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ABSTRACT
The coils for the Advanced Toroidal Facility (ATF-1) torsatron may
be easily aligned before the machine is placed under vacuum, This is
done by creating nulls in the magnetic field by energizing the coils in
various configurations. All of the nulls in 15} occur on the z-axis,

When the nulls coincide, the coils are properly aligned.
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Proper alignment of the inner and outer vertical field (VF) coil
sets for the Advanced Toroidal Facility (ATF-1) is crucial in reducing
magnetic field errors. Once they are built, the helical field (HF)
coil sets will be immutable. Thus, we must find the axis of the HF
coil set (the z-axis) and the up-down (z = 0) symmetry plane. Then the
VF coils must be aligned so that they‘ are concentric with and
perpendicular to the z-axis.

We propose a procedure for doing this that can be easily performed
as soon as the coils are assembled, even before the machine is under
vacuum., In Fig. 1, the ATF coil configuration is shown, together with
the coordinate system used in this memorandum,.

First, we must determine the location of the z-axis with respect
to the HF coil set. If the HF coils are connected in a stellarator
configuration (opposing currents in the two coils), a line null in
:gl = B is created as shown in Fig. 2. To measure this easily, the
coils should be energized with alternating current to eliminate the
effect of the earth's magnetic field. This line null determines the

z-axis, which can then be marked with a string or a laser bean.
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Fig. 1. The ATF-1 coil configuration and the coordinate system

used in this report.

The most difficult thing to do is to measure the location of the
z = 0 plane. We will do this in several ways. If the HF coils are
energized in the torsatron configuration, B is a maximum at z = 0 along
the z-axis. However, this is a saddle point and the maximum is quite
broad. A further check on this measurement will be introduced later.

Next, eacn VF coil set is aligned. By running oppositely directed
(and equal) currents in the two VF coils, a sharp point null in B 1is

introduced at the origin (Fig. 3). The coils should be aligned so that
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Fig. 2. Line null in {B} = B, created by connecting the HF coils

in a stellarator configuration (opposing currents in the two coils).

this corresponds to the origin determined from the HF coil
measurements, If the current in one coil is increased by a small
amount, this null runs up along the z-axis, if the coils are concentric
and not tilted. For example, in Fig. 4, the current in the lower coil
was increased so that it is 1.4 times the current in the upper coil.
In this case, the null appears about 3 m up the z-axis. This must, of

course, coincide with the z-axis of the HF coil set,
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Fig. 3. Point null in B, created by running oppositely directed,

equal currents in the two VF coils,

Finally, we recheck the symmetry of the VF coils with respect to
the 2z = 0 plane of the HF coils. For example, if we run the helix in
its torsatron configuration and put —-1.45 times the HF current into the
inner VF coils, we create two sharp minimia in B at about z = #2.1 m.

When the z o 0 planes of the HF and VF coils coinecide, the strengths of
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CURRENT RATIO = -1.4
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Fig. 4. Displacement of point minimum in B, created by running
oppositely directed, unequal currents in the two VF coils. Here, the

current in the lower coil is 1.4 times that in the upper coil.

these two wminima will be equal and the z = 0 plane will lie halfway
between them. This configuration is shown in Fig. 5.

This procedure should yield the best possible location for the
various ATF-1 coils if they were all built perfectly. However, there

will be imperfections in them., 1In this event, the nulls in B will
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INNER VF CURRENT = -1.45 x HF CURRENT
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Fig. 5. Torsatron configuration. The current in the inner VF

coil is =1,45 times that in the HF coils,

become minima. Nonetheless, this procedure should still yield the
optimum coil configuration because it is based upon aligning the axes
of all the dipole moments. Coil imperfections will show up as higher
moments and may have to be eliminated by wusing additional error

correction coils.
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