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NUMERICAL METHODS FOR LARGE SPARSE 
LINEAR LEAST SQUARES PROBLEMS* 

MICHAEL T. HEATHt 

Abstract. Large sparse least squares problems arise in many applications, including geodetic network 
adjustments and finite element structural analysis. Although geodesists and engineers have been solving 
such problems for years, it is only relatively recently that numerical analysts have turned attention to them. 
In this paper we present a survey of numerical methods for large sparse linear least squares problems, focus- 
ing mainly on developments since the last comprehensive surveys of the subject published in 1976. We con- 
sider direct methods based on elimination and on orthogonalization, as well as various iterative methods. 
The ramifications of rank deficiency, constraints, and updating are also discussed. 

Key words. sparse least squares, normal equations, elimination, orthogonalization, Givens rotations, 
iterative methods 

1. Introduction. The method of least squares often means different things to dif- 
ferent people. For statisticians, least squares is a method for estimating unknown 
parameters. For engineers and experimental scientists, it is a method for curve fitting 
or data smoothing. For numerical analysts, least squares has come to mean solving 
nonsquare systems of equations, that is, systems whose equations and unknowns differ 
in number. Of course, such a system does not necessarily have a solution, and so 
instead we settle for minimizing some norm of the residual. Although other norms are 
sometimes used, the (possibly weighted) Euclidean norm is by far the most common, 
hence the name "least squares." If such a minimum residual solution is not unique, 
then an additional requirement is imposed, such as that the norm of the solution itself 
also be minimal. 

From both practical and computational points of view, linear problems are an 
extremely important subclass. This is true not only because many systems are 
inherently linear, but also because many algorithms for solving nonlinear problems 
require the solution of a succession of linear subproblems. For this reason, a great 
deal of effort over an extended period of time has gone into the development of a 
number of effective algorithms for solving linear least squares problems. In many 
cases the seeds of these algorithms are contained in computing practices which predate 
electronic computers and were not necessarily originally intended for least squares 
problems. These techniques were later sharpened and refined, particularly with regard 
to their numerical properties, for use on digital computers before finally receiving a 
systematic modern implementation for solving least squares problems. The present 
survey is concerned with a further phase of development, the extension of these algo- 
rithms to handle large sparse least squares problems. 

To fix notation, the problem we wish to consider is 
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t Mathematics and Statistics Research Department, Computer Sciences Division, Oak Ridge National 
Laboratory, Oak Ridge, Tennessee 37830. 

1 



2 MICHAEL T. HEATH 

where A is an m x n matrix and b and x are vectors of dimension m and n ,  respec- 
tively. Standard assumptions are that m a n  and runk(A)=n,  in which case the solu- 
tion to (1.1) is unique. Problems in which m<n or runk(A)<min{m,ni do occur, 
however, in many important contexts. For' such underdetermined or rank deficient 
problems, (1.1) does not have a unique solution, so that the minimum norm solution, 
or some other particular solution, is usually what is required. Other important gen- 
eralizations of ( 1.1 ) include the imposition of constraints and updating the solution 
when new data are added. For a comprehensive discussion of algorithms for least 
squares problems see [44]. For statistical interpretation see [ 581. 

This survey is primarily concerned with methods which are effective for solving 
(1.1) when the matrix A is large and sparse, which means that A contains relatively 
few nonzero elements. Areas in which large sparse least squares and related problems 
arise include geodesy, photogrammetry, image enhancement, structural analysis, spline 
data smoothing, and mathematical programming. 

In order to make the solution of very large sparse least squares problems compu- 
tationally feasible with respect to execution time and storage requirements, algorithms 
for such problems should store and operate on only the nonzero entries of the matrix 
and should try to minimize the creation of new nonzeros as computations proceed. 
Another important consideration is the manner in which the data are accessed, since 
auxiliary storage is often required for large problems. Conventionally, the rows of the 
matrix A correspond to observations (successive measurements or replications), 
whereas the columns of A correspond to the unknown variables or parameters of the 
problem. Thus it is more convenient to generate, store, and access the data matrix by 
rows rather than by columns. 

In addition to sparsity preservation and data management, questions of numerical 
stability must also be taken into account when evaluating algorithms for sparse least 
squares problems. Indeed, the main purpose of much of the research on least squares 
algorithms in the past twenty years has been to improve on the numerical shortcom- 
ings of more traditional methods. As in other areas of sparse matrix computations, 
here, too, the tradeoffs between sparsity and stability are of vital importance. 

2. Normal Equations. If runk(A)=n,  then the solution to (1.1) is given by the 
solution to the system of normal equations 

A T A x = A T b .  (2.1 ) 

If runk(A)=m,  the minimum norm solution to (1.1) is given by x = A T y ,  where y is 
the solution to the linear system 

A A T y = b .  (2.2) 

In either case, the matrix of the linear system is symmetric and positive definite so 
that the solution can be obtained by Cholesky factorization. For system (2.1) the 
latter factorization takes the form A T A = R T R ,  with R upper triangular, so that 
(2.1) can be solved by forward and backward substitution. Most of the following dis- 
cussion will be given in terms of system (2.1) for the overdetermined case; an analo- 
gous discussion is applicable to system (2.2) for the underdetermined case. (See [ 131 
for a survey of basic methods for underdetermined problems.) 

For dense problems, algorithms based on this approach are quite efficient, requir- 
ing only about half as many arithmetic operations as competing methods when m>>n, 
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although this advantage diminishes for more nearly square problems. The normal 
equations method is also very attractive for sparse problems, since excellent software 
packages are available for solving large sparse symmetric positive definite linear sys- 
tems (eg., YSMP [20], SPARSPAK [27] and MA27 [ 191). These software packages 
symmetrically reorder the equations and unknowns so that the Cholesky factor suffers 
relatively little fill (creation of new nonzeros). A number of reordering heuristics are 
known which can dramatically reduce the fill resulting from factorization. These 
include the minimum degree algorithm, various dissection schemes, and various 
bandwidth or profile minimization schemes. 

Let P and Q be permutation matrices of order n and m, respectively. Then 

( Q A P ) ~ Q A P = P ~ A ~ Q ~ Q A P = P ~ A ~ A P .  

We conclude that the row ordering of A has no bearing on the normal equations, but 
reordering the columns of A corresponds to a symmetric row and column permutation 
of A T A .  In particular, the rows of A can be processed sequentially from an auxiliary 
file in arbitrary order. In the software packages mentioned in the previous paragraph, 
the symmetric reordering is determined by analyzing the structure of the graph 
corresponding to the symmetric matrix. For the symmetric matrix of the system of 
normal equations this graph is easily determined: the nonzeros of each row of A gen- 
erate a clique in the graph of A T A .  (See [27] for relevant graph-theoretic concepts 
and terminology.) It is important to emphasize that, since pivoting is not required for 
numerical stability in the Cholesky algorithm, the reordering phase is entirely sym- 
bolic and takes place before any floating point computation. Furthermore, by antici- 
pating all fill in advance, dynamic storage allocation is unnecessary, so that an effi- 
cient static data structure can be used. 

Thus, an algorithm implementing (2.1) for sparse least squares problems goes like 
this (an analogous algorithm implements (2.2) for the underdetermined case): 

ALGORITHM 1. Normal Equations. 

1. Determine the structure (not the numerical values) of A T A .  
2. Find a permutation matrix P such that PTATAP has a sparse upper triangu- 

lar Cholesky factor R. 
3. Factor PTATAP symbolically, generating a row-oriented data structure for R. 
4. Compute A T A  and A T b  numerically, processing the rows of A one by one 

from an external file. 
5. Factor PTATAP = R T R  numerically. 
6. Solve RTz = P T A T b .  
7. Solve Ry = z .  
8. x = P y .  
The use of the normal equations is as old as the method of least squares itself. 

The normal equations are easy to derive and understand, and, as we have seen, they 
adapt nicely to deal with sparse problems. Indeed, for many people "normal equa- 
tions" and "least squares" are virtually synonymous, and algorithms based on the 
normal equations are still by far the most commonly used for solving least squares 
problems (see, e.g., [ 361). The only trouble in this apparent paradise is that use of the 
normal equations may lead to numerical difficulties which are relatively harmless in 
some cases, but can be disastrous in others. 

The potential numerical problems associated with the normal equations spring 
from two sources. One is the potential loss of information in explicitly computing the 
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cross-product matrix A T A  and vector A T b .  The other source of difficulty is the fact 
that the condition number of the matrix A T A  is the square of that of A,  so that an 
accurate solution of (2.1) may be difficult or impossible to compute if A itself is 
already poorly conditioned (see, e.g., [60], [48], [32]). If A is not of full column 
rank, then A T A  is singular and the Cholesky factorization algorithm breaks down. 
Near rank degeneracy causes similar numerical problems in finite precision arithmetic. 
The upshot of all this is that forming and solving the normal equations requires rela- 
tively high working precision in order to guarantee suitable accuracy, which would 
often entail an unacceptable increase in storage requirements for very large problems. 
The principal motivation for the other methods we will discuss is to alleviate these 
numerical difficulties. 

Another problem which the reader may have noticed is that the sparsity of A 
does not guarantee that A T A  is comparably sparse. Indeed, if an otherwise sparse A 
has even one dense row, then, barring numerical cancellation, A T A  is completely full. 
Clearly, such a situation is disastrous for the normal equations algorithm. The day 
can be saved, however, by initially omitting any rows of A which would cause exces- 
sive fill in A T A  (assuming full rank is still maintained) and later updating the solu- 
tion to incorporate the effect of the omitted rows. Such updating procedures are com- 
mon in least squares applications when new observations are added to a previously 
solved problem. The possibility of excessive fill in forming A T A  is sometimes given as 
justification for some alternative method. Barring accidental cancellation, however, all 
direct methods suffer the same or a similar fate when confronted with a matrix A 
having one or more dense rows. On the other hand, the updating procedures necessary 
to cope with such situations can be more stably implemented using other techniques, 
such as orthogonal transformations. 

3. Elimination Methods. For simplicity of presentation, in this section we assume 
rank (A ) = n. Carrying out Gaussian elimination with row and column interchanges 
on the m x n matrix A leads to a factorization of the form 

PIAP2=LU, (3.1) 
where P I  and P2 are permutation matrices of order m and n, respectively, L is an m 
x n unit lower trapezoidal matrix, and U is an n x n upper triangular matrix. Util- 
izing this factorization, together with the orthogonal invariance of the Euclidean norm 
and the change of variable 

problem ( 1.1 ) becomes 

min 11 P I  b - Ly 11 2. 
Y 

(3.3) 

One way to solve problem (3.3) is by means of the system of normal equations 

LTLy = L T P l b .  (3.4) 
The solution x to (1.1) is then recovered by solving the triangular system (3.2). It 
appears that little has been gained by this approach compared to solving system (2.1) 
directly. As observed by Peters and Wilkinson [52], however, by using an appropriate 
pivoting strategy in the elimination (i.e., choice of P I  and P2), it is possible to control 
the conditioning of L ,  isolating any ill conditioning of A in U .  Thus, it should be safe 
numerically to form and solve system (3.4). Other authors have suggested the use of 
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orthogonalization techniques to solve (3.3), but there is no real advantage over apply- 
ing such methods directly to ( 1 . 1  ) unless the problem is only slightly overdetermined 
(see [ 121 and [53]). 

This elimination scheme of Peters and Wilkinson has been extended and adapted 
for sparse problems by Bjorck and Duff [8]. When A is sparse, the permutations P I  
and P 2  must be chosen to preserve sparsity in L and U as well as to enhance the con- 
ditioning of L and the numerical stability of the factorization. A threshold pivoting 
strategy is used by Bjorck and Duff as a compromise between considerations of spar- 
sity and stability. Note that here, too, one or more dense rows in A could cause unac- 
ceptable fill in L T L ,  and so an updating scheme should be used to account for such 
rows. Usually the nonzero pattern of L is very much like that of A ,  and so solving 
system (3.4) requires about the same work and storage as system (2.1). Thus, the 
improved numerical behavior of the Peters-Wilkinson scheme is bought at the possibly 
high price of computing the factorization (3.1). One saving grace is that since U is 
not involved in solving (3.3), U may be written out on an external file and then 
recalled for the back substitution (3.2), thereby conserving main storage. 

Bjorck and Duff introduce a modification of the Peters-Wilkinson scheme in 
which the solution x is split into two parts, one of which does not involve the normal 
equations (3.4). Using the partitioning 

L = [ f:] 9 

(3.5) 

where L I  is a matrix of order n and b l  is a vector of dimension n, let the n-vector c 
be defined by 

L I C  = b  1. 

Note that this is equivalent to taking c to be the first n components of the 
transformed right hand side vector, if the latter is processed simultaneously with A 
during the elimination. Let the (rn -n)-vectord be defined by 

d = b2- L ~ c .  

We now observe that 

P 1 ( b - A * ) = [ j  -Lz ,  

where 
z =UP,Tx - c .  

Thus, if z is the solution of the problem 

and x I  and x 2  are given by the triangular systems 
up;x;C=c, UPTX2 = z , 

then x = x , + x 2  is the solution of (1.1). There are two principal advantages to 
splitting the solution into two parts in this manner. First, since )lb -Ax1))2=I)d))2, if 
Ild )I is sufficiently small (i.e., the original problem ( 1.1 ) is nearly consistent), then x 1  
is already an adequate solution, so that x2 ,  and hence z ,  need not be computed at all. 
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Second, any ill conditioning in L affects only the computation of the "correction" term 
x2. 

The steps of the Peters-Wilkinson method as modified by Bjorck and Duff are 
summarized in the following algorithm. 

ALGORITHM 2. Elimination. 

1. 

2. 
3. 
4. 
5. 

6. 
7. 
8. 

In 

Compute the factorization (3.1), choosing P I  and P2 to produce sparse U and 
L and well conditioned L .  
Solve L l c = b l ,  with L 1  and b l  as in (3.5). 
Solve UPTX I = c . 

If \ldll2<e, set x = x l  and stop. 

Solve LTLz = LT[  i] using Algorithm 1. 
Solve U P T X ~  = z . 
x = x ,  +x2. 

d = bz- L ~ c .  

their paper [8], Duff and Bjorck show how to extend this algorithm to handle 
rank deficient problems, weighted problems, constraints, and updating. Delves and 
Barrodale [ 151 have published a related elimination algorithm in which first a square 
subsystem of (1.1 ) is solved by the usual square LU factorization, then the remaining 
rows of A are treated as updates. Such an approach is advantageous for problems 
which are only slightly overdetermined. Their algorithm does not appear to have been 
implemented as yet specifically for sparse problems. 

Another family of elimination methods is based on the fact that the solution x to 
(1.1) and the residual r = b - A x  must satisfy the augmented ( r n + n )  x ( r n + n )  
linear system 

This system has been used by Bjorck [2] in studying iterative refinement for least 
squares solutions, and its use for sparse problems has been advocated by Hachtel, who 
calls this the "sparse tableau" approach [37]. The idea here is simply to use a stan- 
dard sparse solver for square linear systems to solve (3.6). Note that block elimina- 
tion applied to (3.6) without pivoting yields the usual normal equations for x .  The 
hope is that the sparse square system solver will use the additional freedom in choos- 
ing pivots to find a considerably more sparse factorization. Although system (3.6) is 
symmetric, it is indefinite, so that the pivoting must take account of numerical stabil- 
ity as well as sparsity. While a sparse symmetric indefinite factorization is certainly 
possible [ 191, there are actually certain advantages to ignoring the symmetry of (3.6) 
and using a nonsymmetric system solver [ 181. On the other hand, ignoring symmetry 
incurs the heavy penalty of having to store two copies of A .  

4. Orthogonalization Methods. 
4.1. Basic Methods. We have seen that the chief difficulty with the normal equa- 

tions is numerical: the information loss and ill conditioning associated with the explicit 
formation of the cross-product matrix. The elimination method of Peters and Wilkin- 
son tries to lessen these numerical effects. Another alternative is to avoid explicit for- 
mation of the cross-product matrix altogether by computing its triangular Cholesky 
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factor R directly from A ,  and this can be done by means of orthogonal factorization. 
An orthogonal matrix Q of order M is computed which reduces [A, b ]  to the form 

(4.1) 

where R is an upper triangular matrix of order n and c is a vector of dimension n. 
(We consider first the m a n  case; the underdetermined case will be taken up later in 
this section.) To see that R is indeed the Cholesky factor of the cross-product matrix 
(assuming Q is chosen so that R has positive diagonal entries), we need merely note 
that 

R 
A T A = ; A T Q T Q A = [ R T  O][ O] = R T R .  

Since the Euclidean norm is invariant under orthogonal transformation, the solution to 
(1.1) may be obtained by solving the triangular system Rx =c. 

There are three principal methods for computing the factorization (4.1): Gram- 
Schmidt orthogonalization ([55], [ l]), Householder reflections ([41], [32], [9]), and 
Givens rotations ([31], [ 21-23], [ 381). Both Gram-Schmidt and Householder reduce 
A to triangular form by annihilating all the subdiagonal elements in an entire column 
at each step. Though effective for dense problems, this column-oriented, "sledge ham- 
mer" approach has serious drawbacks for large sparse problems. The trouble is that at 
each step each column in the remaining unreduced portion of the matrix which has a 
nonzero inner product with the column being reduced takes on the sparsity pattern of 
their union. Although this newly created fill scattered throughout the unreduced 
matrix will eventually be annihilated by the orthogonalization process, in the mean 
time it must be stored, greatly increasing storage requirements beyond that required 
for R (see Fig. 1). Givens rotations are a much more appropriate tool in this context 
because of their ability to introduce zeros more selectively and in a more flexible order 
[21]. In particular, R can be built up gradually as the rows of A are processed one 
by one in their natural order (or any other desired order), intermediate fill is confined 
to R and the working row, and the unreduced rows of A can remain untouched on 
external storage until their turn for actual reduction (see Fig. 2). 

A problem which plagues all orthogonalization methods is that even if A and R 
are sparse, it is unlikely that the orthogonal matrix Q will be particularly sparse. 
There has been some study of maintaining sparsity in Q ([61],[11],[16]), but the 
outlook in general is quite unpromising, especially since sparsity must be maintained 
simultaneously in R. Instead, most practical procedures simply discard the orthogonal 
transformations which make up Q as they are used in processing the matrix and right 
hand side vector. For a simple problem with a single right hand side no real harm is 
done, since Q is not actually needed to compute the least squares solution once R and 
c have been obtained. But for more complicated problems, such as those having mul- 
tiple right hand sides which are not known in advance, or certain applications which 
require explicit computation of an orthogonal basis, getting along without Q can be a 
headache. One alternative is to write the orthogonal transformations on auxiliary 
storage as they are generated. Each Givens rotation can be represented by a single 
floating point number [59], thereby economizing storage. In other cases the need for 
Q can be circumvented, although not always with equivalent numerical stability. For 
example, one way to handle multiple right hand sides is to solve the system 
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FIG. 1. Reducing a sparse matrix by Householder reflections. 
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FIG 2. Reducing a sparse matrix by Givens rotations 

, P A =  
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. .  
'"I.. . ; ! !. .. .: ::! ! .:'..! !, . . . . . . . , . .  

FIG. 3. Cost for reducing A: O(n2), PA: O(kn'/. 
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R T R x = A T b  (4.2)  
using the R already computed, so that only the original matrix A ,  which is available 
on an external file, is needed to transform subsequent right hand sides. Although 
system (4 .2)  shares some of the numerical shortcomings of the normal equations 
method, at least R is accurately computed, and the accuracy of the solution can be 
improved by a few iterations of iterative refinement [ 4 ] .  

Having decided to use Givens rotations, there remains the problem of choosing a 
good row and column ordering for A .  There has been a good deal of work 
([ 16],[ 23],[ 621) on choosing these orderings dynamically: the ordering is determined 
according to some local minimization-of-fill criterion as numerical computations 
proceed, and storage is inserted into the data structure as needed to accommodate any 
fill generated. Such algorithms are very similar in spirit to square, nonsymmetric 
linear system solvers in that access to the whole unreduced matrix is required at each 
step for possible pivot selection. An important difference, however, is that the stabil- 
ity of orthogonal transformations allows the selection to be based solely on sparsity 
considerations (assuming the problem is not too disparately weighted: see further com- 
ments on row ordering below). 

A different approach is taken in [24 ] ,  which is patterned more after symmetric 
positive definite linear system solvers. Recall our earlier remark in discussing the nor- 
mal equations that the row ordering for A has no bearing on the structure of A T A ,  
but that the column ordering for A determines the structure of A T A  and hence that 
of R ,  its Cholesky factor. Thus the structure of A T A  can be analyzed symbolically in 
advance of any numerical computation in order to find a good column order for A 
which will limit fill in R ,  and also to set up a data structure which will accommodate 
any fill in R which does occur. Such a static data structure can be very efficient, 
requiring none of the garbage collection and other overhead associated with dynamic 
data structures. 

An algorithm based on these considerations is as follows: 

ALGORITHM 3. Triangularization by Givens Rotations. 

1. Determine the structure (not the numerical values) of A T A .  
2. Find a permutation matrix P such that PTATAP has a sparse upper triangu- 

lar Cholesky factor R. 
3. Factor PTATAP symbolically, generating a row-oriented data structure for 

R. 
4. Compute R and c numerically, processing the rows of [ A P ,  b ]  one by one 

using Givens rotations. 
5 .  Solve R y = c .  
6. x = P y .  

Steps 1 through 3 of Algorithm 3 are the same as those of Algorithm 1 and can 
be carried out very efficiently using standard sparse matrix software designed for sym- 
metric positive definite linear systems. In particular, assuming the Givens rotations 
are either discarded or written on secondary storage, Algorithm 3 exploits sparsity to 
the same degree and requires the same amount of primary storage as Algorithm 1, but 
is more stable numerically. 

The details of step 4 of Algorithm 3 are of some interest. Let uT be a given row 
of AP to be processed next. Let j be the subscript of the first nonzero component of 
a*. It is shown in [24 ]  that there is space in row j of the data structure of R to 
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accommodate uT. If row j of the data structure is still vacant, as will likely be the 
case early in the row by row processing, then aT may simply be placed into row j of 
the data structure. If, on the other hand, row j of the data structure is already occu- 
pied by previously stored numerical values, then row j may be used to annihilate the 
first nonzero of aT with a Givens rotation. It is further shown in [24] that the result- 
ing "shorter" row can also be accommodated in the data structure, even though some 
fill may have occurred as a result of the transformation. Thus, the process may be 
repeated until either an unoccupied row is found in which to place the working row or 
all its nonzeros have been annihilated. 

Although the order in which the rows of A are processed in step 4 does not affect 
the structure of R, it does affect the amount of fill created in the working row and 
hence the total cost of computing R .  Fig. 3 gives an extreme example of the differ- 
ence row ordering can make with respect to numerical factorization cost. Heuristic 
row ordering rules have been suggested which can substantially reduce computational 
costs for certain classes of problems, but the general relationship between row and 
column orderings is. not yet well understood (see [24] and [28]). Another factor 
which may dictate a particular row ordering is that any heavily weighted rows should 
be processed first for optimum numerical stability (see [44], pp. 103-106). 

Specialized algorithms which adapt orthogonalization techniques to problems hav- 
ing banded or similar structure are given in [ 141, [44], and [ 541. 

,-k 

4.2. Extensions and Generalizations. Algorithm 3 lends itself to a number of use- 
ful extensions and generalizations in order to handle more difficult or complicated 
problems. For example, the problem may be so large that R will not fit in main 
memory, and hence auxiliary storage must be used. Indeed, for extremely large prob- 
lems such as the geodetic readjustment of the North American Datum [42], storage 
requirements may even exceed the virtual address space of the largest computers, so 
that auxiliary space cannot be managed implicitly by a paging algorithm. In [ 261 an 
algorithm is given in which such large problems are partitioned by incomplete nested 
dissection into a sequence of smaller subproblems, each of which is processed by the 
basic Givens algorithm, eventually producing the solution to the original problem. 

It is clear that Algorithm 3 suffers the same catastrophic fill as the other 
methods we have discussed when confronted with a matrix A having one or more 
dense rows. It is also sometimes desired that some of the equations in a linear system 
be satisfied exactly while the remaining equations are satisfied only in the least 
squares sense. For example, it may be required that the sum of all the variables be 
equal to 1 or some other prescribed constant. Extensions to Algorithm 3 which enable 
it to incorporate such constraints and/or updating are derived in [39]. Further gen- 
eralization to allow arbitrary rank along with constraints and updating is given in [7]. 

Another implicit assumption in Algorithm 3 is that rank(A)=n.  The usual gen- 
eralization of the orthogonal factorization (4.1) for dense rank deficient problems is to 
use column interchanges during the orthogonalization process to obtain a factorization 
of the form 

where R is an upper triangular matrix of order k=runk(A) ,  P is a permutation 
matrix which performs the column interchanges, and the elements of T are negligible 
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in magnitude. In Algorithm 3, however, the column ordering for A represented by P 
is fixed in advance to preserve sparsity, and cannot be altered during the numerical 
phase. It is shown in [39] that a factorization of the form (4.3) can nevertheless be 
obtained without explicit column pivoting, leading in turn to a basic or minimum- 
norm solution for underdetermined and/or rank deficient sparse linear least squares 
problems. 

An alternate approach for underdetermined problems is to apply Algorithm 3 to 
AT rather than A ,  yielding an orthogonal factorization of the form 

A = [ R T  O]Q. (4.4) 
This enables us to replace system (2.2) by the system 

RTRy=b,  (4.5) 
which can be solved by forward and back substitution. Such an approach fits in well 
with the philosophy of discarding Q, but it would appear to have the same condition 
squaring effect as that suffered by (2.2) and (4.2). In practice, however, the use of 
(4.5) usually yields results which are comparable to the theoretically more accurate 
algorithm which involves Q explicitly [ 561. This surprising behavior has been 
explained by Paige [49], who shows that as long as A is not too ill conditioned, the 
error resulting from (4.5) depends essentially on the condition number of A rather 
than the condition number squared. In using (4.4) and (4.5) for the sparse case via 
Algorithm 3, we must now avoid dense columns rather than dense rows. Appropriate 
updating procedures are given in [ 291. 

5. Iterative Methods. For some large sparse least squares problems iterative 
methods are a useful alternative to the direct methods we have discussed thus far. 
Unlike direct methods, which compute an approximation to the exact solution in a 
finite number of steps, iterative methods successively improve an initial approximate 
solution until the approximation is acceptably close to the exact solution. One advan- 
tage of this approach is that one need not spend time computing an unnecessarily 
accurate solution if the data do not warrant it. Direct methods, on the other hand, 
generally have fixed accuracy and do not produce meaningful intermediate results. 
Iterative methods are also especially appropriate for problems in which the entries of 
the matrix are easily generated on demand. In such cases the matrix need not be 
stored at all, but instead can be defined by its action on vectors. 

In principle any iterative method for symmetric positive definite (or semidefinite) 
linear systems can simply be applied to the system of normal equations (2.1). Explicit 
formation of the cross-product matrix A T A  can be avoided by keeping the normal 
equations in factored form 

AT(b -Ax)=O. (5.1) 
In this way the matrix A is used only to compute matrix-vector products of the form 
Ax and A T y .  Although this formulation avoids some of the numerical difficulties 
and fill which can result from explicitly forming A T A ,  the convergence rate of itera- 
tive methods based on (5.1) still depends on the spectrum of A T A ,  and can therefore 
be very slow. Because of this the main emphasis in research on iterative methods for 
least squares problems has been to accelerate convergence by means of various split- 
tings and preconditioners. 
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A splitting takes the form A =M-N, leading to a sequence of least squares 
problems of the form 

M X k  + I = N X k  -k b. 
Preconditioning is a change of variable z=Cx, where C is a nonsingular matrix of 
order n, so that 

b -Ax = b  - AC-Iz. 

In either case the strategy is to choose M or C so that M or AC-' gives a more 
favorable spectrum than A ,  thereby speeding convergence. Since these two 
approaches are essentially equivalent [ lo], we will concentrate on preconditioning 
methods. 

In implementing a preconditioner for least squares problems matrix-vector pro- 
ducts of the form Ax and ATy become A C ' z  and C V T A T y ,  respectively. Of 
course the matrix product AC-I is never explicitly computed, but instead is treated as 
the product of two successive operators. Thus each iteration will require solution of 
linear systems of the form 

cx = z  and CTX = y .  ( 5 . 2 )  
For this reason C is usually chosen to be diagonal or triangular so that systems (5.2) 
can be solved easily. Several different preconditioners have been used effectively for 
least squares problems: 

1. Diagonal scaling. C=diag(di) ,  where the di are norms of the columns of A. 

2. SSOR preconditioning [5]. C=Z+wLT,  where A has been scaled so that 
ATA = L  +Z+LT with L strictly lower triangular, and w is a scalar relaxa- 
tion parameter. 

3. Incomplete Cholesky factorization ([45],[46]). C= R', where R' is an approx- 
imation to the Cholesky factor R but is more sparse. Note that the true 
Cholesky factor R would be the ideal choice for C since then AC-' is orthog- 
onal. 

4. LU preconditioning [57]. C = U ,  where U is the upper triangular factor from 
a factorization of the form (3.1). 

5. Gauss-Jordan preconditioning [43]. C = A r ' ,  where A I  is a square, nonsingu- 
lar submatrix of A of order n. 

Notice that this last preconditioner gives an algorithm that is essentially the same as 
the direct method of Delves and Barrodale [ 151 mentioned in section 3, except that 
the updating is done iteratively rather than in closed form. This is just one example 
of the many ways in which preconditioning blurs the distinction between direct and 
iterative methods. 

As a concrete example of an iterative method for least squares problems we now 
consider the method of conjugate gradients. There are many variants of conjugate 
gradients which are theoretically equivalent but differ in their numerical behavior. 
One of the most effective for reasonably well conditioned least squares problems is this 
early version due to Hestenes and Stiefel [40]: 
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ALGORITHM 4. Conjugate Gradients. 

1 .  xo=o 
2. ro=b 
3. so=ATro2 
4. yo= llsollz 
5. pi=so 
6 .  For k = 1 ,  2, ... repeat the following: 

a. q k  = A p k  
b- a k  = Y k  - 1/11 q k  11 z 
c. X k = X k - I - k a k P k  
d. r k  ' T k  - 1 - a k q k  
e. S k = A T r k  

f. Yk=lISk11$ 
g- B k  = Y k / ' Y k  - 1 

P k + I = S k + D k P k  

Although this algorithm theoretically produces the exact solution to (1.1) in at 
most n iterations, with the rounding errors of finite precision arithmetic it may require 
far more or far fewer than n iterations to yield a satisfactory solution. If a precondi- 
tioner is used to accelerate convergence, then the matrix-vector products Ap and ATr 
are replaced by A C ' p  and C T A T r  implemented by solving systems of the form 
(5.2). In using a preconditioner there is a tradeoff between the reduction in the num- 
ber of iterations required and the increase in work per iteration. 

A variant of conjugate gradients which is effective for more ill conditioned least 
squares problems has been developed by Paige and Saunders in [ 501, which should be 
consulted for algorithmic details. Their algorithm is based on the bidiagonalization 
procedure of Golub and Kahan [33] in the same way that the conjugate gradient algo- 
rithm is related to Lanczos tridiagonalization. The bidiagonalization approach has 
also been adapted to obtain regularized solutions of ill-posed problems ([ 6],[47]). 

These bidiagonalization algorithms can be thought of as a natural extension of 
the singular value decomposition method to solve sparse problems. The singular value 
decomposition, which has the form 

A =UBVT, (5.3) 
where U and V are orthogonal matrices of order m and n, respectively, and Z is an 
m x n nonnegative diagonal matrix, is in many ways the most satisfactory numerical 
method for solving least squares problems ([33], [35], [44]). Unfortunately the full 
decomposition (5.3) is not computationally useful for large sparse problems because 
the orthogonal matrices U and V are generally too dense. Through Lanczos-style 
bidiagonalization, however, a few dominant triples (r,u ,v ) of singular values and vec- 
tors can be generated even for very large matrices [ 341. 

6, Concluding Remarks. In this paper we have surveyed the principal numerical 
methods available for solving large sparse linear least squares problems. We have con- 
centrated on developments since the surveys [3], [ 181, and [30] published in 1976. 
Several of these methods have been compared in numerical experiments using a vari- 
ety of test problems ([ 18],[25],[50],[57]). Although much more testing is needed on 
a broader spectrum of test examples, some preliminary conclusions are possible: 
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1. 

2. 

3. 

4. 

For well conditioned problems the traditional method of normal equations imple- 
mented using modern sparse matrix techniques is very effective and hard to beat, 
especially on problems for which m>>n and which are quite sparse. 

For more difficult problems which require the greater numerical stability of 
orthogonal factorization, the method of Givens rotations can be implemented so 
as to use essentially the same storage as the normal equations method (see Algo- 
rithm 3). 

For problems which are only slightly overdetermined, or are overdetermined but 
consistent, a method based on elimination is likely to be best. 

Several effective techniques are available for problems which are well suited to 
iterative solution. If conditioning is a problem, the method of Paige and Saunders 
[50] is especially to be recommended. A preconditioner can help speed conver- 
gence but must be chosen carefully. 

Most of the methods we have discussed have been implemented in computer soft- 
ware which is publicly available, or soon will be: 

Several symmetric positive definite linear system solvers (e.g., SPARSPAK [ 271, 
YSMP[20], MA27 [19]) are available which could form the basis of an efficient 
implementation of the normal equations method. Since it handles indefinite prob- 
lems as well, MA27 could also be used to solve the augmented system (3.6). 

The implementation of the Peters- Wilkinson elimination method by Bjorck and 
Duff [ 81 is to be included in the Harwell Subroutine Library. Their code uses a 
modified version of the Harwell subroutine MA28 [17] to compute the LU fac- 
torization (3.1). 

Software implementing the algorithms of George and Heath [24], [39] is to be 
included in a new, expanded version of SPARSPAK, giving it the capability of 
solving nonsymmetric and nonsquare problems. The new modules rely heavily on 
the existing SPARSPAK for the symbolic parts of the computation. 

The work of Zlatev [62] is implemented in the software package LLSSOl [63]. 
To conserve storage, this code allows for an incomplete triangular factorization 
(determined by a drop tolerance), followed by iterative refinement. 

The iterative algorithm of Paige and Saunders has been implemented as subrou- 
tine LSQR and is available from ACM TOMS [51]. This code solves damped 
least squares problems as well as ordinary least squares and nonsymmetric equa- 
tions. 

There is considerable room for further research on algorithms for sparse least 
squares problems. Better row and column orderings are needed, as well as a better 
understanding of the relationship between them. The tradeoffs between static and 
dynamic data structures need further study. In elimination methods, the structural 
relationships between A and L and between U and R need to be better understood. 
Also worthy of exploration are row elimination schemes using stabilized elementary 
eliminators, as opposed to the use of a general threshold (partial or complete) pivoting 
approach. More sophisticated criteria are needed for withholding rows which lead to 
excessive fill in the Cholesky factor. The numerical behavior of updating schemes 
needs to be further scrutinized and improved. Existing algorithms should be extended 
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to allow more generality with regard to constraints, updating and rank. An important 
problem for iterative methods is automating the choice of an effective preconditioner 
to speed convergence. With all of these methods relatively little attention has been 
given to handling problems which are too large to fit in main storage or to the use of 
advanced computer architectures such as pipelined, array, or parallel processors. 

The answers to these and many other outstanding questions will undoubtedly lead 
to more effective and efficient methods for solving large sparse least squares problems. 
In addition, advances in sparse least squares computations will have an effect on other 
areas of sparse matrix computations, such as the application of sparse orthogonal fac- 
torizations to problems in optimization, control, and eigenvalue and singular value 
computations. 
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