
3 4 4 5 6 O O 2 2 0 L L 5

UCC-ND
ORNL/CSD-I 14

Numerical Methods for
Large Sparse Linear

Least Squares Problems

M. T. Heath

National Technical Information Service
US. Department of Commerce

5285 Port Royal Road, Springfield, Virginia 22161

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the U nited StatesGovernment nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

ORNL/CSD- 1 14
Distribution Category UC-32

NUMERICAL METHODS FOR LARGE SPARSE
LINEAR LEAST SQUARES PROBLEMS

Michael T. Heath

Date Published - April 1983

COMPUTER SCIENCES
at

Oak Ridge National Laboratory
Post Office Box Y

Oak Ridge, Tennessee 37830

Research sponsored by the
Applied Mathematical Sciences Research Program

Office of Energy Research

Union Carbide Corporation - Nuclear Division
operating the

Oak Ridge Gaseous Diffusion Plant
Oak Ridge Y-12 Plant

Oak Ridge National Laboratory
Paducah Gaseous Diffusion Plant

under contract No. W-7405-eng-26

CONTENTS

iii

Abstract 1

. . 1

. 2

1 . Introduction .

2. Normal Equations

3. Elimination Methods 4

4. Orthogonalization Methods 6

.

5. Iterative Methods

6. Concluding Remarks .

. 11

. References 15

NUMERICAL METHODS FOR LARGE SPARSE
LINEAR LEAST SQUARES PROBLEMS*

MICHAEL T. HEATHt

Abstract. Large sparse least squares problems arise in many applications, including geodetic network
adjustments and finite element structural analysis. Although geodesists and engineers have been solving
such problems for years, it is only relatively recently that numerical analysts have turned attention to them.
In this paper we present a survey of numerical methods for large sparse linear least squares problems, focus-
ing mainly on developments since the last comprehensive surveys of the subject published in 1976. We con-
sider direct methods based on elimination and on orthogonalization, as well as various iterative methods.
The ramifications of rank deficiency, constraints, and updating are also discussed.

Key words. sparse least squares, normal equations, elimination, orthogonalization, Givens rotations,
iterative methods

1. Introduction. The method of least squares often means different things to dif-
ferent people. For statisticians, least squares is a method for estimating unknown
parameters. For engineers and experimental scientists, it is a method for curve fitting
or data smoothing. For numerical analysts, least squares has come to mean solving
nonsquare systems of equations, that is, systems whose equations and unknowns differ
in number. Of course, such a system does not necessarily have a solution, and so
instead we settle for minimizing some norm of the residual. Although other norms are
sometimes used, the (possibly weighted) Euclidean norm is by far the most common,
hence the name "least squares." If such a minimum residual solution is not unique,
then an additional requirement is imposed, such as that the norm of the solution itself
also be minimal.

From both practical and computational points of view, linear problems are an
extremely important subclass. This is true not only because many systems are
inherently linear, but also because many algorithms for solving nonlinear problems
require the solution of a succession of linear subproblems. For this reason, a great
deal of effort over an extended period of time has gone into the development of a
number of effective algorithms for solving linear least squares problems. In many
cases the seeds of these algorithms are contained in computing practices which predate
electronic computers and were not necessarily originally intended for least squares
problems. These techniques were later sharpened and refined, particularly with regard
to their numerical properties, for use on digital computers before finally receiving a
systematic modern implementation for solving least squares problems. The present
survey is concerned with a further phase of development, the extension of these algo-
rithms to handle large sparse least squares problems.

To fix notation, the problem we wish to consider is

* Research sponsored jointly by the National Geodetic Survey of the National Ocean Survey, NOAA,
U. S. Department of Commerce, under Interagency Agreement No. 40-1108-80, and by the Applied
Mathematical Sciences Research Program, Office of Energy Research, U. S. Department of Energy under
contract W-7405-eng-26 with the Union Carbide Corporation.

t Mathematics and Statistics Research Department, Computer Sciences Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830.

1

2 MICHAEL T. HEATH

where A is an m x n matrix and b and x are vectors of dimension m and n , respec-
tively. Standard assumptions are that m a n and runk(A)=n, in which case the solu-
tion to (1.1) is unique. Problems in which m<n or runk(A)<min{m,ni do occur,
however, in many important contexts. For' such underdetermined or rank deficient
problems, (1.1) does not have a unique solution, so that the minimum norm solution,
or some other particular solution, is usually what is required. Other important gen-
eralizations of (1.1) include the imposition of constraints and updating the solution
when new data are added. For a comprehensive discussion of algorithms for least
squares problems see [44]. For statistical interpretation see [581.

This survey is primarily concerned with methods which are effective for solving
(1.1) when the matrix A is large and sparse, which means that A contains relatively
few nonzero elements. Areas in which large sparse least squares and related problems
arise include geodesy, photogrammetry, image enhancement, structural analysis, spline
data smoothing, and mathematical programming.

In order to make the solution of very large sparse least squares problems compu-
tationally feasible with respect to execution time and storage requirements, algorithms
for such problems should store and operate on only the nonzero entries of the matrix
and should try to minimize the creation of new nonzeros as computations proceed.
Another important consideration is the manner in which the data are accessed, since
auxiliary storage is often required for large problems. Conventionally, the rows of the
matrix A correspond to observations (successive measurements or replications),
whereas the columns of A correspond to the unknown variables or parameters of the
problem. Thus it is more convenient to generate, store, and access the data matrix by
rows rather than by columns.

In addition to sparsity preservation and data management, questions of numerical
stability must also be taken into account when evaluating algorithms for sparse least
squares problems. Indeed, the main purpose of much of the research on least squares
algorithms in the past twenty years has been to improve on the numerical shortcom-
ings of more traditional methods. As in other areas of sparse matrix computations,
here, too, the tradeoffs between sparsity and stability are of vital importance.

2. Normal Equations. If runk(A)=n, then the solution to (1.1) is given by the
solution to the system of normal equations

A T A x = A T b . (2.1)

If runk(A)=m, the minimum norm solution to (1.1) is given by x = A T y , where y is
the solution to the linear system

A A T y = b . (2.2)

In either case, the matrix of the linear system is symmetric and positive definite so
that the solution can be obtained by Cholesky factorization. For system (2.1) the
latter factorization takes the form A T A = R T R , with R upper triangular, so that
(2.1) can be solved by forward and backward substitution. Most of the following dis-
cussion will be given in terms of system (2.1) for the overdetermined case; an analo-
gous discussion is applicable to system (2.2) for the underdetermined case. (See [131
for a survey of basic methods for underdetermined problems.)

For dense problems, algorithms based on this approach are quite efficient, requir-
ing only about half as many arithmetic operations as competing methods when m>>n,

SPARSE LEAST SQUARES PROBLEMS 3

t

although this advantage diminishes for more nearly square problems. The normal
equations method is also very attractive for sparse problems, since excellent software
packages are available for solving large sparse symmetric positive definite linear sys-
tems (eg., YSMP [20], SPARSPAK [27] and MA27 [191). These software packages
symmetrically reorder the equations and unknowns so that the Cholesky factor suffers
relatively little fill (creation of new nonzeros). A number of reordering heuristics are
known which can dramatically reduce the fill resulting from factorization. These
include the minimum degree algorithm, various dissection schemes, and various
bandwidth or profile minimization schemes.

Let P and Q be permutation matrices of order n and m, respectively. Then

(Q A P) ~ Q A P = P ~ A ~ Q ~ Q A P = P ~ A ~ A P .

We conclude that the row ordering of A has no bearing on the normal equations, but
reordering the columns of A corresponds to a symmetric row and column permutation
of A T A . In particular, the rows of A can be processed sequentially from an auxiliary
file in arbitrary order. In the software packages mentioned in the previous paragraph,
the symmetric reordering is determined by analyzing the structure of the graph
corresponding to the symmetric matrix. For the symmetric matrix of the system of
normal equations this graph is easily determined: the nonzeros of each row of A gen-
erate a clique in the graph of A T A . (See [27] for relevant graph-theoretic concepts
and terminology.) It is important to emphasize that, since pivoting is not required for
numerical stability in the Cholesky algorithm, the reordering phase is entirely sym-
bolic and takes place before any floating point computation. Furthermore, by antici-
pating all fill in advance, dynamic storage allocation is unnecessary, so that an effi-
cient static data structure can be used.

Thus, an algorithm implementing (2.1) for sparse least squares problems goes like
this (an analogous algorithm implements (2.2) for the underdetermined case):

ALGORITHM 1. Normal Equations.

1. Determine the structure (not the numerical values) of A T A .
2. Find a permutation matrix P such that PTATAP has a sparse upper triangu-

lar Cholesky factor R.
3. Factor PTATAP symbolically, generating a row-oriented data structure for R.
4. Compute A T A and A T b numerically, processing the rows of A one by one

from an external file.
5. Factor PTATAP = R T R numerically.
6. Solve RTz = P T A T b .
7. Solve Ry = z .
8. x = P y .
The use of the normal equations is as old as the method of least squares itself.

The normal equations are easy to derive and understand, and, as we have seen, they
adapt nicely to deal with sparse problems. Indeed, for many people "normal equa-
tions" and "least squares" are virtually synonymous, and algorithms based on the
normal equations are still by far the most commonly used for solving least squares
problems (see, e.g., [361). The only trouble in this apparent paradise is that use of the
normal equations may lead to numerical difficulties which are relatively harmless in
some cases, but can be disastrous in others.

The potential numerical problems associated with the normal equations spring
from two sources. One is the potential loss of information in explicitly computing the

4 MICHAEL T. HEATH

cross-product matrix A T A and vector A T b . The other source of difficulty is the fact
that the condition number of the matrix A T A is the square of that of A, so that an
accurate solution of (2.1) may be difficult or impossible to compute if A itself is
already poorly conditioned (see, e.g., [60], [48], [32]). If A is not of full column
rank, then A T A is singular and the Cholesky factorization algorithm breaks down.
Near rank degeneracy causes similar numerical problems in finite precision arithmetic.
The upshot of all this is that forming and solving the normal equations requires rela-
tively high working precision in order to guarantee suitable accuracy, which would
often entail an unacceptable increase in storage requirements for very large problems.
The principal motivation for the other methods we will discuss is to alleviate these
numerical difficulties.

Another problem which the reader may have noticed is that the sparsity of A
does not guarantee that A T A is comparably sparse. Indeed, if an otherwise sparse A
has even one dense row, then, barring numerical cancellation, A T A is completely full.
Clearly, such a situation is disastrous for the normal equations algorithm. The day
can be saved, however, by initially omitting any rows of A which would cause exces-
sive fill in A T A (assuming full rank is still maintained) and later updating the solu-
tion to incorporate the effect of the omitted rows. Such updating procedures are com-
mon in least squares applications when new observations are added to a previously
solved problem. The possibility of excessive fill in forming A T A is sometimes given as
justification for some alternative method. Barring accidental cancellation, however, all
direct methods suffer the same or a similar fate when confronted with a matrix A
having one or more dense rows. On the other hand, the updating procedures necessary
to cope with such situations can be more stably implemented using other techniques,
such as orthogonal transformations.

3. Elimination Methods. For simplicity of presentation, in this section we assume
rank (A) = n. Carrying out Gaussian elimination with row and column interchanges
on the m x n matrix A leads to a factorization of the form

PIAP2=LU, (3.1)
where P I and P2 are permutation matrices of order m and n, respectively, L is an m
x n unit lower trapezoidal matrix, and U is an n x n upper triangular matrix. Util-
izing this factorization, together with the orthogonal invariance of the Euclidean norm
and the change of variable

problem (1.1) becomes

min 11 P I b - Ly 11 2.
Y

(3.3)

One way to solve problem (3.3) is by means of the system of normal equations

LTLy = L T P l b . (3.4)
The solution x to (1.1) is then recovered by solving the triangular system (3.2). It
appears that little has been gained by this approach compared to solving system (2.1)
directly. As observed by Peters and Wilkinson [52], however, by using an appropriate
pivoting strategy in the elimination (i.e., choice of P I and P2), it is possible to control
the conditioning of L , isolating any ill conditioning of A in U . Thus, it should be safe
numerically to form and solve system (3.4). Other authors have suggested the use of

SPARSE LEAST SQUARES PROBLEMS 5

f

orthogonalization techniques to solve (3.3), but there is no real advantage over apply-
ing such methods directly to (1 . 1) unless the problem is only slightly overdetermined
(see [121 and [53]).

This elimination scheme of Peters and Wilkinson has been extended and adapted
for sparse problems by Bjorck and Duff [8]. When A is sparse, the permutations P I
and P 2 must be chosen to preserve sparsity in L and U as well as to enhance the con-
ditioning of L and the numerical stability of the factorization. A threshold pivoting
strategy is used by Bjorck and Duff as a compromise between considerations of spar-
sity and stability. Note that here, too, one or more dense rows in A could cause unac-
ceptable fill in L T L , and so an updating scheme should be used to account for such
rows. Usually the nonzero pattern of L is very much like that of A , and so solving
system (3.4) requires about the same work and storage as system (2.1). Thus, the
improved numerical behavior of the Peters-Wilkinson scheme is bought at the possibly
high price of computing the factorization (3.1). One saving grace is that since U is
not involved in solving (3.3), U may be written out on an external file and then
recalled for the back substitution (3.2), thereby conserving main storage.

Bjorck and Duff introduce a modification of the Peters-Wilkinson scheme in
which the solution x is split into two parts, one of which does not involve the normal
equations (3.4). Using the partitioning

L = [f:] 9

(3.5)

where L I is a matrix of order n and b l is a vector of dimension n, let the n-vector c
be defined by

L I C = b 1.

Note that this is equivalent to taking c to be the first n components of the
transformed right hand side vector, if the latter is processed simultaneously with A
during the elimination. Let the (rn -n)-vectord be defined by

d = b2- L ~ c .

We now observe that

P 1 (b - A *) = [j -Lz ,

where
z =UP,Tx - c .

Thus, if z is the solution of the problem

and x I and x 2 are given by the triangular systems
up;x;C=c, UPTX2 = z ,

then x = x , + x 2 is the solution of (1.1). There are two principal advantages to
splitting the solution into two parts in this manner. First, since)lb -Ax1))2=I)d))2, if
Ild)I is sufficiently small (i.e., the original problem (1.1) is nearly consistent), then x 1
is already an adequate solution, so that x2 , and hence z , need not be computed at all.

6 MICHAEL T. HEATH

Second, any ill conditioning in L affects only the computation of the "correction" term
x2.

The steps of the Peters-Wilkinson method as modified by Bjorck and Duff are
summarized in the following algorithm.

ALGORITHM 2. Elimination.

1.

2.
3.
4.
5.

6.
7.
8.

In

Compute the factorization (3.1), choosing P I and P2 to produce sparse U and
L and well conditioned L .
Solve L l c = b l , with L 1 and b l as in (3.5).
Solve UPTX I = c .

If \ldll2<e, set x = x l and stop.

Solve LTLz = LT[i] using Algorithm 1.
Solve U P T X ~ = z .
x = x , +x2.

d = bz- L ~ c .

their paper [8], Duff and Bjorck show how to extend this algorithm to handle
rank deficient problems, weighted problems, constraints, and updating. Delves and
Barrodale [151 have published a related elimination algorithm in which first a square
subsystem of (1.1) is solved by the usual square LU factorization, then the remaining
rows of A are treated as updates. Such an approach is advantageous for problems
which are only slightly overdetermined. Their algorithm does not appear to have been
implemented as yet specifically for sparse problems.

Another family of elimination methods is based on the fact that the solution x to
(1.1) and the residual r = b - A x must satisfy the augmented (r n + n) x (r n + n)
linear system

This system has been used by Bjorck [2] in studying iterative refinement for least
squares solutions, and its use for sparse problems has been advocated by Hachtel, who
calls this the "sparse tableau" approach [37]. The idea here is simply to use a stan-
dard sparse solver for square linear systems to solve (3.6). Note that block elimina-
tion applied to (3.6) without pivoting yields the usual normal equations for x . The
hope is that the sparse square system solver will use the additional freedom in choos-
ing pivots to find a considerably more sparse factorization. Although system (3.6) is
symmetric, it is indefinite, so that the pivoting must take account of numerical stabil-
ity as well as sparsity. While a sparse symmetric indefinite factorization is certainly
possible [191, there are actually certain advantages to ignoring the symmetry of (3.6)
and using a nonsymmetric system solver [181. On the other hand, ignoring symmetry
incurs the heavy penalty of having to store two copies of A .

4. Orthogonalization Methods.
4.1. Basic Methods. We have seen that the chief difficulty with the normal equa-

tions is numerical: the information loss and ill conditioning associated with the explicit
formation of the cross-product matrix. The elimination method of Peters and Wilkin-
son tries to lessen these numerical effects. Another alternative is to avoid explicit for-
mation of the cross-product matrix altogether by computing its triangular Cholesky

SPARSE LEAST SQUARES PROBLEMS 7

factor R directly from A , and this can be done by means of orthogonal factorization.
An orthogonal matrix Q of order M is computed which reduces [A, b] to the form

(4.1)

where R is an upper triangular matrix of order n and c is a vector of dimension n.
(We consider first the m a n case; the underdetermined case will be taken up later in
this section.) To see that R is indeed the Cholesky factor of the cross-product matrix
(assuming Q is chosen so that R has positive diagonal entries), we need merely note
that

R
A T A = ; A T Q T Q A = [R T O][O] = R T R .

Since the Euclidean norm is invariant under orthogonal transformation, the solution to
(1.1) may be obtained by solving the triangular system Rx =c.

There are three principal methods for computing the factorization (4.1): Gram-
Schmidt orthogonalization ([55], [l]), Householder reflections ([41], [32], [9]), and
Givens rotations ([31], [21-23], [381). Both Gram-Schmidt and Householder reduce
A to triangular form by annihilating all the subdiagonal elements in an entire column
at each step. Though effective for dense problems, this column-oriented, "sledge ham-
mer" approach has serious drawbacks for large sparse problems. The trouble is that at
each step each column in the remaining unreduced portion of the matrix which has a
nonzero inner product with the column being reduced takes on the sparsity pattern of
their union. Although this newly created fill scattered throughout the unreduced
matrix will eventually be annihilated by the orthogonalization process, in the mean
time it must be stored, greatly increasing storage requirements beyond that required
for R (see Fig. 1). Givens rotations are a much more appropriate tool in this context
because of their ability to introduce zeros more selectively and in a more flexible order
[21]. In particular, R can be built up gradually as the rows of A are processed one
by one in their natural order (or any other desired order), intermediate fill is confined
to R and the working row, and the unreduced rows of A can remain untouched on
external storage until their turn for actual reduction (see Fig. 2).

A problem which plagues all orthogonalization methods is that even if A and R
are sparse, it is unlikely that the orthogonal matrix Q will be particularly sparse.
There has been some study of maintaining sparsity in Q ([61],[11],[16]), but the
outlook in general is quite unpromising, especially since sparsity must be maintained
simultaneously in R. Instead, most practical procedures simply discard the orthogonal
transformations which make up Q as they are used in processing the matrix and right
hand side vector. For a simple problem with a single right hand side no real harm is
done, since Q is not actually needed to compute the least squares solution once R and
c have been obtained. But for more complicated problems, such as those having mul-
tiple right hand sides which are not known in advance, or certain applications which
require explicit computation of an orthogonal basis, getting along without Q can be a
headache. One alternative is to write the orthogonal transformations on auxiliary
storage as they are generated. Each Givens rotation can be represented by a single
floating point number [59], thereby economizing storage. In other cases the need for
Q can be circumvented, although not always with equivalent numerical stability. For
example, one way to handle multiple right hand sides is to solve the system

8 MICHAEL T. HEATH

. . .

. *
. .. , ..'

. '.

FIG. 1. Reducing a sparse matrix by Householder reflections.

A =

. .. -
.:,: ,' :.:. : : : ' : i: . , ?...I

FIG 2. Reducing a sparse matrix by Givens rotations

, P A =

k

. .
'"I.. . ; ! !. .. .: ::! ! .:'..! !, , . .

FIG. 3. Cost for reducing A: O(n2), PA: O(kn'/.

SPARSE LEAST SQUARES PROBLEMS 9

R T R x = A T b (4.2)
using the R already computed, so that only the original matrix A , which is available
on an external file, is needed to transform subsequent right hand sides. Although
system (4 .2) shares some of the numerical shortcomings of the normal equations
method, at least R is accurately computed, and the accuracy of the solution can be
improved by a few iterations of iterative refinement [4] .

Having decided to use Givens rotations, there remains the problem of choosing a
good row and column ordering for A . There has been a good deal of work
([16],[23],[621) on choosing these orderings dynamically: the ordering is determined
according to some local minimization-of-fill criterion as numerical computations
proceed, and storage is inserted into the data structure as needed to accommodate any
fill generated. Such algorithms are very similar in spirit to square, nonsymmetric
linear system solvers in that access to the whole unreduced matrix is required at each
step for possible pivot selection. An important difference, however, is that the stabil-
ity of orthogonal transformations allows the selection to be based solely on sparsity
considerations (assuming the problem is not too disparately weighted: see further com-
ments on row ordering below).

A different approach is taken in [24] , which is patterned more after symmetric
positive definite linear system solvers. Recall our earlier remark in discussing the nor-
mal equations that the row ordering for A has no bearing on the structure of A T A ,
but that the column ordering for A determines the structure of A T A and hence that
of R , its Cholesky factor. Thus the structure of A T A can be analyzed symbolically in
advance of any numerical computation in order to find a good column order for A
which will limit fill in R , and also to set up a data structure which will accommodate
any fill in R which does occur. Such a static data structure can be very efficient,
requiring none of the garbage collection and other overhead associated with dynamic
data structures.

An algorithm based on these considerations is as follows:

ALGORITHM 3. Triangularization by Givens Rotations.

1. Determine the structure (not the numerical values) of A T A .
2. Find a permutation matrix P such that PTATAP has a sparse upper triangu-

lar Cholesky factor R.
3. Factor PTATAP symbolically, generating a row-oriented data structure for

R.
4. Compute R and c numerically, processing the rows of [A P , b] one by one

using Givens rotations.
5 . Solve R y = c .
6. x = P y .

Steps 1 through 3 of Algorithm 3 are the same as those of Algorithm 1 and can
be carried out very efficiently using standard sparse matrix software designed for sym-
metric positive definite linear systems. In particular, assuming the Givens rotations
are either discarded or written on secondary storage, Algorithm 3 exploits sparsity to
the same degree and requires the same amount of primary storage as Algorithm 1, but
is more stable numerically.

The details of step 4 of Algorithm 3 are of some interest. Let uT be a given row
of AP to be processed next. Let j be the subscript of the first nonzero component of
a*. It is shown in [24] that there is space in row j of the data structure of R to

10 MICHAEL T. HEATH

accommodate uT. If row j of the data structure is still vacant, as will likely be the
case early in the row by row processing, then aT may simply be placed into row j of
the data structure. If, on the other hand, row j of the data structure is already occu-
pied by previously stored numerical values, then row j may be used to annihilate the
first nonzero of aT with a Givens rotation. It is further shown in [24] that the result-
ing "shorter" row can also be accommodated in the data structure, even though some
fill may have occurred as a result of the transformation. Thus, the process may be
repeated until either an unoccupied row is found in which to place the working row or
all its nonzeros have been annihilated.

Although the order in which the rows of A are processed in step 4 does not affect
the structure of R, it does affect the amount of fill created in the working row and
hence the total cost of computing R . Fig. 3 gives an extreme example of the differ-
ence row ordering can make with respect to numerical factorization cost. Heuristic
row ordering rules have been suggested which can substantially reduce computational
costs for certain classes of problems, but the general relationship between row and
column orderings is. not yet well understood (see [24] and [28]). Another factor
which may dictate a particular row ordering is that any heavily weighted rows should
be processed first for optimum numerical stability (see [44], pp. 103-106).

Specialized algorithms which adapt orthogonalization techniques to problems hav-
ing banded or similar structure are given in [141, [44], and [541.

,-k

4.2. Extensions and Generalizations. Algorithm 3 lends itself to a number of use-
ful extensions and generalizations in order to handle more difficult or complicated
problems. For example, the problem may be so large that R will not fit in main
memory, and hence auxiliary storage must be used. Indeed, for extremely large prob-
lems such as the geodetic readjustment of the North American Datum [42], storage
requirements may even exceed the virtual address space of the largest computers, so
that auxiliary space cannot be managed implicitly by a paging algorithm. In [261 an
algorithm is given in which such large problems are partitioned by incomplete nested
dissection into a sequence of smaller subproblems, each of which is processed by the
basic Givens algorithm, eventually producing the solution to the original problem.

It is clear that Algorithm 3 suffers the same catastrophic fill as the other
methods we have discussed when confronted with a matrix A having one or more
dense rows. It is also sometimes desired that some of the equations in a linear system
be satisfied exactly while the remaining equations are satisfied only in the least
squares sense. For example, it may be required that the sum of all the variables be
equal to 1 or some other prescribed constant. Extensions to Algorithm 3 which enable
it to incorporate such constraints and/or updating are derived in [39]. Further gen-
eralization to allow arbitrary rank along with constraints and updating is given in [7].

Another implicit assumption in Algorithm 3 is that rank(A)=n. The usual gen-
eralization of the orthogonal factorization (4.1) for dense rank deficient problems is to
use column interchanges during the orthogonalization process to obtain a factorization
of the form

where R is an upper triangular matrix of order k=runk(A) , P is a permutation
matrix which performs the column interchanges, and the elements of T are negligible

SPARSE LEAST SQUARES PROBLEMS 11

in magnitude. In Algorithm 3, however, the column ordering for A represented by P
is fixed in advance to preserve sparsity, and cannot be altered during the numerical
phase. It is shown in [39] that a factorization of the form (4.3) can nevertheless be
obtained without explicit column pivoting, leading in turn to a basic or minimum-
norm solution for underdetermined and/or rank deficient sparse linear least squares
problems.

An alternate approach for underdetermined problems is to apply Algorithm 3 to
AT rather than A , yielding an orthogonal factorization of the form

A = [R T O]Q. (4.4)
This enables us to replace system (2.2) by the system

RTRy=b, (4.5)
which can be solved by forward and back substitution. Such an approach fits in well
with the philosophy of discarding Q, but it would appear to have the same condition
squaring effect as that suffered by (2.2) and (4.2). In practice, however, the use of
(4.5) usually yields results which are comparable to the theoretically more accurate
algorithm which involves Q explicitly [561. This surprising behavior has been
explained by Paige [49], who shows that as long as A is not too ill conditioned, the
error resulting from (4.5) depends essentially on the condition number of A rather
than the condition number squared. In using (4.4) and (4.5) for the sparse case via
Algorithm 3, we must now avoid dense columns rather than dense rows. Appropriate
updating procedures are given in [291.

5. Iterative Methods. For some large sparse least squares problems iterative
methods are a useful alternative to the direct methods we have discussed thus far.
Unlike direct methods, which compute an approximation to the exact solution in a
finite number of steps, iterative methods successively improve an initial approximate
solution until the approximation is acceptably close to the exact solution. One advan-
tage of this approach is that one need not spend time computing an unnecessarily
accurate solution if the data do not warrant it. Direct methods, on the other hand,
generally have fixed accuracy and do not produce meaningful intermediate results.
Iterative methods are also especially appropriate for problems in which the entries of
the matrix are easily generated on demand. In such cases the matrix need not be
stored at all, but instead can be defined by its action on vectors.

In principle any iterative method for symmetric positive definite (or semidefinite)
linear systems can simply be applied to the system of normal equations (2.1). Explicit
formation of the cross-product matrix A T A can be avoided by keeping the normal
equations in factored form

AT(b -Ax)=O. (5.1)
In this way the matrix A is used only to compute matrix-vector products of the form
Ax and A T y . Although this formulation avoids some of the numerical difficulties
and fill which can result from explicitly forming A T A , the convergence rate of itera-
tive methods based on (5.1) still depends on the spectrum of A T A , and can therefore
be very slow. Because of this the main emphasis in research on iterative methods for
least squares problems has been to accelerate convergence by means of various split-
tings and preconditioners.

12 MICHAEL T. HEATH

A splitting takes the form A =M-N, leading to a sequence of least squares
problems of the form

M X k + I = N X k -k b.
Preconditioning is a change of variable z=Cx, where C is a nonsingular matrix of
order n, so that

b -Ax = b - AC-Iz.

In either case the strategy is to choose M or C so that M or AC-' gives a more
favorable spectrum than A , thereby speeding convergence. Since these two
approaches are essentially equivalent [lo], we will concentrate on preconditioning
methods.

In implementing a preconditioner for least squares problems matrix-vector pro-
ducts of the form Ax and ATy become A C ' z and C V T A T y , respectively. Of
course the matrix product AC-I is never explicitly computed, but instead is treated as
the product of two successive operators. Thus each iteration will require solution of
linear systems of the form

cx = z and CTX = y . (5 . 2)
For this reason C is usually chosen to be diagonal or triangular so that systems (5.2)
can be solved easily. Several different preconditioners have been used effectively for
least squares problems:

1. Diagonal scaling. C=diag(di) , where the di are norms of the columns of A.

2. SSOR preconditioning [5]. C=Z+wLT, where A has been scaled so that
ATA = L +Z+LT with L strictly lower triangular, and w is a scalar relaxa-
tion parameter.

3. Incomplete Cholesky factorization ([45],[46]). C= R', where R' is an approx-
imation to the Cholesky factor R but is more sparse. Note that the true
Cholesky factor R would be the ideal choice for C since then AC-' is orthog-
onal.

4. LU preconditioning [57]. C = U , where U is the upper triangular factor from
a factorization of the form (3.1).

5. Gauss-Jordan preconditioning [43]. C = A r ' , where A I is a square, nonsingu-
lar submatrix of A of order n.

Notice that this last preconditioner gives an algorithm that is essentially the same as
the direct method of Delves and Barrodale [151 mentioned in section 3, except that
the updating is done iteratively rather than in closed form. This is just one example
of the many ways in which preconditioning blurs the distinction between direct and
iterative methods.

As a concrete example of an iterative method for least squares problems we now
consider the method of conjugate gradients. There are many variants of conjugate
gradients which are theoretically equivalent but differ in their numerical behavior.
One of the most effective for reasonably well conditioned least squares problems is this
early version due to Hestenes and Stiefel [40]:

SPARSE LEAST SQUARES PROBLEMS 13

ALGORITHM 4. Conjugate Gradients.

1 . xo=o
2. ro=b
3. so=ATro2
4. yo= llsollz
5. pi=so
6 . For k = 1 , 2, ... repeat the following:

a. q k = A p k
b- a k = Y k - 1/11 q k 11 z
c. X k = X k - I - k a k P k
d. r k ' T k - 1 - a k q k
e. S k = A T r k

f. Yk=lISk11$
g- B k = Y k / ' Y k - 1

P k + I = S k + D k P k

Although this algorithm theoretically produces the exact solution to (1.1) in at
most n iterations, with the rounding errors of finite precision arithmetic it may require
far more or far fewer than n iterations to yield a satisfactory solution. If a precondi-
tioner is used to accelerate convergence, then the matrix-vector products Ap and ATr
are replaced by A C ' p and C T A T r implemented by solving systems of the form
(5.2). In using a preconditioner there is a tradeoff between the reduction in the num-
ber of iterations required and the increase in work per iteration.

A variant of conjugate gradients which is effective for more ill conditioned least
squares problems has been developed by Paige and Saunders in [501, which should be
consulted for algorithmic details. Their algorithm is based on the bidiagonalization
procedure of Golub and Kahan [33] in the same way that the conjugate gradient algo-
rithm is related to Lanczos tridiagonalization. The bidiagonalization approach has
also been adapted to obtain regularized solutions of ill-posed problems ([6],[47]).

These bidiagonalization algorithms can be thought of as a natural extension of
the singular value decomposition method to solve sparse problems. The singular value
decomposition, which has the form

A =UBVT, (5.3)
where U and V are orthogonal matrices of order m and n, respectively, and Z is an
m x n nonnegative diagonal matrix, is in many ways the most satisfactory numerical
method for solving least squares problems ([33], [35], [44]). Unfortunately the full
decomposition (5.3) is not computationally useful for large sparse problems because
the orthogonal matrices U and V are generally too dense. Through Lanczos-style
bidiagonalization, however, a few dominant triples (r,u ,v) of singular values and vec-
tors can be generated even for very large matrices [341.

6, Concluding Remarks. In this paper we have surveyed the principal numerical
methods available for solving large sparse linear least squares problems. We have con-
centrated on developments since the surveys [3], [181, and [30] published in 1976.
Several of these methods have been compared in numerical experiments using a vari-
ety of test problems ([18],[25],[50],[57]). Although much more testing is needed on
a broader spectrum of test examples, some preliminary conclusions are possible:

MICHAEL T. HEATH 14

1.

2.

3.

4.

For well conditioned problems the traditional method of normal equations imple-
mented using modern sparse matrix techniques is very effective and hard to beat,
especially on problems for which m>>n and which are quite sparse.

For more difficult problems which require the greater numerical stability of
orthogonal factorization, the method of Givens rotations can be implemented so
as to use essentially the same storage as the normal equations method (see Algo-
rithm 3).

For problems which are only slightly overdetermined, or are overdetermined but
consistent, a method based on elimination is likely to be best.

Several effective techniques are available for problems which are well suited to
iterative solution. If conditioning is a problem, the method of Paige and Saunders
[50] is especially to be recommended. A preconditioner can help speed conver-
gence but must be chosen carefully.

Most of the methods we have discussed have been implemented in computer soft-
ware which is publicly available, or soon will be:

Several symmetric positive definite linear system solvers (e.g., SPARSPAK [271,
YSMP[20], MA27 [19]) are available which could form the basis of an efficient
implementation of the normal equations method. Since it handles indefinite prob-
lems as well, MA27 could also be used to solve the augmented system (3.6).

The implementation of the Peters- Wilkinson elimination method by Bjorck and
Duff [81 is to be included in the Harwell Subroutine Library. Their code uses a
modified version of the Harwell subroutine MA28 [17] to compute the LU fac-
torization (3.1).

Software implementing the algorithms of George and Heath [24], [39] is to be
included in a new, expanded version of SPARSPAK, giving it the capability of
solving nonsymmetric and nonsquare problems. The new modules rely heavily on
the existing SPARSPAK for the symbolic parts of the computation.

The work of Zlatev [62] is implemented in the software package LLSSOl [63].
To conserve storage, this code allows for an incomplete triangular factorization
(determined by a drop tolerance), followed by iterative refinement.

The iterative algorithm of Paige and Saunders has been implemented as subrou-
tine LSQR and is available from ACM TOMS [51]. This code solves damped
least squares problems as well as ordinary least squares and nonsymmetric equa-
tions.

There is considerable room for further research on algorithms for sparse least
squares problems. Better row and column orderings are needed, as well as a better
understanding of the relationship between them. The tradeoffs between static and
dynamic data structures need further study. In elimination methods, the structural
relationships between A and L and between U and R need to be better understood.
Also worthy of exploration are row elimination schemes using stabilized elementary
eliminators, as opposed to the use of a general threshold (partial or complete) pivoting
approach. More sophisticated criteria are needed for withholding rows which lead to
excessive fill in the Cholesky factor. The numerical behavior of updating schemes
needs to be further scrutinized and improved. Existing algorithms should be extended

SPARSE LEAST SQUARES PROBLEMS 15

to allow more generality with regard to constraints, updating and rank. An important
problem for iterative methods is automating the choice of an effective preconditioner
to speed convergence. With all of these methods relatively little attention has been
given to handling problems which are too large to fit in main storage or to the use of
advanced computer architectures such as pipelined, array, or parallel processors.

The answers to these and many other outstanding questions will undoubtedly lead
to more effective and efficient methods for solving large sparse least squares problems.
In addition, advances in sparse least squares computations will have an effect on other
areas of sparse matrix computations, such as the application of sparse orthogonal fac-
torizations to problems in optimization, control, and eigenvalue and singular value
computations.

REFERENCES

A. B J ~ R C K , Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7

A. BJORCK, Iterative refinement of linear least squares solutions, BIT, 7 (l967), pp. 257-278 and 8

A. BJORCK, Methods for sparse least squares problems, in Sparse Matrix Computations, J. R.
Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 177-199.
A. BJORCK, Comment on the iterative refinement of least squares solutions, J . Amer. Stat. Assoc.,

A. BJORCK, SSOR preconditioning methods for sparse least squares problems, Proc. Comput. Sci.
Stat. Symposium on the Interface, 12 (1979), pp. 21-25.
A. BJORCK, A bidiagonalization algorithm for solving ill-posed systems of linear equations, Report
LiTH-MAT-R-80-33, Dept. of Mathematics, Linkoping University, Linkoping, Sweden, October
1980.
8. BJORCK, A general updating algorithm for constrained linear least squares problems, SIAM J .
Sci. Stat. Comput., to appear.
A. BJORCK AND I. S. DUFF, A direct method for the solution of sparse linear least squares prob-
lems, Linear Algebra Appl., 34 (1980). pp. 43-67.
P. BUSINGER AND G. H. GOLUB, Linear least squares solutions by Householder transformations,
Numer. Math., 7 (1965), pp. 269-276.
Y. T. CHEN, Iterative methods for linear least squares problems, Research Report CS-75-04, Dept.
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, February 1975.
Y. T. CHEN AND R. P. TEWARSON, On the fill-in when sparse vectors are orthonormalized, Comput-
ing, 9 (1972), pp. 53-56.
A. K. CLINE, An elimination method for the solution of linear least squares problems, SIAM J .
Numer. Anal., 10 (1973), pp. 283-289.
R. E. CLINE AND R. J. PLEMMONS, Pa-solutions to underdetermined linear systems, SIAM Review,

M. G. Cox, The least squares solution of overdetermined linear equations having band or aug-
mented band structure, IMA J . Numer. Anal., 1 (1981), pp. 3-22.
L. M. DELVES AND I. BARRODALE, A fast direct method for the least squares solution of slightly
overdetermined sets of linear equations, J . Inst. Math. Appl., 24 (1979), pp. 149-156.
I. S. DUFF, Pivot selection and row ordering in Givens reduction on sparse matrices, Computing, 13

I. S. DUFF, MA28 - A set of Fortran subroutines for sparse unsymmetric linear equations, Report
R.8730, AERE, Harwell, England, July 1977.
I. S. DUFF AND J. K. REID, A comparison of some methods for the solution of sparse overdeter-
mined systems of linear equations, J . Inst. Math. Appl., 17 (1976), pp. 267-280.
I. S. DUFF AND J. K. REID, MA27 - A set of Fortran subroutines for solving sparse symmetric sets
of linear equations, Report R.10533, AERE, Harwell, England, 1982.
S. C. EISENSTAT, M. H. SCHULTZ AND A. H. SHERMAN, Algorithms and data structures for sparse
symmetric Gaussian elimination, SIAM J. Sci. Stat. Comput., 2 (1981). pp. 225-237.
W. M. GENTLEMAN, Least squares computations by Givens transformations without square roots, J .
Inst. Math. Appl., 12 (1973), pp. 329-336.

(1967), pp. 1-21.

(1968), pp. 8-30.

73 (1978), pp. 161-166.

18 (1976), pp. 92-106.

(1974), pp. 239-248.

16 MICHAEL T. HEATH

1421

W. M. GENTLEMAN, Error analysis of QR decompositions by Givens transformations, Linear Alge-
bra Appl., IO (1975). pp. 189-197.
W. M. GENTLEMAN, Row elimination for solving sparse linear systems and least squares problems,
Proc. 6th Dundee Conf. Numer. Anal., Springer-Verlag. 1976, pp. 122-133.
A. GEORGE AND M. T. HEATH, Solution of sparse linear least squares problems using Givens rota-
tions, Linear Algebra Appl., 34 (1980), pp. 69-83.
A. GEORGE, M. T. HEATH AND E. NG, A comparison of some methods for solving sparse h e a r
least squares problems, SIAM J. Sci. Stat. Comput., to appear.
A. GEORGE, M. T. HEATH AND R. J. PLEMMONS, Solution of large-scale sparse least squares prob-
lems using auxiliary storage, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 416-429.
A. GEORGE AND J. W.-H. LIU, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 198 1.
A. GEORGE AND E. NG, On row and column orderings for sparse least squares problems, SIAM J.
Numer. Anal., to appear.
A. GEORGE AND E. NG, Solution of sparse underdetermined systems of linear equations, Research
Report CS-82-39, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
September 1982.
P. E. GILL AND W. MURRAY, The orthogonal factorization of a large sparse matrix, in Sparse
Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp.
201-21 2.
W. GIVENS, Computation of plane unitary rotations transforming a general matrix to triangular
form, J. SIAM, 6 (1958), pp. 26-50.
G. H. GOLUB, Numerical methods for solving linear least squares problems, Numer. Math., 7

G. H. GOLUB AND W. KAHAN, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205-224.
G. H. GOLUB, F. T. LUK AND M. L. OVERTON, A block Lanczos method for computing the singular
values and corresponding singular vectors of a matrix, ACM Trans. Math. Software, 7 (1981), pp.
149-169.
G. H. GOLUB AND C. REINSCH, Singular value decomposition and least squares solutions, Numer.
Math., 14 (1970), pp. 403-420.
J. H. GOODNIGHT, A tutorial on the SWEEP operator, Amer. Statistician, 33 (1979), pp. 149-158.
G. D. HACHTEL, Extended application of the sparse tableau approach - finite elements and least
squares, Technical Report, Computer Science Dept., UCLA, 1974.
S. HAMMARLING, A note on modifications to the Givens plane rotation, J. Inst. Math. Appl., 13

M. T. HEATH, Some extensions of an algorithm for sparse linear least squares problems, SIAM J.
Sci. Stat. Comput., 3 (1982), pp. 223-237.
M. R. HESTENFS AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Stds., B49 (1952), pp. 409-436.
A. S. HOUSEHOLDER, Unitary triangularization of a nonsymmetric matrix, J. ACM, 5 (1958), pp.

G. B. KOLATA, Geodesy: dealing with an enormous computer task, Science, 200 (1978), pp.

P. LAUCHLI, Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, Numer. Math., 3

C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood
Cliffs, NJ, 1974.
T. A. MANTEUFFEL, An incomplete factorization technique for positive definite linear systems,
Math. Comp., 34 (1980), pp. 473-497.
N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients, ACM Trans. Math. Software, 6 (1980), pp. 206-219.
D. P. O'LEARY AND J. A. SIMMONS, A bidiagonalization-regularization procedure for large scale
discretizations of ill-posed problems, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 474-489.
E. E. OSBORNE, On least squares solutions of linear equations, J. ACM, 8 (1961), pp. 628-636.
C. C. PAIGE, An error analysis of a method for solving matrix equations, Math. Comp., 27 (1973),

C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, 8 (1982), pp. 43-71.

(1965), pp. 206-2 16.

(1974). 215-218.

339-342.

421-422.

(1961), pp. 226-240.

pp. 355-359.

SPARSE LEAST SQUARES PROBLEMS 17

C. C. PAIGE AND M. A. SAUNDERS, LSQR. Sparse linear equations and leasi
squares, ACM Trans. Math. Software, 8 (1982), pp. 195-209.
G. PETERS AND J. H. WILKINSON, The least squares problem and pseudo-inverses, Comput. J., 13

R. J. PLEMMONS, Linear least squares by elimination and MGS, J. ACM, 21 (1974), 581-585.
J. K. REID, A note on the least squares solution of a band system of linear equations by House-
holder reductions, Comput. J . , 10 (1967), pp. 188-189.
J. R. RICE, Experiments on Gram-Schmidt orthogonalization, Math. Comp., 20 (1966), pp.

M. A. SAUNDERS, Large-scale linear programming using rhe Cholesky factorization, Report No. CS
252, Computer Science Dept., Stanford University, Stanford, CA, January 1972.
M. A. SAUNDERS, Sparse least squares by conjugate gradients: a comparison of preconditioning
methods, Proc. Comput. Sci. Stat. Symposium on the Interface, 12 (1979), pp. 15-20.
G. A. F. SEBER, Linear Regression Analysis, John Wiley and Sons, New York, 1977.
G. W. STEWART, The economical storage of plane rotations, Numer. Math., 25 (1976), pp. 137-138.
0. TAUSSKY, Note on the condition ofmatrices, Math. Comp., 4 (1950), pp. 1 1 1 - 1 12.
R. P. TEWARSON, On the orthonormalization of sparse vectors, Computing, 3 (1968), pp. 268-279.
Z. ZLATEV, Comparison of two pivotal strategies in sparse plane rotations, Comp. Math. Appl., 8

Z. ZLATEV AND H. B. NIELSEN, LLSSOl - A Fortran subroutine for solving least squares problems
(user’s guide), Report No. 79-07, Inst. Numer. Anal., Tech. Univ. Denmark, Lyngby, Denmark,
1979.

Algoriihm 583.

(1970), pp. 309-316.

325-328.

(1982), pp. 119-135.

.

19

ORNL/CSD-114
Distribution Category UC-32

INTERNAL DISTRIBUTION

1. Central Research Library
2. K-25 Plant Library
3. ORNL Patent Office
4. Y- 12 Technical Library,

5. Laboratory Records - RC

8. K. 0. Bowman
9. J. A. Carpenter

Document Reference Section

6-7. Laboratory Records Department

10. H. P. Carter/CSD Library
11. J. B. Drake
12. R. E. Funderlic
13. P. W. Gaffney
14. D. A. Gardiner

15. L. J. Gray
16-20. M. T. Heath

21. L. P. Lewis
22. T. J. Mitchell
23. M. D. Morris
24. N. J. Price
25. R. J. Renka
26. C. A. Serbin
27. K. E. Shultz/

Biometrics Library
28. V. R. R. Uppuluri
29. R. C. Ward
30. D. G. Wilson

EXTERNAL DISTRIBUTION

31. Prof. V. Ashkenazi, Department of Civil Engineering, The University of
Nottingham, Nottingham, England NG7 2RD

32. Dr. Donald M. Austin, Division of Engineering, Mathematical, & Geosciences,
Office of Basic Energy Sciences, Germantown Building, Department of Energy,
Washington, DC 20545

33. Prof. Ake Bjorck, Department of Mathematics, Linkiiping University, Linkiiping
58183, Sweden

34. Dr. Paul Boggs, Scientific Computing Division, National Bureau of Standards,
Boulder, CO 80303

35. Dr. James Bunch, UCSD, C-012, APM Buildng, La Jolla, CA 92093

36. Dr. T. D. Butler, T-3, Hydrodynamics, Los Alamos National Laboratory, P.O.
Box 1663, Los Alamos, NM 87545

37. Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos National
Laboratory, P.O. Box 1663, Los Alamos, NM 87545

38. Dr. Tony Chan, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

39. Dr. L. Lynn Cleland, Engineering Research Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

40. Dr. James S. Coleman, Division of Engineering, Mathematical and Geosciences,
Office of Basic Energy Sciences, Department of Energy, ER-17, MC G-256,
Germantown, Washington, DC 20545

41. Dr. Thomas F. Coleman, Computer Science Department, Cornell University,
Ithaca, NY 14853

20

42. Dr. James Corones, Ames Laboratory, Iowa State University, Ames, IA 5001 1

43. Dr. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598

44. Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

45. Dr. Iain S. Duff, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon,
England

46. Dr. George J. Davis, Department of Mathematics, Georgia State University,
Atlanta, GA 30303

47. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P.O.
Box 2158 Yale Station, New Haven, CT 06520

48. Dr. Marvin D. Erickson, Computer Technology, Systems Department, Pacific
Northwest Laboratory, P.O. Box 999, Richland, WA 99352

49. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West,
Tukwila, WA 98188

50. Dr. Kirby W. Fong, L-560, Lawrence Livermore National Laboratory, P.O. Box
5509, Livermore, CA 94550

5 1. Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550

52. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

53. Dr. J. Alan George, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

54. Dr. John R. Gilbert, Computer Science Department, Cornel1 University, Ithaca,
NY 14853

55. Prof. Max Goldstein, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

56. Prof. Gene H. Golub, Department of Computer Science, Stanford University,
Stanford, CA 94305

57. Dr. Fred Gustavson, IBM T. J. Watson Research Center 33-205, P.O. Box 218,
Yorktown Heights, NY 10598

58. Dr. Richard J. Hanson, Numerical Mathematics Division 5 122, Sandia National
Laboratories, Albuquerque, NM 871 15

59. Dr. Robert E. Huddleston, Applied Mathematics Division 8332, Sandia National
Laboratories, Livermore, CA 94550

60. Prof. Alan Jennings, Department of Civil Engineering, Queen’s University of
Belfast, David Keir Building, Stranmillis Road, Belfast BT7 1 NN, Northern
Ireland

61. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

21

62. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National
Laboratories, Livermore, CA 94550

63. Dr. Aram K. Kevorkian, Technical Computing Department, General Atomic
Company, P.O. Box 81608, San Diego, CA 92138

64. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, NY 10012

65. Dr. Charles Lawson, Jet Propulsion Laboratory, Pasadena, CA 91 103

66. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele
Street, Downsview, Ontario, Canada M3J 1P3

67. Dr. Franklin Luk, Computer Science Department, Cornel1 University, Ithaca, NY
14853

68. Ms. Judith A. Mahaffey, Statistics, Systems Department, Pacific Northwest
Laboratory, P.O. Box 999, Richland, WA 99352

69. Dr. Thomas A. Manteuffel, Numerical Mathematics Division 5642, Sandia
National Laboratories, Albuquerque, NM 87 185

70. Dr. Paul C. Messina, Applied Mathematics Division, Argonne National
Laboratory, Argonne, IL 60439

7 1. Dr. George Michael, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

72. Prof. Cleve Moler, Department of Computer Science, University of New Mexico,
Albuquerque, NM 87 1 3 1

73. Dr. Jorge J. Mor& Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

74. Dr. Esmond Ng, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3Gl

75. Dr. Basil Nichols, T-7, Mathematical Modeling and Analysis, Los Alamos
National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

76. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland,
College Park, MD 20742

77. Prof. Chris Paige, Computer Science Department, McGill University, 805
Sherbrooke Street W., Montreal, Quebec, Canada H3A 2K6

78. Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 94720

79. Dr. Ronald Peierls, Applied Mathematics Department, Brookhaven National
Laboratory, Upton, NY 11973

80. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science,
North Carolina State University, Raleigh, NC 27650

81. Dr. William G. Poole, Boeing Computer Services, 565 Andover Park West,
Tukwila, WA 98 188

22

82. Mr. Allen Pope, NOAA/NOS/NGS, OA/C-121, 6001 Executive Boulevard,
Rockville, MD 20852

83. Dr. Carl Quong, Computer Science and Applied Mathematics Department,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

84. Dr. John K. Reid, CSS Division, Buildng 8.9, AERE Harwell, Didcot, Oxon,
England

85. Dr. Donald J. Rose, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

86. Dr. Milton E. Rose, Director, ICASE, M/S 132C, NASA Langley Research
Center, Hampton, VA 28665

87. Dr. Bert W. Rust, Scientific Computing Division, Technology Building, National
Bureau of Standards, Washington, DC 20234

88. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research
Department, Stanford University, Stanford, CA 94305

89. Dr. David S. Scott, Computer Sciences Department, University of Texas, Austin,
TX 78712

90. Dr. Lawrence F. Shampine, Numerical Mathematics Division 5642, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, NM 871 15

9 1 . Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

92. Dr. Trond Steihaug, Department of Mathematical Sciences, Rice University, P.O.
Box 1892, Houston, TX 77251

93. Prof. G. W. Stewart, Computer Science Department, University of Maryland,
College Park, MD 20742

94. Prof. Charles Van Loan, Department of Computer Science, Cornel1 University,
Ithaca, NY 14853

95. Dr. Ray A. Waller, S-1, Statistics, Los Alamos National Laboratory, P.O. Box
1663, Los Alamos, NM 87545

96. Dr. James H. Wilkinson, Division of Numerical Analysis and Computer Science,
National Physical Laboratory, Teddington, Middlesex TW 1 1 OLW, England

97. Dr. Ralph A. Willoughby, Mathematical Sciences Department, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY 10598

98. Dr. Margaret Wright, Systems Optimization Laboratory, Operations Research
Department, Stanford University, Stanford, CA 94305

99. Mr. Robert Ziegler, Defense Mapping Agency, DMAHTC-GSGC, 6500 Brookes
Lane, Washington, DC 203 15

100. Office of Assistant Manager for Energy Research and Development, Department
of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830

101-
282. Given Distribution as shown in TID-4500 under Mathematics and Computers

Category

