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ABSTRACT

FERDO and FERD are unfolding codes which can be used to correct observed

pulse-height distributions for the nonideal response of a pulse-height

spectrometer or to solve poorly conditioned linear equations. It is assumed

that the response of the spectrometer is given by Ax = b^, where A is the

spectrometer response function matrix, x is the unknown spectrum, and b is

the pulse-height distribution. FERDO does not solve directly for x, but

instead solves for jd = Wx, where W is a "window function matrix." Typically,

W is the resolution function of an ideal spectrometer which has a single

Gaussian response. The effective resolution of the unfolding solution may

be varied by choice of W. Confidence intervals (p °, pu'3) are found for
each element of the solution p. FERDO and FERD are written in IBM 360/370

Fortran (Level H). This manual describes and derives the mathematical

procedures used by the codes, tells how to write input data for them, and

gives solutions to some sample problems to illustrate the output.



1. INTRODUCTION

This user's manual for FERDO and FERD aims to: (1) describe the basic

mathematical machinery needed to understand what the codes do (i.e. the

problems that they solve), (2) document the mathematical procedures actually

used by the two codes, (3) explain how to set up data to run the codes, and

(4) explain how to interpret the various output quantities. Many users may

not want to get into all of the gritty details of (2), but all users should

be familiar with (1) before attempting to operate with (3) and (4). Chapters

2-8 cover (1), perhaps more thoroughly than is necessary for some users. The

gritty details of (2) are contained in Chapters 8-11 which should be read in

order. Chapters 12 and 13 cover (3) and (4), but when the user begins to

become familiar with the output he will find Chapter 11 is also useful for

interpreting some of the various output quantities. Users who are contemplating

making changes in either of these codes will definitely want to read

Chapter 11.

The methods described in this report were originally developed by Walter

R. Burrus and his coworkers. Various versions of the codes have enjoyed great

success throughout the world in spite of the lack of coherent documentation of

either the methods or the codes. The guiding philosophy and underlying

mathematics have been extensively discussed in Rust and Burrus (1972), and the

mathematical theory of the FERDO and FERD methods has been recently discussed

by Burrus et al (1980), but neither of these works gives an adequate

description of the two codes actually being used to solve unfolding problems.

The earliest descriptions of these methods were given at the time they

were being developed in various brief papers and presentations (Burrus, 1960,

1961a, 1961b, 1962). In 1961 Burrus wrote a well-organized overview of this

work in the form of an unpublished Ph.D. thesis draft. He and his

collaborators continued to develop the methods with striking success, cf.

Bogert and Burrus (1962), Burrus (1963), and Burrus and Verbinski (1965).

In 1965 he wrote a new Ph.D. thesis (Burrus, 1965) which summarized the method



and gave several applied examples. The main result of this work was

the computer code FERDO and its many variants. These include FERDOR,

SLOP, and COOLC which have been described in Burrus and Verbinski

(1965, 1969), Kendrick and Sperling (1970), Rust and Burrus (1971), Peelle

(1971), Burrus (1976), and Rust (1976). The version of FERDO described in

this report has been updated in many ways, especially in the input/output

sections, but except for a few minor points, the mathematical method is

still the same one used in the earlier versions.

The FERD code has not been so widely used as FERDO, and almost no

documentation for it has been published. The mathematical foundations and

the philosophy of the method have been discussed in Rust and Burrus (1972)

and Burrus (1976), but it was not explicitly described in those works. A

very brief description of the code was given in Peelle (1971) and the mathe

matical methods was briefly described in Burrus et al. (1980). This report

gives a more complete description, but the reader is advised to carefully

read section 11.4 as well as Chapter 10 in order to see how the method

actually works. The version of FERD given here also has been updated, but

again the mathematics is essentially the same as in the older versions. The

input is designed to be almost identical to that required by FERDO so that

a user can easily run the same data through both codes.

2. THE MATHEMATICAL PROBLEM

The FERDO and FERD programs are designed to solve radiation spectrum

unfolding problems in which the true neutron or gamma spectrum x(E) is

related to the measured pulse height spectrum b„ by an integral equation

of the form

/Eup _
A.(E)x(E)dE = b.+ e. , ^l,2,-,m, (2-1)



where E represents energy, i represents pulse height bin number, and

A^.(E) is the response function of the instrument, i.e., the quantity
A^.(E)dE is the probability that a neutron or gamma ray with energy in
the range (E ± ^dE) will produce a count in bin number i.

The limits of integration are shown in this paper as E. and E .
lo up

In radiation spectrometers, the physical limits are set by the energy

range of the radiation and the range of the non-zero portion of the

response function. For neutron and gamma radiation which is associated

with spontaneous or reactor induced processes, the physical energy range

of the radiation is typically 0 to around 10 MeV. In the case of cosmic

radiation, the upper radiation limit may be very high. When formulating

the integral equation for numerical solution, the lowest energy portion

of the solution is frequently divergent or very uncertain. Thus, the

lowest energy which contributes significantly to the viable solution

depends upon the details of the spectrometer and ranges from a few tenths

of an eV for low energy absorption filter type spectrometers to perhaps

a few 10's of Kv for typical scintillation spectrometers. Usually there

is a reasonable choice for Eiiri for which there is negligible contributionUp 33

to the b. components.

The quantity e. in the above relation is the stochastic counting error,

and it is assumed that the counting errors are independent of one another

and are normally distributed with zero means. Using the symbols E to denote

the expectation operator, a to denote standard deviation, Var to denote

variance, and p.. to denote the correlation between e. and e., we can
^3 t 3

write

E{et) =0 ,i =l,2,-,m, (2-2a)

Var(^) =E(e2.) = a\ti = l,2,-,m, (2-2b)

pij =E(ziej) = °> tit' ^J=l,2,-,m, (2-2c)

and the probability distribution function for each e- is given by
1 " ° "*

f(e-) = —==— exp
a

e.2
i

v -./2T
i

2a.2

=l,2,-,m. (2-3)



When the error term e. is not present, integral equations of the
Is

form of (2-1) are called Fredholm integral equations of the first kind.

It is well known that in general such equations do not determine a

unique solution x(E). When the error is included the situation is even

worse, and there will always be many possible very different functions

x(E) which satisfy the equation within the limits set by the statistical

error. Of course, most such solutions can be ruled out by physical

considerations, but even so, the presence of small errors in the b.
Is

allows wide variations in the set of physically plausible solutions.

Part of the problem is that a given finite set of b^ cannot
determine a unique function x(E) at an infinite number of points, but

even if one adopts a less ambitious course of action and seeks only to

estimate the values x .= x(e.)» i=l,2,-,n, at a finite number of energy

points, one finds that very small variations in the b^ produce yery large
variations in the estimated x..

Another way to say all this is that if there are any errors in the

b., then it is not possible to accurately determine the value x.=x(E.) at
is v v

any point E. in the spectrum. Accordingly we seek instead to estimate

quantities of the form
E

*k
f UPwk(E)x(E)dE, k=l,2,-,p (2-4)
Elo

where the functions w. (E) are called window functions. One could think

of the wk(E) as weighting functions and of the <t>k as the corresponding
weighted averages of x(E). A more intuitive approach is to think of the

w, (E) as being the response functions of an idealized instrument which

does not distort the true spectrum as much as does the real instrument.

The values 4>i,4>2»-"»4>_ would then be a discrete approximation to the

pulse-height spectrum that would have been observed with that idealized

instrument.



Figure 2.1 illustrates the response function for a widely used NE-213

spectrometer, showing the pulse height response for several discrete

energy levels as a continuous function of the variable pulse height.

The figure may be a little misleading because we have been writing the

response function as A.(E), with a continuous variable E for energy and

a discrete variable i for pulse height. One such response function, for

a single, discrete pulse height value, is shown in the inset at the

upper right of the figure.

Sometimes, the instrument channel variable (e.g. pulse height) is

in theory really continuous (although we must measure a finite histogram

approximation to it), but sometimes the measurement variable is really

discrete (as when the channels refer to the pulse count or current output

of a spectrometer when different filter thicknesses or different filter

materials are used). The energy variable is in principle continuous,

but in practice, some sort of finite representation must be used for the

numerical process. We shall discuss this finite representation process

in more detail in the next chapter. For the time being it will suffice

to think of each of the shaded functions shown in the figure as being

replaced by a histogram (in the case of a pulse height spectrum) or by

a finite number of points in the case of an absorption type spectrometer

(where each function represents the response of a different filter or

filter thickness), but with the energy being continuous.

In order to obtain a finite computation, the computational process

deals with the continuous energy variable by tabulating the m response

functions at a selected set of points E-,, E?, .... E . These can be

thought of as representative of the points in a range dE, or as a set

of "comparison points." The rule for choosing the location of the

comparison points is to pick them sufficiently close that the response

functions and the windows vary approximately linearly between the compari

son points. (Discontinuities or spikes in the response function and/or

the window functions can be represented by putting a comparison point

at the location of the spike or by putting a pair of comparison points

on both "sides" of the discontinuity.)
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The thing we want to stress here is the distortion in the observed

spectrum caused by the irregular shapes of the response functions. Not

only will there be a loss in energy resolution caused by the large

widths of the response profiles, but also there will be a redistribution

in energy caused by the odd shapes and asymmetries. Therefore, the window

functions are chosen to have a more regular behavior. A typical choice

is shown in Figure 2.2 where the axis labelled "RESPONSE" corresponds to

idealized pulse height bins which also correspond to the real pulse

height bins that would be chosen in discretizing the pulse height variable
in Figure 2.1. Notice that the window function response profiles are, in

this case, chosen to be Gaussians which lie along a straight line that

determines a linear relationship between neutron energy and pulse-height
bin number. It is clear from Figure 2.1 that the corresponding relation

ship for the real response functions is not linear. Since the window

function response functions are symmetric and the relation between

energy and pulse height is linear, the idealized spectrometer would not

redistribute the spectrum in energy except for the smearing or loss

of energy resolution caused by the finite widths of the Gaussian peaks.

The best possible idealized instrument would have each of these Gaussians

shrink to a delta-function so that <h ><t>2 >"-,<{> would be an exact point

approximation to the true spectrum if the corresponding pulse height

bin values were converted to energy units. This is not a good practical

working choice of window functions, however, since it essentially

reduces the problem back to that of solving the integral equation (2-1),

thus defeating the whole purpose of choosing windows.

In choosing the widths of the Gaussian window functions there are

two competing considerations that must be taken into account: the

statistical uncertainty and the desired energy resolution for the

estimated spectrum. Both the FERDO and FERD programs calculate lower and

upper bounds for each of the desired window responses <}>. . Each such

pair of bounds comprise a statistical confidence interval for the

corresponding response. The usual procedure in using the codes is to

input estimates of the standard deviations a. of the counting errors

e. along with the counts b.. These statistical uncertainties are



ORNL-DWG 64-10721

c5> O

Fiq. 2.2. The response surface for an idealized neutron spectrometer.

CROSS SECTION
AT

2.0 MeV

lO



10

propagated through the calculations in such a way that the lower and

upper bounds <j>k and <j>kP are equal to the desired <|>k minus and plus one
standard deviation. Since we are assuming normally distributed errors,

the resulting interval [cf>k°,<j)kP] will be a68.26% confidence interval
for <j>k. The width of the interval depends on both the sizes of
statistical errors in the counts and on the widths of the Guassian

windows. In general, wider windows will produce narrower intervals

but may loose energy resolution (i.e., may fail to resolve close pairs

of peaks, etc.), while more narrow windows will give wider intervals

because such windows are trying to reproduce more information about

the structure of the true spectrum, and it is just not possible to obtain

such information with the same degree of certainty. The problem in

choosing window widths is to somehow balance these two effects in order

to maximize the amount of information obtained.

Figure 2.3 shows an observed pulse-height distribution of neutrons

from the Li6(p,n)Be6 reaction using 2.8 and 3.1 MeV protons, and

Figure 2.4 shows the corresponding unfolded spectrum which apparently

consists of two discrete peaks with no significant continuum component.

Each of the dark bars represents a confidence interval estimate for a

Gaussian window centered at that particular energy and the lightly

shaded area was obtained by simple interpolation between these estimated

window responses. One could, of course, obtain more certainty about

the spectrum in these interpolated regions by choosing more windows

centered in these regions, but even if this were done it is obvious from

the apparent widths of the two partially resolved peaks that they

would still not be completely resolved. One could attempt to resolve

them by choosing the windows more narrow but such a procedure might not

help matters because of the resulting growth of the interval widths.
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THE DISCRETIZATION OF THE PROBLEM

In the preceding chapter we saw that the mathematical problem

which the FERDO and FERD programs attempt to solve can be written

as follows: given window functions Wi(E), w2(E), -, w (E), to

calculate for each such wk(E) the lower and upper bounds

l°=m1n I/wk(f)x(E)dE /a."?)x(E)
k x(E) Kk V

)dE = bi +e^ e^N(0,a.), i=l,2,-,m ,

lo

E

)x(E)dE•kp= max ) /w, (E
k x(E) KE k

lo

"lo

E

"lo

(3-1)

/
-,m }^A^(E)x(E)dE =bi +£„-, e/\,N(0,o,), i=l,2,-,m!

^ i

That is, <f)k°and <{>kP are the smallest and largest values that

/ upw.(E)x(E)dE can assume when the unknown function x(E) is constrained
Elo

to satisfy the integral equations

f EuJ UPAi(E)x(E)dE =b. +zv i=l,2,-,m,
Elo

with the e. being independent samples from the normal distributions
Is

with means 0 and standard deviations a..

The programs do not attempt to solve the exact problems stated

above, but rather finite, discrete approximations to them. The first

step in the discretization is to replace the continuous variable E

with a mesh El5 E2, •••, E spanning the interval [E-. ,eUd-^' 1-e-'
En < Ei < Eo < ••• < E < E . There are two ways to think about this
lo - l z n - up
step. We consider first the philosophy adopted by most users even

though it is not the most suggestive or fruitful approach to the problem.

Let the interval width associated with each mesh point E^ be denoted by
AE., and for each window function wk(E) let
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Wkj 5wk(Ej)> ^.Z.-.n.
It follows then that

„E

where

r up
J w. (E)x(E)dE =E w§ .x.,
Jc k j=l kj j
'lo

x = x(E )aE., j=l,2,~,n
t/ d 3

(3-2)

(3-3)

(3-4)

This definition of the quantity x. has in the nast been a source of

confusion to some users of the FERDOR codes. In FERDO and FERD, each

of the x represents the total number of neutrons (or gamma photons)

in the corresponding energy interval AE.. The constraint integral equations

are replaced by a set of linear algebraic equations by using the quadrature
approximations

E.

where

f Up A(E)x(E)dE ^ L A x, i=l,2,-,m
r J =l V 3
'lo

A.t. =A,(Ej),J=l,2,~,n.

The approximate constraint equations are then
n

DA x = b + e £=l,2,-,m,
j=-\ u3 3 <s l-

and the problems (3-1) can be rewritten

(3-5)

(3-6)

(3-7)

,lo
mm V w x

(Xl,X2,-,Xj f7-=l kj 3
£ A..x.=b.+ e., e^N(aa2),i=l,2,~,n(,
=1 V J

J:

(3-8)

up
max * Y* w x L A..x.=Ve£' e^N(0,ap,t=l,2,-,n

7=1 ^ J

The problems (3-8) can be written more compactly by using vector-

matrix notation. Let the n-dimension column vector _x be defined by

x= (xi,x2,-,xn) , (3-9)
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where the superscript T means transpose. For each window function

w, (E) let the corresponding discrete representation be written as an

n-dimensional window vector,

^= <Wkl*Wfc2»-»Wfe/

The quadrature approximation (3-3) can then be written:

n / \ T
E wfcjxj = Ki>w£:2>~>w/<n) / xi \= ^ -

(3-10)

(3-11)

To write the constraint equations more compactly, let the m-vectors b and

£ be defined by

Jb_ = (bls b2, - , b )
m'

£ = Ui> £2, - , £ )

and the m x n response matrix A be

An A12

\2\ M22

Ami Am2

- Ain

... a
2n

A_
mn

(3-12)

(3-13)

(Note that the rows of the response matrix correspond to pulse height

bins and the columns correspond to the energy mesh points E-.) The

quadrature approximations (3-5) can then all be written

"All A12 - Ain

A21 A22
A Ai.i x
J=l "L3 3

• •

A A
mi m2

A 2rs = A x, (3-14)

mn
A_
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and the constraint equations become

A x = b +

with

£ ^ N(0,E;2) ,

where E2 is the diagonal variance-covariance matrix

„ 2

(3-15)

(3-16)

(3-17)

The expression (3-16) means that the statistical error vector £ has a

multivariate normal distribution with the n-dimensional zero-vector as

its mean and with a variance-covariance matrix E2 whose off-diagonal

elements are all zero because the individual elements e. are not correlated

with one another. The diagonal elements of E2 are just the variances of

the corresponding individual z.. The expression (3-16) can be written
is

more precisely by specifying the probability density function for the

vector e, i.e.,

1

f(e1,e2,~.en) = , m 7expyft^f(olc2---om)
1 ro

or, in vector-matrix notation,

f(e)
/(2t0 detU2)

exp
~1

1 T^_2 •

where det (e2) is the determinant of the matrix l2 .

(3-18a)

(3-18b)
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Substituting equations (3-11, 15, 16) allows us to write the

problems (3-8) in the form

<t> ° = min jw x
K x ( k

up \ T
6, = max <w, x
k x H ~

Ax =H£! e^ N(0,E2)} ,

(3-19)

Ax_ =k +£, £^ N(0,E2)]

These expressions state the problems in the same vector-matrix language

used by the programs. The following short table summarizes some of the

terminology used extensively in the programs and in the remainder of

this report.

Name

Response Matrix

No. Rows in A

No. Columns in A

Count Vector

Window Vector No. k

No. of Window Vectors

Lower Bound for Window k

Upper Bound for Window k

Solution Vector

Mathematical
Symbol

A

m

n

b

X

FORTRAN

Variable

A(I,J),I=1,NR,*

J=1,NC.

NR

NC

B(I),I=1,NR

W(J),J=1,NC**

NW

PL0(K),K=1,NW

PUP(K),K=1,NW

X(J),J=1,NC

*FERD actually uses lower and upper bounds for

A_, i.e. AL0(I,J) and AUP(I.J).

**Each window vector is either computed when it is needed or is copied

into W(J) from a storage array called

WIND(3S(K,J),K=1,NW,J=1,NC.
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Although the expressions (3-19) state the problems very compactly,

they are still not reduced to a form suitable for calculations. The

reason is that the vector e is not a known quantity. In general the

experimenter will obtain a count vector b^ which contains some error

and even though it might be known that the error was drawn from a

completely specified multivariate normal distribution, there is no way

to determine what the actual error values were. To get around this

difficulty it is necessary to apply some statistical analysis. This

will be done in the next chapter.

Before addressing these statistical matters we briefly consider the

second approach to discretizing the continuous integral equations. As

the first step in the discretization, one may think of replacing the

continuous response functions and window functions (perhaps with spikes

and discontinuities) by a set of linearized functions which are linear

between a set of comparison points E15 E2, ... E . The integral

equations then become:

E

/
up

A1.1 n(E) x (E)dE = b. + e. i=l,2,-,m (3-20)
Ll0

where A.in(E) is linear between the comparison points El5 E2, ..., E .
Is ' '

<f>k =f wkin(E) x(E)dE k=l,2, -, p (3-21)
Elo

where w,ln(E) is linear between the comparison points El5 E2, ..., E .
k n

Note that x(E) is still an unrestricted function of the continuous variable

E. Also note that the comparison points for A.(E) are the same set as used
is

for w,(E). Therefore, if either the A.(E) functions or the wk(E) have fine
detail in a particular energy range, then a common set of comparison points

should be chosen such that the behavior of both the A.(E) and the wk(E)
functions are approximately linear between comparison points.
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The next step in the discretization process is to note that one

of the tenets of the FERD and FERDO methods is that one never attempts

to solve for x(E) directly, but only for a set of p window functions

(where p may be very large so that window functions corresponding to

adjacent k's are very slightly different). In the limit as p gets yery

large, one can think of transforming the underlying x(E) variable to a

cj)(k) variable.

The piecewise linear functions A.1n(E), wkin(E) can be written in
terms of a set of piecewise linear spline basis functions L.(E) which

satisfy

L^E) = 1, E = Ex,

0, E > E2,

0, E < E. , ,7=2,3,--, n-i,

L.(E) = {1, E = E., j=2,3,-, n-i,
3 l 3

0, E > E.+ i, j=2,3,-, n-i,

L„(E)= I0' E«En-.
"n'

]> E=En

The expansions are

n

AJin(E) = E A.. L(E), i=l,2,-, m, (3-22)
V

and

w^(E) =E wkJ L.(E), i=l,2,-, p, (3-23)

where the A., and w, .are appropriately chosen coefficients. Substituting
^3 kj

these expansions into the integral equations and exchanging the order ot

the integral and summation operators gives
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n

E A..
Jup

J L(E)x(E) dE b^ + e^, i=\ ,2,-, m,

"lo

*k - £ %•
r up
/ L.(E)x(E)dE

•Jr d

'lo

, k =1 ,2,-, p.

If we now define the quantities x. by
3

E
r up

x. =/ L.(E)x(E)dE, ,7=1,2,-, n,
3 Jr 3

tlo

then the integral equations become vector-matrix equations

E A., x. = b. + e., i=l,2,-, m,p\ ^3 3 i i

& % V k=l,2,-, p,

(3-24)

(3-25)

(3-26)

identical in form to those obtained in the first method of discretization.

The only difference is in the interpretation of the A.., w, . and the x ..
I'S *~3 3

The piecewise linearity assumption is not crucial in the above

described discretization. The L.(E) could be replaced by any set of

spline basis functions to give the same vector-matrix equations although

the values of A.., w, . and x. would differ. Equation (3-26) would still
13 kj 3

define the x. which could be interpreted as a weighted average of the

unknown function x(E) with L.(E) being the weighting function. Note

that the first method of discretization can be expressed in this form

also if the L.(E) are taken to be "boxcar windows" with unit height and

width AE .
3

Some advice to those concerned with the codes. First, do not worry

about what x. means, x. should never assume an important role and should
3 3
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never enter into any computation for the solution (except perhaps as a

numerical artifice). Second, when approximating the functions K.(E) and
3

wk(E), do not worry about intervals dE. Instead, focus on the actual
value of the functions K.(E) and w.(E) at the comparison points. The

3 K

exact spacing of the comparison points is not important (so long as

there is a sufficient number that the functions are approximately linear

in between). And finally, do not worry at all about dE since it never

occurs in any equations (whether as a computational artifice or otherwise)

Unfortunately, some practioners of the FERD and FERDO codes have been

confused on this point and have let some of this confusion creep into

their codes. Usually, it does not hurt too much - the main test being

to see if it can be eliminated without changing the values of the

estimates for <j> (which do mean something physical).

4. STATISTICAL CONSIDERATIONS

Since the error vector e_, when considered as a vector of random

variables, has the zero-vector as its mean, one can think of the count

vector b as a sample drawn from a multivariate normal distribution whose

mean vector F corresponds to a hypothetical measurement with no measuring

error. Furthermore, the variance-covariance matrix for this b-distribution

will be the same as that for the ^-distribution, namely I2. Thus, we

can write

b^ Nfb^z2),

and the probability distribution function for b is

f(-} =/„ vml ,,0 exp [" 2^)V2(b-bo)L (4-D
/(2-Omdet(E2)

where det (e2) = oi2o22~om2 is the determinant of the matrix E2. Clearly

the equi-probability contours for this distribution are surfaces (in

b-space) such that
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(b.-^) L2 (b._bo) = constant.

For any given constant value y2 >_ 0, there exists a probability level

a, 0 £a < 1, such that the m-dimension region defined by

(b-jg1 l"2 (b-^) <y2 (4-2)

has an associated probability a of containing a given sample vector

b_. Since the b^ vectors are normally distributed, the quantity

(b.-bo) 1~2 (b-t^) has a chi-square distribution with m-degrees of
freedom, i.e.,

(b-k))1!"2 te-bo) *x2 (m).

Thus, the relationship between a given probability level a and the

associated value y2 is given by

•/
^ vm/2"1exp(-v/2) (4_3)

r(m/2) 2m/2

where r represents the gamma function,and the whole integrand is

just the expression for the x2(m) probability distribution function.

This relationship between a and y2 is commonly tabulated in standard

tables of the Chi-square distribution, (e.g. Beyer 1968, p. 294).

In practice one does not know the vector b^ but only

that it satisfies

Ax = ^ • (4-4)

What one does know is an actual measured b_ . Substituting that

quantity for b and Ajc for b^ in Eq. (4-2) gives

(b-Ax)T e-2 (b-Ax) <y2 . (4-5)
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One cannot actually work with this expression either because the

quantities ol,o2,~,om are not known exactly. It is possible,

however, to get estimates of the standard deviations from the measured

b^ vector. Since the elements of F are obtained from a counting process,
each of the standard deviations is approximately equal to the square

root of the numbers of counts in the corresponding bin. The estimation

of the counting errors is discussed in more detail in a later chapter.

The FERDO and FERD codes both require an estimate of the a. for each
, is

of the b_£. Denoting these estimates by s. and defining the diagonal
matrix S^ by

S = diag (s1,s2,-,sm)

enables us to write the following approximation for Eq. (4-5):

where

(b - Ax)T|'2(b - Ax)< u2 ,

S"2 =diag ( 9 » ->*•'* —?)
VS!2 s22 %7

(4-6)

(4-7)

(4-8)

Once the confidence level a is fixed and the corresponding value of

y is determined from the x2 (m) distribution, then all of the quantities in
Eq (4-7) are known except the solution vector x^. We can now rewrite the

problems (3-19) in a form wery close to the ones actually solved by the FERDO

and FERD codes. This is done by substituting Eq. (4-7) for the constraints in

(3-19), i.e.

A10

,UP -

mm

x

\^x

max WT_x
x I

(b - A^TS_2(b - Ax)<y2

(4-9)

(b -Ax)V2(b - A_x)<y;
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These expressions state that an a-level confidence interval [$k° , <i>kPJ could
be obtained by determining the minimum and maximum values that the quantity
wT x can obtain when _x is constrained to lie in the region defined by the

inequality
(b - £_x)T§"2 (5 _ ^_x)<p2.

We will describe the geometry of this constraint region in more detail in the

next chapter.

Using the x2 distribution to determine y2 from a gives very conservative
confidence intervals which would, in fact, be unnecessarily large if Eqs. (4-9)

were the final statements of the problems to be solved. There is, however,

still one more constraint on the solution vector which is required by the FERDO

and FERD codes. That constraint is that the elements of the vector x all be non-

negative, i.e. _x> 0. This simple physical constraint is the key to the success
of the whole procedure. The succeeding chapters will explain why this is true.

5. GEOMETRY OF THE CONSTRAINT REGION

The constraint region (4-7), which can also be written

(4X- bjVMA^- b)< u2 (5"1)

defines a region in x-space which is designed to contain the unknown
solution vector x with probability a. If a hypothetical experimenter

were to repeat the measurements 1000 times, obtaining adifferent F
vector and different S matrix each time, and construct the corresponding

1000 constraint regions defined by (5-1), then approximately 1000 a

of those regions would contain the true but unknown x.

Every x in x-space defines a vector b in b-space through the relation

b = A x . (5-2)
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(The true but unknown x gives b = bo). It is instructive to substitute
(5-2) into (5-1) and consider the corresponding region in b-space, i.e.
the region defined by

(b -F)V2(b -F) < y2 (5-3)

where b^ is the given measured count vector and b is free to vary over

all of b-space. The difference vector (b-F) has elements (b-F)., and the

inequality (5-3) can also be written

(bi -blf b2 -b2,...,bm -bm)/l/s12

l/s22

or

k_iM!+ k-h)2, _ x(bm-"bm)2
sl2 s22 s

m

l/sm2

< y2

Dividing through by y2 and replacing the inequality by a strict equality
gives, as the equation defining the surface of the constraint region,
the expression

(bi - hY .fe - b2)2 +... A - W .l
tO2 (^2)2 W2

which is immediately recognizable as the standard form for the equation

of an m-dimensional ellipsoid centered at (Fl5F2,.--, FJ, with axes lengths
ysl5ys2, •••,ysm. This ellipsoid is shown in Figure 5.1 where m is

taken to be 3 for illustrative purposes. Note that the axes of the

ellipsoid are parallel to the coordinate axes. As y2 increases the

size of the ellipsoid increases as does the probability a that it contains
the bo corresponding to the true x.



ORNL-DWG 80-13735

(b^ b2,b3)

M1S1

Fig. 5.1. The Constraint Ellipsoid in b-space.
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In general, not every point in the b-space will be the unique image

of a point in x-space since m and n are not generally equal to one

another. In principle, the FERDO and FERD methods yield valid confid

ence interval estimates for any combination of m and n, but experience

with a number of problems has shown us that one almost always obtains

better (narrower) intervals if n <_ m. To illustrate the relationship
between the constraint region in b-space and x-space we take n=2 in

Figure 5.2. In the top portion of the figure is the same constraint

ellipsoid shown in Fig. 5.1. Also shown is the plane defined by the
transformation

b = Ax

All of the points in the two-dimensional x-space map into this plane

which is a two-dimensional subspace of the three-dimensional b-space.

In particular, the point bo corresponding to the true x lies somewhere

in this plane, hopefully inside its intersection with the b-ellipsoid.

Note that the measured count vector F, which is the center of the b-

ellipsoid does not lie on the plane b^ = Ax because it contains a random

measuring error.

The constraint surface in x-space is the ellipsoid shown in the

bottom part of the figure, which corresponds to the intersection of the

b. = Ax plane with the b-ellipsoid. It is not obvious from the defining

equation,

(A x - b)TS"z(Ax - b) = y29

that this constraint surface is actually an ellipsoid but if one rewrites

the equation in terms of its center 2. the ellipsoidal character becomes

more apparent. We will do this in the next section.
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b = Ax

(b-b)TS Z(b-b)=//

(Ax-b)TS 2(Ax-b)=/x2

Fig. 5.2. Constraint Ellipsoids in b-space and x-space.
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6. LEAST SQUARES ESTIMATION

Because of the random measuring error £ in the measured count

vector J3, the system of equations

Ax_ = F

will in general not have an exact solution. The common practice in

such situations is to seek the least squares solution, i.e. the vector

x which minimizes the weighted sum of squared residuals
m r -i 2

p(x) _
i=l s.2

53 ^ -^ -b*1

The residuals are weighted inversely with the uncertainties s. in the

measured b.. The above expression can also be written in vector-

matrix form as

p(x) = (A x-F)T S"2 (Ax -F).

In such problems m is taken to be greater than (or equal) to n and the

columns of the matrix A are assumed to be linearly independent vectors

spanning an n-dimensional subspace of the m-dimensional b-space. When

these assumptions are satisfied it is easy to show that the minimum

value of p(x) occurs when x is equal to

2 =(iT|"2A)_1 ATS^F a (6_2)

This least squares solution vector turns out to be the center of the

constraint ellipsoid shown in the bottom part of Fig. 5-2, and the

equation of that ellipsoid can be written

pW = y2. (6-3)

If we denote the minimum value of p(x) by p , i.e.

po = p(1) = (Al- b)V2(Al- b),
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it can be shown that

p(x) =Po + (x_-^)TaTs-2a(>L-1)

and the constraint equation (6-3) can be written

(x-^)taV2A(J(- x) = y2 _ po (6_4)

which is the equation of an ellipsoid centered at x=x. Since the

matrix A S"2A is not a diagonal matrix, the axes of that ellipsoid

are not aligned with the coordinate axes of the space.

The least squares solution vector £ is said to be a point estimate

of the unknown solution vector. For most spectrum unfolding problems

it is not, however, a very good estimate because of the basic insta

bilities of the underlying integral equations problem which were dis

cussed in Chapter 2. Typical 21 vectors obtained in this manner have

elements which are extremely large in magnitude, and about half of them

are negative. Such estimates are physically not acceptable. The FERDO

and FERD methods modify this standard least squares procedure in order to

take into account a non-negativity constraint. Before discussing those

modifications, however, it is instructive to consider how one might

obtain interval estimates from the least squares method.

For convenience, let us temporarily drop the subscript k from

the window vector w^ and its corresponding response (j^. If _x is

inside the confidence ellipsoid described by Eq. (6-4) then <f> = w x must

be in the interval defined by

4>l0 =min jwTx (x -S)TAT£~2Ajx -*)<y2 -Po) ,

(_x- x)Wr2A(x -S) <y2-Po| .4>up =max jwT_x
x

Since w is an n-vector it can be plotted in x-space as shown in Fig. 6.1

for the same problem shown in Fig. 5.2. The surfaces of constant value
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wTx=<£uP

(x-x )TATS"2A (x -x) <fM2 -p0

CJ

wTx =<£l0

Fig. 6.1. Confidence Interval Estimates for cp = w .x.
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for the function <t> = w x_ are just hyperplanes orthogonal (perpendicular)

to the vector w. The two of these planes that are just tangent to the

surface of the ellipsoid define the values <f> ° and <j>up. Since it is the
tangent planes that define the desired interval, we can drop the

inequality in the constraints and write the interval estimation problems

as

♦W -{^"} \lJ*I(x -̂)TaV2A(x -*) -y2-Po}.

These problems can be readily solved by the method of Lagrange multipliers

to give

<j>10 =wTx - (>/y2 - po) ^T(AV2Apw

(6-5)

<DUP =wTS + (yy2 - Pox) ^.T(ATS-2A)-iwx

T*
The quantity w x_ is just the least squares point estimate of <(>, and the

confidence limits are obtained from it by adding and subtracting the

quantityMy2 -Po j xjW^(A^S"2A)"1w , Actually, since <j> is ascalar function
of x,, x~, . . ., x , the confidence interval obtained by this method is wider

than it really needs to be. This is because the confidence ellipsoid

obtained by choosing u2 from the Chi-squared distribution (as described in

Chapter 4) gives simultaneous confidence intervals for each of the x.
is

separately. Each of those intervals is wide enough so that all of them

are simultaneously guaranteed with the given confidence level. Each of

them could be smaller and still have the same degree of confidence if it

were only required to be a confidence interval for the corresponding x.
Is

alone without regard to the other components of x. Similarly the interval

for (j) = w _x alone does not need to be based on the full confidence ellipsoid.

We shall see in the next chapter how to use the normal distribution, rather

than the Chi-square, in order to obtain a narrower confidence interval

for <j).
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7. UNBIASED ESTIMATION

In order to explain the basic idea of the FERDO and FERD methods

we will briefly consider the least squares interval estimation problem

from another point of view. Again for convenience we drop the subscript

k from the window vector and seek to estimate the quantity <j> = w fusing

the measured count vector F. We seek a linear estimator of the form
m

i = 1

hi

^ u^ =uT£, (7-1)

where the u. are estimation coefficients to be determined. A very
i

desirable property of such an estimator is that it be unbiased. That is,
/•*

if the measurements are repeated many times, with the estimate <j> cal-

culated each time, then the average value of all the cj>'s thus obtained

should approach the true but unknown value of <(>. Using the expectation

operator E we can write this criterion more succinctly as

E(f) = <f>, (7-2)

or as

E(_uTb) = wTx. (7-3)

Now

E(_uTF) = uTE(F) = uTbo (7-4)

where bo is the unknown, errorless count vector corresponding exactly

to the true solution^, i.e.

bo = 4x (7-5)

Combining (7-3,4,5) we can write the condition for an unbiased estimator

as

wTx = uTAx,

so that any vector _u satisfying

ih .wT (7"6>

will produce an unbiased estimator <)>.
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Now since u is an m-vector, w is an n-vector, and we are assuming

that m > n, Eq. (7-6) is a system of linear equations with more unknowns
than equations. That means that there are infinitely many vectors u
which solve the system and provide unbiased estimators. From all of

those unbiased estimators we would like to pick the one most stable

with respect to the random measuring error in F, because we would like

to minimize the departure from the true value <f> caused by the departure
of b from the true bo. The variance of the estimator £ is given by

V(?) = E[($ -(j,)2] = E[(_uTb -wTx)2]

= E[(_uTF -_uTb0)2] =E{[_uT(F -bo)]2}

= E[uT(b - bo)_uT(b - bo)]

= E[_uT(b -bo)(b -b0)T_u]

=iiTE[(F -b0)(b -b0)T]u =uTZ2u,
where £2 is the variance-covariance matrix for the measuring error.
Since we don't know that matrix, it is necessary to use S2 in its
place and thus to approximate the variance of $ by

V(?) =iiTl2jj. (7_7)

The problem then is to select from all the u that satisfy the constraint
(7-6), the one which minimizes this variance. That u. can easily be
determined by the method of Lagrange multipliers to be

u=!"2A(ATI"2A)_1w, 8)

and the resulting estimator J=£TF is called the minimum variance
unbiased estimator or sometimes the best linear unbiased estimator. It

turns out to be the same as the least squares estimate since

£ =_uTF

=wT(AT|"2A)_iATS-2b (7-9)

= w'x ,
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where x is the least squares estimate of x given by Eq. (6-2).

The above expression for the best linear unbiased estimator does not

assume anything about the probability distribution for the b{,. We are assuming
that the b^ are independently normally distributed so it follows that <j)=uTF is
normally distributed also with variance given by Eq. (7-7). The standard method

for contructing confidence intervals for a normally distributed variable is

given in most intermediate level statistics texts Hcf. Mood a Graybill, 1963,
Chapter 11.] The confidence limits are calculated from

Jlo uTb < JjjTS2_u *
(7-10)

£up =uTb +<^_uTS2jj

where k is a parameter whose value is determined by the probability level to be

associated with the confidence level a and the value of k is given by

V2T
exp[-v2/2]dv. (7-11)

This relationship is tabulated in standard tables of the normal distribution and

can be found in almost any book on statistics. The following short table gives
some representative values:

a 0.68 0.90 0.95 0.99

K 1.0 1.64 1.96 2.58

(7-12)

Comparing Eqs. (7-7) and (7-10) shows that the confidence interval lV°, <j)Up]
is constructed from the point estimate u F and its standard deviation /utS2jj. The
FERDO and FERD codes are designed to give 68 per cent confidence intervals

(i.e. plus and minus one standard deviation) so the appropriate value of k would
be 1. That is, if physically realistic intervals could be obtained for unfolding
problems by the standard interval estimation technique outlined above, then the

appropriate expressions for <j> and <j>up would be
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<*lo Tj- J Tc2
<j> = u b — w u Szu ,

(7-13)
*UP =uTF +VuTS2u '.

As we shall see in the next chapter, intervals calculated from these equations

for spectral unfolding problems are far too wide to give any useful informa

tion about the underlying spectrum. Before doing that, however, it is

interesting to substitute the expression (7-8) for u^ into the equations

(7-10) for the interval estimates. The final results are

$1° =wTx - k/wT(ATS-2A)_1w^ ,
j —. (7-14)

*up =w 2 + K/w(AS A) w

which differ from those in Eq. (6-5) only in the value of the confidence level

factor which multiples the standard deviation term. Intervals obtained from (7-14),
which uses the normal distribution to determine< from a, are narrower than those

obtained from (6-5), which uses the Chi-square distribution to obtain y from a.
As we shall see the FERDO codes do not use either of these methods exactly as

they are explained in the preceding, because the intervals thus obtained would

be too wide to be useful. As we stated at the end of Chapter 4, it is necessary

to add the a priori physical constraint that x be non-negative in order to

obtain reasonable estimates. Adding these constraints requires modification

of both of the above described interval estimation procedures.
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8. THE EFFECT OF ILL-CONDITIONING

The interval estimation procedure described in the preceding

section is illustrated graphically in Fig. 8.1 where the independent

variable <f> is taken as the random variable for the associated normal

probability density function. The estimate t of Eq. (7-9) is taken

as the mean of the distribution and the variance is given by (7-7).

The confidence interval, which is obtained from Eqs. (7-10), has a

width 2k /u S2^ and an associated probability a of containing the true
value of <j>. That is, if the count vector is measured many times, and

the corresponding estimates 4>, "$ °, $up are computed each time, then
approximately 100a% of the resulting intervals [^ °, ^up] will contain
the true <}>.

The situation illustrated in Fig. 8.1 applies to a well-conditioned

problem. The value of $ is positive and the interval [$ °, t ] is
well-separated from 4>=0. Unfortunately, most spectrum unfolding

problems do not give such nice results. In Chapter 2 we described the

basic difficulty of the unfolding problem which is the fact that the

solution spectrum x(E) is a highly unstable function of the measured

count vector b . This instability carries over to the discrete,

vector-matrix estimation problem and manifests itself in two related

ways: (1) the estimate Ifr is a highly unstable function of b_, and (2)

the variance k Su S2u^ becomes quite large so that the confidence
interval ["$ ,^up] becomes very wide. Such problems are said to be
ill-conditioned, and typically are similar to the one illustrated in

Fig. 8.2 which shows a case in which the confidence interval does contain

the true <j>. The latter quantity is positive, as would be expected from

physical considerations, but the estimate $ is negative. If the measure

ments were repeated many times, then the resulting <}> might turn out

to be positive some of the time, but the intervals [^ °, ^up] always
turns out to be so wide, with £ ° almost always negative, that they

yield almost no useful information about the true <j>.
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Fig. 8.1. Classical Interval Estimation For a Well-Conditioned
Problem.
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It is interesting to examine the geometry of the confidence

ellipsoids discussed in Chapters 5 and 6 when the problem becomes ill-

conditioned. This situation is illustrated in Fig. 8.3 which should be

compared to Fig. 6.1. When the estimation problem becomes ill-condi

tioned, the confidence ellipsoid in x-space becomes greatly elongated

in some directions, and the support planes become widely separated,

unless the window vector is exactly orthogonal (perpendicular) to all

of those directions. Since this almost never happens, the corresponding

interval estimates for the window responses will all be too wide to

be useful.

The reason for the elongation of the confidence ellipsoids in

some directions is that the columns of the vector A become nearly

linearly dependent. We have been assuming that they span a n-dimensional

subspace of the m-dimensional space of count vectors. The column vectors

form a basis (set of coordinate axes) for this subspace. They are not

mutually orthoganal vectors so they form a skewed coordinate system.

When the problem is ill-conditioned this skewing effect is very pronounced

and the vectors almost fail to define a full n-dimensional subspace.

In some problems the columns of A may, in fact, actually fail to span

the full n-dimensions. In these cases the ellipsoids become open-

ended and infinitely long in some directions. In such cases the least

squares estimation procedures described in the preceding two chapters

break down because the matrix (A S"2A) is singular, i.e. (fails to have

an inverse). The methods can be fixed up by using the generalized

inverse matrix but the intervals obtained all turn out to be (-<*>, + <*>)

unless the window vector just happens to lie completely in the subspace

that is spanned by the columns of A — a very rare occurence. Fortunately

the FERDO and FERD methods will work in such cases as well as in the ill-

conditioned full rank case. We will describe these methods in the next

two chapters.
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W^ = $up>0

(Ax-b)TS 2(Ax-b)</x2

wTx =£'0<O

Fig. 8.3. Confidence Interval Estimates for an Ill-Conditioned Problem.
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9. THE FERDO METHOD

The FERDO method avoids the problem of the instability of the

best linear unbiased estimator by seeking a biased estimator

?=^TF, (9-D

i.e. an estimator such that

EQ) f wT_x .

The bias p is defined by

p =wT_x- E$) • (9-2)

Now, since

E(?) = E(fiTF) = uT E(F)
=uTb0=uVx ,

the bias can also be written

p= (wT - jfAj x. (9-3)

We have not yet specified the vector u, and before doing so we

will derive the expressions for the bounds %° and $up of the
corresponding confidence interval. Since b ^ N(bo, S2) it follows that

#^ N(u.Tb ,ftTS2u) and that for a given confidence level awe can pick k
according to Eqs. (7-11, 12) so that

Pr {$ -kVV(?) <E(£) <$+<\jvW)\ >a, (9-4)

where

V(?) = uTSzu (9-5)
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is just the variance of the estimator $. By (9-2), E($) = w £ - p, so we can
rewrite the above confidence interval statement in the form

Pr JT/F - <V;uT!2_u< wTx - p <f b+ kVuVu} >a
or

Pr |jjTb +P- KVjJTS2_u <wTx <JjTb +P+kV^S2!} >a.

A change in this statement which might cause the confidence interval to be

wider, but never smaller, will certainly preserve the desired confidence level

a. In particular, since -\ p\ <p and p< | f\ , we can write

Pr ruTb. - (|p| +<VjJTS2jj )< wTx <̂ TF +(|p| +kVjjTS_2u )j >a?

or by (9-3)

Pr uTb - [|(wT-uTA)xj +k^uTS20;J <*<uTb + [|(wT-uTA)x| +<V"T§zy J\> a

We have just shown that for any m-vector u_, a valid a-level

confidence interval for <|> = w x is given by the expressions

'Vll
= U D — |kA/ u ;>~u f i vw -u h;a i | ,

(9-6)
^up

10 =jfb - lyj¥gi + |(wT-^TA)i|l ,
£TF + [Wjfi2^ + I(wT-^TA)xj] ,

when k is determined by a according the relation (7-11) for normally

distributed variables. It is easy to see that when u is chosen to give

an unbiased estimator, i.e. from Eq. (7-8), then these bounds reduce

to those of Eqs. (7-10). Since the bounds computed from the latter

equations are too wide to be useful, the FERDO method seeks instead to

determine u^ to minimize the width of the confidence interval obtained

from the expressions (9-6). That width is just twice the quantity

^\ /aTf-o^, i / T ^T
u. S2^L(u) =kVuS2u + I (w1 - u'A)x (9-7)
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which is just the sum of a variance term and a bias term. The idea

of the FERDO method is to accept a non-zero bias in the estimate,

in return for a reduction in the variance, in the hope that these two

combined uncertainties will be less than the variance uncertainty for

the unbiased estimator. The idea is illustrated in Fig. 9.1 which

should be compared to Fig. 8.2. The former is drawn for a case in

which the unknown quantity E(<j>) = iu bo lies inside the a-level confidence
interval about <$> so that the unknown <b+rue = w x lies inside the
interval [$ °, $up] as it should for at least 100a% of the measured count
vectors.

Although the basic FERDO idea is to choose u. to minimize the

expression (9-7) and then to compute the confidence interval bounds

by Eqs. (9-6), the code cannot actually do this because the vector x

is unknown. To get around this difficulty we first note that since

we know a priori that x. >_ 0., it is true that

T ~T»x „ i i T :vT(w1 - u'A)_x j< |w' - u'A Ix (9-8)

The next step is to replace x^ by an upper bound that can be calculated from

known quantities. Since the elements of A are probabilities, it must satisfy

A > 0_ where 0 is the m x n zero-matrix. It follows then that for all i and j

0 < i < m, 1 < j < n)

so

n

1Aij XJ 1 E A^kxk = (^
k=l

x,< Ji^
J - ~A"

Since this last equality holds for all i, it must hold for the particular

i that minimizes the quantity on the right, i.e.,
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PROBABILITY
LEVEL

2[/cV/yVy +l(wT-uTA)xj]

0

4>. = wTx
true ~ ~

"VARIANCE"

2/<V/uT22y

E(£) =uTb0
= uTAx

Fig. 9.1. The FERDO Interval Estimation Method
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mm

1 < i < m

(Ax).
, j=l,-,n (9-9)

13

In order to turn this into a useable upper bound we must get rid of

the (Ax), term. At this point it is necessary to make an approximation
=r- 1

involving the confidence ellipsoids discussed in Chapters 4 and 5.

For any confidence level a', we can find, by means of the x2(m)
relationship in Eq. (4-3), a corresponding constant y such that

Pr |(Ax -b)V2 (Ax -b) £y2l >_ a'

Note that we use a' here to distinguish it from the probability

level a corresponding to the confidence interval we are seeking to

estimate. We want to use the ellipsoidal constraint

(Ax - b)V2(Ax - b) < y2 (9-10)

to get bounds on the elements (Ax)., so ideally we would like to take a'=l

in order to assure that the resulting bounds are 100% guaranteed. Unfor

tunately a'=l gives y=°° and the resulting bounds on Ax are not very

helpful. The approximation that must be made is to set a' to a value

very near 1, determine the corresponding y, and then assume that the

resulting confidence ellipsoid is really a 100% ellipsoid. The FERDO

code uses a'=.9995 and automatically computes the value of y corresponding

to a' and m.

Assuming that the inequality (9-10) holds with 100% certainty

we can rewrite it as

m

(aj-FV
_ _r= <_ y^
k=l

E
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from which it certainly follows that for all

(Ax - b).£ <_ ys£ ,

and hence that

(Ax) . < b. + ys., i=l,-,m.
zr^ i — i i

This inequality, together with (9-9) gives

mln ] bi + ys^ *
Xjl

l<i<m Atj
5 j=l,-,n,

(9-11)

(9-12)

which gives computable upper bounds for the x.. Although these bounds

cannot in theory be rigorously guaranteed with 100% certainty, in

practice they always turn out to be more than large enough. The main

reason is the two steps of the derivation in which a sum was replaced
by a single term, i.e.,

zAij xj lZ-/ A-kxk = (Ax).

and (AX-b);2 <
m

E (-~-)k <-2.

In real unfolding problems these two steps introduce so much slack into

the final bounds that the statistical contribution from Eq. (9-11) is
small by comparison, even for very large values of a' and y.

If we define the quantities qj by

q.i =
min

l<-£<m

bi + ys^.

A..

> j=l,-,n, (9-13)
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and the matrix Q by

Q = diag (qi,q2.„.qn) » (9-14)

then the inequalities (9-12) can be written in vector-matrix terms as

Xi£e, (9-15)
where the e_ is the n-vector of all l's,

e= (1,1,-,1)T. (9-16)

Combining the vector inequalities (9-15) and (9-8) gives

I(wT -uTA)x |<|wT -uTA |Qe . (9-16)

We can now replace the expressions (9-6) for the confidence interval

bounds by

/^Tco^ *
k / u S2u

*UP

u b -

^Tr-
u b + /uTsV

+

+

wT- 2fTA

w
^T„
u A Q e (9-17)

These are the expressions used by FERDO to calculate the final bounds.

The interval which they give is wider than the one defined by Eqs.

(9-6), but they have the decided advantage that, once u is specified
all of the quantities on the right hand sides are known. No matter

what u^ is chosen, the above equations give an interval whose associated
confidence level is at least a.

The FERDO strategy for choosing u is based on the idea of minimizing

the quantity (9-7), but it takes into account the fact that x is
unknown, and that the final bounds are computed from upper bound approx

imations, by introducing a variable parameter which is then adjusted to
make the final bounds as narrow as possible. Specifically, (9-7) is

replaced by the expression

Mu,t) =x/F^T + I(wT-MTA)X| (9-18)
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where x is a parameter chosen to lie between 0 and ». One way to

justify this expression is to think of it as a weighted combination of

the variance and bias errors with the relative weighting determined

by the value chosen for t. Once x is chosen the idea is then to choose

u to minimize this weighted combination. Of course it is still necessary

to get rid of the unknown x^ in the expression to be minimized. To do

this, first note that

|(wT-uTA) xj = |(wT-uTA) g£_1x| < ||Q (w-AT^)|| || 0/' xj| ,

where Hall denotes the length of vector a_. The inequality follows from

the definition of the dot product of two vectors. Using the definition

of the length of a vector, we can rewrite this expression as

|(wT-^TA) x|<[(wT-ttTA)a2 (w-A^u)]l/2[xTCf2x]1/2

and by Eq. (9-15),

[xV2x]1/2 <[eTSpr2Qe]1/2 =[eTe]1/2 = /n .
Thus we replace Eq. (9-18) with an upper bounding expression

L2(u,x) =x/uTSzi + {/n") /(wT-5fAj£2(w-ATu) .
FERDO does not try to minimize this expression either because of the

difficulty of working with the sum of two square roots. Using the

scalar inequality

(o+p) i /Ti^n2)

we have

,&x) </2[x2ijTS2u + n(wT-^TA)Q2(w-ATl)]' .

i/

FERDO calculates the vector u which minimizes the quality in brackets, i.e.

L3(u,x) =x2uTS2u + n(wT-uTA)Q2 (w-ATu).
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Differentiating this expression with respect to ft and equating the
derivative obtained to zero gives

u=(M2aJ +^i2)-1^2 w ,
which can also be written

u=|"2A (AV24 + ^V2)"1 w (9-19)

This is the vector ui calculated by FERDO which uses it then in Eqs.

(9-17) to calculate the bounds for the desired confidence interval.

Note the presence of the free parameterx2 which can in principle be

adjusted to give the narrowest possible interval. Actual practice with
many test-problems has shown that a wide range of r-values seems to

give equally good results so we have set the r-value in the program at

TAU=1.0. A user can easily alter this value by changing one statement
in the Subroutine SETLO.

It is interesting to compare the biased estimator obtained from

(9-19) with the unbiased estimator (7-9). From the former expression

we have

£=uTF =wT(AV2A +^2Q-2)_1ATS-2F

which differs from the latter only in the diagonal terms of the

inverted matrix. The form of the biased estimator shows that the

FERDO method is very similar to the smoothing and regularization

methods of Phillips, (1962) and Tikonov (1963) and the ridge regres

sion method of Hoerl and Kennard (1970).

Note that in computing the bounds by Eq. (9-17), FERDO takes

k=1 so that the resulting interval is a 68.26% confidence interval.
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10. THE FERD METHOD

The FERD method is really an extension of the FERDO method. For each

window vector w^ it begins w*th the corresponding FERDO biased estimator

u^of Eq. (9-19) and seeks to improve the corresponding confidence interval

[<jho, ^up] by an iterative sequence of modifications of the u, . Again, for
k k ""*

convenience, we drop the window vector index k and also the tilde over the u

and write the initial estimate as

u(o) =i"2A (ATS-2A +J2a'2)_1w, (10-1)
where the superscript (o) denotes the iteration number. Subsequent

iterates will have superscripts (1), (2), and so on.

Before describing the iteration we note one other feature of the FERD

code which is not shared by FERDO, and that is the ability to take into

account uncertainties in the response matrix A- If we use A° to denote
the estimate of A then the allowed uncertainties have the form

A10 =A0 - 5X A0 -62 E<A° +&, A0 +62 E£Aup

where £ is an mxn matrix all of whose element are one and s1 and 62

are scalar quantities specifying relative and absolute errors in A-

Either or both can be taken equal to zero. When they are chosen to be

non zero the resulting matrix interval is considered to be a guaranteed

interval for A, i.e., guaranteed to contain A with 100% certainty. The

method for treating the matrix errors is based on simple programming

tricks and is not a fundamental feature of the FERD iteration. Accordingly

we will not explicitly take the matrix uncertainties into account in

describing the iteration and will use the notation A for the response

matrix just as we have in the preceding chapters.

In order to motivate the FERD method we restate the estimation

problems to be solved:

4>l0 =min [wTx |(Ax-F)V^Ax-b)<u2, x>o],
up
i r = m

(10-2)

^x [wTx |(Ax-b)V2(Ax-b)<y2, x>o]. (10"3)
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These problem statements differ from the ones of Eq. (4-9) only in the

addition of the a-priori non-negativity constraints. The value of

y2 can be chosen by means of the x2(m) distribution to make the

constraint region

(Ax -F)T S"2 (Ax -F) <y2
a 100a% confidence ellipsoid [cf. Eq. (4-3)]. Since x represents a

physical quantity which cannot be negative, the positive orthant,

x> o, is a 100% confidence region, and its intesection with the

confidence ellipsoid is a 100a% confidence region. The extreme

values of <)> = w x in this region give the endpoints of a 100a%

confidence interval.

It can be shown that the exact solutions of the problems (10-3)

could be obtained by a parametric programming technique [cf. Rust and

Burrus, 1972, Sections 5.3, 5.4]. This a complicated, expensive

procedure which is also subject to numerical instabilities caused by

the ill-conditioned nature of the problem. The FERD method avoids

these difficulties by seeking a suboptimal approximation to the exact

confidence limits. This approximate procedure is applied not to

problems (10-3) but rather to two equivalent dual problems. One of

the most basic relations of mathematical programming is a duality theorem

that allows any given constrained optimization problem to be stated

in two different, but equivalent, ways - one way as a constrained

maximization and the other as a constrained minimization problem

[cf. Rust and Burrus, 1972, section 4.4]. When this theorem is applied

to problems (10-3) the resulting dual problems are

10 =mjjjx [uTb -y,/Vs2u |uTA <wT],

>up =mjn [uTF +y/uTi2u |uTA >wT].
(10-4)

The n-vector x of unknown variables is replaced by an m-vector u^

of dual variables. In general the same vector L[will not solve both

problems.

It is instructive to think of the elements of u^ as coefficients

for combining the rows of the response matrix A in order to approximate
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the window vector w, i.e. as the coefficients for combining the m pulse
height bin responses in order to model the desired window response.
In chapter 7we showed that the quantity £=uTF is an unbiased estimator
of <j> if u is chosen to satisfy Eq. (7-6), i.e.

uTA = wT.

If such a strategy were practicable then the same u would solve both
problems, and the confidence bounds could be calculated from the unbiased
estimate by subtracting and adding the product of y and /uTS2u. The
latter quantity is just the standard deviation of the estimator

[cf. Eq. (7-7)]. Unbiased estimation is not a practicable technique
because the intervals obtained are too wide to be useful. The addition

of the x^ o constraint produces narrower intervals but requires
biased estimation, replacing the above condition for an unbiased

estimator with the inequality constraints of Eqs. (10-4). The two
constraints

u.TA <wT and u.TA >wT

can be regarded respectively as lower and upper bias inequalities.
The same u. cannot solve both problems.

In general the initial estimate j/0' obtained from Eq. (10-1) will
not satisfy either of the bias constraints (10-5). The basic idea of

the FERD method is to iteratively readjust u/0' until the proper bias
inequality is satisfied. Assume for the sake of definiteness that we
are seeking the lower bound <t>10 and that after ksteps we obtain u^
which satisfies the lower bias inequality, i.e.,

u<k'T4W.

Then a conservative estimate V° is obtained from

^1o =u(k>TF- y/(k)Wk) .

This estimate is conservative since it will always be less than or

equal to the maximum value of the corresponding objective function in the
first of Eqs. (10-4). Of course there is no guarantee that the above

(10-5)

(10-6)
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$ is larger than the one obtained from the FERDO procedure [i.e. the one
obtained by plugging u^ into Eqs. (9-17)], but in most problems to which
the procedure has been applied it has done as well or better than the FERDO
result. This last statement is subject to one important caveat which will

be given at the end of this chapter. Before discussing that, however, we
briefly describe the iteration used to obtain the lower biased estimation

(k)
vector u '.

The initial estimate will in general be neither lower nor upper biased,

and the bias discrepancy vector

e(o)T =wT -u(o)TA (10-7)
will have both positive and negative components. We need to consider

only the latter since the former already satisfy the lower bias inequality.
The code picks a particular component JMIN satisfying

«JA?il-feT-a(0)ViNiN< °-
•k "k

and then determines the row i = i (JMIN) of the matrix A for which

V^i*. min Ki +ySi . (10-8)
A Ki^ AAi*,JMIN Mi,JMIN

Acorrection vector 6u/0^ is defined by taking all components zero
except the i* component which is taken to be

(o) e(o)
6U.* = JMIN .

Ai*,JMIN

The new estimate \r ' is just

„(l) =„(o)+M(o)_

and it is easy to see that the new discrepancy vector is just

e<"T -e<°>T -M(0,Ti.
Since the elements of Aare non-negative and eJ°jN is negative, it follows that

I \J * (°)
&u[0) A = eJMIN (Ai*>i»Ai*,2'---'Ai*,n)

Ai*,JMIN
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is everywhere nonpositive so the iteration does not change any of the
components which already satisifed the desired lower bias inequality.
Furthermore, the new JMIN component of the discrepancy is just

eJMIN =ejSlN "I™1" A., 1MTM =0
Ai*,JMIN n*'JMIN

so that the iteration has, in fact, given an estimate with one more component
satisfying the lower bias inequality. This whole procedure is repeated until,
after ksteps, the discrepancy vector e;k' is everywhere nonpositive, and the
vector u^ gives a lower biased estimator. To get an upper biased estimate
for computing #up, one begins with the same u}0' and applies asimilar
iteration to annihilate the negative elements of the discrepancy vector.

There is absolutely no guarantee that the iterative procedure
described above will give an interval estimate Ulo,<|>up] that is narrower
than the one obtained from the FERDO program. Also the particular
strategies used by FERD in choosing JMIN and i* are by no means the only
possible choices, and there is no guarantee that they are the best choices.
A brief discussion of this strategy can be found in Burrus, et. al., (1980).
The best justification that we can presently give for the procedure is that
it has worked quite well on a large number of problems in the last ten

years or so. FERD users should be aware, however, of the following fact:
The FERD code assumes the value y = 1 and further that this value gives
68% confidence intervals [$lo,Jup]. This last assertion would follow
directly if the quantity (F -Ax)T S" (b -Ax) were normally distributed,
but we saw in Chapt. 4 that it follows a x2(m) distribution. This

distinction has been discussed at greater length in Chapter 6 of Rust
and Burrus, 1972. For the x2 distributions, larger values of y are
required to guarantee a given confidence level than are required for a
normal distribution. One should not, however, immediately jump to the
conclusion that the present version of the FERD code is returning
interval estimates that are too narrow for the assumed confidence level.
Using the full-fledged confidence ellipsoid machinery developed in
Chapters 4-6 makes it quite easy to prove validity of the scalar
confidence intervals [<f>lo,<i>up], but this may be adrastic overkill
which gives intervals much wider than they need to be. Although we
cannot at present give a rigorous mathematical, statistical proof that
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the confidence interval obtained by using the normal distribution

machinery, which is perfectly valid in the case of unconstrained esti

mation, is valid when the non-negativity constraint is imposed on the

problem, we nevertheless believe that it is. Years of experience with

FERD have not revealed any outstanding discrepancies or contradictions

and have produced physically consistent solutions to many problems.

Accordingly we continue to seek a rigorous proof that the extension to

the constrained case is justified and use the method as if it really is.

11. PROGRAM DESCRIPTIONS

11.1 Overall Structure of the Two Codes

The FERDO and FERD program packages are almost identical except for the

subroutines that do the mathematical calculations. The hierarchies of sub

routine calls for the two packages are given in Figs. 11.1 and 11.2. Clearly

most of the subroutines are identical in the two packages. In each case the

MAIN program is used only to establish a vector array D large enough to

contain all of the variable arrays used by the package. The user may want

to recompile this program when the size of his problem changes. In doing

so it is necessary to change the initialized value of the integer value

LENGTH which must agree with the dimension of the array D. The comment

cards at the beginning of the program give the formula for calculating that

dimension using upper bounds for the values:

NR = number of rows in the response matrix,

NC = number of columns in the response matrix,

NW = number of window vectors to be used,

NLOC = number of words needed to store the unbinned pulse-height data.

These quantities are all input values described in the next chapter.

Having established the length of the D array, the FERDO/FERD MAIN program

transfers to the subroutine SETLO/SETL which handles several other initial

ization chores, one of which is to set the value of the adjustable parameter
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Fig. 11.1. Subroutine Hierarchy for FERDO Package
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x defined in Chapter 9 [cf. Eqs. (9-18), (9-19), and the associated discussion].

The program currently sets TAU=1.0, but some users may want to experiment with

other values in order to ensure that they obtain the sharpest possible interval

estimates. SETLO/SETL also reads the input parameters NR, NC, NW, NLOC, and

divides up the array D into subarrays corresponding to the array variables

used in the actual calculations. The correspondence between the first

location in each D-subarray and its variable array name is established by

the call to the subroutine CNTRLO/CNTRL which is, in effect, the central

program for the package. Table 11-1 gives a list of the variable names used

in the FERDO/FERD packages together with the corresponding mathematical

symbols used in this report, the definitions of the variables, and numbers

of the equations in this report which define the quantities. The user may

find the following additional comments useful in using the table and the

program:

1. FERDO assumes no uncertainty in the response matrix A, but FERD

allows uncertainties of the type described in Chapter 10 [cf. Eq.

(10-2)]. Accordingly, FERDO uses a single response matrix A while

FERD uses lower and upper bounding matrices ALO and AUP. The

method of defining the bounds is described in the following and

in the next chapter. If there is no uncertainty in the matrix,

then FERD takes ALO and AUP to be identical.

2. Each column of the matrix/matrices A/ALO, AUP has an associated

energy [cf. Eq. (3-6)] which is stored in the array ELAB. These

energy values are not used in the calculations but they are used

in printing and plotting the response functions and the window

vectors.

3. Each row of the matrix/matrices A/ALO, AUP has an associated pulse

height bin label stored in the array BLAB. These labels are used

only to identify the associated pulse height bins and do not affect

the calculations. They are used in plotting the observed counts and

standard deviations.



FERDO FERD Math.

Variable Variable Symbol

A k

ALO Alo

AUP 4up

NR NR m

NC NC n

B B b

S S S

NW NW

WINDOS WINDOS

W W

WINW WINW

PLO PLO

Wki

w, wj^

<t>lo,(t>lok

TABLE 11-1

Definition

Ref.

Eq.

The response matrix for the detector (3-6, 3-13)

Lower bound for response matrix (10-2)

Upper bound for response matrix (10-2)

Number of rows in response matrix

Number of columns in response matrix

Vector of observed counts (Lenqth = NR) (2-1, 3-12)

Vector of estimated standard deviations of the observed (4-6)
counts. The diaqonal elements of the covariance matrix
of the counts. (Lenqth = NR)

Number of window vectors used to construct the estimated
spectrum or number of enerqy points in the
estimated spectrum.

Matrix of window vectors; k = 1, 2, . . ., NW; i = 1, 2, (3-2)
. . ., NC

Current window vector. (Lenqth = NC) (3-10)

Vector (Lenqth = NW), used to qenerate Gaussian windows, (11-1)
containing the full widths at half maximum.

Vector of lower bounds for estimated spectrum (3-8, 3-19)
(Lenqth = NW)

CT)

o



FERDO

Variable

PUP

TAW

UT

HT

ATEMP

ISTAR

MU

FERD

Variable

PUP

TAW

UT

HT

ATEMP

UTMP

ISTAR

MU

Math.

Symbol

<*>up, 4,up

U, u<°>

(HT)

TABLE 11-1 (continued)

Definition

Vector of upper bounds for estimated spectrum
(Lenqth = NW)

Adjustable parameter which determines relative
weighting of bias and variance in the estimation
process (called TAU in SETLO/SETL).

Vector of initial upper bounds for the unknown "true"
spectrum. The diaqonal elements of matrix Q used in
biased estimation process. (Lenqth = NC).

Vector of estimation coefficients. The coefficients

of combination used to construct the linear estimates

of <f> from the observed counts b. (Lenqth = NR)

Biased inverse matrix (of order NR x NC) used to
calculate the coefficients of combination UT from

the window vector W.

A temporary workinq storage vector (Lenqth = NC)

A temporary workinq storaqe matrix (order NROW x 10,
where NRCW is maximum of NR, NC, NW).

An inteqer vector (Lenqth = NC) which qives for each
of the initial upper bounds Q the row of the matrix A
used to obtain that value Q.

Chi-square value which quarantees that the upper
bounds Q for the unknown solution hold with

probability ^ 99.95%.

Ref.

Eq.

(3-8, 3-19)

(9-18, 9-19)

(9-13, 9-14)

(9-1, 9-19, 10-1)

(9-19, 11-7, 11-11
11-12)

(9-13, 10-8)

(4-2, 4-3, 11-5)

cr>



FERDO FERD Math.

Variable Variable Symbol

(SK1) SK1

(SK2) SK2

ELAB ELAB

PLAB PLAB

BLAB BLAB

NBITS NBITS

SCOFF SCOFF

IOVL IOVL

FUDGE FUDGE
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TABLE 11-1 (continued)

Definition

Maximum fractional relative uncertainty in elements
of A (not used in FERDO)

Maximum absolute uncertainty in elements of A (not
used in FERDO)

Array of enerqy mesh points used in discretizinq the
response functions and the window functions.
(Lenqth = NC). The enerqies corresponding to the
columns of A/ALO,AUP and WINDOS.

Array of enerqies associated with the window vectors.
(Lenqth = NW). For each window vector W there is an
associated enerqy which describes the location of the
window on the enerqy scale. In the case of a sym
metric window (e.q. a Gaussian window), the associated
PLAB is usually taken to be the midpoint enerqv of the
window.

Array of pulse heiqht enerqy labels in user defined
units. (Lenqth = NR)

Number of binary bits in the mantissa of the computer's
floating point word.

Minimum allowed fractional error in the counts B(I)

First bin in the 4-bin overlap when B vector contains
two gain runs.

"Fudqe factor" used to allow for statistical varia
tions in adjustinq overlappinq qain runs.

Least squares solution vector for the biased estima
tion problem.

Ref.

Eq.

(10-2)

(10-2)

(3-2, 3-6)

(11-6)

(11-8, 11-9)
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FERDO FERD Math.

Variable Variable Symbol

BADJ BADJ (BADJ)

UTB <t>

USSUM V(<M

WUAQ

PHILO
4,lo

PHIUP <tPP

ULO u(k)

SYNWID (SYNWLO)

ULO u(k)

ERR

ELO

QSHOOT

QUE

QLO

DELB

>(k)

(DELB)

TABLE 11-1 (continued)

Definition

Computed right-hand side for the biased least-
squares problem.

Biased estimate of the desired spectral response

WT3C

Variance of the biased estimate <t> = "uTb

Upper bound on the bias for the estimate <t> = £Tb

Lower bound for current spectral estimate wTx

Upper bound for current spectral estimate wTx

Lower biased estimator vector.

Synthetic window correspondinq to lower biased

estimator u^

Final converqed lower biased estimator

Statistical part of the error in the lower biased
estimate.

Vector difference between the qiven window vector and
the synthetic window correspondinq to the lower
biased estimator.

A measure of the total possible overshoot in the
lower biased windows.

Ref.

Eq.

(11-10, 11-•19)

(9-1)

(9-5)

(9-16)

(9-17)

(9-17)

(11-13)

(11-14)

(11-13, 11 -16)

(11-16)

(11-17)

(11-18)

Vector difference between measured and computed work. (11-20)

0-1
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4. The count vector B used in the calculations is a single, normalized,

calibrated pulse height spectrum binned into BLAB bins. The BLAB

values are the pulse heights corresponding to the lower edges of

the bins. The program will accept the data in this form, or in

the form of raw foreground and background multichannel analyzer

data. In the latter case the program will bin the data to

produce the proper form of B. These binning procedures are

described in the following sections, and descriptions of the two

kinds of input are given in the next chapter.

5. If the user chooses to input an already binned pulse height

spectrum B, he must also enter the standard deviations S

associated with the counts. If he chooses to input the raw

multichannel data, the binning programs will calculate properly

normalized and calibrated standard deviations assuming square

root errors for the raw counts. The program also contains a

provision which prohibits the standard deviation estimates from

falling below a certain fraction of the corresponding count

values. This fraction is currently set to be 0.001, but the

user can easily change this by altering the value of the

parameter SCOFF defined in the subroutine BSREAD.

6. Each row of the NW x NC window matrix WINDOS corresponds to a

separate window vector. Each window has an associated energy

PLAB which is the energy level represented by that window (e.g.

the median or mean energy of the window). Each PLAB value is

also the energy associated with the estimated spectrum bounds

PLO, PUP corresponding to that window. The columns of WINDOS

are associated with the energies ELAB at which each window

function is tabulated. These are the same values at which the

response functions are tabulated. For narrow windows (high

resolution in the estimated spectrum) the tabulated window

values will be zero for most of the energies ELAB. The arrays

ELAB and PLAB do not have to be identical and in fact it is

recommended that the minimum and maximum PLAB values should be

sufficiently inside the total range of the ELAB values so that

none of the tabulated windows are incomplete (cut off before

they go to zero).
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7. The arrays BLAB, ELAB, and PLAB are not used in the calculations,

but they are used as abcissas in plotting so they should be

consistently ordered.

The subroutines CNTRLO/CNTRL are so nearly identical that they are

outlined on the same flow chart in Fig. 11.3. Sections where they differ

are indicated by dotted line flows diverging from a circle containing a

slash symbol. The CNTRLO version is shown on the left branch and the CNTRL

version on the right. Dotted line flows back into a circle containing a

slash indicates the beginning of a segment where the two programs are again

identical. Boxes with square corners indicate actions that performed

unconditionally. Boxes with oval ends represent user-discretionary actions.

The diamond shaped box represents a conditional branch and the arrow shaped

boxes represent transfers to subroutines that will be discussed in

considerable detail in the following sections.

11.2 Data Input and Initialization

At the very outset CNTRLO/CNTRL initializes two very important parameters,

NBITS and NSCR. The former is the number of binary bits in the mantissa of

the computer's floating point word (22 for IBM 360 single precision) and is

used to calculate certain diagnostic indicators described in the following.

The latter is the number of a temporary scratch output, input unit used by

the program to conserve storage. The window matrix WINDOS is written on this

file immediately after it is formed because it is subsequently destroyed in

order to use the same space for the arrays A/AUP and HT. The window vectors

are then retrieved as needed from this scratch unit. The response matrix

A/ALO is also written on this scratch file because it is destroyed by the

matrix inversion routine GINV and must be retrieved for subsequent calculations.

Users who plan to implement these programs on other computers may want to

change the values of NBITS and NSCR.

The next task performed by CNTRLO/CNTRL is to read the input, output

option cards. Definitions of the input, output option parameters and detailed
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ORNL-DWG 83-13155

CNTRLO/CNTRL

f PRINT AND/OR CALCOMP
—I PLOTS OF SELECTED

\^ WINDOWS

NBITS=22

NSCR = 2

READ INPUT, OUTPUT

OPTIONS, SKI, SK2

COMPUTE

MU

READ ENERGIES ELAB, PLAB

GENERATE/READ WINDOW MATRIX

WINDOS
WRITE WINDOS

ON SCRATCH UNIT

f WRITE ELAB, PLAB, WINDOS "\
\^ ON PERMANENT STORAGE FILE J

READ RESPONSE MATRIX

A/AUP

WRITE A/AUP ON PERMANENT

STORAGE FILE )
CNTRLO /"?•. CNTRL

r o- ZTL
WRITE A ON SCRATCH UNIT CPRINT AUP

I
( PRINT A V — — — ' •-0-

LOOP8 = 1

1 '

ALO= (1.0-SKD.AUP- SK2

AUP= (1.0 + SKD.AUP + SK2

WRITE ALO ON SCRATCH UNIT

c

READ COUNT VECTOR IDENTIFICATION IDENT

YES

RETURN -y CALL BSREAD }

PRINTER PLOT OF COUNTS B AND
STANDARD DEVIATIONS S vs BLAB

CALL FERDO

I

r-C
~J CNTRLO f/\ CNTRL_ V"

(7)

CALL FER

T
D

PUNCH OUT UNFOLDED SPECTRA PLAB, PLO, PUP

PRINTER PLOTS OF PLO, PUP vs PLAB
CALCOMP PLOTS OF SELECTED RESPONSES A/AUP vs BLAB
CALCOMP PLOT OF COUNT VECTOR B vs BLAB

CALCOMP PLOTS OF UNFOLDED SPECTRA PLO, PUP vs PLAB

LOOPB = LOOPB + 1

Fig. 11.3. Flow Chart of Subroutines CNTRLO/CNTRL

D
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instructions for writing these cards are given in the next chapter. There

are three ways in which the window matrix can be gotten into the program:

1. Calculated internally, in subroutine WREAD, from the card input

arrays PLAB, WINW, and ELAB,

2. Read directly from cards, together with the arrays PLAB and ELAB, or

3. Read directly as unformatted input from a permanent storage file

(e.g., a disk file), together with the arrays PLAB and ELAB.

Card input is accomplished in subroutine MATIN. If the first option is chosen,

there is also an option which allows the user to alter all of the window widths

WINW by a constant factor STRECH without changing the WINW values on the cards.

The value of STRECH, which allows the user to experiment with the resolution

demanded in the estimated spectrum, is read from one of the option cards. Each

calculated window is a gaussian centered on the corresponding value of PLAB and

normalized to have unit area under the curve. The widths WINW are full widths

at half maximum expressed as a percentage of the corresponding mean energy

PLAB. Subroutine WREAD converts these widths to energy units using the

relation

AEk = 0.01*WINW(K)*PLAB(K), k=K=l,2,...,NW (11-1)

and to the normal gaussian dispersion parameters a. by the standard relation

AEka. = *—- . (11-2)
K 2/2lnT27

The tabulated values for window k are then calculated from the standard

formula

W(J) =—L— exp j- 2^- [ELAB(J) - PLAB(K)]2[ , (11-3)
/ZtT~o, ' k )

k

J = 1, 2, ... , NC,
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and these values become the kth row of the matrix WINDOS. The programs contain

options for printing the window matrix and for plotting as many as seven

selected windows on the CALCOMP plotter. There is also an option allowing the

matrix WINDOS to be written on a permanent storage file. Thus, a user might

use option 1 or 2 above only once, write the resulting WINDOS on the storage

file as unformatted data and then use option 3 to obtain the windows in all

future runs.

There are two ways in which the response matrix A/AUP can be gotten into

the program:

1. From cards, using subroutine MATIN, or

2. From a permenent storage file as unformatted data.

If the first option is chosen, there is a provision for writing the resulting

A on a permanent storage file so that option 2 can be used in subsequent runs.

It should be noted that for the FERD package the response matrix AUP which is

read in by one of these two options is the "midpoint" matrix A of Eq. (10-2).
Later in the program it is used to generate the bounding matrices A ,A p in
arrays ALO, AUP the latter being overwritten by the upper bounds. The param

eters 6j, 62 used to compute these bounds are also read from the option cards
as SKI, SK2. If both these values are set to zero, there are no uncertainties

in A so FERD uses ALO = AUP = A0. FERDO also reads the parameters SKI, SK2

from the option cards but does not use them in the calculations. This pro

vision was included to allow the use of the same data cards, with no

alterations, to run both programs.

After reading in all of the input, output option cards, CNTRLO/CNTRL

calculates the value MU = u used in computing the upper bounds Q = q of Eqs.

(9-13, -14). Recall that u is chosen from a chi-square distribution with

NR = m degrees of freedom so that the inequality (9-10) is guaranteed with

99.95% certainty. For values of m > 30, the percentage points for a x2(m)

distribution are quite accurately approximated by
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x£= (V2)[<a + sz^rr (n-4)

where a is the desired confidence level (.9995 in our case) and k is the
a

a-percentage point of the standard normal distribution [cf. Beyer (1968),

p. 293]. For a = .9995 the tables of the normal distribution give k =

3.270; so the required value of y is

y =-^-(3.270 + v/2m-T) . (11-5)
/2

It should be noted that this expression is accurate only for m > 30. Users

who want to run smaller problems are advised to remove this calculation from

CNTRLO/CNTRL and to read in the value of y (obtained from a x2_table) which

is appropriate for their problem.

After establishing the value of y, CNTRLO/CNTRL reads in and writes out

the arrays ELAB, PLAB, WINDOS, and A/AUP using the options specified on the

input, output option cards. Card input is read in subroutine MATIN using the

format described in the next chapters. Printed output is done in WOTAC, a

subroutine designed to print 1, 2, or 3 dimensional arrays. Plotting is done

in subroutine COLPLT which utilizes the DISSPLA package to produce high quality

CALCOMP plots. Users who contemplate changing these packages should be aware

that some of the input, output routines require that certain combinations of

the arrays be stored contiguously in core. In particular, the arrays PLAB

and WINW must be stored together, in that order. This is accomplished in

SETLO/SETL by assigning those variables to contiguous subarrays of the master

storage array D. Other combinations of arrays which must satisfy this same

sort of ordering restriction are {BLAB, B, S} and {PLO, PUP}.

As noted above, both WINDOS and A/ALO are written on a temporary scratch

unit (NSCR = 2) for later retrieval. If the user elects to print out the

response matrix in CNTRL, he gets the matrix AUP before it is converted into

an upper bound matrix, i.e. while it still contains the "midpoint" matrix A .

The program then generates ALO, overwrites AUP [cf. Eq. (10-2)], and writes

ALO on the scratch unit.
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After the response and window matrices are in place CNTRLO/CNTRL is

ready to start processing observed count vectors B into estimated spectra

PLO, PUP. This is done in a loop so the user can unfold any number of

pulse height spectra simply by stacking their input cards, which are

described in the next chapter. At the top of the loop the program reads

a card containing identification and output title information associated

the count vector to follow. If an end of file is encountered on this

read, CNTRLO/CNTRL immediately returns control to SETLO/SETL which closes

down the DISSPLA plots and immediately returns control to the MAIN program

which immediately terminates execution. If identification information is

encountered, rather than an end of file, CNTRLO/CNTRL calls subroutine

BSREAD to obtain the count vector B, the standard deviations S, and the

pulse height energy labels BLAB. If the user chooses to input already

binned data, then BSREAD calls subroutine MATIN to read these data from

cards. If the user chooses to input raw multichannel analyzer count data,

then BSREAD calls subroutine TOWCBN to read and bin the data.

The subroutine TOWCBN and the associated routines BINRD, ZSHIFT,

CREAD, CPRINT, and REBIN serve the purpose of generating a single pulse-

height spectrum with statistical errors from the "raw" foreground and

background data produced by a multichannel analyzer (MCA). To perform

this, the routines must, of course, read the channel data and corre

sponding calibration data, and also read and apply a binning structure

which dictates how the channel data is to be grouped into pulse-height

bins. In addition, the routines allow for certain flexibilities in the

input formats and provide sufficient output edits to document the data

manipulations.

The heart of the TOWCBN scheme is the binning table, which specifies

how the MCA data are to be grouped to give the same pulse-height boundaries

established by the response matrix. Before binning can be performed, the

MCA data must first be "conditioned" so that zero pulse-height appears at

the lower edge of the first channel (done in subroutine ZSHIFT), and the

actual gain is shifted to the nominal gain (done in subroutine REBIN).
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Once the MCA data are shifted to the appropriate nominal gain, the

data are grouped according to the binning table to yield a measured

spectrum with pulse-height boundaries which exactly correspond to the

pulse-height boundaries associated with the response matrix. At the

same time that the conditioned MCA data are grouped they are also

normalized, and the background data are subtracted from the foreground

data. Also, the variances of the data are calculated.

The binning table is read by the subroutine BINRD which reads three

vectors: KLO, KUP, and KDEL. The vectors are read in the order KL0(1),

KUP(l), KDEL(l), KL0(2), KUP(2), KDEL(2),..., KLO(NGRPS), KUP(NGRPS),

KDEL(NGRPS). KLO and KUP specify the lower and upper channels of a

range of MCA channels (after REBIN has shifted the gain and intercept)

which are to be grouped into bins containing KDEL channels per bin. For

example:

KLO(K) = 1017

KUP(K) = 1022

KDEL(K) = 3

means that between channels 1017 and 1022 the data will be grouped with

three channels per bin, or

Bin Number Channels

I 1017, 1018, 1019

I + 1 1020, 1021, 1022

The binning table, which is specified in ascending pulse-height, must

also reflect the appropriate overlap between multiple gain cases. Normally,

the nominal gains (and hence the approximate actual gains) of a multiple

gain case differ by a factor of 10 so that 10 channels of the first-gain

spectrum give the same pulse-height range as one channel of the second-gain
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spectrum. For example, if two gains were used and data from the first

gain run is specified as 1000 + actual channel number and data from the

second gain run is specified as 2000 + actual channel number, then

specifying:

K KLO(K) KUP(K) KDEL(K)

N 1151 1160 10

N + 1 2016 2016 1

N + 2 1161 1170 10

N + 3 2017 2017 1

in the binning table would yield a binning structure:

Bin Number Channels

I 151, 152,...160 gain 1

I + 1 16 gain 2

I + 2 161, 162,...170 gain 1

I + 3 17 gain 2

Therefore, there would be a 2-bin overlap region. In this example, the

binned pulse-height spectrum and the response matrix would have two

pairs of identical pulse-height bins. Generally, four overlapping bins

are preferred.

The measured foreground and background data are read by CREAD using

the FORMAT specified on a DYNMAT card. The form of the DYNMAT card is

described in the next chapter.

Upon return from TOWCBN, BSREAD checks the vector S of standard

deviations for elements S(I) which are smaller than 0.1% of the corre

sponding count B(I). All such errors are reset by

S(I) = SCOFF * B(I) , (11-6)
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where SCOFF = 0.001 is previously set by the program. The purpose of this

procedure is to prevent inconsistent problems which might arise if the

errors are underestimated. Some users may want to change the value of

SCOFF.

If the counts and standard deviations are read from cards, in subroutine

MATIN then, upon return, BSREAD prints a table of the input data, including

percentage errors in the B(I), i.e. the quantities 100*S(I)/B(I).

Once the vectors B and S are obtained, either through TOWCBN or MATIN,

BSREAD adjusts multiple gain runs for agreement in the overlap region. It

calculates normalizations on high gain and low gain so that counts agree

in an overlap range of 4 bins beginning with bin number IOVL, a number which

is input by the user on card 7 (see next chapter). In making the adjustment

BSREAD takes into account the fact that even with the utmost care, it is

nearly impossible to make two runs at differing gains and obtain exact

agreement between binned counts in the region of overlap. The routine

therefore adjusts one or the other of the runs by a "fudge factor," FUDGE,

basing its decision upon the relative magnitudes of the differences between

values in overlapping bins and the errors associated with the data.

Upon return from BSREAD, CNTRLO/CNTRL is ready to compute the estimated

spectrum. This is done by calling subroutine FERDO/FERD.

11.3 Subroutine FERDO

The mathematical arguments underlying the FERDOR subroutine are

summarized earlier in this report. Briefly, the Fredholm integral equation

problem is represented by a matrix equation with non-negativity constraints.

The equation contains a parameter TAW, which may be adjusted by the user.

If TAW is set to zero, the method reduces essentially to ordinary least

squares regression. However, for poorly conditioned or undetermined

systems of equations, the errors "blow up" when TAW is zero. When TAW

is set to infinity, on the other hand, the method almost completely ignores
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the input data and its associated errors, and forces the results to become

all zero. For intermediate values of TAW (values from about 0.1 to 10.0

are appropriate) both the "a priori" non-negativity information and the

"a fortiori" observational data are utilized about equally. The result,

under these conditions, resembles that obtained by ordinary least squares

methods but does not experience "error blow-up" with poorly conditioned or

underdetermined systems.

FERDO begins by computing the matrix £ defined by Eqs. (9-13, -14).

It then uses (2 and the error vector £, or more precisely the error matrix

S^ = diag (s.., s?,..., s ), to scale the response matrix A, producing a
matrix (MI) = S^M- It then calls the subroutine GINV to compute a
"working inverse" of (HI). GINV uses a Gramm-Schmidt orthogonalization

procedure to replace the matrix (HI) with the transpose of a scaled working

inverse, i.e., S_1A(ATS"2A +- fl"2)"1 Q"1. In the process it uses the
space of the original matrix A as working storage. Therefore, the first

action of FERDO, upon return from GINV, is to restore the matrix A by

reading it from the scratch unit. then unscales the working inverse

matrix using the same scaling transformations applied before the call to

GINV, i.e.,

i"1 (HI)2 =s"2A(aV2A +Jp £"2)-1 • ("-7)

This last result is the matrix of Eq. (9-19) which is used to convert each
a*

window vector w into a biased estimation vector u^.

Before calculating the spectral bounds for each window vector, FERDO

calls subroutine BADJ to calculate several diagnostic quantities. The first

of these is the biased solution vector

Z= (AV2A +£a"2)_1 ATS_2b (11-8)
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whose elements could be combined with those of the window vectors w to give

a point estimate w x of the corresponding spectral response $. The vector

x is the solution of the augmented least squares problem

PT =min || ( fi \x - (rill2 (11-9)

where

2

= (I-a)Ts"2(l-£)

The program calls this vector the "dual solution vector" or the "dual vector,"

and prints its elements along with the corresponding upper bounds q, which

were obtained in FERDO using Eq. (9-13). Subroutine BADJ then computes and

prints a vector

(BADJ) = Ax (11-10)

which is, in effect a computed "right hand side" of Eq. (3-15). It is the

code's estimate of the count vector b_ and can be used to check for consistency

between the biased estimator and the observed counts (see below). The program

also computes and prints weighted percentage deviations between (BADJ)i and
the observed counts b,, with the weights equal to the inverses of the counting

errors s•, i.e.

(PCTDEV) = 100 *S_1[b - (BADJ)] .

The program then computes and prints out three indicators which are useful in

evaluating the quality of the results. If the sum of these indicators is

greater than about 5.0, then there may be some problem with the run and the

individual indicators should be carefully checked.
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The first of these indicators is called DICA1. It is a measure of the

conditioning of the response matrix A. It measures the difficulty in

inverting the matrix relative to the number of bits of accuracy of the

floating point arithmetic of the particular computer being used. Roughly

speaking, 6-decimal accuracy in the arithmetic (21 bits) is able to deal

with problems in which the NR direction spans about 50 "resolution widths."

For more resolution widths, the problem becomes more difficult and greater

machine precision is required. Normally, if DICA1 is greater than about

1.0, it suggests that the matrix A has been set up inappropriately, with

the wrong interval between points, or that the problem posed is too ambitious.

We are not aware of any practical, well-posed problem tested with FERDO in

which the value of DICA1 has been greater than about 0.2.

Indicator No. 2 (DICA2) is a measure of the consistency of the input

data in the sense of the ability of the fitting procedures to solve the

equations under the constraint of non-negativity. If for some reason the

input data contains blunders, such as might be caused by channel overflow

in the pulse height analyzer in low channels, the resulting curve will

contain a discontinuity, which, under the assumption of non-negativity, is

physically impossible. Such as accident will result in an excessively high

value of DICA2. In the usual case, with reasonably consistent input data

the value of Indicator 2 is less than 1.0.

We have already described the computations of the quantity called "BADJ"

(^adjusted). This quantity is, in effect, the code's estimate of what the

input data should be. Indicator DICA3 is a measure of the weighted residuals

between BADJ, the computed value, and b^, the input value. It is comparable

to the ordinary "weighted sum of squared residuals" in ordinary least squares

regression, except that subroutine GINV appends a g matrix based upon non-

negativity considerations. The value of DICA3 is distributed statistically

somewhat like a Chi-square distribution. If it is greater than about 3.0,

it indicates that the input data, b^, and the assigned errors, i, are

inconsistent with the kernel of the equation, A. In practical cases, a

large value usually signals either a spurious data point or an unrealistically
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small error estimate. A common cause is that sometimes, because of

instrumental difficulty, a data value will be recorded as zero. FERDOR

will tolerate such values if an appropriately large error is assigned,

but is intolerant of input such a 0 ± 0, unless such a value is

genuinely possible.

After printing the error indicators, BADJ returns control to FERDO

which enters the window loop where, for each window vector w, it succes

sively calculates:

1. The vector UT = u_ according to Eq. (9-19),

2. UTB = uTb, cf. Eq. (9-1),

3. USSUM = uTS2u, cf. Eq. (9-5),

4. WUAQ = |w-Au IT£ e, cf. Eq. (9-16),

5. PHIUP = UTB + [k * /USSUM + WUAQ],

PHILO = UTB - [k * /USSUM + WUAQ],

with the value k implicitly assumed to be 1 in order to give 68.2% confidence

intervals. The last two quantities are, by Eq. (9-17), the required upper

and lower spectral bounds corresponding to the window vector w. The quantities

USSUM and WUAQ are recognized as the variance and an upper bound on the bias

for the spectral estimate UTB. FERDO prints these two values, under the labels

ERR1 and ERR2, along with the estimate and the bounds themselves. ERR! measures

the statistical portion of the final error which can be attributed to the statis

tical error, S, in the vector of observations, b_. When TAW is set to zero

(ordinary least squares) ERR1 is the only source of error which is minimized.

ERR2 measures the bias portion of the final error which stems from the fact

that the "synthetic" window functions generated by the code by linear combinations

of the response functions do not exactly fit the desired windows input by the

user. In the limit of TAW = infinity, ERR2 is the only source of error which is

minimized. Numerical arithmetic errors are not explicitly accounted for, and
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tend to confuse the final interpretation if TAW is very small or very large.

Thus, even if TAW = 0, ERR2 will not be exactly zero, and if TAW is very

large, ERR1 will not be exactly zero, because of numerical error

accumulation.

For each window w FERDO also calculates and prints two other quantities

SP and RUNSUM. SP is a percent uncertainty in the spectral estimate and is

calculated by

SP. 100. ^T+ ^ .

RUNSUM is a running estimate of the integrated spectrum, integrated from the

energy corresponding to the first window, i.e. PLAB(l), to the energy corre

sponding to the current window, i.e. PLAB(K). It is calculated by the formula

K

RUNSUM. = Z UTBT * [PLAB(I) - PLAB(I-l)] .
K 1 = 1 [

On each pass through the window loop, FERDO stores the current spectral bounds

in the arrays PLO and PUP, i.e.

PLO(K) = PHIL0K ,
PUP(K) = PHIUPK .

When the window loop is completed, FERDO returns the arrays to CNTRLO for

further output processing.

11.4 Subroutine FERD

Like FERDO, subroutine FERD begins by computing the diagonal upper bound

matrix g defined by Eqs. (9-13, -14). The only difference is that FERD takes
errors in the matrix A into account by using elements of the lower bound matrix

ALO = A10 in the denominator of Eq. (9-13). It then computes the "effective
matrix errors" by the equation

6(A) = (AUP -A10) £ e
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storing the result temporarily in the vector UT. These errors are used in

scaling the response matrix before calling GINV to calculate its working

inverse. If we define the diagonal matrix A by

A= diag(^ (A), 62(A), ..., 6JA)] ,

then the scaling formula is

(MI) =(1+ A)"1 ^g (11-11)

where S^ is the diagonal matrix of measuring errors and A^ is the average

response matrix,

4 =^°+^] •

The scaling in Eq. (11-11) is completely analogous to that applied in FERDO

before calling GINV. FERD also calculates a matrix condition indicator for

the scaled matrix using the formula

lO-IKi + A)'1 A J 10||(MI)||
CONIND = 2NBITS 2NBITS

where NBITS is the number of bits in the fraction of the machine floating

point word, and the matrix norm || (HT)|| is the square root of the sum of the

squares of the elements of (MI). If CONIND is larger than the value of the

parameter TAW = t, which was set in SETL (see above), then TAW is reset to

the value of the condition indicator. FERD then calls subroutine GINV to

calculate the scaled working inverse of (HT). This is the same subroutine

used in the FERDO code, and the result is the same. The matrix (HT) is

replaced by the transpose of its working inverse and the matrix A10 is
destroyed in the process. Upon return from GINV, FERD immediately restores

A10 by reading it from the scratch unit and unseales the scaled working
inverse using the inverse of the scaling transformation (11-11). Before

this inverse transformation the matrix (HT) is given by



80

(hi) =(i +A)-1 ^14 T(s +a)-2 4 +ji a-2]-1 a"1

Afterwards it is

(MI) =(S +A)"2 ALA, T(i +A)"2 A +j"-fl"2]-"1 . (11-12)

This is the matrix actually used in Eq. (10-1) to compute the initial estimate

for each window vector.

After unsealing the working inverse (MT), FERD enters the window loop.

On each pass through this loop a new window vector w is read from the scratch

unit at the top of the loop. The initial estimator u/0' is calculated by

u(o) = (HT) w ,

with the result being stored in the array UT, cf. Eqs. (10-1), (11-12). FERD

then calls subroutine LOOP which converts u/0' into a vector tr ' which gives
a lower biased estimator, i.e.

lK:T
u (k) A<wT . (11-13)

The iteration for accomplishing this result is outlined in Chapter 10, cf.

Eqs. (10-6) - (10-8) and the accompanying explanatory text. At each place

where a matrix element A,, is required the program chooses either h.. or A..Pthe program chooses either A... or A.^
(k^T J J

inal value of uv ' A- This will assmdepending on which will maximize the final value of u_v ' A. This will assure

that the matrix uncertainty is taken into account in the final lower biased

estimate. The final estimator is stored in the array ULO.

Once the final estimator is obtained, LOOP calculates the "synthetic

window" corresponding to that window. The formula for that window is

(SYNWLO) = u(k) A. (11-14)
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where the elements A^ are taken to be a]° or A^P as explained above. Each
element of this synthetic window should be less than the corresponding element
of the window vector w. LOOP next calculates the lower bound estimate for

cf) = w x according to the formula

»l0 =u(k>V/(k)TS>u(k> , (11-15)

ref. Eq. (10-4). This result is stored and returned to FERD in the FORTRAN

variable PHILO. LOOP also returns the quantities UT, ULO, SYNWLO, ERR, ELO,

and QUE. The first three of these have already been explained. The quantity
ERR is given by

=/u^J S> u<k>ERR = /uv*' i2 u^' (11-16)

and ELO is the n-vector

e(k) =w-ATu(k) , (11-17)

where the elements A^. are chosen as explained above. Thus, ELO is the vector
difference between the given window vector and the synthetic window vector.

All of its elements should be positive. The vector \y ' is chosen to assure

that the synthetic window is smaller than the given window at the energy

mesh points E. = ELAB(J), J = j = 1, 2, ..., n. Both of these window vectors

are discrete point representations of underlying continuous window functions.

LOOP checks whether the synthetic window function might exceed the desired

window function at intermediate energies, between the mesh points. To do

this it calls the function subroutine QSH00T which examines the difference

vector ELO. QSH00T assumes that the energy mesh points are equally spaced

and analyzes every set of three adjacent points. For each set it fits a

quadratic polynomial through the three corresponding elements of the ej '
vector. It then checks the resulting polynomial to see if its minimum value

falls within the energy range corresponding to the outer two points. If it

does, it checks whether that minimum value is negative. Let e . (i) denote
J minx '
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the minimum value for the segment defined by energy mesh points E^, E..,

E.+1 and let the energy at which it occurs be Emin(i)- Tnen for "> =2'
3, ..., n-1, QSHOOT checks whether Ei_1 < Emin(i) < Ei+1 and, if so, whether
e • (i)< 0. These neqative excursions are called overshoots. Using all
minv '

such values e . (i) it calculates the quantity
mm

QSHOOT =f "£ W1'*"! ' 01"18)
where each term is included in the sum only if

e . (i) < 0 .
minv '

The q. are the diagonal elements of the upper bound matrix g which were
computed at the beginning of FERD. LOOP stores the value QSHOOT in the
variable QUE and returns to FERD which in turn stores it in a variable
called QLO. If QSHOOT exceeds 20% of the confidence interval width then
the energy mesh points may need to be taken closer together. FERD also
stores PHILO in the element of array PLO corresponding to the current window
vector, i.e. in PLO(K) for the Kth window. It also stores some of the other
results returned by LOOP in various columns of an array called UTMP whose

elements are later used to form various diagnostic quantities for output.

We will not here try to explain all of the manipulations of the array UTMP
but rather will try to identify the various quantities that are finally

written as output.

To compute the upper bound for the current window FERD simply reverses the
signs of all of the elements of the window vector w and the initial estimator
u^ (i.e. UT) and again calls subroutine LOOP. Upon return it reverses the
sign of the bound obtained and stores it in the appropriate element of the
array PUP of upper bounds. The synthetic window that is returned also has
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its sign reversed so that all its elements are then larger than the corre

sponding elements of w (it becomes an upper biased window). The value returned

in QUE is a measure of possible undershoot between mesh points and is stored

in QUP.

FERD next tests the output option indicator NOPT (described in the next

chapter under the heading Card 5). If the plot option is indicated, FERD

calls subroutine PPL0T3 to produce a line printer plot of the current window

vector w and of the lower and upper synthetic windows on the same graph. At

this point the program has reached the bottom of the window loop and goes back

to the top to read in a new window from the scratch unit.

After emerging from the window loop FERD again tests the parameter NOPT to

see whether to calculate a "computed right hand side" vector (BADJ), called BADJ

in the code, analogous to the one computed in FERDO (see above). This calcula

tion is considerably more complicated than the one in FERDO, however, because

of the errors in the matrix A- If the calculation is indicated, FERD enters

a loop which calculates each element

(BADJ)L = BADJ(L), L= 1, 2, ..., m

separately. At the top of the loop it calculates and stores in the vector array

UT an initial estimator vector

UT =u|o) =e[ A°[A0 T(S +A)"2 A0 +f g^ A0 T(S +A)"2

where the subscript Lon the u} ' vector means the Lth u}0' vector rather than
the Lth element of u^ . The vector e. is just the unit vector whose Lth
component is 1 and whose other components are all zero. Clearly, u}0' is just
the Lth row of the matrix product of the matrix A and its working inverse

computed previously by GINV. FERD then calls subroutine LOOP, using in place

of the window vector the Lth row of the matrix A °, i.e. e. A °. LOOP begins
with the vector u, and iterates until it obtains a vector u,° which satisfies

(u|°)TA<e^A10 .
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Note that we can write the matrix A on the left of this inequality because LOOP

always chooses between A.. and A^P in such a way that the inequality is guaranteed.
Thus, for all A in the matrix interval [A °, AupL the vector (u_.°) A is guaranteed
to be less than the Lth row of A °. Multiplying both sides of the inequality by
x and substituting on the left from Eq. (3-15) gives

(u|°)T(b +e) <(A10 x)L .

The quantity on the left is thus guaranteed to be less than the Lth element of

A .x. It involves the statistical error e but LOOP takes this into account when

it returns

PHILO =(u[°)T b-/(u|°)Ti2(uL°)

which can be regarded as a lower bound for the Lth component of (BADJ). FERD

next obtains an upper bound for this quantity by calling LOOP with the vector

- e, A^ used in place of the window vector. Beginning with u} , LOOP iterates
to get an upper biased estimator vector uj'P and returns (after asign change)
the upper bound

PHIUP =(upT b+/(u[Vs2 u^P

The desired Lth component of (BADJ) is then computed as the average of PHILO

and PHIUP, i.e.

BADJ(L) = (BADJ)L

[(u[°)Tb -/(u[°)TS2 u[°+ (^P)Tb +/(u^P)TS2 u^P].(11-19)

FERD does not print out this estimate of (BADJ), but instead prints, for each L,

the upper and lower bounds PHILO and PHIUP (which might more properly be called

BLO and BUP) and the difference

(DELB)L =b^ -(BADJ)L (11-20)
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between the measured and computed b. It also prints a normalized percentage

deviation

b^ - (BADJ)L
(PCTDEV). = 100 *

L ,uu s.

where the normalization factor s is just the standard deviation of the observed

counts.

When the (BADJ) loop has been completed, FERD calls subroutine PPL0T3 to

produce a line printer plot of the count vector b and the lower and upper bounds

(PHILO) and (PHIUP) described in the preceding paragraph, all on the same graph.

It then writes out the following norm of the vector (DELB),

b-(BADJ)|£2 =/[b -(BADJ)]T S"2[b -(BADJ)]

which it calls the "inconsistency factor" in the output.

The last task performed by FERD before returning to CNTRL is to print a

table which gives, for each window, the following quantities:

ENERGY = PLAB,

PLO = (J)10, ,cf. Eq. (11-15),
PUP = <j>up,
PAVG = l/2(c})10 + <$>up),
SP(%) = 100 * (c|,up - 4>l0)/(4>10 + <}>up),

a measure of the percentage uncertainty represented by the

width of the confidence interval,

ERR = total statistical error in the interval, i.e. sum of the two

ERR components, cf. Eq. (11-16).

E PCT = total statistical error expressed as a percentage of the width

of the confidence interval, i.e.
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Q PCT = total undershoot and overshoot error expressed as a percentage of
the width of the confidence interval, i.e. sum of the two QSHOOT

values, cf. Eq. (11-18), divided by (<i>up -^°) and multiplied by 100.

11.5 The Final Output

Upon return from FERDO/FERD, CNTRLO/CNTRL first checks the punch option
parameter IPPUN (see next chapter under heading Card 7). If indicated, the
program will call subroutine PPUNCH to write the window energies PLAB and the
corresponding lower and upper bounds PLO and PUP on unit 7. These quantities

can then be used later as input to other programs.

Next CNTRLO/CNTRL checks whether the user has requested line printer plots

of the calculated bounds. If so, it calls subroutine PPL0T3 to give linear

plots of the unfolded spectral estimates PLO and PUP versus the window energy
PLAB. It then calls subroutine APLOT to plot the same quantities on a pseudo

log scale (which allows negative values).

CNTRLO/CNTRL next does the DISSPLA plots selected by the user (see next

chapter). These are all done by subroutine COLPLT. Three different plots are
possible: (1) a plot of selected response functions (column of the response
matrix A) plotted as histograms versus pulse height, (2) a plot of the count
vector b and its standard deviations plotted as a histogram versus pulse height,

and (3) a plot of the lower and upper bounds for the unfolded spectrum as a

function of energy.

When the DISSPLA plots are completed CNTRLO/CNTRL loops back to read in
another count vector to be analyzed using the same response matrix and window

vectors. If the input file contains the data for a new count vector, it will
be analyzed as described above. If the program encounters an end of file while
looking for the new count vector, CNTRLO/CNTRL returns to SETLO which calls the
DISSPLA subroutine DONEPL to close the plot file. SETLO then returns to the

MAIN program which then stops.
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12. INPUT REQUIREMENTS FOR FERDO/FERD

Input for the FERDO/FERD codes comprise title cards, numerous options

parameters, detector response functions and window functions, and the

measured pulse-height data. A detailed description of input cards and

data blocks is given below followed by a description of MATIN and CREAD

input formats.

Card 1 (20A4)

JDENT(I),1-1,20 - General problem title.

Card 2 (4110)

NR

NC

Number of rows (pulse-height bins) in detector response matrix.

Number of columns (energies) in response matrix and window

matrix.

NW Number of rows (energies) in window matrix.

NLOC Number of words needed to store the unbinned pulse-height

data - normally NGAIN*NP0INT (# gains x # channels per gain).

Use NLOC = 0 if IBIN = 0.

Card 3 (2110,F10.3,2110)

IWRD

IWWRT

STRECH

IWPRT

NWPLT

-1

0

N

0/N

Calculate Gaussian window functions using energies

(PLAB) and %-FWHM's (WINW) read from cards - Block la.

Read row energies (PLAB) and 2-dimensional window

matrix from cards - Blocks lb and 1c.

Read row energies (PLAB), 2-dimensional window matrix,

and column energies (ELAB) from device on Logical Unit

No effect. / Write PLAB, 2-D window matrix, and ELAB

onto device on Logical Unit H.

Multiplication factor for %-FWHM's (WINW). Not used if

IWRD > 0.

0/1 - No effect. / Print 2-D window matrix.

0/N - No effect. / Plot N^ different window functions on one

graph (N <_ 7). Specific window functions are

identified by column on the following input card.
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Card 4 (7110) Input only if NWPLT > 0.

Column numbers of specific window functions to be plotted,

are read.

NWPLT entires

Card 5 (5I10.2F10.0)

IARD 0 - Read 2-dimensional response matrix from cards - Block 3.

N - Read 2-dimensional response matrix from device on

Logical Unit N_. N_ can be same unit as IWRD.

IAWRT 0/N - No effect. / Write response matrix onto device on

Logical Unit N. H may be same unit as IWWRT.

IAPRT 0/1 - No effect. / Print response matrix.

NAPLT 0/N - No effect. / Plot N_ different response functions on

one graph (N<_7). Specific response functions are

identified by column on the following input card.

N0PT5 Output edit option (not used in FERDO):

1 - Print only summary information for PLO-PUP solution.

2 - Print only summary information for PLO-PUP solution

and adjusted B-vector.

3 - Print summary information and plot every 20 synthetic

window function.

4 - Print summary information and plot every synthetic

window function.

SKI Relative (fractional) error factor for response matrix. Not

used in FERDO.

SK2 Absolute (normalization) error factor for response matrix.

Not used in FERDO.

Card 6 (7110) Input only if NAPLT > 0.

Column numbers of specific response functions to be plotted. NAPLT entries

are read.
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Card 7 (7110)

IBIN 0/1 - Read previously binned data and corresponding statistical

errors. / Read actual channel data and calculate binned

spectrum and errors.

IDIV 0/1 - No effect. / Divide internally-binned pulse-height data

by bin width. (Used only when IBIN=1)

NGAIN Number of overlapping gains in measured data. NGAIN = 1 or 2

only.

IOVL First bin of 4-bin overlap between different gains. Only

required if NGAIN=2.

IBPLT 0 - No effect.

1 - Output printer plot of binned spectrum.

2 - Output Calcomp plot of binned spectrum.

3 - Output both printer and Calcomp plots of binned

spectrum.

IPPLT Same as IBPLT except for unfolded spectrum upper and lower

bounds.

IPPUN 0/1 - No effect. / Punch unfolded spectrum upper and lower

bounds.

Block la (MATIN format) Input if IWRD = -1.

PLAB(I),1^1 ,NW - Energies (in units of MeV) corresponding to rows of

window matrix. Unfolded spectrum is calculated at

these energies.

WINW(I),I=1,NW - FWHM (in per cent) of Gaussian window functions to

be calculated by FERDO/FERD.

Block lb (MATIN format) Input if IWRD = 0.

PLAB(I),I=1,NW - Energies (in units of MeV) corresponding to rows of

window matrix. Unfolded spectrum is calculated at

these energies.

Block lc (MATIN format) Input if IWRD = 0.

WIND0S(I,J),I=1,NW;J=1,NC - Two-dimensional window matrix.
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Block 2 (MATIN format) Input if IWRD <_ 0.

ELAB(I),1=1,NC - Energies (in units of MeV) corresponding to columns

of window matrix and response matrix.

**N0TE: If IWRD > 0, Blocks la-c and 2 are not entered, and the corresponding

arrays are read (unformatted) from device on Unit IWRD.

Block 3 (MATIN format) Input if IARD = 0.

A(I,J),I=1,NR;J=1,NC - Two-dimensional detector response matrix.

**N0TE: If IARD > 0, Block 3 is not entered, and the response matrix is

read (unformatted) from device on Unit IARD.

The following input may be repeated as many times as desired to analyze

multiple sets of similar pulse-height data.

Card 8 (20A4)

IDENT(I),I=1»20 - Individual case title.

Block 4a (MATIN format) Input if IBIN = 0.

BLAB(I),I=1,NR - Pulse heights (normally in units of Light Units)
corresponding to lower edge of pulse-height bins

for which the measured data has been defined. Rows

of response matrix must also be defined by BLAB.

B(I),I=1,NR - Measured pulse-height spectrum properly normalized,

calibrated, and binned into BLAB bins.

S(I),I=1,NR - Statistical errors associated with B-vector.

**N0TE: If IBIN = 0, no further input is required unless multiple cases

are to be analyzed. If IBIN = 1, the following cards and blocks

should be input instead of Block 4a.

Card 9 (19F4.3)

FAF(I),I=1,19 - Forte Acceptance Factors: Specifies the relative
efficiency of the first 19 bins of the measured

pulse-height spectrum.
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Card 10 (2110)

NPOINT Number of channels in one pulse-height spectrum.

NGRPS Number of channel groups in binning table.

Block 4b (1216 - Repeated as needed)

KLO(I),KUP(I),KDEL(I),1=1,NGRPS - Binning table. KLO and KUP specify

the lower and upper channels of a range of MCA channels

which are to be grouped into pulse-height bins containing

KDEL channels per bin.

Block 5 (7E10.4 - Repeated NGAIN times)

UC(J,1) Foreground normalization (time) for gain J.

Background normalization (time) for gain J.

Foreground zero-intercept channel for gain J.

Background zero-intercept channel for gain J.

Foreground gain (normally in Light Units per channel) for

gain J.

Background gain (normally in Light Units per channel) for

gain J.

Nominal (reference) gain for gain J.

Block 6 (CREAD format)

C(I,J),I=1,NP0INT;J=1,NGAIN - Foreground channel data.

Block 7 (CREAD format)

C(I,J),I=1,NP0INT;J=1,NGAIN - Background channel data.

MATIN Format

Each data block which is input using the MATIN format represents a single

call to the subroutine MATIN. The first card in the block must be a FORMAT

card of the form:

FORMAT I N (...)

which is read with a (A4,3X,A3,I3,1X,16A4) format. The entries represent:

UC(J,2)

ZI(J.l)

ZI(J,2)

GN(J,1)

GN(J,2)

GNOM(J)
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'FORMAT ' - designates card as FORMAT card

I - 'ROW' or 'COL' to signify whether data is in row

or column format

N - Number of data entries per card

(...) - Actual format of data entries.

Each data card must begin with two interger-type indices which indicate the

matrix position of the first data entry on the card. The remaining data

entries on the card are then stored in succeeding locations within the same

row if I = 'ROW' or within the same column if I = 'COL'.

MATIN allows changing formats in midstream through the use of negative

indices. If MATIN encounters a card with both indices negative, then no

data are read from that card and MATIN expects the next card to be a new

FORMAT card. Reading of the input block is terminated when a blank card

is encountered.

CREAD Format

Unbinned channel spectra (IBIN=1) are read by subroutine CREAD which

uses a style similar to MATIN. Two calls to CREAD are made - one for

foreground data and one for background data, if any. The input sequence

for a single call to CREAD is as follows:

1. a DYNMAT card (described below)

2. a title card in 20A4 format

3. the data cards in a format specified on the DYNMAT card.

The DYNMAT card has the form:

DYNMAT IREL NWORD (...)

which is read using a (A4,2X,I6,I3,1X,10A4) format. The entries represent:

'DYNMAT' - designates the card as a DYNMAT card

IREL - offset parameter used to locate multiple gain data

within a single 1-dimensional array

NWORD - Number of data entries per card

(...) - Actual format of data entries.
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Each data card which is read using the ( ... ) format must begin with a

literal-type title field followed by an integer-type index which gives

the channel number of the first data entry on the card. The remaining

data entries are stored in succeeding locations.

If NGAIN=2, a second set of DYNMAT, title, and data cards is expected

immediately following the first set. Since both sets of channel data are

stored in the same 1-D array, the value of IREL for the second gain set,

i.e. IREL(2), must exceed the value of IREL(1)+NP0INT. If IREL(2) >

IREL(1)+NP0INT, then the value of NLOC (Card 2) must be increased a

corresponding amount. The actual value needed for NLOC is IREL(2)+NP0INT

-IREL(l).

A CREAD data block is terminated by a blank card. If no background

data are available, a single blank card must be input to properly

terminate CREAD.
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13. SAMPLE PROBLEMS AND OUTPUT DESCRIPTION

This section describes three sample problems where FERDO/FERD have

been used to unfold pulse-height data from an NE-213 spectrometer. An

abreviated listing of the input is given for each sample problem and a

thorough discussion of the output is given for the first problem only.

Differences in the output of the other two problems are highlighted. An

attempt has been made to demonstrate a variety of input and output

options. In the discussion below, several input parameters and arrays

are referred to by names which are identified and described in Sec. 12.

13.1 Sample Problem 1

The first sample problem is a FERDO case, although the identical

input could also be used with FERD. The pulse-height spectrum to be

unfolded resulted from an NE-213 measurement of a modified 14-MeV

neutron spectrum degraded by a steel and polyethylene shield. The

problem demonstrates a case in which all arrays are input explicitly - a

situation which should occur only when a new response matrix or window

matrix is tried. A listing of the Job Control Language (JCL) and input

data is given in Fig. 13.1 with some of the lengthy arrays abreviated

for succinctness.

As seen in the input listing in Fig. 13.1, this problem specifies

pre-binned pulse-height data (IBIN=0), so that NLOC could be input as 0

thus saving some memory space. The window functions are input as a two-

dimensional array preceded by the PLAB vector and followed by the ELAB

vector and the A array (response matrix.). All four of these input

blocks are written onto the logical unit 27 device for use in subsequent

problems. For the sake of this example, 5 window functions (columns of

WINDOS) and 4 response functions (columns of A) were selected for

CALCOMP, ie., external plotting. Likewise, the input pulse-height

spectrum and the unfolded solution bounds were selected for external

plotting as well as for normal line printer plotting.
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//DHSA1P1 JOB (20106),»SAVE6522,55 DTI 6025*
//♦CLASS CPU33 =0405.PEG 105=38OK,TO=3.C
/♦BOOIE PP.1 NT LOCAL
/•ROUIB PONCH H330TE46

//SCET EXEC PGH=IEfiPROG1,EEGION=64K
//SrSPBIKT DO STS0UT=ft

//DD1 03 UNIT»3333-1,YOT,=S?:R=ZX88B8, DI3P=0LD
//SYSIS 00 *

SC3ATCH DSNAME=X. D7TG7CF1. N685555, VOL=3330-1=ZX8R83
//F8KD3 EXEC PGH=FrPDO,REGION=380K
//J3.SI8PLIb DD nSN=X. DTI46103.UN?OI.D,I>I3P*r5Ha
//33.FT05F001 00 DDSHil^SYSIN
//33.FT05F001 DH SXSOOT* (A,,1001)
//33.FI07P001 DD STSOOT=B
//33.:OBtonr DD HNIT=SY5DA,DISP=(NEW,PASS),DSN=G6PLT30T,
// 3PACE= (4000, (50,50), TUSE)
//33.FrQ2F001 DD UNIT=SYS0A,DIS?*(B^H,DELETE) ,SPACE*(TSK,(100,10)),
// DCB* (RECFH*VBS,LEECT.= X,BLKSIZ!=64q7,30FSO =1)
//33.FI27FQ01 DD UNIT-3330-1,VOL=SER=2X8888rDISP=(NEB,KEEP),
// 0SN-X.DTIGTCF1.N685555,SPACE*{TKK, J10,1),3LSE),
// DCB« (RECFB=TBS,LPSCL=T,BLKSIZE=64l»7,8'TFHO=1)
SABPLE 1; FERDO NEUTRON PROBLS1 WITH FULL AR9AY INPUT

49 55 55 0

0 27 1.0 0 5
5 15 25 35 50
0 27 0 4 0
5 12 20 40

0 0 1 0 3

OH 01 (6X,14,12, 1F15.8)
1 0.23470575^*02
2 0.22560175E+02
3 0.21S79731E*02
4 0.20555988E*02
5 0. 1949B314E+02
6 0. 18520989E+02
7 0.175327575+02
8 0. 16539378E+02
9 0. 15628767E +02

10 0. 14791910E*!>2

0.0 0.0

50 0.13095893E+01
51 0.12047316E*01
52 0.1106S93S5+01

53 0.10066275E+0'
54 0.90693686E+00
55 0.81135350E*00

P..1AI F:OH 07 (1X.2I3,3X,7E10. 6) ( 55. 55) AS PUNCHED
1 1 239831*00 206500*00 125770*00 519224-01 139307-01 286424-02 4082*6-03
2 2 211904*00 249991*00 206512*00 114245*00 401928-01 103654-01 180329-02
3 3 121841*00 211869*00 2596 73*00 209311*00 103849*00 3572S3-0T 834276-02
4 4 J80777-01 107414*00 213499*00 271812*00 209415+00 103458*00 322710-01
5 5 502063-02 258916-01 942134-01 214178*00 285693*00 223330*00 105613*00
6 6 295859-03 2<>8304-02 212931-01 925515-01 228608*00 299854*00 227342*00
7 7 503963-05 114694-03 185939-02 178268-01 936723-01 232264*00 315663*00
3 8 0 * 3 + 472243-04 113655-02 156775-01 84A743-01 236732*00
9 9 3 ♦ 0 ♦ 0 * 235148-04 10 5917-02 138016-01 e669P9-01

13 10 0 * 1 ♦ 0 * 0 * 270660-04 942486-03 147325-01
11 11 0 ♦ 0 + 0 ♦ 0 + 0 + 26512B-04 113032-02
12 12 0 ♦ 0 * 0 + 0 * 3 ♦ 0 + 201897-04

1 3 1 408352-04 359956-05 0 * 0 * 0 * 0 ♦ 0 *
2 a 2 214152-03 215733-04 0 ♦ 0 + 3 ♦ 0 ♦ 0 *
3 R 3 119532-02 143683-03 148889-04 a * .1 + 0 ♦ 0 *
4 8 4 638640-02 964442-03 119747-03 132676-04 0 + 0 ♦ 0 +
5 3 5 30212"-G1 613835-02 967054-03 129323-03 108635-04 0 ♦ 0 *

Fig. 13.1. Input listing for sample problem 1.
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43 50 43 189884-02 268P84-03 348152-04 0 + 0 ♦ 0 ♦ 0 *

44 53 44 161310-01 276698-02 416727-03 471956-04 0 ♦ 0 ♦ 0 *'

45 50 45 b72028-01 137511-01 238504-02 304771-03 295817-04 0 * 0 +

46 50 46 206095*00 507265-01 102150-31 149562-02 160367-03 0 ♦ 0 *

47 50 47 532902+00 162346+00 388966-01 658650-02 337132-03 806993-04 0 ♦

43 50 48 116365*01 45B065+00 135428+00 276122-01 395782-02 447202-03 0 ♦

43 53 49 202434*01 108598+01 414526+00 106395+00 184618-01 243240-02 0 ♦

50 50 50 259882*01 205676*01 108403+01 373491*00 826933-01 133034-01 0 +

51 50 51 211485*01 274635*01 218724+01 108432*01 334531+00 699528-01 0 *

5Z 50 52 97S485*00 225078*01 290186*01 222734*01 100613*01 287585*00 0 ♦

53 50 53 198631*00 956024*00 228729+01 308352*01 228592*01 983385*00 0 ♦

54 50 54 129380-01 159222*00 841224+30 234398*01 329426*01 241390*01 0 *

55 50 55 ^09462-03 820056-02 115393+00 739410*00 247013+01 353005+01 0 +

F3EHAT SOU 01 (6X,I4,I2,1E15.8
1 0.23470575E+02
2 0.22560175E*02
3 0.21579701E+02
4 0.20555988E+O2

5 0. 194983145+02
6 0. 18520989E + 02

7 0. 17532757E*02
a 0.16539378E+02
9 0. 156287673+02

10 0. 147919103+02
11 0. 1402099615+02

12 0. 13200995E + 02

13 0. 12392783E+02
14 0.11751374E+02
15 0.11247053B+02

48 0.151069743*01
49 0. 14121000E+01
50 0.13095893E+01
51 0.12047316E+01
52 0.11068935R+01
53 0.10066275E+01
54 0.90693686E+00
55 0.81135350E+00

HAT COL 08 (2X, 2I3.8E9.3)
1 1 . 131E-01 .211E-01 .1633-01 . 1603-31 .158E-01 .149E-01 .303E-01 •278E-01

9 1 .269E-01 .231E-01 .214E-01 .205B-01 .2171-31 .190E-01 .302B-01 .3313-01

17 1 .315E-01 .302E-01 .306E-0 1 .2713-01 .281E-01 .306ErO1 .294E-01 .309E-01

25 1 .582E-01 .612E-01 .6183-01 .592B-01 -T525E-31 .U99E-01 .430E-01 .412E-01

33 1 .347E-01 •307E-01 .481E-01 .4402-01 .406E-01 .419F-01 .420E-01 .3563-01

41 1 .3O6E-01 .312E-01 .291E-01 .2813-01 .409E-31 •387E-01 •357E-01 .344E-01

49 1 .315E-01 •283E-01 .253E-01 .272E-01 .259E-01 .245E-01 .458E-01 .466E-01

57 1 .438E-01 .441E-01 •457E-01 .439B-01 .430B-01 .462 8-01 -470E-01 .424E-01

65 1 .292E-01 .1513-01 .681E-02 . 1733-02

1 2 .204E-01 .166E-01 .173E-01 .171E-01 .175E-31 .147E-01 .270E-01 .292E-01

9 i. .239E-01 .219Z-01 .242E-01 .2463-01 •234E-01 •205B-01 •379E-01 .380E-01

17 2 .382E-01 •371E-01 .345E-01 .36BE-01 •336E-01 .3721-01 .378E-01 •414E-01

25 2 .735E-01 .729E-01 .671E-01 .610 3-01 .547E-31 .454E-01 .372E-01 .346E-01

33 2 .322E-01 •290E-01 .470E-01 .9313-01 .454E-01 .431E-01 .375E-01 .340E-01

41 2 .310E-01 .272Z-01 .249E-01 .239E-01 .396E-01 .377B-01 .353E-01 .363E-01

4 9 2 .300E-01 .312E-01 .337E-01 .2763-01 .319E-01 .266E-01 .484E-01 .514E-01

57 2 .506E-01 .514B-01 . 515E-01 .496 3-31 .540E-31 .523E-01 .437E-01 .322E-01

65 2 .142E-01 .739E-02 . 151E-02 .9593-03

1 i .221E-01 .205E-01 .1993-01 . 167E-01 .174E-01 .155E-01 .302E-01 .2845-01

9 3 .276E-01 .253K-01 •259E-01 .232 3-31 .256E-01 .249E-01 .414E-01 .4385-01

Fig. 13.1. -continued-
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17 51 . 316E-04 .483E-05 . 1483-04 .2133- 34 .209E-04 .904E-05 .148E--05 .7193--05
25 51 . 709E-05 .394E-05 .OOOE+OO

1 52 . 8^1E*00 .775E+00 .6763+00 .5753* 03 .476E+00 .338E+00 •261E+00 .33 5E--01
9 52 . 565E-02 .2803-02 .1513-02 .681E- 33 .2273-03 .700E-04 .377E--04 • 203E--04

17 52 . 262E-04 .8493-05 .OOOE+OO
1 53 . 915E*00 •771E+00 .6243+00 .4543+30 .254E+00 .100E+00 .380E--01 .507"--02
9 53 . 222E-02 .820E-33 .312E-03 .8773-04 .222E-04 .140E-04 .317E--04 .155E--04

17 53 . 640E-05 .5513-05 .145E-04 .145E-04 .552E-05 .483E-05 -619E--05 .2813--05
25 53 . 449E-05 .000E*00

1 54 . 910E*00 .6763*00 .4023 + 00 . 1573 + 00 .412E-01 .878E-02 -444E-•02 .163E--02
9 54 . 541E-03 .138E-03 .538E-04 .2983-34 .495E-05 .497E-05 •000E*00
1 55 • 676F*00 .3023+00 .783E-01 . 1393-31 .296E-02 .139E-02 • 113E-•02 .3923-•03
9 55

•
855E-04 •242E-04 .191E-04 .176E- 34 .6 49E-0 5 .123E-0 4 -579E-•05 .000E< 00

P8E8INNED PULSE-HEIGHT DATA FOP SAMPLE 1
FOFMAT ROK 03 (6X, 14,12,3E15.8)

1 0.10750000E+00 0.58200351E-07 0.10095450E-09
2 o. 122500003*00 C.46992510E-07 0.907148403-10
3 0. 137500003*00 0.39095937E-07 0.82742728E-10
4 0. 152500003*00 0.331461023-07 0.761868903-10
5 0.1675 0000E*00 0.28439675E-07 0.70571010E-10
6 0. 182500003*00 0.246372283-37 0.65684052E-10
7 0.205000003+00 0.4022173SE-07 0.83925597E-10
3 0.23500000E+00 0.320119803-07 3.74872147E-10
9 0.265000003+00 0.258257813-37 0.67249761E-10

10 0.295000003*00 C.21539385E-07 0.61415452E-10
11 0.325000003*00 0.18094870E-07 0.56291361E-10
12 0.355000003*00 0.151233943-07 0.51462235E-10
13 0.385000003*00 0.129354223-07 0.47594232E-10

4 0.415000003*00 0.112006323-37 0.44287920E-10
15 0.455000003*00 0.15734942B-07 0.52492419E-10

50 0.523500003*01
51 0.554500003+01

52 0.585500003+01

53 0.616500003+01

54 0.647500003+01

55 0.691000303+01
36 0.747000003+01

57 0.803000003+01

53 0.859000003+01

59 0.91500030E+01
60 0.971000003+01
61 0.10270000E+02

52 0. 108300003*02

63 0.113900003+02

54 0.119500003+02

65 0.12510000E+02

65 0.13070000E+02
67 0.136300003+02
53 0. 14190003E+02

0.1783963
0.1726296

0. 1600211

0.1456295

0.1291885

0.1695071

0.6346983

0.1141739

0.0000030

0.0300000

0.0000000

0.0000000

0.00 03 00 0

0.0000000

0.0000000

0.0000000

0.0300000

0.0000000
0.0033000

OE-08
7E-08

23-08

82-38

02-08

63-08

93-09

5E-39

03+00

CE+OO

CB + 03
03+00

03*00

C3+00

OE+00

OE+00

03+00

CE*00

C3*00

//GLD EXEC GLDPLT,I!EGION=110K
//;3HPIK DD DSN=SSPLTOriT,DISP= (OLD,DELETE)
//FI05F001 DD *

DRAM=1-ENDJ

//
END1NPUT

74899E-10
86833E-10

39893E-10

69438E-10

40974E-10

28919E-10
42600E-10

14413E-1

14413E-1

14413E-1

144133-1

14413E-1

14413E-1

1U413E-1

14413E-1

14413E-1

14413E-1

14413E-1

14413E-1

3. 176
0.173

3. 167

0.159

3.150

0.172
0.105

0.447

3.447

0.44 7

3.44 7
0.447

0.447

3.447

3.447

0.447

0.447
0.447

0.447

Fig. 13.1. -continued-
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Considerable printed output is generated by FERDO (and even more by

FERD) so that the output from the sample problems will not be listed but

rather merely described. The first output gives an edit of input

parameters and a statement of required computer memory. A DISSPLA-

generated summary of the window function plot is given next, followed by

an edit of the input pulse-height spectrum. This edit includes five

columns representing the pulse-height bin numbers, the pulse-height

values associated with the lower edge of the bins (PLAB vector), the

binned count-rate (B vector), the corresponding errors (S vector), and

the errors calculated as percent of B. This edit is completed with a

single statement which identifies the values of SCOFF, FUDGE, annd RELFU

as determined in subroutine BSREAD. If IBIN=1, BSREAD uses the value of

SCOFF (presently set equal to 0.001) to calculate a minimum permissible

error for any B. which is given by: S. = SCOFF * B.j. When NGAIN=2,
BSREAD must account for the inevitable disagreement which occurs in the

overlap region of the two gain runs. It does so by first calculating

the ratio of the total binned counts in the overlap region of the high

gain run relative to the low gain run (FUDGE parameter), and then

adjusts one gain or the other by an appropriate factor (RELFU) so as to

force agreement in the overlap region. The determination of which gain

run gets scaled is based on their relative errors in the overlap region.

Following the tabular edit of B and S is a printer plot of B and S

generated by APLOT (pseudo-log plot with 2 negative cycles and 3 posi

tive cycles).

Next a tabular edit of the dual vector (X vector) and the corre

sponding uppper-bounds (Q vector) is given. The X vector is a sort of

pseudo solution in that it gives the variation of the PLO and PUP

solution bounds as the window functions are varied. Typically the X

vector is highly oscillatory about zero. Following the edit of the X

and Q vectors, the calculated B-ADJ vector is given which represents the

product, A * x_, i.e., it is the computed pulse-height spectrum which is

consistent with the unfolded energy spectrum. Included with the edit of

B-ADJ is a tabular listing of the original B and S vectors and the

computed percent difference between B and B-ADJ, weighted by S.
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Three indicators are printed next which are intended to provide

guidance in judging the "quality" of the unfolded solution. These

indicators have been passed down through the generations of FERDO/FERD

precursors, as has the descriptive text given below:

Indicator No. 1. A measure of the conditioning of the A matrix
(response matrix). It measures the difficulty in inverting the
matrix relative to the number of bits of accuracy of the floating
point arithmetic of the particular computer being used. Roughly
speaking, 6-decimal accuracy in the arithmetic (21 bits) is able to
deal with problems in which the NR direction spans about 50 "reso
lution widths." Larger NR requires correspondingly higher
accuracy. Normally, if Indicator No. 1 is greater than about 1.0,
it suggests that the matrix A has been set up inappropriately, with
the wrong interval between points, or that the problem posed is too
ambitious. In most well-posed problems, Indicator No. 1 will be
much less than 1.0.

Indicator No. 2. A measure of the consistency of the input data
with the constraint of non-negativity. If the input data should
contain some uncorrected blunder such as channel overflows or
"dropped" channels, a discontinuity in the spectrum may exist which
is physically impossible under the assumption of non-negativity.
Such an input will result in an excessively high value of Indicator
No. 2. Normally, the value of Indicator No. 2 should be less than
1.0.

Indicator No. 3. A measure of the consistency of the computed B-
ADJ vector and the input B vector. The value of Indicator No. 3 is
distributed statistically somewhat like a Chi-square distribution,
and is similar to the "weighted sum of squared residuals" in
ordinary least squares regression. If it is greater than about
3.0, it indicates that the input data and the assigned errors (B
and S) are inconsistent with the response matrix, A. In practical
cases, a large value usually suggests either a spurious data point
or an unrealistically small error estimate. A common cause is that
sometimes a data value will be input as zero, which can be toler
ated by FERDO if an appropriately large error is assigned. Exper
ience has shown that for the upper end of the input spectrum, where
the count data often converge to zero, the error assigned to the
zero-count channels (or bins) should be set equal to the error
assigned to the last non-zero channel. This seems to give a stable
solution at the upper energy end of the spectrum without also
excessively wide solution bounds.

The final output relates directly to the unfolded solution bounds.

First, a table is printed which includes: (1) the energies associated

with the unfolded spectrum (PLAB), (2) the lower and upper bounds (PLO
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and PUP) of the unfolded spectrum, (3) the computed average of PLO and

PUP (labeled PAVE), (4) a pseudo standard deviation for PAVE given in

per cent, (5) a running integral of PAVE (labeled RUNSUM), and (6) two

columns labeled ERR! and ERR2. ERR1 represents the statistical portion

of the final error which can be attributed to the statistical errors in

the original pulse-height data. ERR2 on the other hand represents the

"bias" portion of the final error, and results from the fact that the

implicit window functions generated within FERDO to minimize total

errors do not exactly match the original window functions input by the

user. These two error terms are related to TAW, since if TAW=0, then

ERR1 is the only source of error (an ordinary least squares problem),

and if TAW goes to infinity, then ERR2 will become the only source of

error.

The tabular edit of PLO and PUP is followed by two line printer

plots of PLO and PUP (a linear plot and a pseudo-log plot) if IPPLT

equals 1 or 3. At the same time, external plots are made of: selected

response functions (if NWPLT is greater than zero), B and S (if IBPLT

equals 2 or 3), and PLO and PUP(if IPPLT equals 2 or 3). DISSPLA-

generated summaries are printed for each plot. The external plots

generated from sample problem 1 are shown in Fig. 13.2. The plots were

produced on a GOULD electrostatic plotter using the JCL procedure

listed at the end of Fig. 13.1

13.2 Sample Problem 2

The second sample problem is also a FERDO case and is identical to

the first problem except that the PLAB, WINDOS, ELAB, and A arrays are

read from an external device rather than from cards. Also, no external

plots are selected, but a punched output of the PLO-PUP solution is

produced.

A listing of the JCL and input data is given in Fig. 13.3. The

same data set saved in sample problem 1 is used in this case to provide

the bulky window and response matrices, as well as the PLAB and ELAB
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in—ii.w.p m m imi—jw-m—i, iw wpui w 1.1

WINDOW FUNCTIONS

a SAMPLE 1: FERDO NEUTRON PROBLEM WITH FULL ARRAY INPUT

.0 200 22.0 24.0

BINNED PULSE-HEIGHT SPECTRUM

PREBINNED PULSE-HEIGHT DATA FOR SAMPLE 1

V

uife.
<

z •

o

V

0.0 10 2.0 3.0 4.0 5.0 tt.O 7.0 8.0 9.0 K3.0 110 12.0 13 0 14 0 1 0

PULSE-HEIGHT

UNFOLDED SPECTRUM CONFIDENCE BAND

PREBINNED PULSE-HEIGHT DATA FOR SAMPLE 1

V
\

V \
h. ^W^A
v= \
t. \a f

4.00.0 2.0 4,0 «.0 8.0 CO 12.0 14.0 ».0 fl.O 20.0 22.0 2

ENERGY

RESPONSE FUNCTIONS

SAMPLE 1: FERDO NEUTRON PROBLEM WITH FULL ARRAY INPUT

V

^fe LTJ-

>- \ L ^1 H
•i ^ L 1. L
<Tb l i_ "i —i

it i ^-i n ^^
b3 \ 1 ^-
t

h
LJ

IM 0 0 10 10 3 0 4.0 5 0 6 0 7 0 8 0 9.0 KID HO 12 0 DO 14 0 50

PULSE-HEIGHT

Fig. 13.2. Plot output from
sample problem 1.

TOTT li. 9. a—II t H(, III! JM-BT !(•*(, 1HA—nHmriWITr

UNFOLDED SPECTRUM CONFIDENCE BAND

\,p PREBINNED PULSE-HEIGHT OATA FOR SAMPLE '

0.0 2.0 4.0 e.o «.0 1B.0 20 0 22.0 24 0



//D1ISAHP2 JOB
//♦CLASS CPU33=
/♦ROUTE PRINT

/♦R3U1'E PUNCH
//FERDO EXEC PG

//GD.SrEPLIB DD

//G3.FT05F001 D
//33.FT05F001 D
//30.FT07F001 D
//33.COHPOUI DD
// 3PACE= (4000,
//30.FT02F001 D

// DCB=(PECFH=
//33.FT27F001 D

// 0SN=X.DTIGTC

SAMPLE 2: FERD

63

27

27

0
PREBINNED PULSE

F3R3AT ROW 03 (

102

(20106),«SA»E6522,55 DTI 6025'
04 0S,REGICN=38 0K,IO=3.0
LOCAL

REHCTE45

r1 =FERDO,REGION=3 80K
DSN=X.DTI46103. UNFOLD,DIS?=SHE

D DDNAHE=STSIN

D SYSOt1T = (A,,1001)
D SYSOUT=B

UNIT=SYSDA,DISP=(NEK,PASS),DSN=&ePLTOUT,
(50,50),RLSE)
D UNIT=SYSDA,DIS?=(NEH,DELET
VBS,LPECL=X,BLKSIZE=6447, BUP
D UNIT=3330-1,VOL=SEP=ZX8883
F1.N685555

0 NEtJTPO'I PROBLEM

E) ,SP.\CE= (TRK, (100, 10) ) ,
NO=1)
,DISP=SHR,DCB=BUFNO=1,

WITH

55 55

0 1.0

0 0

0 1

-HEIGHT DATA FOR SAWPL

6X,I4,I2,3E15.8)
1 0.10750000^+00 3.58200051E-07

2 0.12250000E+00 0.46992510E-37

3 0.13750000E+00 0.39395937E-07

4 0. 15250000E + 00 0.33146102E-07

5 0. 16750000E+00 0.28439675E-07

6 0.18250000E+00 0.24637228E-07
7 0.20500000E+00 0.HO 2217395-07

8 0.23500000E+00 0.32011980E-07

9 0.265000003+00 0.2582578 1E-37

10 0.29500000F+00 0.21539085E-07

11 0.32500000E+00 0.1909487CE-07

12 0.35500000E+00 0.15123394E-07

13 0.38500000F.+00 0.129354223-07

14 0.41500000E+00 0.112006328-07

15 0.45500000E+00 0.15734942E-07

IHNIMtlPl INPUT

0

0 0

0 0

0 1
E 1

0.0

1

0.1009545

0.9071484

0.8274272

0.7618689

0.7057101

0.6568405

0.8392559

0.7487214

0.6724976

6141545

5629136

5146223

4759423

0.4428792

0.5249241

OE-09

OE-10

8E-10

0E-10

OE-10

2E-10

7E-10

7E-10

1E-10

2E-10

IE-10

5E-10

2E-10

OE-10

9E-10

00^+01 0. 17339630E-08 0.17674899E-10

00E+01 0.17262967E-08 0.17386883E-10
00E+01 0.16002113E-08 0.16739893E-10

00E+01 0.1456295£E-03 0.15969408E-10

1005+01 0.12918350H-08 0.15040974E-10

00E +01 0.16950716E-03 0. 17228919E-10

(00E+01 0.6346933SE-09 3.10542630E-10

iOOE+01 0.11417395E-09 0.44714413E-1

''COE + 01 O.OOOOOOOCE+OO 3. 4471 441 3E-1
OOtj+01 O.0OOOOnO0E+OO 3.4471441371-1

005+01 O.00O00OO0E+00 3.44714413E-1

00=: +02 0.O0O33O0CE+00 0.44714413E-1

OOE+02 0.00030000E+00 0.44714413E-1
00E + 02 O.0O0O0OO0E+00 0.44714413E-1

00E+02 O.OOOOOOOCE+OO 0.44714413E-1

00E+02 O.OOOOOOOCE+OO 0.44714413E-1

OOE+02 O.OOOOOOOOE+OO 0.44714413E-1
OOE+02 O.OOOOOOOCE + OO 3.447 14413E-1

OOE+02 O.OOOOOOOCE+00 3.44714413E-1

50 0.523500

51 0.554500
52 0.585500

53 0.616500

54 0.647500

55 0.691000

56 0.747000

57 0.803000

58 0.859000

59 0.915000

60 0.971000

61 0. 102700

62 0.103300

53 0. 113900

64 0.119500

65 0. 125100

66 0.130700

57 0. 136300

68 0. 141903

//
ENDINPUT

Fig. 13.3. Input listing for sample problem 2.

0.0

1
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vectors. This should be the normal input procedure when the code is

being used in a "production" manner. Even though the arrays are input

from an external device, all the print and plot options allowed by

IWPRT, NWPLT, IAPRT, and NAPLT are still available. The pulse-height

spectrum listed in Fig. 13.3 is the same as used for sample problem 1,

and the printed output is the same as described in the previous section.

Figure 13.4 lists the punched output produced by this case. The format

of the punched cards can be easily changed by modifying subroutine

PPUNCH.

13.3 Sample Problem 3

The third and final sample problem is a FERD case. The pulse-

height spectrum, which is input as raw channel data, resulted from an

NE-213 measurement of the gamma-ray flux generated from neutron trans

mission through a fast reactor blanket and shield mockup. As with

sample problem 2, the PLAB, WINDOS, ELAR, and A arrays are read from an

external device.

An abbreviated listing of the input is given in Fig. 13.5. Since

binning of the input channel data is required (IBIN=1), NLOC is input

sufficiently large to accommodate the single gain data (actually, NLOC

has been input excessively large, since 1024 would have been suffi

cient). Five response functions were selected for external plotting, as

well as the binned pulse-height spectrum and the unfolded solution

bounds. IDIV was input as zero which causes the binned pulse-height

spectrum not to be divided by the bin width. This option requires

consistency with the response matrix being used, which for this case,

also does not include the division by bin width. The pulse-height data

input occurs in several data blocks as described in Sec. 12.

As with FERDO, FERD printed output starts with an edit of the input

parameters. This edit is followed by a summary of the binning table

which dictates how the individual channels of the input spectrum are to

be grouped into larger pulse-height bins. An edit of the foreground and

background normalizations and gains is also given. Next an edit of the
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PREBINNED PULSE-HEIGHT DATA FOP SAMPLE 1
51;

3.23471E 02--0.14962E-10 0. 30660F--10 0.2256 0E 02--0.44489E-10 0., 11950E--10
0.21580E 02--0.90138E-10--0.13138E--10 0.20556E 02--0.76570E-10--0..61435E--11

0. 19498E 02-0. 29531E-10 0.18432E--10 C.18521E 02--0.34345E-10 0.. 13805E--10
0.17533E 02 0.12699E-09 0.19391E--09 C.1653JE 02 0.11340E-08 0.. 11998E--08
0. 15629E 02 0.34727E-38 0.35726F--08 C.14792E 02 0.5994 0E-08 0.•61281E- -08
0.14021E 02 0.62193E-08 0.63887E--08 0.13201E 02 0. 40975E-08 0..42827E--08
3. 12393E 02 0.23117E-08 0.25210E--08 C.11751E 02 0.16321E-08 0., 18172E--08

3.11247E 02 0.12709E-08 0.14703E--08 0. 13777E 02 0.10729E-08 0.12674E--C8
0. 10259E 02 0. 11078E-08 0.13044E--08 C.97411E 01 0.13150E-08 0..15141E--08
0.92613E 01 0.13097E-08 0.14936E--03 0.87578E 01 0.11769E-08 0..13929E--C8

0.82364E 01 0.13589E-08 0. 17312F--08 C.77365E 01 0.19279E-08 0..22823E--08
0.72352E 01 0.23421E-08 0.26585F--08 0.68390E 01 0.23561E-08 0..26304E--C8

0.65557E 01 0.23830E-08 0.27211E--08 C.62542E 01 0.24247F-08 0.•28405E--08
0.59380E 01 0.24904E-08 0.29203E--08 0.56453E 01 0.27967E-08 0..3T668E--ce
0.53459E 01 0.33630E-03 0.36 141F--08 C.50422E 01 0.39660E-08 0. 42138E--08

0.47521E 01 0.45941E-08 0.48571E--08 C.44540E 01 0.51476E-08 0..53965E-•08

0.41528E 01 0.53530E-08 0.56383E--CS C.39061E 01 0.55513E-08 0..58647E--08
0.37074E 01 0.59647E-08 0.63104E--08 C.35009E 01 0.66478E-08 0.•71046E--C8
0.32965E 01 0.79852E-08 0.83230E--08 C.30975E 01 0.10089E-07 0.,10632E--07
0.28984E 01 0.13136E-07 0.13658E--07 0.27026E 01 0.16428E-07 0.. 16809E-07

0.24988E 01 0.20374E-07 0.20786E--07 0.22961E 01 0.24 865E-07 0..25379E--07
0.21000E 01 0.28522E-07 0.29103E--07 0.19323B 01 0. 30968E-07 0.•31514E--07
0. 18125E 01 0.33578E-07 0.34282F--07 C.17095E 01 0.37477E-07 0..38431E--07
0.16100E 01 0. 42720E-07 0.43524E--07 0.15107E 01 0.48217E-07 0..49228E--07

0. 14121E 01 0.53693E-07 0.55281F--07 C.13096E 01 0.60887E-07 0.•62015E--07

0.12047E 01 0.70067E-07 0.70891E--07 0.11069E 01 0.8C199E-07 0..81194E--07

0.10066E 01 0.90676E-07 0.91506E--07 C.90694B 00 0.97262E-07 0..98722E--07

0.81135E 00 0.91726E-07 0.93550E--07

Fig. 13.4. Listing of punched card output generated by
sample problem 2.
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55 DTI 6025*

0=1. 5

FOLD,DI3P=3HR

//DIISAMP3 JOB (20106),'SAVE6522,
//♦3LASS CPU3 3=02 0S,REGTON=3 80K,I
/♦R3UTE PRINT LOCAL

/♦R3UIE PUNCH RSMOTE46
//FERD EXEC PGM=FERD,REGION=380K
//33.STEPLIB DD DSN=X.DTI46 1 03.JN
//33.FT05F001 DD DDHA1E=SYSIN
//3O.FI06F001 DD SY50UT= (A,,1001)
//G3.FT07F001 DD SYSOUT=B
//33.;OHPOUr DD UNIT=SYSDA,DISP=(
// 5PACE=(4000, (50,50),KLSE)
//33.FT02F001 DD UNIT=SYSDA,DISP=
// DC3= (aECFH=VB5,I,HECL=X,BLKSIZ
//33.FT27F001 DD TJNIT=3330-1 , VOL =
// DSN=X.DTICAT01.G878883

: FEED GAMMA-RAY PROBLEM

37 88 88

27 0 1.0

27 0 0

8 26 46

1 0 1

: S1+U02+15PG=15SS PUNS
.001.001.001.001.014.13 4.243

1024 10 *♦* RUNS

0343 0072 3 C073 0112
0253 0352 10 0353 0502

0953 1012 30 1013 1212

162000. 82414.5 12.4
DYNMAT 0 3 (1A4,I4,8F8.0)

FILE: 7792A.DAT DATE: 30-Sep-8O
10 0 0

9 0 0 0

17 29 122 233

25 907809 840701 779283
33 550324 525883 502449

41 415282 404512 392177

49 306746 296372 286200

57 241172 236277 229828

55 208010 206021 201536

73 183198 180830 177937

81 162219 160063 157204

89 145235 143372 141283

97 130633 129237 127738

105 117441 117331 115706

113 108459 106640 105059
121 98661 97427 95751

129 90331 89794 88532

137 82790 82002 80884

145 76028 75285 74297

153 70470 69919 69004

151 65070 64447 63488

169 59963 59447 59176

177 55752 55082 54449

185 51975 51488 51117

193 43348 48326 47315

231 45730 45321 45265

239 4286'' 42749 41702

217 39371 38635 38461

225 35817 35216 34993

233 32771 32769 31806

241 30039 29749 29260
249 28400 28016 27771

257 2620P 26132 25837

NEH, PASS) , DSN=EEPLTOUT,

(NEW,DELETE) ,SPACE=(TRK, (100, 10)),
1=1=6447, 3tlPN0=1)
SER=ZX8888,DISP=SHR,DCB=BUFNO=1,

ITH SINIMU1 INPUT

2030

0 0

5 3 0.0 0.0

59 79

3 3 3 0

792A,B RAW CHANNEL DATA
330.420.510.63 9.742.816.903.948.9881.001.00 FAF

7792A,7792B SM+U02+BG+SS *♦*

4 0113 0172 6 0173 0252 8
15 0503 0702 20 0703 0952 25

43

12.8 0.007769 0.007763 0.01

5AMPL3:

SAHPL3;

.031.

CHANNE

0

0

672

732 765
432420

379 961

277625

227275

198135

175369

155715

139473

126225

114645

104639

95203

87678

30321

73 792

68379

63275

58877

53 956

50370

47331

44353

41481

38300

34605

31906

29311

27165

25643

LS: 1024
0

0

2571

686941

465713

364796

269450

222501

194658

172 491

153365

137289

124798

113316

102829

93646

86204

79983

72877

67271

62757

58247

53779

50313

47218

44415

41101

36825

34917

31475

29491

27154

25481

0

0

32164

645309

451373

3+9521

262202
218399

192 0 82

169606

152266

135329

123410

111676

102091

92752

85731

78586

72633

56942

61856

57387

53 86 3

49852

47118

43973

40622

36411

34104

30938

29326

25813

25246

0

2

1068887

613066
437431

334525

254673

216636

188379

167543

149705

134058

121769

110353

100613

92068

84480

77694

71931
66216

61482

56515

526K.

49853

46316

43441

402C3

36742

33760

30608

28541

26769

25 102

Fig. 13.5. Input listing for sample problem 3.

0

1

989419

578144

425956

320077

247685

211388

184679

164521

147518

132785

119703

109510

99333

90766

83501

77403

70535

65567

60097

56571

52227

48760

45573

43286

40115

36562

32999

30055

28771

26369

24674



106

953 22 33 18 25 26 30 22 27
961 23 26 17 21 19 25 12 15

959 15 13 19 13 20 14 16 14
977 15 20 15 13 21 12 13 11

985 15 15 13 14 15 11 13 10

993 15 12 11 7 12 7 10 4

1001 5 14 8 5 7 6 11 8

1009 7 3 5 13 11 4 4 11

1017 3 3 3 4 4 9 5 5

DYNMA1 0 8 (1A4,I4,8F8.0)
FILE: 7792B.DAT DATE: 30--Sep-80 CHANNELS: 1024

1 0 0 0 0 0 0 0 0

9 0 0 0 3 0 0 0 0
17 0 0 3 7 12 1864 61 114 57876

25 54670 51672 43578 46732 44525 42476 40812 39232
33 37687 36564 35024 34 436 33233 32625 32202 31077
41 30763 29953 29429 28465 27525 26928 25526 24625
49 2 343 9 23104 22178 21575 21100 20253 19737 19454
57 18778 18273 17887 17647 17291 16910 17005 16534

65 16351 16066 15601 15 836 15176 15080 15136 14636

73 14332 14132 14262 13952 13673 13386 13252 13128

81 12858 12842 12637 12373 12273 12040 11995 11724
39 11893 11551 11389 11C76 11021 10960 10725 10576

97 10377 10503 10206 10C54 9958 10005 9665 9733

105 9614 9340 9348 9167 9212 8904 3846 8854
113 854 8 8683 8235 8291 8329 8197 7998 7877

121 7755 7797 7426 7572 7358 7351 7295 7212

129 7245 6 92 5 7061 6929 6980 6616 6475 6389

137 6518 6183 6183 6 198 6269 6084 6055 5941

145 5937 5570 5815 5567 5541 5491 5538 5395

153 5327 5 33 3 5076 5307 5035 4901 4929 4820
161 483 8 4744 4702 4 756 4653 4661 4549 4430
159 4316 4392 4218 4291 4163 4215 4194 4195

177 4127 3993 4052 3 994 3889 3783 3791 3741

9 05 3 5 2 7 4 5 6 4

913 46203323
921 4 3 4 3 1 1 4 1

929 12 2 0 113 1

937 6 2 3 3 2 5 0 1
945 2 2 2 3 0 13 1

953 0 2 2 3 0 0 1 2

961 0 2 2 0 0 1 1 0

959 3 4 0 1 0 1 0 1

977 14 0 112 10

985 2 2 0 9 2 1 10

993 1 3 0 1 C 2 2 1
1001 0 0 3 9 3 0 10

1009 0 0 1 110 0 0

1017 0 0 0 0 1 1 C 0

//3LD EXEC GLDPLT,KEGIOrI=110K
//:0flPIN DD DSN=ESPLTOU7,DISP=(OLD,DELETE)
//FT05F001 DD ♦

DRAW=1-END$

//
ENDINPUr

Fig. 13.5. -continued-
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actual input foreground data is given followed by an edit of the

"adjusted" foreground data, i.e., the foreground data which has been

shifted for zero intercept and which has been re-channeled into the

"nominal" gain structure. The same two edits are repeated for the

background data, followed by the summary listing of the final binned

pulse-height spectrum. This tabular listing gives the bin number, the

normalized counts per bin, the corresponding errors is the binned

counts, the range of channels used to construct the bin, the pulse-

height values associated with the lower and upper boundaries of the bin,

and the Forte Acceptance Factor (FAF) for each bin. The listing is

completed with an edit of SCOFF, FUDGE, and REFLU, as described for

sample problem 1. If IBPLT equals 1 or 3, an APLOT-type printer plot of

the binned spectrum is given next.

For this sample problem, N0PT5 was input as 3 which results in a

PPL0T3-type plot of every 20th window function. Each plot includes the

upper and lower synthetic windows as well as the input window function.

One should be prepared for considerable printed output if N0PT5=4.

A tabular edit similar to the B-ADJ edit in FERDO is given next.

The columns of the table include: (1) the bin number and lower pulse-

height value of the bin, (2) the original pulse-height spectrum and

errors (B and S vectors), (3) the computed lower and upper bounds of B

(BLO and BUP) which are consistent with the unfolded solution and the

response matrix, (4) the difference between B and the average of BLO and

BUP, and (5) the per cent difference, weignted by S. A PPL0T3-type plot

of B-ADJ is given next.

The final edit is quite similar to the corresponding output from

FERDO, and gives the PLO-PUP solution bounds with the relevant energy
labels and a computed average, PAVE. A percent error in PAVE is also

given along with the actual error in PLO and PUP. The last two columns

of the edit are labelled "E PCT" and "Q PCT" which are analogous to the

"ERR!" and ERR2" columns in the FERDO edit. This edit is followed by
two line printer plots of PLO and PUP, and the DISSPLA-generated sum
maries of the external plots. The actual plots produced by this sample
problem are shown in Fig. 13.6.
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RESPONSE FUNCTIONS

SAMPLJ: FERD GAMMA-RAY PROBLEM WITH MINIMUM INPUT

/ _
fe

^

V
>•

•i

t:

V

0.0 10 2.0 3 0 4 0 1.0 SO 3.0 8 0 9.0 O.O 11.0 12.0

PULSE-HEIGHT

TIT i CTII.Ii—•& I Mi, i«i jM.»i4M!. liiti 1t;5*l* <H i

UNFOLDED SPECTRUM CONFIDENCE BAND

SAMPLJ SM+U02+I5BC=I5SS RUNS 7792A.B RAW CHANNEL DATA

BINNED PULSE-HEIGHT SPECTRUM

SAMPLJ: SM4-U02 + 15BG=15SS RUNS 7792A.8 RAW CHANNEL DATA

5 : h

PULSE-hEIGHT

' bit: 'tiTi ' jM-HiiMT—fTiH—Hi*.* •» i.i

UNFOLDED SPECTRUM CONFIDENCE BAND

a SAMPLJ SM+U02+15BG=15SS RUNS 7792A.B RAW CHANNEL DATA

Fig. 13.6. Plot output from sample problem 3.
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