

Question 3: How would such predictions or other
outputs from cognitive models be applied by the NRC
in the areas of: (a) plant design, (b) procedures, (c)
management, (d) training, (e) and licensing or other?

(a) I take plant design to refer to the part of the
plant that is relevant for the operators, in particular,
the control room. If so, we may need the cognitive
models as a basis for control room design in general,
particularly information presentation and the exercise
of control. That, of course, involves the whole of the
design process as suggested by Cognitive Systems
Engineering (CSE).

(b) The use of cognitive models in this area is obvi
ously important, as shown by the experience from the
EPRI/IEOP/TSAM* project. We can use the models
to design procedures to be easier to understand and to
use.

(c) Again, I take this to refer to the management
of control room operators. This seems to be more in
the line of the social psychology of small groups, where
a considerable knowledge exists. But that must be
combined with models of individual functions. This
aspect also highlights the importance of
individual/personal factors which are conspicuously
absent from most cognitive models. We should,
perhaps, strive to extend models of operator activity to
include more than what is traditionally called cogni
tion!

(d) The use of cognitive models for training is also
important, cf. the experiences from the Scandinavian
NKA/LfF project. We can use the models to specify
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training (both contents and form) and to analyze the
outcome of training.

(e) This is related to (d). The use of cognitive
models might here be as the background for a Cogni
tive Task Analysis (CTA), based on CSE principles.
This may again be used to suggest criteria for licensing
additional to those derived empirically.

Question 4: What are the principal cognitive
modeling approaches in use now, and how are they
usedin other applications orfields?

This has partly been answered by the types of
models mentioned above. But a more systematic treat
ment is, of course, required. Other applications are
rather scarce, since cognitive psychology and cognitive
science mostly have confined themselves to the world of
the psychological laboratory. Some recent attempts to
break this has been worked on, e.g. slips of action,
visual momentum, and decision making. But what we
generally need is good models for the variability of
human performance.

Question 5: At what stage of development do
models become useful?

The development of what? If we are talking of the
control room as an integrated whole, cf. the above,
models are clearly relevant from the very start. No
design or development is made without a conceptual
background, and the more explicit this is the better. It
may also greatly facilitate the later evaluation or vali
dation of the design.

Question 6: What taxonomies apply (e.g. normative
vs. descriptive, control vs. decision, mathematical vs.
verbal, deterministic vs. stochastic)?

The question should rather be: What part of the
philosophy of science do we implicitly refer to when
using cognitive models? What we really need is an
epistemology of process control! Once we have made it
clear what the background is, the kind of taxonomy
and the set of descriptive dimensions we can use will
come naturally.

Question 7: What data are presently available to
use for generating models? What data are missing?
Do we have means ofcollecting needed data?

The various sources of data have been systemati
cally described in Hollnagel, Pedersen, and Rasmussen:
Notes on Human Performance Analysis (Riso-M-
2285). The data that we presently have available come
from a variety of sources, some from nuclear control
rooms, some from other areas (e.g., trouble-shooting in
electronic equipment). What we need are more data
from normal performance conditions, either from field
studies or from intensive studies using simulators.
There are a lot of data from training simulators that
are simply thrown away, although it would require lit
tle effort to register them. We also need a consistent
classification which is easy to use in a variety of condi
tions. We know where we can get the data we need,

EPRI/IEOP/TSAM = International Evaluation of
OperatingPractices/Training SimulatorAnalysis Methods.

'NKA/LIT = Joint Scandinavian Research Project on
Human Reliability.
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but it requires an integrated effort to actually collect,
and analyze it.

Question 8: What sources ofdata can be used to
calibrate or validate cognitive models of nuclear power
plant operators (e.g. anecdotal data, LERs, simulators,
etc)?We can probably use any source of data, as long as
the observations are systematically made and the
analysis is consistent. We already have a general
scheme of analysis which can be used for that ct.
Riso-M-2285. But we cannot validate a cognitive
model, only calibrate or verify it. This process is, of
course, easier the more specific the model is.

Question 9: What are the current obstacles to: (a)
developing the status of cognitive modeling of nuclear
power plant operators, (b) calibrating and gating
the models, (c) putting the models to use, (d) and
learning from experience?

What we generally need is a coordination of the
efforts of data collection, analysis, and model develop
ment. Some attempts have been made with notable
success e.g., the EPRI/IEOP project and the Scandi-
na^n NKA/KRU' and NKA/LIT projects. We

'NKA/KRU = Joint Scandinavian Research Project on
Control Room Design.

should endeavor to coordinate the activities at various
sources (e.g., research simulators, training simulators,
LERs, etc.), so that the same problems are addressed
insofar as possible. Concerning (c), putting the models
to use, I think it is important not to promise too much
but to be realistic in indicating the usefulness of cogni
tive models. It is, after all, an approach which is try
ing to establish itself.

3. Epilogue

The questions raised in the letter of invitation obvi
ously reflect the practical engineering approach, and
my comments probably reflect a more academic, but
hopefully not impractical, point of view. My general
comment is that we must not be too hasty in applying
cognitive models of operator action. We have a solid
basis for these models in the work that has been done
over the last decade or more. We have developed the
models far enough to be able to discuss them with oth
ers, and to offer them as a useful tool. But we need
still more work, particularly in getting a broad empiri
cal support, before we can confidently claim that we
have a complete theory of operator action.

ON WORKING GROUP NO. 1
(August 24)

N. Moray
University of Toronto

1. I agree strongly with Shelly Baron that even
relatively simple models can be of predictive use
because the situation constrains the operator, and hence
the degrees of freedom in his behavior are drastically
reduced.

2. The models which we presented are all of proven
value in predicting human performance in certain
(more or less) well-defined situations. The critical
question is "What are the boundary conditions for each
model?" not "Is it a true (and complete) theory of
human behavior?"

3. A most important point is that the effect of sub
jective expected utilities is universal. If the operator's
perception of what is "good" behavior - for example,
the relative acceptability of false alarms and misses as
required by management or his co-workers - changes,
then his performance will change even if no changes
occur in the quality of the displayed information.
Take, for example, the "speed-accuracy tradeoff." If the
operator believes it to be in his interest to look at as
many displayed variables in the shortest possible time,
the accuracy of his perception will decline. The effi
ciency of operator information processing cannot be
predicted without a knowledge ofhis subjective payoff
matrix. This is true of all behavior at any level (skill,
rule, or knowledge based).

4. If an operator's level of "arousal" or motivation
is too low, increasing it will increase both speed and
accuracy. At any fixed level of arousal or motivation,
speed and accuracy are inversely related. This effect
can be modeled using a modification of Sequential
Decision Making.

5. The models as mentioned are all plausible candi
dates for modeling a subtask (part) of the behavior
required of a nuclear power plant control room opera
tor. I make this claim in the light of my experience in
evaluating human factors work in U.K. nuclear power
stations ~ that is, not merely on supposed analogy with
other industries with which I am familiar.

6. It is possible to measure operators' subjective
payoffs directly by suitable questionnaire and scaling
methods. Such estimates are also relevant to assessing
the effectiveness of training, management/operator
relations, and probabilistic risk analysis.

7. The NRC would have received a more convinc
ing and useful picture of the techniques offered by
psychology if we had been asked very specific questions

see, for example, the questions in
NII.ONSWG(82)P.l. But the psychologists would
have to be briefed on the nature and requirements of
specific tasks.
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8. If a "task force" is set up, it must be arranged so
as to give the psychologists adequate first-hand experi
ence of nuclear control room "natural history."

9. The NRC should not concentrate too closely on
"cognitive models." What is required is an intelligent
and informal use of anything relevant from psychology.
Cognitive modeling is a small subset of human factors
which is an interdisciplinary mix of psychology,
engineering, physiology, and some other minor discip

lines. What are required are not "cognitive models,"
but "man-machine-system" models, whether "cognitive"
or not.

10. It may be worth noting in the light of the agon
izing which takes place about how much automation to
include, that most European NPPs have more automa
tion than any U.S. NPP, and the Canadian reactors
(CANDUs) are fully automated and have the best load
factors in the world.

ON WORKSHOP THEME QUESTIONS
(August 24)

R. Pulliam

BioTechnology, Inc.

These comments respond to the "theme questions"
posed for the Workshop on Cognitive Modeling of
Nuclear Plant Control Room Operators.

NRC clearly does need cognitive models and infor
mation about cognitive function to support its regula
tory role. Nuclear power plants (NPPs) are built,
maintained, and operated by people, whose behavior
determines the usefulness and safety of the NPPs.
Cognitive function is the critical determiner of
behavior; until recently cognitive function has evaded
scientific treatment. NRC should support R&D in
applied cognitive science so that it can more effectively
characterize the NPP operator (and other people in the
NPP setting), and so that it can regulate those condi
tions which lead to safe working behavior. As John
Senders observed, "An adequate understanding of
human behavior is as necessary as an adequate under
standing of plant behavior."

NRC's investment in cognitive science should recog
nize, however, that early applications are not usually to
be expected. Some small-scale and low-technology
applications seem feasible in the early future, but the
big payoffs are several years away. Early investment
should plan for a basic science and exploratory phase.
In the long term, however, NRC will absolutely require
cognitive science in order to understand the role of man
within the high-technology control environments that
are coming. NRC can either wait, and in ten years
seek expertise from the universities and other technol
ogy areas, or it can begin now so that its needs will be
met more effectively when the time comes.

Why Cognitive Science?

In the modern workplace, and particularly in the
NPP control room, we are faced with the question:
How can we usefully characterize man in his role as
the more complex component of the man-machine con
trol loop and as the transfer function which inserts
human purpose into the system? Now we appear to
have a new discipline with the explanatory and predic
tive power needed to provide this description. We need
to "model" man in order to describe, understand,

predict, and diagnose. Our models need to be "cogni
tive" because the key problem behaviors are at the lev
els of rule-based and knowledge-based (rather than
skill-based) behaviors. Already this new science has
provided models which make it possible to document
and manage a category of work activity which we could
not deal with before — that growing majority of work
which manipulates information, rather than physical
things.

Nature of a Program

So what should NRC do to exploit cognitive sci
ence? Only NRC and the Congress can decide the
proper scope of a program, within NRC's charter and
objectives. But some suggestions are offered:

(1) The history of R&D, and particularly of "new
science" programs, shows that early applied efforts will
probably be disappointing. The last time behavioral
science promised a major contribution to society, it was
going to revolutionize learning with "Skinner boxes."
This time we should be more conservative in our expec
tations, and in what we promise. During their early
years, most new programs produce only (a) informa
tion, and (b) trained people. It is this second resource
which is most necessary to later success. NRC should
decide how much it can afford to invest, on a continu
ing basis, in early R&D, with the understanding that
this investment is made primarily to develop a corps of
professionals. In a few years, NRC will desperately
need a stable of practitioners who know (a) NRC, (b)
NPPs, and (c) cognitive science.

(2) A key insight is Don Norman's "Cognitive
Engineering." To me this suggests a developed profes
sion with experience in converting theory to applied
uses, and with a collegial memory. Until you have an
institutionalized profession there is no efficient com
munication of research, and many applied successes are
lost for want of institutional memory.

(3) Sheridan makes at least two points worth
emphasizing: (a) Cognition should be broadly defined
to include sensory and motor aspects. We need models
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of man which are fully able to interact with models of
the plant, and of the external world as a whole, (b)
"Mixed models" have high utility. Simulations are
achievable which are part quantitative and part verbal
(descriptive, qualitative), and which along with artifi
cial intelligence (AI) can be used to validate or exploit
model structures.

(4) For the first few years, NRC should not invest
in global, quantitative models of human function. Such
models have a low probability of success. Theorists
still disagree on the most basic questions of cognitive
structure, and thus we have no basis for a formal
model. Similarly we have few reliable quantitative
data, and therefore lack the means to quantify a model.
Neither are plant models immediately achievable. Tom
Sheridan reported that the plant model may be a 47th-
order differential equation. Any closed-loop man-
machine model would suffer from the cumulative error
of an inadequate operator model driving an inadequate
plant model, which feeds back increasingly flawed data
to drive the operator. Such a general model of the
NPP operator would probably run, and might appear
to be a success. But all that this would demonstrate is
that we can write software even to false or incomplete
assumptions. The modeling effort would be costly, and
would be of little scientific or applied interest.
Rasmussen remarked that "...in the rush to get quanti
tative models we may forget how to categorize...and
define boundaries."

So for a time NRC should limit itself to projects of
high scientific merit, and to a few low-cost, high-
probability-of-success applied projects. Several such
projects were described by speakers at the workshop.
Some that seem useful are reiterated here:

• Better formal and descriptive models are needed.
These should be developed in applied settings,
where they can be validated against real-world
human performance and used to explore applica
tions. The objective would be to find more sophisti
cated model structures which are useful and/or
valid.

• Part-task quantified models are achievable. These
should be indexed to real tasks, use short program
runs to limit cumulative error, and be calibrated
against reality.

• Human subsystem models are achievable. For
instance, Dave Woods discussed the close coupling
of visual attention to the subject's need for data.
This could be usefully embodied in a model.

• Certain AI applications appear to have an early
payoff, including knowledge-based expert systems
for decision aiding. AI may be only debatably a
part of cognitive science, but that is academic. AI
and cognitive science will become inseparable when
it comes to matters of application.

• Models can inform task analysis. Several speakers
observed that models and task lists can be
developed interactively. As tasks are discovered,
they can be used to specify structures or charac
teristics of the model. As the model develops, it

provides a descriptive language for the task list, and
guides the analyst in discovering tasks. Such
models are particularly effective in capturing cogni
tive function and information flows, data which are
usually missing from task analyses.
(6) Some commitment to "pure science" is desir

able. Politically, this may have to be justified in terms
of applied objectives. However it is to be justified,
such support should be directed to where it is most
effective in broadening the professional community of
cognitive science. This may mean not supporting the
most deserving researchers — those who have
pioneered the field. However unfair this may seem, the
really great and established researchers are certain to
be supported anyway. Highly focused funding could
result in a dilution of their attention and in the concen
tration of expertise in a very few universities and busi
ness firms. I would suggest institutional priorities as
follows:

• Academic departments with a potential, but not an
established tradition, in cognitive science.

• National laboratories, rather than private firms, so
that more discoveries and software remain in the
public domain.

• Business firms with developing, but not leading,
capabilities.

• All others.

In a few years, when an applied technology is
developed, it will be time to reverse these priorities and
to give the action to those universities and firms which
are most able to produce. At that point, there will be a
broader range of choice.

(7) About validity: Several speakers suggested
that we should not ask that a model be representative
of cognition, nor exhibit validity except at its end-
product point; that is, a model need not resemble cogni
tion in its processes if it predicts performance. This is
certainly true of engineering models. If a model
predicts an optimum wing design, we do not worry
about what aerodynamic theories it exercises. But this
is not true for cognitive models developed to advance
the science of cognition. For the most part we now
look to those models for explanatory power. We do not
expect to use them for quantitative prediction, or if we
do, we do not yet know what they can predict or at
what points in the modeling sequence data may be
drawn off. Therefore, we should strive for models
which have formal validity, in the sense that they
represent cognition in structure and exhibit concurrent
validity at the nodes of the model. For the moment,
we should expect behavior to be predicted more reliably
by expert judgment than by models. Later we may
derive, from the theoretical models, "engineering"
models which predict human performance for real-
world applications.

Access to NPP Data

If cognitive scientists are to assist the NPP indus
try, they will need more than money. A major obstacle
is the difficulty of access to real world data. In any
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realistic program, NRC must address the question of
access to subject matter experts, nuclear plants, simula
tors, and vendor design shops. This access is
necessarily limited, and could become a constraint on
R&D which is more limiting than the costs of research.

Summary

Yes, NRC should support cognitive science, and
should expect powerful results (after some years) from

a better understanding of human cognitive functions.
This will depend on:

• Maturing the technology.

• A larger community of professionals.

• Not committing to a single direction prematurely.
NRC should keep on asking the question asked at
this workshop: "What is the best direction to go?"

• Participation of the NPP industry as a field data
source.

ON MODELS, AVIATION, AND AUTOMATION
(September 13)

R. Curry
NASA Ames Research Center

What is a (Cognitive) Model, Anyway?

At the workshop I sensed a certain lack of clarity of
what a model is and what it can do. Perhaps the fol
lowing definition will be useful:

A model is a "thing" of which we ask
questions about the real world. A
model is adequate if the answers we
get from the model are close enough to
the answers we get in the real world
situation.

This definition seems to explain the lack of communi
cation (other than vocabulary) that exists between
model builders: some people are trying to answer ques
tions about how the human's innards actually work,
and others are trying to describe behavior under dif
ferent task/environmental conditions. If you reexamine
the workshop discussion about various models, I think
you will see that most disagreements can be traced to a
misunderstanding of the goals (questions to be
answered) that were assumed by the various sides of
the discussion.

A second reason that this definition of a model is
useful is pedagogical. It can be pointed out that the
NRC commissioners and staff have already been using
cognitive or human performance models as a basis for
their many actions regarding human factors. There
also may be other reasons for building models (see, for
example, Bill Rouse's book and the paper by Dick Pew
and Shelly Baron for the Baden Baden conference).

Some Examples

With this definition, a model, cognitive or not, can
take a wide variety of forms:

A Statement. Consider the following statement
about Short Term Memory (STM) extracted from Don
Norman's workshop paper:

Meaningful information is much more
easily retained than nonmeaningful or
unfamiliar material.

This model, and the other statements on STM in Don's
paper, can answer questions about how much and
under what conditions information can be remembered
for short periods of time.

An Equation. The following equations describe the
time required to position a cursor on a CRT using two
devices, a mouse and a joystick:

T = 1.03 + 0.096 log (D/S + 0.5) mouse
T = 0.99 + 0.220 log (D/S + 0.5) joystick

where D is the distance to the target, S is the size of
the target, and the logarithms are base 2. These equa
tions (models) and other devices are described in the
paper by Stu Card et al, Ergonomics, 28, No. 8, 1978.
The article also has equations (models) that describe
the learning time with the different devices. There is
much behind these equations, and the article must be
consulted to determine if the answer to the question
"How long does it take to position the cursor?" will be
valid for any given real-world situation.

Manned Simulation. A manned simulation is also a
model, since it will provide answers to certain ques
tions; confidence in the answers is usually higher than
for other models because "everything" has been taken
into account. This increased confidence is not always
justified. However, may times it is true that if a task
cannot be done in a simulation, it probably cannot be
done in the real world.

Similarities in Aviation

Ken Murphy said it most succinctly: "Controlling a
nuclear reactor is not like flying an airplane." True.
But there are some interesting parallels involving auto
mation that may be useful, perhaps as models.
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SPDS* and Flight Directors. About 30 years ago
the aviation industry recognized the high information-
processing load of instrument flying: assimilation of
information from a variety of sources, interpretation,
and appropriate control action. These activities are
similar to those of a plant operator dealing with a dis
turbance. The flight director was developed to com
pute and display steering commands based on measured
position, velocity, altitude, rate of climb, etc. The
flight director has reduced the processing demands of
instrument flying and this allows the pilot to perform
other tasks such as monitoring. Presumably a SPDS
system would offer these advantages too.

Sympton-Based-Procedures and SBOs. Until ten
years ago, the training of pilots and flight engineers
included a large amount of detail about hydraulic,
pneumatic, electrical, and other systems. This is still
done for some operators who fly to remote areas
without adequate maintenance, but the majority of
training is done by Specific Behavioral Objectives
(SBOs), i.e., symptom-based procedures: "if this light
comes on, push that button." These procedures are
designed to stabilize the situation and take advantage
of the onboard system redundancy to continue safely or
land as soon as necessary. Automating the responses
by performing the decision making ahead of time has
reduced training requirements and, overall, produced
better and more consistent crew responses. If system-
based procedures are that good, why not replace the

operator with a completely automatic system? This is
the key issue: how do we design the system and pro
cedures and how do we train the operator so that he
will recognize a new situation not covered by existing
procedures and take appropriate action?

Automation Is Not a Panacea

Automation (e.g., SPDS, flight directors, system-
based procedures) can perform well when properly
designed and implemented. However, Earl Wiener and
I have reviewed aviation accidents, incidents, and
experiences and found that more automation is not
always better (Ergonomics, 23, No. 10, 1980). An
important lesson to be learned from these real-world
examples is that there have been some unexpected
human factors side effects to automation, for example,
increased training requirements, loss of skill or
knowledge, operator complacency, defeating of alerting
and warning systems, ignoring alarms, etc. In addition,
attempts to eliminate human error by automation have
introduced human error elsewhere.

System design guidelines for automated and
semiautomated systems have been proposed (see our
article for some), but no one has the definitive answer
on how to design the interface. It is known, however,
that we should be asking more questions about these
side effects of automation, i.e., we should be examining
automation for its human factors liabilities as well as

its benefits.

ON POST-WORKSHOP THOUGHTS

(September 9)

J. M. Christensen

General Physics Corporation

I want to take advantage of the invitation to send in
any "post-workshop" thoughts that may have occurred
to us.

In reviewing the papers and my notes, I was
impressed by all of the speakers but I feel that the
ideas presented by Rasmussen, Sheridan, and the Bolt,
Beranek and Newman (BBN) group hold promise of
being most useful to NRC in the near future.

Rasmussen's model has an intuitive appeal and I
like his remarks about different models and treatments
for different purposes. He also feels that the skills and
rules parts can be treated quantitatively now or in the
near future. It is not surprising that he feels qualita
tive treatment will be required for the knowledge part
of his triumvirate, but many good models start out that
way.

Sheridan's "internal - external" model also has con
siderable intuitive appeal. If we can determine the

*SPDS = Safety Parameter Display System.

internal model that an operator possesses and then con
struct a system that is congruent with that internal sys
tem, errors should be reduced and general efficiency
increased. The model is also sensitive to the differences
between training and human engineering. Training
may be considered an attempt to modify the internal
environment so that it is congruent with the external
environment. Problems arise in determining the exact
nature of the internal environment at any instant in
time; internal models will vary from person to person
(e.g., one operator may operate at Rasmussen's "rules"
level while another may operate at Rasmussen's
"knowledge" level), and even within individuals as their
physiological state changes with physical fatigue, emer
gencies, etc. and their psychological state changes with
training, mental fatigue, etc.

The BBN model is an attempt to apply an existing
supervisory control modeling approach to nuclear power
plant operations. The model consists of block diagrams
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and appropriate algorithms for demonstrating feasibil
ity of the approach. Time-based simulations that
include dynamic representations of the system, the
operators, and the environment are included. Opera
tors are considered as elements in a closed-loop system
with well-developed information processing, decision
making, and implementation capabilities. A task
analysis is important in the definition of jobs in the
model. Stress because of task overload during a speci
fied time period can be handled. As conditions change,
their effects are reflected in changes in the "activity
time lines" — overload, for example.

The model is vulnerable and, in my opinion, merits
evaluation with real data, leading to further model

improvement. I consider it the best of the modeling
approaches for NPP work that I heard at the meeting.

I detected a certain reticence at the conference to
proceed with any of the models presented. In my opin
ion, this is a mistake. After a certain amount of
development, models need testing, followed by
modification, followed by more tests and so on until the
model has reached a stage that satisfies the
requirements that led to its development in the first
place. I believe that application ofthis time-tested pro
cess to the BBN model, for example, would lead to a
refined model that would satisfy your requirements.
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