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PREFACE

The -US-Japan theory workshop on 3-D MHD studies was held at
Oak Ridge, Tennessee on March 19-23, 1984, It was attended by 25
participants.

The main purpose of the workshop was to determine what important
problems are ahead of us in 3-D MHD studies. In the meeting physics
problems were addressed, as well as computational ones for different
devices. The first day of the workshop was devoted to discussion
of MHD equilibrium and stability issues related to stellarators.

The MHD properties of RFP and compact torii were considered during
the second day. Finally mirrors, EBT, and tokamaks were discussed
on the last day of the workshop. The discussions were held in a
very informal fashion, which allowed a frank and open exchange of
views between the participants.

These proceedings include the manuscripts that were presented
at the workshop. They cover most of the oral presentations and are
organized in the way they were delivered. An attendance list, and
the agenda are also included in the proceedings.

The Japanese delegation was led by Professor Tetsuya Sato of
the Institute for Fusion Theory at Hiroshima. His cooperation in the
organization of the workshop is gratefully acknowledged.

The workshop was sponsored by the Fusion Energy Division, Oak
Ridge National Laboratory and could not have been successful without
the efforts of many dedicated individuals - Session chairman, authors,
participants, and last but not least, the workshop secretaries.

I would like to acknowledge special appreciation to: Janice Cox,
who handled the problems of organization prior to the workshop in
an efficient and professional manner; June Jernigan and Gladys Warren,
who acted as workshop secretaries during the workshop, taking care of
all the details and problems which normally are associated with such
meetings in an excellent way. I am particularly grateful to June
Jernigan and Gladys Warren for assembling the contributions of the
proceedings, and handling much of the workshop paperwork.

Benjamin A. Carreras
Oak Ridge, Tennessee
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CALCULATION OF ISLAND WIDTHS IN THREE~-DIMENSIONAL EQUILIBRIA

A. H. Reiman and A. H. Boozer
Plasma Physics Laboratory, Princeton University
P.0O. Box 451
Princeton, New Jersey 08544

In three-dimensional MHD equilibria, pressure driven currents can
resonate with rational surfaces in the plasma, producing magnetic islands and
breaking up flux surfaces. This effect is of great practical importance for
stellarators, where it gives an equilibrium g limit, and also limits the

plasma aperture below that g limit. We have explored the physics. of
equilibrium island 'formation, and have obtained some estimates for island
widths. ' We have applied our theory to the Princeton heliac reference
design.

Stellarator vacuum fields are constructed to have relatively good flux
sufaces. The islands that exist are small relative to the minor radius. With
finite B, the flux surfaces are shifted and distorted. It has been expected
that the flux surfaces break up ‘at some critical g. The convention has been
to take the equilibrium B limit to be that value of g at which the magnetic
axis shift equals half the minor radius. There have previously been no actual
calculations of this 8 limit. In the following, we first describe our general
analysis of island formation in three-dimensional equilibria, summarizing the
general conclusions, and then detailing some of the mathematics by which we
arrive at the conclusions. We finally apply the analysis to the particular
example of the heliac device studied at Princeton.

For purposes of orientation, we contrast our picture of equilibrium
island formation with the familiar picture of island formation in tokamaks.
In tokamaks, the appearance of islands is usually due to symmetry breaking
tearing instabilities, although it can also be caused by nonaxisymmetruc field
errors. For nearly circular flux surfaces, the island width is proportional
to the square root of the resonant fourier component of the radial magnetic
field, Bypn: This component is resonant in the sense that n = ym, where y =
1/q is the rotational transform.

For the three-dimensional equilibria we are interested in, the geometry
is considerably more complicated. The island width is now proportional to the
square root of the resonant component of Be W, as determined in an
appropriate coordinate system (¢,8,4)- The island arises through the
equilibrium equation, and is intrinsic to the equilibrium itself.

For an equilibrium with small islands, it is natural to use nearby flux
coordinates, obtained by interpolating across the islands. The nearby ¢



coordinate is to coincide with the flux surfaces, except in the immediate
vicinity of an island. The nearby flux coordinates define a magnetic field
with good surfaces. The difference between this field and the exact field is
small, relative to the magnitude of the exact field. This small difference is
important, of course, because it contains all the information about the island
structure. The nearby flux surfaces are not uniqpely determined by the exact
field, but this nonuniqueness is unimportant as lbng as the island widths are
small.

The resonant component of the field is generated by a resonant component
in the current. The resonant current is driven by the pressure, through the
equilibrium equation

VP=:1XE v ' (1)

due to a resonant term in the Jacobian, J. Here J is the Jacobian of the
transformation from Cartesian coordinates to (¢.9,¢). It describes the
geometry of the flux surfaces. The resonant term in the Jacobian, Jnms
corresponds to a resonant rippling of the flux surfaces. As B increases, the
resonant current increases due to the direct dependence on g which comes from

the Vp term in Eq. (1), and also due to the dependence of J,, on 8.

The spectrum of the vacuum Jacobian typically has peaks at a few low
values of m, n, and decays exponentially with increasing m, n. There is a
peak at m = 1, n = 0, due to the toroidal curvature. For. a helical axis
stellarator there is a peak at m = 1 and n equal to the number of periods, due
to the helical curvature. In addition, there are nonresonant terms with m > 2
which determine the shape of the flux surfaces. The resonant terms, with n =
wm, lie in the exponential tail of the spectrum.

Finite B gives a shift and distortion of the flux surfaces. The
corresponding nonlinear coupling of the fourier components of the Jacobian
gives a broadening of the fourier spectrum. The fourier amplitudes in the
tail of the spectrum increase. In particular, the resonant component also
increases. V

The magnetic islands are intrinsic to the MHD equilibrium solution. When
B is sufficiently large that the islands overlap, the flux surfaces are
destroyed, and there is no equilibrium solution.

Now we present some of the mathematics by which we arrived at these
conclusions. We rewrite Eg. (1) as the two egquations

i, = Bx (2)

-

c ..



and
B . v(jn/B) ==V - _ (3)

To determine the integration constant for Eq. (3) we take the equilibrium to
have zero net current inside each flux surface. This is appropriate for
stellarator fields.

To solve the equations, we use an iterative method. To lowest order, we
take B equal to the vacuum field, with p constant on the wvacuum flux
surfaces. Equations (2) and (3) then give the lowest order plasma current.
The lowest order correction to the field is determined by Ampere's law. To
iterate, the corrected field is substituted back into Egs. (2) and (3). We
must go to second order in this iteration procedure to see all the physics we
have previously described. v

All results are expressed in terms of the fourier decomposition of the
Jacobian,

J = J°(1 +nXm' 8, COS(RG = mBY) ) : (4)

where the prime indicates that the n = 0, m = 0 term is omitted from the
sum. In particular the solution for j is,

cos(ng - m@) Vgx(mve - nv4p) | . (59

)
= dp '
=49, gy L76 x 7% f Zm n=gm

At those rational surfaces where n = ym and anm # 0, islands will form, so
that dp/d¢ = 0 there.

The self-consistent set of equations is completed by Ampere's law,
VxB=j . (6)

~

One particular solution of Eg. (6) is

¢ )
=(123g % dp ¢, DR . -
H (J¢ I 3 dp)ve + LJO I y oo Sin(né me) v -
This has ¥V e # 0. The general solution to Eg. (6) can be written
B=H+ VU ’ ’ (8)

with

vF

=V . H . (9)



We solve Eg. (9) by an expansion about the magnetic axis. To simplify
further, we take the ellipticity of the flux surfaces to be small. We work in
a helical coordinate system, first introduced by Mercier,2 for which one of
the coordinate axes coincides with the magnetic axis. Expressing the flux
coordinates in terms of Mercier®s coordinates, we get an inhomogeneous
Bessel's equation for F. To make life easy, we take n/m small compared to the
aspect ratio, so that the Bessel functions can be expanded.

To calculate the field explicitly, we need to specify a pressure
profilé. Taking a quadratic profile, we find the resonant correction to the
fielgd,

B1pnm L 2n+1 1 a
B =8 nmlln( Py + ) g*’p—] . (10)

o 4ma j=1

where L is the length of the magnetic axis, a is the minor radius, and Po
corresponds to the rational surface.

The resonant field given by Eg. (10) is proportional to the resonant
fourier amplitude of the wvacuum Jacobian. We have not yet obtained the
broadening of the fourier spectrum. This appears in the next order:

In the next order, we need the nearby flux coordinates for the corrected
field. The new flux coordinates are determined by

(8, +B,) « vp=0 (11)
and
B,+2) v (s, 8) 7 i

where B is the wvacuum field and B, is the nonresonant part of the lowest
order correctlon. We fourier decompSse the difference between the old and new
coordinates, and substitute into Egs. (11) and (12), to obtain explicit
expressions for the new coordinates in terms of the old.

The Jacobian is now reexpressed in terms of the new coordinates. To see
what this looks like, we consider the case where only 63* and 5§1 are nonzero
for the vacuum Jacobian, where N is the number of periods. The fourier
amplitudes of the Jacobian are then '

1
Som =3

1 v ~ v ~ ~
* 32w 809 (B o penym-1(%01) * &17-n/me1 (Bet Pomen/n (80101 -

v ~ ~
(24m) 16547 an| e mn/n-1(91) * 81%n/m-1 81 e/ (Bg ) 1



where the J's here are Bessel functions. This is probably not accurate for n
or m large. Although the vacuum Jacobian has no resonant terms, -the finite g
Jacobian resonates with every rational surface.

Now we apply our analysis to the Heliac reference design. Here we are
most concerned with the neighborhood of the magnetic axis, where y» = 1.5, or
w¥N = 0.5. We cannot use our analysis directly, because dy/'dp vanishes at the
axis. It is straightforward to modify all the formulas appropriately.

We obtain the Ggm's from a numerical fourier decomposition of the vacuum
field.3 To get a rough idea of the equilibrium g limit, we calculate the g at
which our formulas predict an island width equal to half the minor radius of
the plasma. For the direct resonance, due to the resonant fourier amplitude
of the vacuum Jacobian, we get 8 = 0.3%. This may be remedied by adjusting
the tilt of the coils. The nonlinear resonance gives g8 = 1.6%. This is not

as easily remedied, coming from a coupling of the helical and toroidal
curvature.

In the general design of stellarator vacuum fields, we might have
expected the requirement of good vacuum flux surfaces to suppress the resonant
field amplitudes. Our calculation for the heliac reference design shows that
the amplitudes of the direct resonances may nonetheless be unacceptably
large. We conclude that it is necessary to incorporate the constraints on the
resonant G;n directly in the design procedure. Our application also shows
that coupling of nonresonant components can give large islands, even for
values of B at which the axis shift is small relative to the minor radius. .

Our approximations have allowed us to obtain analytic estimates of island
widths, for the direct resonances and for low n, m nonlinear resonances. Our
simplifying approximations have also allowed us to explore and clarify the
basic physics of island formation and surface destruction in three-dimensional
equilibria. Clearly, the theory we have presented can be used do more

~accurate calculations, both analytically and using numerical methods. An

extension of the calculation to higher order in B8 would allow the
determination of island widths for higher m, n, and give a more complete
description of the equilibrium 8 limit.
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A 3D Algorithm for Calculating Drift Orbits
in Nonaxisymmetric Toroidal Devices

K. Hanatani and K. Uo

Plasma Physics Llaboratory, Kyoto University
Gokasho, Uji, Kyoto, JAPAN

ABSTRACT

A three-dimensional  (3D) interpolation technique for  computing
guiding-center drift orbits in nonaxisymmetric toroidal magnetic devices is
described. The new technique, named "two-level interpolation scheme", uses a

simple algorithm which splits given field quantities into symmetric (2D) and

_ asymmetric (3D) parts. The interpolation scheme allows a fast and accurate

drift orbits computation and also provides a direct means to examine the
effects of symmetry-breaking perturbation as a part of the numerical procedure.
The technique has been applied to study the toroidal drift of the particles in
a vacuum heliotron field. It was found that the asymmetric part of the drift
shows a vorfex structure and this vortex reduces the net vertical drift in the
peripheral region of the magnetic surface. A strong reduction in the net
vertical drift occurs even near the magnetic axis when the magnetic axis is
shifted inward by applying vertical field. The presence of the drift vortex is
attributed to the absence of toroidal field coils in the heliotron field
studied. An implication of the drift vortex on the diffusive and nondiffusive

particle losses from the heliotron plasma is also commented.

INTRODUCTION

Lack of ignorable coordinate in stellarator and heliotron1 implies that
one must resort to 3D numerical techniques to examine the drift orbits. It
also implies that the techniques must be fast and accurate to be useful in
applications. Unfortunately, methods easy to implement do_not simultaneously
meet these requirements: Simplified analytic models may be inaccurate in the
field modeling though they are time-saving. Conversely, integration of the
Biot-Savart law is time-consuming though it 1is accurate. More advanced
techniques, which are capable of achieving efficient drift orbit computation in

the stellarator fields without sacrificing the reality in the modeling, have



been developed by several authorszs3’4’5. This paper proposes another simple

technique which not only allows a fast and accurate drift orbit computation but
also clarifies the effects of the symmetry-breaking perturbation on the drift

orbits.

GUIDING CENTER EQUATION

A set of guiding-center drift equations which includes usual gradient and

curvature drifts is used to track the charged particle orbits.

= v 1
dc n B + VD (1a)
dv = _ _H > :
dt a B(x) (1b)

where
> V2 2. * +* :
VD=—(1+>\ ) G(x) (2a)
2 QO R0
> > Bx VB
G(x) = BO R'O — (2b)
B
- >
H(x) = % . VB (2¢)

Here, A (= v,/v) is the pitch of the particle, o (= qB /m) denotes the
cyclotron frequency, and u (= mv 4_/23) denotes the magnetic moment which is
assumed to be an adiabatic invariant. The velocities v,, v ;, and v = ( v..2 +
v _L? 1/2 are the parallel, perpendicular and the total velocities of the
guiding center. A nondimensional vector E(;) 1s a geometry—dependent (or
particle~independent) part of the drift velocity VD’ a scalar functlon H(x) is
the derivative of B in the direction of B/B. We regard the drift G(x) and the
derivative H(;) as the field quantities ( like the magnetic field B) filling
the whole space.

HE BN



MAGNETIC FIELD GEOMETRY

The magnetic field model used to validate the new interpolation scheme is
that of vacuum magnetic field produced by filamentary external helical
windings. Integration of the Biot-Savart law provides the magnetic field
quantities _f, 8 and H. In toroidal geometry, the most‘ convenient way to
specify the winding law is with quasi-toroidal coordinates ( r, 8 , ¢ ). The
heliotron winding ( RO; major radius, a; minor radius, L; pitch length) of
multiplicity ¢ is simply defined by € =Kk¢ , where K = 21TRO/L is the twist
number of the helical winding. The number of the field periods around the
torus is then given by k& . Besides the helical field (HF) windings, the
heliotron configuration requires vertical field (VF) coils and allows, in
general, ‘toroidal field (TF) coils. The VF coils compensate the average
vertical field produced by ;he HF coil. The VF coils also control the

horizontal position of the magnetic axis.

THE INTERPOLATION METHOD

we propose here a two-level interpolation technique to speed up the drift
orbit computations in the toroidal helical devices. Unlike conventional 3D

interpolations, this technique makes full use of symmetry to evaluate

asymmetric quantities. Basic idea 1s te decompose all relevant physical

quantities into symmetric and asymmetric parts, both of which are more
manageable than the original omes. Let P denote the helically symmetric part

of any quantity Q. We then express Q as a sum of the principal part P and a

residual part R:

any Principal Residual
Quantity part : part
Q = P + R (3)

(r’ 6,¢) (ry.e'K‘b) (I‘,e, ¢)

ch I 2D 3D
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The principal part P is the dominant, symmetric part while the residual part R
is the small asymmetric part. To evaluate the field quantity Q as the function
of position, we interpolate P and R separately rather than interpolating Q
itself. It must be emphasized that the right hand side of expression (3) is
not an épproximate expansion of the left hand side but a closed decomposition

of Q as it literally means.

To evaluate the symmetric part P, one can use either analytic or numgrical
representation for Q in the equivalent, straight helically symmetric system.
The analytical representation can be given by a series of modified Bessel
functions; the numerical solution can be obtained by integrating the
Biot-Savart law for infinitely long straight helical winding. In practice,
however, we have not found them necessary. To obtain the desired
representation for P, we simply extract the helically invariant components from
the field quantity Q given in the finite aspect-ratio toroidal configuration.
Here quantities that depend only on r and & (= 8 - K¢ ) are considered to be
helically invariant. This extraction can be made by averaging the quantity Q

"helically" over 2w /x ,

2w /i

P(r,z) = Q(r, T +xp , ¢ ) dd, (4)

2w

just as the calculation of zero order Fourier coefficient. Recently and
independently, an averaging similar to (4) was used6 to eliminate magnetic
islands and stochasticity in a nonaxisymmetric wvacuum 3D field. Once P is
obtained, R can be calculated by Eq.(3). Untill now, notations Q, P and R are
used only symbolicélly. In the following, Q, P and R actually represent the
three componenté of ;, the three components of the nondimensional drift E, and
the directional derivative H that are necessary to solve the drift equation
(1). From Eq.(3) one has

3o =30 4 3D
o =89 + gD, (5
i = 'O 4 gl
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where super-scripts (0) and (1) denote the symmetric and the asymmetric parts.
> >
In addition to B, G and H, the decomposition can be applied to other quantities

if necessary.

Above decomposition has a number of new advantages over standard methods.
First of all, 4it allows us to investigate how and to what extent the
symmetry-breaking perturbation affects the drift orbits. By directly examining
the distribution of the residual parts, we may have clearer insight into the
underlying orbit physics than by examining the integrated trajectory itself in
full nonaxisymmetric complexity. We can also calculate drift surfaces. in the
corresponding, straight, heiically symmetric system by artificially eliminating
all the asymmetric parts from the drift equations( i.e., R = 0) and from the
metric of the coordinates. This option permits us a close comparison between
the unperturbed (2D) and the perturbed (3D) drift orbits. By this comparison,

we can investigate the departure from the helical symmetry.

Secondly, the decomposition allows us to develop a simple and efficient
computational scheme. The essential point is to choose suitable, different,
interpolating formulas for P and R according to their relative importance and
to the number of their dimensions. Although the original quantity Q is 3D, the
principal part P reduces to 2D owing to the helical symmetry. Two-dimensional
interpolations are, of course, much easier to implement, faster to execute and
require less storage than 3D interpolations. We can, therefore, calculate the
principal part P easily and quickly either by wusing bicubic spline with
moderate mesh size or by using bilinear interpolation with finer mesh size. On
the other hand, the residual part R is still 3D. The magnitude of this part
is, however, typically by one order (a/Ro) smaller than that of the principal
part P. We, therefore, need not use the same-accuracy formula as that used for
the principal part, and a rough trilinear interpolation formula with coarse
grids may be accurate enough. A volume-weighting method in the toroidal
coordinates was used for this trilinear interpolation. Again, we can calculate
the residual part R easily and quickly. Thus, we can handle both of the
decomposed parts, P and R, in a more physically meaningful and numerically

economical way than directly handle the original quantity Q.
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The accuracy of the two-level interpolation scheme was tested by comparing

the interpolated result with that of the direct calculation (the Biot-Savart
> > > -

law). We interpolate not only B but also G(x) and H(x) in order to avoid the

D is,

->
therefore, of the same order of that of B. The convergence of the two-level

> > >
difference approximation in B x VB and B. V B. The accuracy of V

scheme is faster than that of "single-level" trilinear interpolation. A
possible weakness of the two-level scheme is that it may not work very
efficiently in completely asymmetric fields. If the level of asymmetry is too
strong, the magnitude of the residual part R becomes comparable to (or even
greatéf than) that of the principal part P. In this extreme limit, the
accuracy of the two-level scheme degrades to that of wusual trilinear
interpolation. Fortunately, however, many asymmetric magnetic confinement
devices of practical importance such as stellarators and bumpy tori do have
their neighboring symmetry and the levels of their asymmetry are usually weak

or at most moderate.

We have compared the computing speed of two-level interpolation scheme
with that of the direct calculation to estimate the figure of merit factor of
the interpolation scheme. We compared the CPU times of the direct and the
interpolation methods spent for one evaluation of the field quantities. As a

reference, we also measured the CPU time of the single-level trilinear

interpolation, which should give a minimum executing time of any interpolation

methods. The comparison was made on FACOM/M-200 computer. The two-level
scheme was faster than the direct method by more than two orders of magnitude,

and it was slower than the single-level interpolation only about 30Z.

APPLICATION
Let us apply the decomposition procedure to Heliotron E ( see Fig.l) and

. -
to examine the effect of toroidal perturbation on the drift V From Eq.(2a),

D°
> >
the normalized drift G(x) can be written as follows:

> > - - .‘;
cx) = ¢+ - D

U
tor

(6)

-

I Bl T BN =
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tor

(0) =(1)

->
where G and G are the principal (symmetric) and the residual (asymmetric)

>
parts of G(x). The characteristic velocity, U is the so-called "toroidal

tor’
drift" velocity. If the magnetic field is produced only by a toroidal solenoid
2(0) 1)

(TF coils), then G
-
vertical vector 2. Accordingly, the drift velocity VD reduces to a vertical

-
reduces to a zero vector and G reduces to a unit

drift U___ z.
tor
(1) N ,
The origin of the asymmetric drift, G » in heliotron is different from
that both of tokamaks and classical stellarators. In the latter two

=(1)

configurations, dominant contribution to G originates from the curvature and

gradient of the toroidal field component Bt’ which is produced by TF coils
. >

(toroidal solenoid). In heliotron, by contrast, G(l) originates from the

toroidal bending of the helical winding. Note that in heliotron both poloidal

Bp and toroidal Bt field components can be produced by a single set of helical

winding. The TF coils are dispemsable or (at most) of secondary importance in
>

the heliotron concept. For this reason, the perturbed drift, G(l), in the

heliotron need not be identical with those of tokamaks and classical

stellarators.

A unique capability of the two-level interpolation scheme 1is that it
allows us to visualize the "drift vector field" of the helically symmetric and

30 4 2

the toroidally perturbing drifts, and G

, part by part. Figure 2 shows
the arrow map of the helically symmetric drift of Heliotron E. An interesting
finding in the toroidal heliotron is a vortex structure in the perturbed drift,
E(l). In Fig. 3-(a),(b) and (c¢), the arrow map of the perturbed drift, E(l),
is similar to the toroidal drift , Utore’ near the minor axis. It 1is, however,
substantially modified in the outer region of the magnetic surface and
completely different in the separatrix region from Utori of simple toroidal
solenoid. 1In particular, the drift E(l) shows the vortex-like structure. The
center of this "drift vortex" is located at the peripheral region of the

magnetic surface. As a reference, arrow map of the toroidal solenoid is shown
in Fig.4.
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The numerical finding of the drift vortex prompts us to reconsider a

question: what is the "toroidal drift" in nonaxisymmetric devices. To answer

=(1)

this question, we have examined the distribution of the perturbed drift G
along the field line and along the drift orbit. Figure 5 shows the time

variation of the unperturbed and the perturbed drift along the trajectory of .a

-
passing particle in the heliotron. The helically symmetric part, G(o),
2(1)
G

asymmetric part and, » are clearly separated. we have averaged the

>
vertical and horizontal components of the symmetric G(o) and the asymmetric
-
G(l) parts along the field lines and along the drift orbits. The average was

carried out along the line of force over 10 toroidal revolution around the
- torus. It was found that the net vertical drift resulting from the toroidal

> A
G(l)' z, in the heliotron field is appreciably smaller than that

perturbation,

expected fromAthe geometric aspect ratio RO/a of the device. This reduction is
restricted in the peripheral region of the magnetic surface when the magnetic
axis i1s centered on the minor axis. Effects of the VF coil field on the

averaged vertical drift are also examined. When we shift the magnetic axis

inward by the VF coils, a strong reduction (factor of two) in the vertical:

drift was obtained even near the magnetic axis ( see Fig.6)." This type of -

configuration was previously studied and referred to a ‘'reduced Q"

configuration7.

.These results indicate that the aspect ratio is effectively enhanced for
the charged particles moving in the Heliotron E plasma. It must be emphasized
that this enhancement of the aspect ratio 1is achieved not by introducing
auxiliary coils ( and hence extra complexity) into the system but by simply
removing the TF coils from the system. When we increased the TF coil field in
the calculation, the perturbed vertical drift approached to that of toroidal
solenoid field as expected. We consider that the finding of the drift vortex
is a good example illustrating a possibility of the optimization of field
configuration. Since the reduction of the vertical drift are obtained even 'in
a simplest combination of the helical winding and VF coils, one can expect

further optimization of the drift by modifying the external coil system.
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SUMMARY
We have outlined here a simple interpolation algorithm which enables us to

develop an efficient 3D field line and drift orbit following code. This

algorithm splits given field quantities into the symmetric and the residual

parts and, therefore, is particularly powerful to evaluate asymmetric fields.
Using this code (ATLAS), we have investigated the effects of the toroidal
perturbation on drift orbits in the heliotron field, and found a vortex
structure in the perturbed drift velocity. Such a "drift vortex" is that can
not be expected from the usual. toroidal drift in torus geometries. The
presence of the drift vortex implies that the vertical drift of the particle in
the heliotron plasma is substantially reduced than that freduently assumed in
simplified analytical models for tokamaks and stellarators. This reduction in
the vertical drift is important because it may reduces both diffusive and
non-diffusive losses of the charged particles from the heliotron plasma.
,

So far, the two-level interpolation scheme has been applied only to the
calculation of magnetic surfaces and drift orbits in the vacuum heliotron
fields produced by filamentary helical windings. The ATLAS code can be a
useful tool in investigating.drift orbit related phenomena in nonaxisymmetric
devices such as the calculation of wvelocity space loss region, neoclassical
transport of thermal ions, slowing-down process of fast ions, and drift
optimization of field configuration. The philosophy and the technique proposed
here, however, may be equally applicable to wider classes of problems arising
in various types of asymmetric 3D fields. Any magnetic fields obtained by
other apptoaches than the Biot-Savart law that can provide reasonably accurate
B and grad-B on the 3D grid points can be used as the input of the present
decomposion procedure. For example, the scheme is in principle applicable to
finite beta 3D equilibria by using the output of 3D MHD equilibrium codes.
Incorporation with existing Monte-Carlo scattering algorithm and the inclusion

of the electric filed remain the subjects of future studies.
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_CAPTIONS

Figure

Figure
Figure
Figure

Figure

Figure

1. the magnetic surface of Heliotron E ( 2T a/L = 1.4; RO/a =
2.2/0.3). Field line tracing was carried out by the two-level
interpolation scheme.

2. arrow map of helically symmetric drift E(O). Note that the scale of
the arrow length is different from that in figure (3),(4) and (6).

3. arrow map of asymmetric drift E(l)
position (a),(b),(c).

4, drift arrow map of a reference tokamak (toroidal solenoid).

at three different toroidal

5. time evolution of vertical drift along the passing particle. Dots
represent the helically symmetric part; solid line represents the
asymmetric part.

(1)

6. arrow map of the asymmetric drift E in the case with increased (by

25%) vertical field. The magnetic surface is also shown.
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EQUILIBRIUM STUDIES OF HELICAL AXIS STELLARATORS*
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ABSTRACT
The equilibrium properties of helical axis stellarators are

studied with a 3-D equilibrium code and with an average method (2-D).
The helical axis ATF is shown to have a toroidally dominated
equilibrium shift and good equilibria up to at least 10% peak beta.
Low aspect ratio heliacs, with relatively large toroidal shifts, are
shown to have low equilibrium beta limits (~5%). Increasing the aspect
ratio and number of field periods proportionally is found to improve
the equilibrium beta limit. Alternatively, increasing the number of

field pericds at fixed aspect ratio which raises ¢ and lowers the

I toroidal shift improves the equilibrium beta limit.

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under Contract No. W-7405-eng-26 with the Union Carbide
Corporation. '
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1. Introduction

In this paper, the equilibrium properties of several types of
helical axis stellarators will be studied. Previous stability studies
of the heliac concept have shown the expectation of high B limits. In
particular, detailed stability studies in the infinite aspect ratio,
helically symmetric 1limit show favorable stability properties for
Pbean" shaped heliacs.! The equilibrium results given in this paper
will focus on the finite aspect ratio regime where there is an
interplay between toroidal and helical curvature effects. Studies by
Reiman and Boozer indicate that such interactions may lead to island
formation and flux surface destruction.?

The equilibrium properties of three types of helical axis device
will be studied:

1) The helical axis ATF,® which is formed by imbalancing the currents
in the helical windings of the ATF device.

2) Heliacs of the type studied at PPPL,* in which a set of toroidal
field coils spiral about an interlocking, toroidally directed ring
[Fig. 1(a)]. A large sequence of such heliacs, with varying
helical and toroidal curvatures will be studied. '

3) Helical axis stellarators formed by non-interlocking toroidal field
coils. In particular, a system in which the axis of the coils
defines a geodesic on a torus will be studied [Fig. 1(b)].

The above configurations have been studied with the 3-D
equilibrium code NEAR, and also using an average method, which is
applicable to helical axis systems. Details of these methods will be
given in the next section and results of the calculations will be
presented in Sec. 3.
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2. Numerica! and Semi-Analytic Methods

~

Both the average method and 3-D NEAR code are based on a set
vacuum flux coordinates (pv' Ov, ¢M)' described by Boozer. These
coordinates are defined by their relationships to the vacuum magnetic
field

> -+ - ) -+ : o
B, = Bppy va X V(ev - V¢V) = F .V, | (1)

and by the additional constraints that Bop3/2 is the vacuum toroidal
flux and that the constant F, should be such that ¢, varies by 2w in
traversing the torus once toroidally. The (p,, ©,, ¢,) coordinates and
associated metric elements are derived numerically from given coil
configurations, using a modified version of a code developed at ORNL.
The 3-D NEAR code uses the (p,, ©,, ¢,) coordinates as its
Eulerian frame of reference. The dependent variables are represented
as doubly periodic Fourier series in ev and ¢v. Thus, for example, the
contravariant component of the magnetic field is represented as -

BP(py.0,.9,.t) =  LBP(p,.t) sin(md, + ng,) . (2)
m,n

The equilibrium problem is solved, using this representation, by a
steepest  descent method in the manner described by Chodura and
->
Schliiter.® A fictitious force F is introduced

F:jxﬁ—gP‘ ] (3)

which in turn is related to a velocity V. by a conjugate gradient
iteration scheme.® The magnetic field and pressure are advanced subject
to the constraints of flux and mass conservation:
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-
-gE=VX(VXB) (4)
and

8P-_.~)- .-)
_B?—V VP.qPV V. (5)

The wall boundary condition is given by an infinitely conducting wall
at, the last closed flux surface.

The other approach which has been used in these studies is an
average methcd. The avérage method was first applied to the
stellarator equilibrium problem by Greene and Johnson. § Their averaging
was in real toroidal angle and relies on the dominance of the toroidal
magnetlc (Br) field over the rapidly varying helical component (B ) .
where IB |/BT ~ § < 1. The averaging method described in this paper
makes the same assumption but averages are performed in the flux

coordinate toroidal angle (¢v) at fixed p,, 6 Thus the average

- v ’
magnetic field is

-» 1 -5
B =5 jﬁ“e d, (8)

To leading order, the averaged equilibrium equations reduce to a
Grad-Shafranov type equation:

1 8 [ eopoy Bb  coopy B L_ G 2, @ B
oy B, (pv<9p>apv <G50, 0,08, \T B, T Ty BB,

BoF [1 & ,o 1 d )

Fy 1 & F
oL & 7
Bp Dy dt]) di ¢
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where

B _ 13 B &
o A .

here D, is the Jacobian and F = <By. The equivalence of Eq. (1) to
the Grad-Shafranov equation derived by Greene and Johnson may be
demonstrated.” Equation (7) is, however, equally app!icabie to planar
and helical axis configuratigps; provided the toroidal shift dominates.
A Poisson type equation for B¢ (the toroidally varying toroidal field)
has also been derived. Thus higher order corrections to the averaged
equilibrium may be computed. Numerical methods have been developed to
solve both this Poisson equation and the Grad-Shafranov equation
[Eq. (7)]. Comparisons between 3-D equilibria and average method
calculations will be given in the next section.

3. Results

(a) Helical Axis ATF

By imbalancing the currents in the helical field coils of the ATF
device, a helical axis plasma is formed. The low iota bar per field
period (~0.1) and relatively low aspect ratio, result in the
equilibrium shift being toroidally dominated. The average method
described in the previous section is thus applicable. Figure 2 shows a
comparison of the flux surfaces, for the helical axis ATF, computed
with 3-D NEAR code and with the average method at By = 2.6% (the vacuum
flux surfaces are also shown for reference ). To make this comparison
more qualitative, the equilibrium shifts (Ap) computed with NEAR (3-D)
and the average method are compared in Fig. 3. The average and 3-D
computations agree well. Good equilibria. have been found for the
helical axis ATF for central beta’s up to 10%. However, the importance
of resonant harmonics (whose importance is accentuated by the low
shear) has not been examined in detail.
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(b) Heliacs and Geodesic Helical Axis Stellarators.

A wide range of heliacs have been studied. Two fixed pitch scans
have been examined in detail [Pitch = (Number field periods)/(Aspect
ratio)]. The particular configurations studied in these pitch scans
are summarized Fig. 4. In general, it is found that low aspect ratio
heliacs have low equilibrium beta limits. Figure & shows a comparison
between the equilibrium flux surfaces computed with the
Chodura-Schliiter® code and the NEAR code, for the M = 4, R = 4 heliac
(M is the number of field periods). The distortions to the flux
surfaces, shown in Fig. 5, are caused by the beating of the dominant
toroidal shift with the helical harmonics generated by the coils. At
higher betas (~10%) these distortions grow without limit and destroy
the equilibrium. The equilibrium beta limits can be raised by reducing
the toroidal equilibrium shift. This may be achieved either by raising
the total Z or by raising the aspect ratio at fixed pitch. Figure 6
shows equilibrium flux surfaces at By = 5% for the M =8, R =8 and
M =8, R=4 heliacs. These correspond to raising the total z (M = 8,
R =4) and raising the aspect ratio (M =8, R =8), relative to the
M=4, R=4 case. The improvement in equilibrium quality is evident
in Fig. 8. The results of the M/R = 1 scan are summarized in Fig. 7,
where the toroidal shift (Ar) and helical shift () as function of 8
are plotted for the configurations studied. The helical shifts remain
practical ly invariant for all configurations in the pitch scan, while
the toroidal shifts decline as the inverse aspect ratio. This is
because in a fixed pitch scan the helical curvature remains constant as
the toroidal curvature varies. .

Finally, the potential of reducing the toroidal shift by winding
the toroida! coil axis as a geodesic on a torus, has been examined
[Fig. 1(b)]. Figure 8 shows equilibrium flux surfaces at By = 5% for
this configuration. The toroidal shift is of the same order as the
M =R =4 heliac (shown in Fig. 2); there appears to be little benefit
in winding the axis as a geodesic. Further studies are however
required to clarify this point.
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Conclusions

A wide range of helical axis stellarators have been studied with
the 3-D equilibrium code NEAR and with an average method applicable to
helical axis configurations. The helical axis variant of the ATF
device is found to have a toroidally dominated equilibrium shift.
Studies of the helical axis ATF with NEAR (3-D) and the average method
indicate good equilibria exist up to at least 10§ central beta.

Two sequences of fixed pitch heliacs have been examined to clarify
the effects of toroidal and helical curvature on the equilibrium. In
general, it is found that heliacs which have large toroidal shifts,
have low equilibrium beta limits. This is because the beating of
toroidal shift with the helical harmonics of the coils produces gross
distortions to the flux surfaces. This process is the same as that
described by Reiman and Boozer.3 Raising the total Z by increasing M at
fixed aspect ratio improves the equilibrium beta limit in heliacs.
Alternatively increasing the aspect ratio at fixed pitch also raises
the equilibrium beta limit. . )

Finally, the potential of reducing the toridal shift by winding.
the toroidal field coil axis as geodesic [Fig. 1(b)] has been examined.
Initial results indicate there is little reduction toroidal shift by
winding the coils in such a manner.
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Fig. 1(a). Coil set for M = R = 4 heljac.
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Fig. 1(b). Coil set for geodesic helical axis stellarator.
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llon-linear Calculations of m =1 Iﬁterchange Mode

in Heliotron E
M. Wakatani and H. Shirai

Plasma Physics Laboratory
Kyoto University
Gokasho, Uji

Kyoto, Japan

In the heliotron with large rotational transform, «(a) ~ 2,
the dominant stabilizing mechanism against MHD instabilities 1is
shear. The linear MHD stability of the heliotron configuration
. was studied against the low n pressure-driven modes both for the
cylindrical (1] and the toroidal configuration [2], where n is a
toroidal mode number. It is found that (i) the equilibrium
averaged beta limit exceeds 77 since both ¢ and the aspect ratio,
R/a, is large, and (ii) the stability beta limit depends on the
pressure profile and broad profiles give large stability mafgin.

Recently two types of discharge are observed in Heliotron E
which depend on the gas puffing condition during the‘;eutral bean
injection. In the weak gas puffing case, for B8(0) : 27, internal
disruption with precursor fluctuations appears in the soft x-ray

measurements as shown in Fig. 1 (S mode). On the other hand,

when the intense gas puffing is applied, the fluctuations of the
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soft x-ray become weak or disappear (Q mode).’ In the S mode,
density fluctﬁations and magnetic fluctuations are also observed.
At the time of the internal disruption energy flow to the edge
region was detected by the bolometric measurement.

The estimated mode number from the measured ﬁrecursor
oscillations is m = 1/ n = 1, where m denotes a poloidal mode
number. The main difference between the S mode and the Q mode is
the pressure profile. The S mode has a peaked profile, while the
Q mode has a broader one. The stability of the Q mode is
consistent with the linear stability analyses which predicts a |
higher beta limit for a broader pressure profile.

In order to investigate the physical mechanism of the S
mode, the reduced non-linear MHD equations describing the

stellarator plasma [3],

d. 2 -> - - -
(L) _EE.VL,u = (B¢, +V (45 + yp) x e,}- V<V4.2wJ>
+ ?9 x VP-e,,
2y 2= ¥ = (B &, F U+ uy) x &) Tus nv, %0
ot z
dp _ 2
3) — = Rege VP

dt

are solved in the straight plasma model,
where Boehzl
Y, = —— I."Chr) I, (hr)
h 2€2hr2 L 1
4 . G(hr)
q(a)R F'(hr) ,
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2 '
F(hr) =__-Il(hr) Il (hr),
hr
2 12 2
G(hr) = [Il'(hr)] + (1 + ) Il (hr).
h2r2

Here u denotes a stream function, Yy a flux function due to
plasma current, €h a magnitude of the helical magnetic field and
1 and h characterize the helical field structure. In the
pressure equation (3), the thermal diffusion Keff’ is included to
take into account the rapid energy transport due to the-
instability and to remove the singular profile at the saturation
of the unstable ideal MHD mode. In the numerical calculations,
Keff is given by an, where o is a constant and n denotes
resistivity. It is assumed that the mode coupling due to the
toroidal geometry may bé weak for the m = 1/ n = 1 mode resdnate
at £« = 1 surface. The resistivity in eq. (2) allows reconnection
of the magnetic field lines in the non-linear stage of the
ideally unstable mode.

Without n and Keff in eqs. (1) ~ (3), the linear stability
analyses against the ideal m = 1/ n = 1 interchange mode give
BC(O) % 2.57 for the pressure profile, P = Po(l - (r/a)z)z, and
below this wvalue the resistive m = 1/ n = 1 interchange is
destabilized by n. In the non-linear analyses of these modes we
assume single helicity. The time evolution of kinetic energy is
shown in Fig. 2. Figure 3 shows plasma pressure profiles at four
different times. T = 132 (normalized by the poloidal Alfven
transit time) corresponds to the growing stage of the unstable

mode, at T = 164 the reconnection of the magnetic field lines
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starts and T = 292 corresponds to the saturated stage. The
pressure profile deforms due to both the non-linear development
of the m = 1/ n = 1 mode and the thermal diffusion. TFrom the
time evolution of the pressure profile we can estimate the soft
x-ray signal in the experiment by assuming that the pressure
corresponds to electron tempefature and the plasma column rotates
rigidly. We also assume the soft x-ray is proportional to P3.
Figure 4 shows the estimated fluctuations for the central cord
and the cord through about the half radius. It is seen that the
fluctuation level is large in the outer region and the phase of
the central cord is about 180° different from the outer region
cord. These are consistent with the experimental data of Fig. 1.

Now we will discuss the time scale of the internal

disruption. 1In Fig. 1 it starts at T = 471.6 msec and ends at T

= 472.8 msec. Therefore, the saturation time may be 1.2 msec.

The saturation time in. Fig. 2 is about T = 280 T,. From the
experimental data the unit time T0 is estimated 0.5 sec. By
comparing these members; therer is about 8 times difference
between the experiment and the numerical results. Still there is
ambiguity about both the beta value and the pressure profile just
before the internal disruption. More detailed measurements of
the temperature profile and the density profile are required.
The fluctuation before T = 471.6 msec 1is aséumed the resistive
instability withm =1 and n = 1.

In summary, main characteristics of S mode can be explained
by the non-linear evolution of the m = 1/ n = 1 interchange mode

at nearly mafginal stability.
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Figure Captions

Fig. 1 An example of soft x-ray fluctuations in the case of
internal disruption for g(0) ~ 2.5Z7.

Fig. 2 Time evolution of kinetic energy of m =1/ n =1

interchange instability for P = Po(l - (r/a)z)2 and

B(0) = 2.67Z. Magnetic Reynolds number S = 5 x 103 and
Kegg = 27
Fig. 3 Pressure profiles along 6 = 0 and 6 = 7 line for the

instability shown in Fig. 2.

Fig. 4 Soft x-ray fluctuations from time evolution of pressure
profile by.assuming rigid rotation of the plasma
column. (a) shows the central cord and (b) the cord
through about the half radius for g(0) = 3.77, Keff =
Snand § = 5 x 10°."
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STELLARATOR EXPANSION STUDIES OF A HIGH-BETA TORSATRON*

J. A. Holmes, B. A. Carreras,** L. A. Charlton,
H. R. Hicks, and V. E. Lynch

Computer Sciences at
Oak Ridge National Laborator
02k Ridge, Tennessee 37831 USA

'1. INTRODUCTION :

ATF is a medium aspect ratio (R,/a, =7) £ =2 continuous
torsatron with twelve field periods (M = 12). This configuration has
been demonstrated, using the stellarator expansion,1 to have good MHD
equilibrium and stability propertie52 with increasing B.

Present studies are directed toward improving the flexibility of
the ATF design by determining means of controlling important plasma
parameters, such as the magnetic well and the rotational transform
profile. We concentrate here on the use of the ATF vertical-field (VF)
coi | system in providing this control. .

The stellarator expansion equilibrium and stability calculations
carried out using the system of computer codes developed at Oak
Ridge2'4 feature a fixed-boundary approach. This method provides
convenient control of the equilibrium shaping and is useful for rapidly
producing and considering a wide range of cases. However, with the
demonstrated desirability of the ATF configuration from an MHD
equilibriun and stability standpoint and with the capability of the VF
coil system for controlling plasma parameters as discussed here, the
need to study the free-boundary equifibrium and stability of ATF
becomes important. To carry out this work, we have recently obtained
Princeton Plasma Physics Laboratory’s free-boundary stellarator
expansion equilibrium and stability codes. 8 We present here the
results of our initial free-boundary calculations for ATF.

*Research sponsored by the Office of Fusion Energy, U.S. Department

of Energy, under Contract No. DE-AC05-840R21400 with Martin Marietta

Energy Systems, Inc.

*Fusion Energy Division.



. 9. THE STELLARATOR EXPANSICON EQUATIONS AND THEIR SOLUTION

The stellarator expansion was originally derived by Greene and
Johnsonl using an ordering scheme with the ratio of the helical and
toroidal magnetic-field strengths as the basic parameter. In this
scheme, toroidal effects are assumed to enter in second order. The
crucial feature of the stellarator expansion is the reduction of the
equilibrium calculation from three to two dimknsions through toroidal
averaging over a field period. This feature makes the systematic
computational treatment of a [arge number of cases possible. With this
reduction, one solves an equilibrium equation for the averaged poloidal

flux function

dP dF
A* (\I!—\V’:):—R2d—‘y-(F+F*)W, (1)

which closely resembles the Grad-Shafranov equation for tokamaks. In
Eq. (1), ¥(R,Z) is the averaged poloidal flux function, w:(R,Z) is the.
averaged poloidal flux function of the vacuum, R is the major radius -
coordinate, Z is the vertical position, P(¥) is the pressure, F*(R,2) .
is the helical-curvature term, and the averaged toroidal flux function -

F(¥) is adjusted to give either strict flux conservation (v = »,) or
- zero net toroidal current within each flux surface (<J¢?W =0). The

quantities W: and F* depend only upon the vacuum magnetic field. While
the details are discussed in Refs. 1 and 2, it suffices for present
purposes to state that F* depends only upon the helical magnetic field
and that ?t = ¢o + W*, where ¥* depends only on the helical field and
¥o contains only axisymmetric contributions. In particular, ¥ is
obtained by solving A Yo =0 with the boundary condition
§0 = ‘%‘§1¢0 X &, where 301 is the poloidal vacuum field averaged over
2 +ie|d period. Hence, the effect of the axisymmetric VF coil system
in these calculations enters entirely through the quantity ¥;. Because
the stellarator expansion is not an exact model for three-dimensional
equilibrium and stability (being derived inm the limit of small
helical-field variations, large aspect ratio, and low f), tests have
been conducted comparing the results with < those of full



three-dimensional equilibrium calculations. As shown in Ref. 2, good
agreement is obtained.

Both the fixed- and the free-boundary equilibrium codes used in
this work have been adapted to accept averaged numerical vacuum data,
rather than model fields, from the actual ATF design. The vacuum
magnetic fields are .calculated using the Biot-Savart law, together with
filamentary coil specifications. '

Both the fixed- and free-boundary equilibrium codes solve Eq. (1)
on a rectangular coordinate grid. While the fixed-boundary code can
produce either flux—conserving or zero net current equilibria, the
free-boundary code solves only the latter. 1In both programs the
averaged pressure is modeled by P(¥) = ¢ (¥ - Wa)k where the constant ¢
determines the peak B, ¥, is the value at the zero pressure boundary,
and the exponent k determines the steepness of the pressure profile.
We take k= 2 in this work.

The main difference between the fixed- and free-boundary
equilibrium codes is the treatment of the boundary. In the
fixed-boundary code, a flux surface of W: -is chosen to be the

computational boundary. The boundary conditions are taken to be P = 0.

and ¥ = 0, and the calculation is carried out entirely inside this
conducting wall boundary. The free-boundary code calculates a solution
over an entire rectangdlar region with the boundary conditions applied
at the edges. The location of the flux surface of zero pressure is
determined by the intersection of the flux surfaces with a specified
limiter. Interior to this surface one obtains a solution to Eq. (1)
with pressure, while the exterior solution is an averaged- vacuum
solution. The boundary conditions on the edge of the computational

grid are determined from the plasma currents using Green’s functions.!

The control of the shape and location of the P = O surface in the

free-boundary method is carried out completely through the.

specification of the VF coil currents.

The fixed-boundary stability calculations for low-n modes are
carried out using a reduced set of equations for stellarators that was
derived by Strauss? using the stellarator expansion ordering. These
calculations (described in Ref. 2) use an initial-value approach. The
free-boundary code for low-n stability, described in Refs. 7 and 8,
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uses a SW approach, with an optional conducting wall that can be placed
at any multiple of the plasma radius between 1 and ®. This
free-boundary system of codes is a modification of the tokamak MHD
equilibrium and stability PEST coded:8 to do the stellarator expansion.

3. ROTATIONAL TRANSFORM CONTROL USING THE ATF VF COIL SYSTEM

For fixed-vacuum configurations, zero. net current equilibrium
sequences show significant deformation of the rotational transform
profile with increasing f. As can be seen for the standard ATF
reference vacuum in Fig. 1, with increasing f the rotationa! transform
increases on the magnetic axis, decreases at the (fixed) plasma
boundary, and forms intermediate minima. Such major variations of the
rotational transform could lead to resistive instabilities and
degradation of confinement. To control the rotational transform of
zero net current sequences of equilibria, let us now consider the ATF
VF coil system.

The VF coil system for ATF consists of the three pairs of,
axisymmetric coils shown in Fig. 2. Each pair is located symmetrically
about the horizontal midplane, and the currents in the upper and lower
members of -each pair are equal. By varying the currents in the three
sets of coils, it is possible to alter the magnetic configuration quite
flexibly. Such features as the position, the total external flux
linked, and the cross-section shape of the magnetic surfaces can be
controlied in this manner. For example, by changing the relative
currents between the inner and outer sets of coils, it is possible to
shift the magnetic surfaces in or out along the major radius.
Reference 2 shows how this technique can be used to control the
magnetic well and, hence, the stability of the resulting equilibria.

With three sets of coils, it is possible to control three degrees
of freedom, or to satisfy three. constraints, in the .magnetic-field
configuration. One such constraint could be to determine the position
of the plasma, using the VF coils to shift the surfaces in or out as

_desired. Another such constraint is to determine the total external

flux linked by the plasma. Havfng satisfied these two constraints, one
degree of freedom remains, and this is related to the cross-section
shape of the magnetic configuration. This is discussed in 2
quantitative way in Ref. 10. For the calculations to be presented in
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this section, we have chosen to maintain the plasma position and the
external flux linked by the plasma to be constant and equal to that for
the standard, reference ATF vacuum configuration. This leaves one
remaining degree of freedom in the relative coil currents. Since the
standard ATF vacuum configuration is obtained with zero current in the
VFB coils (Fig. 2), we parameterize this degree of freedom by I, the
current in the VFB coils normalized to the current in the helical-field
coils. The constraint of constant external flux linked by the plasma
is in keeping with the conditions of a dynamic adjustment of the coil
currents during a discharge, during which changes in the flux would
lead to surface currents in the plasma.

As the VF coil currents are changed in a manner to maintain
constant external flux [linkage and plasma position, the shape of the
magnetic surfaces becomes elongated/shortened with
increasing/decreasing I,. For a given plasma 8, y decreases as the
surfaces become elongated (I, 2 0). For large enough values of I,
I, 2 0.3, the vacuum &y becomes zero, and a separatrix forms, leading
to a doublet configuration. Since sy increases with increasing B for a
fixed-vacuum configuration and decreases with increasing I, for fixed
B, it is possible to increase I, with increasing B at a rate just
sufficient to maintain »y constant. Such flux-controlled curves of
constant »y are plotted in the By — Iy plane in Fig. 3.

We shall now describe our results for a typical flux-controlled
curve depicted in Fig. 3. The equilibria in this sequence have been
calculated by varying the coil currents with B to maintain constant #
such that at B =0 the vacuum is the standard ATF reference case.
Throughout this sequence the vacuum-averaged flux surface chosen for
the boundary is taken such that », = 1, which is consistent with the
notion of a natural |imiter at the plasma boundary. The elongation of
the magnetic surfaces required to maintain constant zy as @ is
increased is shown in Fig. 4.

A favorable property of the flux-controlled equilibrium path is 2
reduction of the magnetic axis shift at given B when compared with that
of the standard vacuum coil current configuration (Fig. 5). This
decrease can be understood as a consequence of a reduction in the
Pfirsch-Schliter currents with increasing I .
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Although one might expect a decrease in the ‘magnetic well  in
conjunction with the reduced axis:shifts and Pfirsch-Schliter currents,
the shaping of the magnetic surfaces accompanying these reductions
prevents such a decrease.

4. FREE-BOUNDARY CALCULATIONS

Qur initial work with free-boundary equilibrium and stability has
concentrated on comparison with existing - fixed-boundary cases. This
comparison has been carried out for a fixed VF coil current
configuration. The equilibrium parameters compare quite closely for
the two methods. TIn Fig. 8 we show plots of <f> and the magnetic axis
shift /Ry vs Py for the fixed- and free-boundary models. The
free-boundary calculations have been carried out here using an
additional vertical field to keep the plasma centered as B is
increased. The rotational transform profiles also agree quite well in
Fig. 7. The difference at the outside boundary is due to a different
choice of limiter in the two calculations, but the trend in v, Vs B is
the same for both methods.

We have not, at this time, observed any global instabilities for
the ATF configuration. Although Rewoldt and Johnsonll have reported a
global n =1 kink mode for an <> = 2.6% equilibrium, this calculation
was made using a vacuum Tfield configuration that has been
computationally superseded. 1In this vacuum configuration, the
computational boundary for the toroidal averaging was taken to be a
square box. To keep this box from intersecting the (circular)
projection of the helical-field coils, it was necessary to omit
substantial regions containing good flux surfaces (Fig. 8). In
addition, the helical magnetic fields were calculated using a potential
function ¢, such that ﬁ»h = Eh' with the derivatives evaluated
numerically. Since then, the vacuum calculations have been modified to
use the circular region, which more nearly matches the projection of
the helical-field. coils. With this larger region it is possible to
include more good surfaces. As seen in Fig. 8, using the old method
(square box) on the standard ATF vacuum, the rotational transform is
cut off at » = 0.82, while with the circular region, surfaces with
&> 1.1 are included. We now also calculate the vacuum helical fields
more accurately using the Biot-Savart law, which avoids the necessity
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of numerical differentiation. Finally, higher resolution is now
obtained in the average vacuum calculations by using a 100 X 100 mesh,
rather than the B85 X 85 mesh as used previously. While we have been
able to duplicate the results of Rewoldt and Johnson by using the same
"old® vacuum file they used, we find no global instabilities for the
same configuration when the "new" vacuum calculations are used. At

present we are working on separating the effects of box size, numerical

differentiation versus Biot-Savart, and resolution to determine which
factors are instrumental in changing the stability results.
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ABSTRACT

The nature of the resistive MHD equations is examined in terms of a set
of gauge functions based on the magnetic field. A set of reduced equations
may be arrived at in this gauge by making the simple assumption that the
campressional motion is decoupled from the shear motion. The equations
reduce to those first proposed by Strauss and by Chance et al. when the
perpendicular perturbation wavelength is much shorter than the equilibrium
length scale.

I. INTRODUCTION

The basic nature of the reduced equationsl—3 is that they provide a
concise description of the interaction of the shear Alfven waves in the sys-
tem. One of the key assumptions in the original Strauss equations is that
in the plasma there is a predominant (axially symmetric) toroidal magnetic
field. Due to this strong toroidal field, the phenomena under study could
be decoupled from the magnetoacoustic branch. As a matter of fact, the
magnetoacoustic branch is completely eliminated. In a general fusion con-
figuration, the plasma may evolve into a state in which the magnetic field
does not have any predominant symmetry direction. Examples of these devices
are the spheromak,"“ stellarator, the various high current pinches (RFP,
OHTE, 5 bumpy Z-pinch,® etc.), and the very low aspect ratio tokamak. It is
the purpose of this paper to extend the formulation of the reduced equations
to these configurations.

}
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By representing the electric field in a special gauge, simple assump-
tions can be made which allow the easy elimination of the magnetoacoustic
waves and the clear decoupling of the magnetoacoustic branch from the Alfven
waves. This gauge facilitates the decomposition of the primitive set of
equations into links of equation chains with easily solvable links. The
gauge functions play the essential role of the Langrangian coordinates?
for the magnetic field. '

The plasma state is no longer specified by the eight variables
(E,G,p,p). Their evolution, instead, is aided by the information on the
evolution of the gauge functions ¢, x and u, specifying the electric field.
Further specific assumptions about them provide self-consistent simplifi-
cations on the system without affecting the structure of the equations.

II. "REDUCED" BQUATIONS IN AN ARBITRARY CONFIGURATION

The primitive MHD equations which we start with are:

>
§—§+ Veo¥) =0 (1)
P >+ > > > >
P 3;'+ p(veV)v = - Vp + JxB (2)
a + >
%CL-V*E , (3)
+ > > >
E=nJ -wB , (4)
+> >
%%‘l‘ ;-Vp + PpV'$ =T ’ (5)
and
> > >
J=xB . . (6)
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A completely equivalent description of the plasma state may be specified by
adopting the gauge of the electromagnetic field as

+ > > >
Mg _ ¢y X, B+ . o)
at 3t

This gauge is motivated by noting that the fluid velocity v is obtained from
Eq. (4) as (for plasmas close to MHD equilibria):

o+

>
Vux
B2

>
v =

+* >
+vl%§-“—Vp+— . (8)

We see from Eq. (8) that v is decomposed 1nto pa.rts which can be identified
as the shear motion around the field line, \7u><B/B2 the compressional motion
v l(ax/ at); the slippage of the plasma with respect to the field line,
/BZ(Vp), and the motion parallel to the field line v[,B/B2 We associate
u with the shear Alfven wave and dx/9t with the magnetoacoustic mode. A
description of the plasma state may therefore be obtained by regarding
E,w,x,u,p,p as dependent variables and recast the set of Egs. (1) through
(6) in terms of them. In this set of variables, the decoupling of the shear
motion and the compressional motion is relatively easily implemented.

Here y is the inductive volt seconds linked by a field line. Its
evolution in time is obtainable from the parallel component of Eq. (4) as

M.l (B.9u - nJeB
3t BT R (9)

The elimination of the compressional Alfven wave is equivalent to the

neglect of the mass density in the equation of motion for the compressional

component. Or when mass density is ignored, we have the equilibrium
relation: :
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+> > >

Vp = JxB (10)

The compressional component can be used as a dynamical constraint for
determining V,(3x/3t). By differentiating Eq. (IQ) with respect to time,

. we find

+> >

*ap aJ > * 3B '

vR_E,BoJgxZ=0 . 11
at ot at (1)

In Eg. (11), the time rate of change of the magnetic field consists of two

By _ 323
vy Vx(at B) , (12)

. (13)

By utilizing Eq. (5), and Egs. (12) and (13), Eq. (11) can be shown as the °
Euler equation for the following functional L‘x for a plasma sa.tisfying
Eq. (10), with -

| ; -ax = L 7 —a-& = v 31-5 ’
Ly (Vogp) =Tmp (Vo) =) (Vo op -8y dr a9
In Eq. (14)
Lin(EL) =@ ([T (E xB) ]2 + Jo£ ;xTx(E, xB)
> > + + >
+ (VyE1)(EVp + TPV <€)} , (15) .

and
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a§ *> > a§ >
Sy = [(v ;;ﬂg x B] + (J x ;;l) -, , | (16)

and P, is due to pressure changes.

For the non-equilibrium state under consideration as in usual non-
equilibrium dynamics, we regard the function 3y/3t minimizing Eg. (14)
as the desired solution. This minimizing function 3x/3t is the resultant
response of the plasma through the eliminated compressional waves. We note
that L;;Ln.m is the same as the Iyyp functional given by Bernstein et al.,8
except that Ld'ﬂ-ﬂ) allows the displacement to be only in the direction per-
pendicular to the magnetic field. If the plasma evolves through a sequence
of ideal MHD stable equilibria, then Lyyp > 0, the minimizing function,
definitely exists. The appropriate boundary condition in Eq. (14) for 3y/3t
is 3ax/9t = 0 and ;(ax/at) = (0 at the boundary.

In this manner, the velocity v in Eg. (8) is completely determined.
> >
To determine the time rate of change of u, we take the B«Vx component of
Eq. (2) to obtain:

3 + > + > Ay > @ *EX.
2 [VepTu + (BeV - Vx(pB)+V
'at[ pYu + (Be¥)p v (pB) at]
>+ > > ++2 u
= (B-)(J-B) - (3+M)B2 + S, A (17)

where S’{\}L is a nonlinear source term.

The terms on the left-hand side of Eq. (17) contain second derivative terms
in time. These make the solution of this equation more complicated. We
assume that they are negligible in this equation. This is the other major
assumption necessary in the decoupling of the equations in this coordinate
system. As shown in the next section, the assumption of short perpendicular
wavelength in comparison to the parallel wavelength is sufficient to justify
this assumption. For a plasma with constant density, this assumption also

v
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' * >
is identical to that of the Coulomb gauge condition VA = 0, which is
verified by the chosen gauges.

To complete the listing of the equations, we note that

>
avu > > > >, > 3B
p —— = = BeUp = pBe(VeV)V = pve — 18
pat P = pBe(VveV) p~ 2t (18)

-

The equations for determining p and p‘a.re the same as Egs. (1) and (5).

Therefore, we have arrived at a set of first order differential
equations in time, Egs. (1), (), (9), (17), and (18) for the evolution
of p, P, ¢, v2u, and vy. The auxiliary functional I..X in Eq. (14) has to
be minimized for 3x/dt, and the three-dimensional Laplacian v2 has to be
inverted to determine 3u/3t from v2(au/at). The result of the elimination -
of the compressional Alfven wave is the minimization of Eq. (14) for ay/at,
and the decoupling of (3y/3t) from the equation [Eq. (17)] for V2u keeps
the equations structurally simple. These equations are the structural
equivalent of the Strauss equations in a general configuration.

Although the inversion of v2 is not complicated, the minimization of
L.x to find 3x/9t is not very easy in general. In practice, some physical
assumptions should be adopted in simplifying the minimization of Ly. In
here, we mention one such possible subsidiary assumption; in Lx we assume
the perpendicular perturbation wavelength can be taken to be much shorter
than the equilibrium wavelength. We then obtain

Lgp(Z) = [ dr (B2 + Ip)(V-6)2 (19)
Sy = -V . ' (20)

The I_ninimization of LX then leads to
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(82 + rp)v2 % =-DP, . (21)

with the boundary condition of x = O at the conducting boundary.

With this last simplification, we have arrived at the systems of Egs.
(1), (5), (9), (17), (18), and (21) for advancing p, p, ¥, V2u, v;, and V2,
with two three—dimensional laplacian equations to be inverted for 3u/3t and
dx/9t. The sequence of the solution of the equations should be starting
with a configuration determined by E, ¥, X» 4, vy, P, and p; Eq. (9) is‘
first used to advance y. Equation (24) is used to solve for 3y/a3t, the
velocity v in Eq. (8) is then determined, Egs. (1), (5), (17), and (18) can
then be used to determine 3p/3t, 3p/3t, au/at, and dvy/at. Written in this
fashion, we did not actually reduce the amount of information in the
original set of equations.

However, the structure of the equations makes the introduction
of additional physical assumptions easy, such as ignoring v; or the
>
compressional motion V(3x/3t), and results in real. reduction.

III. NONLINEAR EVOLUTION WITH "LOCALIZED" PERTURBATIONS
We start with the ordering that the plasma has an equ111br1um specified
by JO ~ BQ ~ Pg ~ 1, with equilibrium gradient length VO ~ 1, except that
Boxvo(Jo Bg) ~ 1/e. For the perturbatlon, we assume Ji ~ 1, 3p/3t ~ ¢, 3/3t

->
~1, 1p~52,x~53 u~ez, V~ 1, Vl~1/e,v~e,a.ndn~82

Then

+> > >
B (v E-2XB.p ] 22
( atx) ve () (22)
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- +>
Since 3B/at ~ O(e), we do not need to update B for t ¢ 1/e. The equilibrium
relation [Eq. (12)] gives

v2 3X = 1 3 . (23)
9 B2 ot

This relation is the same as Eg. (21), except we see that in Eg. (23) the
natural ordering for pressure is PO ~ €. po has been ordered to be of lower
order so that parallel sound wave effect would be kept. Then from Eq. (4)
to leading order

>

=B, o) (24)
B2 B2

The perpendicular velocity is dominated by the rotational part of the fluid
flow. It is quite easy to write down that

>

ap > B > > > Vn > n <> 1 EE
ZE = g gx=— oYU = (BeV) — + Ve[— ¥p) - =—
il o T B (Bz p) 52 vl
-> > >
- B % ~o0) , (25)
B2
2 YuxB 2 > > Vi > quB
l+m —R=_ ux VD - BeV _ﬂ + Ve
( B2) ve 2 P rp[( >(BzJ 2
* oo ° '
- Ve(=— vp]] ~0() , - (26)
B2
¥ _1 %I ~ 02
) 3t g2 (Vu nd-B) 0(e4) (27)
3 > > > > > > > > *
— Ve(pVu) = = (BsV)(JB) + (J-V)BZ - v +V(pV2u) , (28)

9t
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vy > > > *
P T (B«V)p = p(VyeV)Vy . (29)

This set of nonlinear coupled differential equations [Egs. (25) through
(29)] may be used for the study of the nonlinear evolution of small ampli-
tude localized Alfven wave perturbations. In the linear regime, V=0 at
equilibrium, the density equation [Eq. (25)] is decoupled from the rest of
the equations. By denoting y = 3/3t, we obtain

+> +>
E VpOXVU."go > > Vu i;ngo
A+E)yp=-—m— - I'po[ (Bg+V) (—) + V-
2 B2 : B2
0 0 0
- 3-(“—3 ) (30)
> P R A
B3
-+ > > g
VU - ndqe
o=+ 20 ro (31)
23

> > > >

> > > > + > 2
YpQV2u = = (BpV)J1+Bp = (B1-V)Jp+Bg + (J1-V)B

+ (JgeV)(B%)1 (32)
Yogvy = = (B1eV)pg -~ (BoV)p (33)

By substituting Eq. (22) into Egs. (30) through (33), we note this set
is similar to the set which has been used by Strauss with I''= 5/3, y = A;/B,
vy + v;Bg, and Jg + -Jg, to study the resistive ballooning mode. This set
is also identical to the high n ordering equations used by Chance et al.?
except that the current density gradient term has been kept. This is
appropriate for intermediate n numbers in which the effect of current den-
sity gradient and the pressurevgradient and curvature force both affect the
shear Alfven wave. 10
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IV, OONCLUSION

In conclusion, a new approximate reduced set of equations for the
interaction of shear Alfven waves in a general magnetic configuration is
given by the set of equations, Egs. (1), (5), (17), (18) and (21), with
auxiliary conditions given by Egs. (8) and (12). The assumption of local-
ized modes with perpendicula.r wavelength much shorter than the equilibrium
wavelength reduces the set to that given by Strauss and Chance et al. The
numerical implementation for a high current pinch configuration is particu-
larly simple. It could be modified from the known schemes for the Strauss
equation, such as HIB. !l
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I. INTRODUCTION

It is now well established that_ multidimensional nonlinear resistive
magnetohydrodynamics (MHD) is an excellent model for the description of the
macroscopic dynamics of present magnetic fusion experiments. Two-dimensional
simulation of these processes has become commonplace[1-3]. Such calculations
have provided valuable insights into the interpretation of experimental
diagnostics [4], and the nonlinear behavior of unstable modes in various devices
[1,5,6,7].

It has recently been recognized that two-dimensional motions, while
enlightening, do not represent the true state of plasma dynamics, and that fully
three-dimensional calculations are required [8,9]. For tokamak plasmas, where
one component of the magnetic field is everywhere large, it is possible to derive
a reduced set of equations that adequately describes the dynamics of these
devices [10]. Three-dimensional simulations of these equations have provided a
detailed picture of plasma evolution [8,9,11]. These calculations can proceed
much faster than solutions of the original equations. In other magnetic fusion
devices, such as the spheromak and the reversed field pinch, no such generally
applicable set of reduced equations exists at present, and one must solve the
primitive equations. Incompressibility may provide some computational relief
[12] but this assumption can only be justified a posteriori.

i

*Work supported by U.S. DOE contract DE-ACO3-83ER53150.
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The periodic nature of the poloidal and toroidal directions in many
fusion devices allows solutions to be represented by Fourier series in these
coordinates. Simulations of tokamak plasmas with reduced equations have found
that only a handful of these modes are important to the dynamics [13]. Codes
developed for the solution of such problems' have made use of this fact by
introducing a mode selection process whereby only a few modes are retained in the
calculation [14]. This procedure has also been used in incompressible
simulations of the primitive equations [12]. The convolution sums that arise
from the Fourier representation of quadratic nonlinearities in configuration
space are then computed directly.

In fusion devices such as the Reversed-Field Pinch or the Spheromak no
2 priori mode selection is possible. Indeed, there is reason to believe that
many large scale modes will be equally important [7]. Thus a large number of
mode interactions are probable. These large scale motions may serve to drive
small scale MHD turbulence, which may be responsible for such important physical
effects as dynamo action and profile maintenance. Also, the particular path
taken in the cascade of energy from long to short wavelength (along with the
possibility of inverse cascades from short to long wavelength) is unknown and may
be important. A large number (>100) of modes must therefore be retained in such
calculations. :

The physical and computational problems described above are similar to
those encountered in the simulation of turbulent hydrodynamic flows. Accurate
and efficient methods have been developed for the solution of these problems
[15-20]. These spectral methods are based on the use of the Fast Fourier
Transform (FFT), which allows the convolution sums to be evaluated in O(Nln,N)
operations, as opposed to O(N°) operations for direct summation [15]. This
allows many modes to be used in the simulation. In this paper we describe codes
based on these methods [21], and briefly present some results.

II. BASIC EQUATIONS

The study of large-scale dynamics in fusion and astrophysical plasmas
involves the description of motions that occur on long time scales. In these
cases the plasma acts as an electrically conducting fluid whose motions are
adequately described by the single-fluid resistive magnetohydrodynamic (MHD)
equations. In a suitable non-dimensional form, they are
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B
=Y VB+B: V-8B v+, - Wnx(V xB) (1a)
Oy 1 _1_7 2
®=Y Vv + =B VB-2p(p+B) (1b)
o _ -
=Y Y-y (1c)
-gtP—= v - Vp -V v 2v1) no(Tx B2 -2 (1d)

where B is the magnetic field measured in units of a characteristic field B,, ¥
is the velocity measured in units of the Alfvén velocity vy = Bo/vhﬂpo, p is the
mass density measured in units of a characteristic density p,, p is the
thermodynamic pressure measured in units of p, = Bg/Bﬁ, A is the ratio of
specific heats, and all lengths'are measured in units of a characteristic length
a. The coefficient n, is a nondimensional resistivity that may be a function of
the dependent variables. When the resistivity is constant in space and time, 74
is the inverse of the Lundquist number S = tp/tp, where tp = c2n/4ﬂa? is the
resistive diffusion time and ty = a/vA is the Alfvén transit time. Note that S
is defined in terms of the normalization constants, and is not to be confused

with the magnetic Reynolds number Ry, which is defined in terms of local

quantities. The last term in Eq. (1d) represents emergy losses not directly
encompassed by the model, and is included to control the effects of Joule heating
on plasma beta (8 = 8np/B?).

When n, vanishes, Eqs. (la)-(1d) define the ideal MHD model. A finite
value of 7, relaxes the flux topology constraints of these equations with the
result that previously unallowed motions are possible [22]. These new dynamical
processes are essential for an adequate description of fusion and astrophysical
plasmes. The inclusion of further dissipative processes, such as ion viscosity
or thermal conduction, removes no further constraints on the magnetic topology.
We thus exclude these effects from the model.

We note that the compressible nature of Egs. (1a)-(1d) admits the
propagation of Alfvén (fast magnetosonic) waves perpendicular to the field.
These waves evolve on 2 time scale defined by a cross-field scale length divided
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by the Alfvén velocity. For a diffuse pinch this length scale is the minor
radius. Since many phenomena of interest occur on much longer time scales, this
presents a computational problem. In tokamaks one component of the magnetic
field is everywhere large. This allows a self-consistent ordering in which the
plasma becomes incompressible, and the magnetosonic wave is eliminated [10]. The
remaining high-frequency normal mode is the shear Alfvén wave propagating
parallel to the field. This wave evolves on a time scale defined by a parallel
scale length divided by the Alfvén velocity. In fusion experiments in which the
incompressible ordering is valid, this scale length is the major radius. Thus in
these cases the fast time scale is increased by a factor that is of the order of
the aspect ratio, thefeby greatly reducing the computational requirements.
However, in general such orderings are not possible, and there is no a priori
justification for eliminating compressibility from the model. Indeed, for highly
sheared, low q devices such as the reversed field pinch a shear Alfvén wave
travelling near the field reversal surface evolves on a time scale that is on the
order of the minor radius divided by the Alfvén velocity, i.e., the same order as
that of the compressible wave. We thus retain compressibility in our model. |

III. NUMERICAL METHODS

In the numerical solution of Egs. (1a)-(1d) in cylindrical geometry
(r.,0,¢) the state variable U= (B,, By, B., v, Vg, vg,Ap, p) is represented on
mesh of N. x Ng x Né grid points (r;, i = 1,N; ej, j=1Ng: g, k= 1,N§).
spacing in the poloidal (8) and toroidal (§) directions is uniform such that
40 = 2n/Ng, AS = 2ﬂ/N We allow for nonuniform mesh spacing in the radial
coordinate, but in pract1ce a uniform spacing Ar = a/(N,.-1) is used. _

The periodic nature of the solution vector U with respect to the 6 and
¢ coordinates allows a spectral representation to be employed for the finite
approximation of spatial operators in these directions, since this representation
is uniformly convergent at the boundaries O and 2x.. The radial coordinate is
treated by the method of finite differences.

When - the periodic function u(6,4) is approximated by MxN data points
(e.g., stored on a mesh), it can be represented by the finite Fourier series

Upn(5. 1) = Méz A Néz am'_n(t)ei'(mej +n5) ()

n=-M/2+1 n=-Nf2+1
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with
N -i(mO; :
2n,0(%) =-P}N_ j§1 kE1 UMN(ejgk't)e ( J+n§k) y (3)

Here UMN(ej,gk,t) is the MN-term approximation to the function U(0,g,t) evaluated
at the mesh point (ej,gk) at time t; 6; = (j -1)2n/Mand g = (k - 1)2n/N. The
derivatives Su/00 and Ou/dg at the point (Gj-,gk) and time t are given by

M/2 N/2

_ ) i(mé: + ng) . (4a)
%EM)J X ) m=—§/2+1 n=—§/2+1 mam'n(t)e :
M/2 N/2 . |
u _ ) i(md: + ng) - (4b)
éa%u)j kT m=-hzd:/2+1 n=—1\):1:/2+1 tn2p, (t)e : )

The spectral representation of the equations of motion is obtained by
employing Egs. (2) and (4) in some appropriate manner in the right hand side of
the Eq. (la-d). If this is done in a straight forward manner, the quadratic
nonlinearities inherent in these equations leads to convolution sums whose direct
evaluation requires O(N?) operations, making such methods excessively expensive
except when a handful of modes is employed. However, when fast Fourier
Transforms are used [23], the operation count is reduced to O(NenN), making it
comparable in speed ‘to finite differences. These methods are called
pseudospectral. ' ' '

The pseudospectral approximation takes advantage of the fact that
multiplication is most efficiently performed in configuration space and
differentiation is most accurately performed in Fourier space. Fast Fourier
Transforms are used to communicate between the two representations. In principle
it is irrelevant whether the dependent variables are the N Fourier coefficients
or the values of u(xj) stored at the N mesh points X in configuration space. In
the first case the transformation is made to configuration space to perform the
convolution; in the second case the transformation is made to Fourier space to
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perform the differentiation. Both methods have the same accuracy. Because of
its familiarity, we have chosen the configuration space representation. -

It is well known that these methods can lead to a physically realistic
and rapidly convergent approximation to a linear equation. When nonlinearities
are present, as discussed above, these methods are subject to aliasing errors
[15;17.18,20] that arise from the generation by quadratic nonlinearities of modes
with wavelengths shorter than w/Ax. These errors are caused by modes in the
"high" end of Fourier space; they can be prevented by removing the offending
modes from the problem. This is accomplished by truncating Fourier space at some
value M*. Modes outside this range are set to zero, since it is these terms that
contain the aliasing errors. It can be shown that it is sufficient to set
M*<N/3, where N is the number of mesh points in a periodic direction. Since
kmax = N/2, aliasing errors are prevented by using 2/3 of available Fourier
space.

We employ explicit leapfrog with averaging for the temporal
approximation to the advective terms. The diffusive terms are treated implicitly
in Fourier space.

Iv. RESULTS OF THREE-DIMENSIONAL SIMULATIONS

We have previously studied the nonlinear evolution of m =1 tearing
modes in RFP plasmas in single helicity [7]. To stﬁdy three-dimensional mode
coupling effects, we pose an initial value problem consisting of an equilibrium
[7] and two unstable m = 1 modes with axial mode numbers n = -10 and n = -11. We
use a mesh with 65 radial, 8 poloidal, and 64 axial points. In Fig. 1 we show
the evolution of the radial magnetic emergy in these modes as a function of time
for both single helicity and three-dimensional simulations. We see that
saturation occurs sooner and at a lower level when three-dimensional effects are
included. This is because the mode coupling to a larger part of Fourier space
allows energy to be drained from the m = 1 modes. This is illustrated in Fig. 2,
where we plot the energy in various m=0 and m=2 modes for the
three-dimensional case. Note that m = 2 possesses more energy than m = 0 [24].

In Fig. 3 we plot the evolution of q(o), the safety factor at r =0, as
a function of time for both single helicity and multi-helicity simulations. We
see that the rise in qfo) s significantly slowed when the extra
three-dimensional mode couplings are included.
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V. REDUCED RELAXATION MODEL FOR DRIVEN SYSTEMS

A problem of interest in RFP and CT plasmas is the dynamics of
relaxation to a force-free state [25]. Recent experimental schemes for providing
steady-state current and flux regeneration in both RFPs [26] and spheromaks [27]
probably depend in part on the existence of these relaxation phenomena. In order
to assess these schemes and to understand their utility, these inherently
three-dimensional problems must be addressed. However such motions occur on time
scales long compared to Alfvén times, and hence present computational
difficulties if the model described in the previous sections is employed.

In this section we present a computational model for the simulation of
these processes. Codes based on this model are presently under development. We
assume that the plasma relaxes to a force-free state through the action of
perpendicular perturbation currents alone; the pressure is ignored. Fast time
scales are eliminated by replacing the time derivative in the momentum equation
with a phenomenological drag. Thus displacements away from the force-free state

are damped; the plasma always relaxes. With these assumptions, the combination

of Ampéres law and Ohm’s law yields an anisotropic diffusion equation for the
vector potential that completely describes the response of the system to electric
fields driven at the boundaries. With the proper choice. of gauge a tractable
computational model is obtained. The model is similar to one previously used to
compute three-dimensional force-free equilibria [28].

We picture a system in which the plasma is continually driven away from
a force-free state by the imposition of slowly varying electric fields at the
boundary. We are not interested in the details of the flow during the ensuing
relaxation; it merely provides a means by which the relaxation can take place.
We thus replace the time derivative in the momentum equation by a
 phenomenoclogical drag coefficient v, and ignore the pressure. (The latter is
strictly justified only when Sp « 8B%, but it is in the spirit of the model.)
Then using the resulting velocity in Chm’s law yields

E=nJd=nd +md (5)
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where my =1n,, and m =M + B2/pu is an effective perpendicular resistivity that
damps the perturbations. Introducing the vector potential B = VXA, we find

2|

i | -

16

“UXVXA . | @)

If we choose the gauge A, = 0 (in cylindrical coordinates), and epecify Eg(t) and
E,(t) at the outer bounda.ry, Egs. (6) and (7) become a coupled set of diffusion
equations in the unknowns Ag and A,:

% = =Nordr - Megde - Mezdz - | (8)
o
ot

“Nzpdr = Mzedp - Nzzd2 . -

By introducing a staggered mesh, finite representations that preserve the
proper‘mes of the continuum can be obtained. :

Nonlinearities in Egs. (8) and (9) arise because the Euler a.ngle :
transformation required to define the space centered components of 7 is a
function of the instantaneous fluctuating magnetic field. We treat these
nonlinearities by writing

2|
]
t
"=
il t—-
(e

(10)

where A and m contain both mean and fluctuating parts. Taking the spatial
average of (10) allows these components to be separated. We find

S

5= Mol - G1fw - (112)
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The operators 1,°J, and 7,°j are now linear. These equations are solved
iteratively. =~ T
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FIGURE CAPTIONS

Energy in the () m=1, n=-10, and (b)) m=1, n=-11 modes as a
function of time for both single helicity and three-dimensional
evolution.

Energy in the (3) m=0,n0=1; (b)) m=0,0=2; (¢) m=2, n=-21;
and (d) m =2, n = -22 modes of the radial magnetic field as a function
of time for the three-dimensional low-8 case.

q(o) as a function of time for the single helicity evolution of (a) the

m=1, n=-10 mode; (b) them=1, n=-11 mode; and (c) the fully

three-dimensional, high-B case.

Field line plots (surfaces of section) in the (r,z) plane at various
times for evolution at low-B8.

Field line plots (surfaces of section) in the (r,z) plane at various
times for the evolution at high-8.

m=0 ma.gnetié islands for n =1, 2, and 3 for the low-8 case of
Fig. 4.

m =0 magnetic islands for n=1, 2, and 3 for the high-B case of
Fig. S.

(a) axial magnetic flux contained within the field reversal surface ry;
(b) m =0, n =0 component of the poloidal electric field at the field

- reversal surface; and (c) poloidal mode contributions to the mean

poloidal electric field at the field reversal surface, as functions of
time for the three-dimensional high-8 case.
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Nonlinear MHAD Simulations of the. N
Spheromak and The Reversed Field Pinch

A.A. Mirin and N.J. 0“Neill
National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory
Livermore, Califorunia 94550

and
A.G. Sgro

Los Alamos National Laboratory
Los Alamos, New Mexico 87544

Introduction

MHD simulations applicable to both the CTX gun-injected Spheromak[l] at
Los Alamos National Laboratory and to thé various Reversed Field Pinches
(e.g. ZT40 at LANL[2]) are presented. The evolution of the Spheromak is
simulated using the three-dimensional, finite-beta, compressible, nonlinear,
resistive MHD code TEMCO{3]. The code uses cylindrical coordinates (r,%,2)
and hence is applicable to both cylindrical and toroidal geometries. The
effect of Hall terms on resistive interchange modes in a Reversed Field Pinch
is studied using the cylindrical, linear, compressible, finite-beta initial
value code ODRIC[A]._ Extensions of this work to three dimensions will be
presented at a later date. (A nonlinear study exclusive of Hall terms 1s

presented in Reference [3]).

Basic Equations

The nondimensional equations are as follows:

3
a—‘:-»-v-(px) =0 - (1)

-*Work performed under the auspices of the U.S. Department .of Energy by the

Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
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with the auxiliary conditionms
I=V=x3 (5)
E"";xé"'%i*'gﬂall : (6)
v
Ega1y =5 (1%x B =3 7(6D)] )

In Eqs. (1)=(7), p is the mass density, T is the energy per unit mass, v is-

the velocity, B is the magnetic field, Y is the ratio of specific heats, S is
the magnetic Reynolds number Tp/T,, the ratio of resistive diffusion time to

Alfven time, T is the viscous stress tensor, K is the thermal conductivity, n
is the resistivity, v = (wciTA)—l and g is the fraction of pressure in the

electrons. Time is measured in Alfven units.
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The resistivity N and thermal conductivity Kk are taken as isotropic.
The Hall contribution to the electric field is optional. The viscous stress

tensor T is based on an isotropic coefficient of viscosity, so that

Vepgauy [V21+%V(V-_)], (8)

as in Dibiase and Killeen (5]. The fact that the resistivity, thermal
conductivity and viscosity are taken as isotropic is a matter of expediency.
Although classical tensor representations of these quantities have been
derived [6], their applicability is questionable due to the extremely long
parallel mean free path.

Representation of Variables in TEMCO

The principal dependent variables are represented in a 1-D Fourier

series:
- M
U(r,9,2) = U,(r,2) + Z (Upe(rsz)cosmp + Up (r,z)sin mé]. 9)
m=1

Because only low mode numbers are of interest, the ¢ direction is treated in
a purely spectral manner, with the exception of an option to compute 1/p
pseudo-spectrally. Finite differencing is performed in the r and z
directions.

Numerical Methods in TEMCO

Letting U = (p, T, Ves Vs Vo B., B¢, Bz)t, the basic equations can be
written in the form

3
T = Ly(@ + L@ + LD + L@ + Ly (10)
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Here, Ln represents the resistive terms in Eq. (4), L, represents the viscous
terms in Eq. (3), L. represents the thermal conduction terms in Eq. (2), L,
represents the Hall terms in Eq. (4), and L, represents everything else.

Eq. (10) is solved using operator splitting. Standard spatial central
differencing coupled with an explicit time advancement is used in L,, Ly, Ly
and L,. In Eq. (4) the term -Vx(%-VxB) is expressed as %-VZB - V(%OxVch
This is found to be helpful in reducing errors in the divergence of B. The
operator LA i3 advanced using either a two step Lax-Wendroff method or a
leapfrog method. In the latter case temporal smoothing is occasionally
employed. Artifical smoothing of p and v is sometimes necessary. The
timestep is determined in accordance with the courant condition associlated
with Ly. The other operators are advanced using a smaller timestep if

necessary.

Boundary Conditions in TEMCO

At r = 0, the boundary conditions depend on the mode number m.
Generally speaking all variables are 0, except as follows: For m = 0, 0, T,
v, and B, have vanishing radial first derivatives, as do v, Vs B, and B¢
form = 1. At the wall radius.r = r_, Ve = B =0,

v 9B
3p aT v¢ 8 Ve z
Er 0, Frs = < 3¢ (rv¢) T = 0 and T (qu,) Ty = Q. Alternative

boundary conditions ar r = r, may be applied as the physics dictates. For a
cylindrical system periodic boundary conditions are used ig the z d rection.

Intecaseofatoroidalsstemi— 0 3T 0£=0 —¢=0—=0
Bl¢ y az ’ az ? at ] ? az

and rrai 0 at the z-walls. All boundary conditioms are second order

accurate. '

Numerical Methods in ODRIC

ODRIC is merely a linearization of the cylindrical form of TEMCO.
Equilibrium quantitities p,(r), T, (r), B¢o(t) and B, (r) are specified.
Perturbed variables are expressed in the form fl(r,:)exp[i(m¢+nkz)] where m
and n are the poloidal and toroidal mode numbers and k is the inverse aspect

ratio. Equations for the perturbed variables are then integrated in time

using a fully implicit algorithm. Central differencing is used in the radial
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direction, and the boundary conditions are first order accurate. Complex

growth rates are calculated using the algorithm of Buneman[7] .

Spheromak Applications

The dynamical relaxation of an unstable Spheromak equilibrium is modeled -
using the three~dimensional nonlinear code TEMCO. This equilibrium is
calculated as follows: A zero-beta equilibrium in its minimum energy state
1s evolved in time using the noncircular transport code MINERVA{8]. The
resistivity profile corresponds to Eﬁat of a Z,¢¢ = 1 plasma having a
temperature of 23 eV at the magnetic axis and 4.5 eV at the boundary. The
plasma evolves until the safety factor q on axis drops below 0.5, at which
time the equilibrium becomes unstable to an n = 2 kink instability. This
unstable equilibrium, combined with an n = 2 perturbation at the € = 10%
level as computed by a linear stability code of Marklin{9], serves as initial .
data for TEMCO.

Standard Case. The dimensions of the poloidal domain are 0 < r < 1.125 and-

0 <z<1l. There are 73 meshpoints in the radial direction and 65 points in"
the z direction; both meshes are uniformaly spaced. The calculation 1is
performed at "zero beta", i.e., T = 0.001, and the density p is set uniformly’
equal to 1.0. The thermal conductivity and viscosity coefficients are set to
zero and the Hall terms are ignored. The ratio of specific heats Y 1is set to
S/3, and the Lundquist number S = TR/TA is equal to 1 x 104- Toroidal mode
numbers n = 0 'and 2 are included in the computation. Artificial smoothing of
the‘velocity components is performed. The simulation is run for 107 Alfven

times, which corresponds to 8000 timesteps.

The 3D magnetic fields are fed into the TUBE code[l0], which outputs
puncture plots in various poloidal planes. It can be seen that the unstable
perturbation initially grows and the plasma moves closer to the boundary (see
Fig. 1)+ At around t = 12 (Fig. lb) the displacement reverses itself and the
plasma moves in the opposite direction, crossing its original position at
about t = 40 (Fig. le¢). The displacement continues opposite to its original
motion until about t = 53 (Fig. le), during which time the magnetic topology

becomes less coherent (Fig. 1f) and the kinetic energy sharply increases. By
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t= él (Fig. 1lg) the magneétic structure seems to have settled down and the
kinetic energy has begun to drop. The calculation is stopped at t = 107. By
this time the kinetic energy has dropped from its maximum value by over two
orders of magnitude and the magnetic energy has dropped from its value at

t = 0 by about thirty percent. It is difficult to tell whether the plasma
has actually reached a stable equilibrium or whether it will undergo some

gross motion at a later time.

A result of this evolution 1is that the plasma is closer to a minimum
energy state than at the beginning of the relaxation. For a force-free
plasma, J = AB. Iq general, A is a function of position, but in a minimum
energy state it is a constant A,. At the beginning of the MHD simulation A
at the outer boundary is much less than 1its value at the magnetic axis, as a
result of the initial resistive evolution. During the dynamical relaxation A
becomes more uniform, as can be seen by examining contours of the function
X = J'B/AOB2 (see Fig. 2). Fufthermore, the anumber of meshpoints at which
IX = 1] is less than 0.l increases by 50% during the course of the
simulation. This indicates that thé plasma has moved closer to 2 minimum

energy state.

Variation with Magnetic Reynolds Number. When the MHD simulation is

repeated at S = 103 instead of 104, the configuration is seen to diffuse
toward a Taylor state. By t = 24, the number of meshpoints at which

Ix = 1| < 0.1 has trebelled and the fractional magnetic energy in the n = 2
mode has dropped by two orders of magnitude. (When S = 104 this fraction is
roughly constant.) This is consistent with transpdrt code results which show
that at § = 103, the minimum energy state q(y) profile is recovered after 75
Alfven times, but at S = 104 the change in q(¥) is much less pronounced.

Perturbation Size. When € equals 0.0l instead of 0.1, the n = 2 mode grows

approximately linearly until it reaches an amplitude of about € = 0.03, at
which time nonlinearities appear to set in. This indicates that the original
€ = 0.1 level is a reasonable, but perhaps slightly large initial
perturbation size. It is difficult to tell exactly when nonlinearities.
develop since the initial conditions, having been computed by Marklin’s ideal

code[9], are not an eigenfunction of TEMCO.
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Comparison with Linear Code. The ideal stability code of Marklin[9] 1s
compared to a linearized version of TEMCO, obtained by ignoring nonlinear
convolution terms and zeroth order resistive diffusion terms. A comparison
of contour plots and growth rates indicates excellent agreement between the
two codes. Marklin computes a growth rate of 0.1, whereas TEMCO obtains 0.13
for S = 103 and 0.20 for S = 10%. The calculation fails when run on a 37 by
33 mesh, indicating that a mesh size of at least 73 by 65 1s necessary.
Verification that a 73 by 65 mesh is adequate will have to be forthcoming, as
the present version of the code does not fit on the MFECC D machine if the
mesh is made any larger.

Number of Toroidal Harmonics. The standard case includes only modes n = 0
and 2. It is quite likely that higher modes must be included. This too will

have to wait for the future due to lack of storage.

Artificial Smoothing. A significant amount of artificial smoothing must be

added to the velocity components. The extent to which this distorts the
physics cannot be ascertained without using a much finer mesh. This will

also have to wait for the future.

Variable Density. . The standard case is redone allowing the density to vary

according to Eq. (1). For 0 < t < 40 the evolution of the magnetic field is
almost identical, but the velocity variables look quite different. Meanwhile
the n = 2 density component has been growing steadily, and by t = 40 its
amplitude exceeds that of the n = O density component, causing the density to
become negative at some locations. The cause of this, including the extent

to which it 1s due to not carrying enough toroidal harmonics, is uader
investigation.

RFP Applications

«

The effect of Hall terms on resistive. interchange modes in a Reversed
Field Pinch is studied using the linear initial value code ODRIC. The
equilibrium used is that of Robinson(l1], which is known to be stable to
tearing modes. It satisfies
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rB 2 4
= z r r
o e— R - o— S — 11
u 5, 2 (1 3 400) (11)
p- (1?2
C, = - (=) <o0.125 (12)
1 2 ‘W =
2rB;

Unless otherwise specified, in the results to follow C; = 0.1 and the wall
radius r, equals 3. The inverse aspect ratio is taken to be k = 0.2. Since
ODRIC is an initial value code, it computes only the fastest growing mode.
The growth rate of the variable f 1is defined as

Y + o = g—i/f . | (13)

in the abseﬁce of Hall terms w = Q.

Linear g-mode studies exclusive of Hall terms have been presented

recently(4]. The principal observations are as follows:

a) Form=0, as § increéses from 103 to 107, the growth rate first
increases and then decreases; there 1s a wider range of toroidal mode numbers
which are unstable; and the n value of the most unstable mode increases.

Preliminary results indicate the same trends for m > 0.

b) Form= 0, n = 25 and S between 106 and 107, vy ~ §70-26 (yg. §-0-33 45
predicted by Finn and Manheimer([12]); for S between 104 and 107, the jump in
the logarithmic derivative of Brs A, behaves as predicted in Reference [12}.

¢c) Form= 0, n = 25 and S between 3 x 104 and 3 x 106, the growth rate
decreases much more rapidly with decreasing C; as C; gets smaller, in

qualitative agreement with Reference [12].

,
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In studying the effects of Hall terms, it is convenient to initially
consider the situation in which there is no temperature perturbation. The
first case under study satisfies m = 0, n = 25 and S = 104, 1In the absence
of Hall terms (V = 0; see Eq. (7)), the growth rate (Y,w) equals ‘

(2.71 x 10’3, 0), and the resulting mode 1s recognized to be the "odd mode"
of Finn and Manheimer([12]; that is, the radial velocity is an odd function
with respect to the singular radius. As v increases, Y decreases
monotonically until v I 0.12, at which point Y becomes negative and the mode
has been stabilized. At the same time w increases until it hits a maximum at
v = 0.07, at which point it begins to decrease slowly. 1In all cases

considered the odd mode is the fastest growing mode.

A similar situation occurs for m = l,n= -6 and S = 103. aAs v
increases from 0 to 0.5, Y decreases monotonically until the mode is
stabilized. As with m = 0 above, the odd mode is the fastest growing mode.
These results are in qualitative agreement with Delucia, et al., who study
the effect of Hall terms on resistive instabilities in the Spheromak{13].

If the temperature perturbation is included, however, the situation
becomes more complicated. For zero thermal conductivity, whenm = 0, n = 25-
and S = 104, then in the absence of Hall terms Y = 2.97 x .103. As the Hall™
parameter V increases, the real part of the growth rate decreases until about
V = 0.064, at which point ¥ = 8 x 1074, During this time the odd mode has
continued to be the fastest growing mode. However at v = 0.064, Y suddenly
gtarts increasing and eventually reaches 7.1 x 10'2, more than twenty times
its value at Vv = 0 (see Fig. 3). It is now the even mode which is the

fastest growing mode; the odd mode has presumably been stabilized.

This increase in the growth rate may be negated through inclusion of the
thermal conductivity. For v = 0.2 (applicable to ZT-40) and X = 0, the
growth rate (Y,w) is (8.66 x 10'3, 5.68 x 10'3) and the even mode prevails.
As Kk increases from zero, Y decreases monotonically and w increases
monotonically until ¢« = 1.05 x’10'4, at which point the mode is stabilized.
The even mode does continue to prevail, however. It is difficult to attach a

significance to the value of ¥ since this model assumes isotropic thermal
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conductivity, which is known to be a rather poor approximation. A similar

situation occurs form =1, n = =6 and S = 103.
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1.
1

(a) t=0 ' () t =74

Fig. 2 Contours of ¥=J*B/AgBZ for the standard Spheromak case; r is
the horizontal variable and z 1s the vertical variable.
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1. Introduction

A numerical method for solving a system of 3D-MHD equations
is proposed in this paper.

The method is based on and formulated with the finite element
method (FEM) with elements in motion, that is, arbitrary
Lagrangian and Eulerian (ALE) method.. This method is called
"FEMALE". | |

Numerical methods for solution of ﬁhe nonlinear hyperbolic
system stemmed from Lax's work[ll. The two-step Lax-Wendroff-
scheme which is currently and widely used, is régarded as one of
tough method of numerical solution. It contains Friedrichs scheme,
which introduce large diffusion. The discretization which is
necessary fof numerical simulations, divides fluid into three
dimensional bodies, and large energy input to them near the

discontinuity makes kinetic energy of bodies large. Then these

"bodies become oscillatory and overshot.

To suppress this overshooting, the kinetic energy have to be
converted into thermal energy.

This is just the reason of introduction of numerical
diffusion. However, the discontinuity disappears because of this
diffusion. 1In studying MHD plasma quantitatively, it is importanf
that we have to discriminate differences between physical and

numerical diffusions in computation. For this purpose, we

propose here a finite element method which is little or no

numerical diffusion.
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2. Formulation
2. 1 Basic equations

Our basic MHD equations can be written as a conservation form,

Q
(an]

+ div F(u) = 0 . (2 - 1)

[+¥]
ct

U is a 8-column vector whose components are unknown scalar

variables:

U= (p, pv,e,B), (2 - 2)
where

g = % pvz + % p + 7%;

T denotes transposition of matrix, and other notations have usual

meanings. F is a flux vector corresponding to U ,

?= (p;; ﬁ ’E:E*)T ’ (2 - 3)
where
s o+ BT oW - LB
:p o} - —
Zuo Ho
- - 1 +> 2 ->
gE(p+s)v+u—(vLB + nJ xB)

E*sﬁ-ﬁ?_+3—(($§)'r-?*)

Hereafter, we choose the resistivity n = 0, or we assume that

eq. (2 - 1) is hyperbolic.
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2. 2 Shape Functions

The space @ , occupied by plasma, is divided into Ne elements

where Fé is the grid velocity. Eq. (2 - 6) shows the elements

are ALE. When Vg = 0 then method is Eulerian, and when Vc =V

o

then it is Lagrangian. Though this grid velocity is arbitrary

here, its value has large effect on accuracy of computation.

Re :
Ne
Q = U Re : (2 - 4)
e=1
and they are not overlapped. To define elements, N nodes are
defined. Let the position of the u-th node by iuen. A series
of N-functions is introduced,
) _
hE, v, of &, t), »-oe, oNGE, ) (2-9)
" such that ToH(X, t) = 1, Xeq,
u
oM (x,, t) = ¥V,
A
where 6"V is Kronecker's delta. We assume that ¢“(§, t) is a
class of functions which satisfy
3% L ¥ grad o* = 0 (2 - 6)
at g g ’ .
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2. 3 Basic equations for numerical simulation

For the conservation equation (2 - 1), we interpolate U, F

d v_ as
an g
Uz U= MR, DU (), (2 - 7a)
u
F-F = § "X, t)F. (t)e. , | (2 - 7b)
= . 1 1 .
u,i
-> - > T u - -
Ve Z Vg I 07 (X, vy, (0)€; (2 - 7¢)
U,1
where gl is unit basis vector. U', F' and ?c’ coincide with U,
F and v at the nodes. For simplicity we drop the dash in what
follows.

According to Galerkin method[zl, we take
[ daa oY + div E) = 0, (2 - 8)
Q

and substituting eqs. (2 - 6), (2 - 7) into (2 - 8)

uVv dUV H
\Z,C! at—=C (2‘9)
where
cH = f d9¢u(v grad U - div. F)
Y]
= HV . gH
= g R gv S
oMV = [ dae*
Q
-ﬁu\’=z UVDU
P

| S UV
8 = 1 85 Fyy
V,1

?
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BYVP = [ deeMeVgradef
Q

g¥Y = [ daeMdiv(¢“e,)

1 Q 1

oV, B*VP and Bgv are geometrical coefficients independent of Uu'
Eq. (2 - 9) is a system of ordinary differential equations for Uu’

if $gv is specified. The nodal position is obtained by.solving

->
dxge .

=7, (2 - 10)

o

Eq. (2 - 9) and (2 - 10) are our basic equations for numerical
simulation, and solve these ordinary differential equations under
prescribed initial and boundary conditions.

The properties of eq. (2 - 9) should be noted. Taking ¢-
linear function in the one-dimensional problem, eq. (2 - 9) is

equal to the conjugate approximation[sl of equation

du

v sx (2 - 11)
oU

g{l is equal to the

compact differencing[4J of eq. (2 - 11) which is accurate to

o((ax) Y.

and if equally grid spacing Ax is taken,

Finally, ICED ALE equation[S]

d I . > =3
deu = [ dediv(Uv_ - F) (2 - 12)
9T e Re £
is regarded as a special case where ¢“(§, t) = 1 for §sRe, and

vanishes otherwise. This can be seen by noting that eq. (2 - 9)

is written as
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g?sj; dagtu = szdm“divcuvg ST . (2 - 13)

3. Optimization of Accuracy with Specifying the Grid Velocity

3.1 Effects of grid velocity

In many cases, Vg can be arbitrarily specified, and eq. (2 - 9)
‘can be numerically integrated. However, when one or some kinds of
discontinuities exist, the value of $g is crucially important.

As the example, the problem of single rectangular pulse

propagation can be considered.

2&4-80‘,.:0

5t 53X , V = const. . ' (5 - 1)

When vg # v , the computation results show that the fluctuation

is observed around discontinuity. When v_ = v , this fluctuation

o

disappears.

The application of eq. (2 - 9) to eq. (3 - 1)

dp
uv v _ 1 .
Lo™ ge = 5 (g - oy - o)
*20vg, - VIleyey T oPyl)
* gy WGy s D (5 - 2)
dp

il

thus- for vg =V, g 0 . This explains above results.

3. 2 Optimization of accuracy with generalized Rankine-Hugoniot

relation

The results of previous section suggest us that one of the

best.way of determining the value ;g is the one which CH = 0 in
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eq. (2 - 9).

- Here we examine the shock tube problem as non-trivial example.

We should note that

c! = [dag¥(V -grad U - div F) = 0, -39
Q

is the FEM representation of generalized Rankine-Hugoniot relation

(R-H relation). It should be noted the relation (3- 3) lead us

to the best way of determining grid velocity in the pulse propaga-

tion problem. We consider one dimensional shock tube probelm,
where at t = 0

X
‘uCx, 0) = | 1O 3

URO X
We shall findAthe solutibn for t > 0. CH is

e = fdx¢“(vg g% - %;J . (3

Let the discontinuities, the shock front and the contact

discontinuity, be at xu,

U U

Lt 8(x - x) (Ug = Up) " (3

)
[}

FL + 8(x - xu)(FR - FL) . (3

8(x) is Heaviside function. UL’ UR are value of U on the left

4)

5)

6a)

6b)

and on the right, respectively, and have to satisfy the generalized

Rankine-Hugoniot relation:

(Ug - U)S = Fp - F

R L’

(5 - 6)
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where S is the speed of the discontinuity. Substitution eqs.

(3 - 6) into (3 - 5) yields
= (U - UL)‘vg(xu) - (Fg - Fp) (3 -7

and ¢ = 0 if va(xu) = S . Thus, C* vanishes in the shock tube
problem, if vg-is the shock speed at the shock front and fluid
velocity at the contact discontinuity.

For the rarefaction wave, %% is an eigenstate of Jacobian
oF

30 with eigenvalue § = % » which is a velocity of single wave, and
ol aF :

Vo 3x T 3% - (Vg - €) %g = 0 (3 - 8)
if vé =& . Soeq. (2 - 9) is reduced to

dUu

_at—=0 (3 - 9)
dx u
q-%_z' Vgu (_IJ = 1, 2’ eeee N)

in the all region of the shock tube problem if vgu is a local

wave front velocity. When vgu is exact, then numerical solution

Uu is also exact.
3. 3 General case

Unfortunately, C* = 0 is not generally satisfied by a single
v , Since ¢t =0 (0 =1, 2 ¢+« N) is 8N linear simulateneous

gu

- ' . s - .
equations for determining 3N unknowns, Vv From previous

gu’
discussions, we require that ?gu is determined by the condition

) HC“lI2 is minimum. Usually, this condition does not determine
u
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Vg uniquely, so we also require that § ”;gdlz is minimum among
?r‘g which minimize ] [C¥| ,. ¥

As numerical ;ethod to this end, we used the Conjugate
Gradient method (CG). It is known that this method can obtain
Moore-Penrose solution of the simulateneous equations, and this
solution satisfy above condition if starting value of iteration
is taken to be zero. After Vg is obtained. Eq. (2 - 9) is solved
by using Incomplete Chblesky-Conjugate Gradient method (iCCG),
then differential equations for Uu are solved by using the implicit

Adams method.

4., Application

We developed the 3D code, ATLAS, based on the FEMALE method.
The element is tetrahedron.

To check the ability of this code, the 3D shock tube problem
in which the waves propagate in z direction is simulated. The
numerical solution Fg of R-H relation, ¢t =0 , agree with- the
local wave front velocities. It needs careful attention to
determine ;g-numerically. The results of this simulation are
shown in Fig. 1, where solid line is exact solution and dots show
numerical one. As the references, we show the results of

Lagrangian (?g =,¢) and Lax-Wendroff methods in Figs. 2 and 3,

which are obtained by 1D code.
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RAPIDLY CONVERGENT ALGORITHMS FOR 3-D TANDEM AND STELLARATOR EQUILIBRIA

IN THE PARAXTAL APPROXIMATION

BRENDAN McNAMARA,

Lawrence Livermore WNational Laboratory, University of California,
Livermore, California.

Tandem and stellarator equilibria at high § have proved hard to compute and
the relaxation methods of Bauer et al. sChodura and Schluter“, Hirshman 3,
Strauss 4, and Pearlstein et al. have been slow to converge. This paper
reports an extension of the low-8 analytic method of Pearlstein,Kaiser, and
Newcomb to arbitrary B for tandem mirrors which converges in 10-20 iterations.
Extensions of the method to stellarator equilibria are proposed and are very
close to the analytic method of Johnson and Greene - the "stellarator
expansion". Most of the results of all these calculations can be adequately

described by low-8 approximations since the MHD stability limits occur at low.

8. The tandem .mirror, having weak curvature and a long central cell, allows
finite Larmor radius effects to eliminate most ballooning modes and offers the

possibility of really high average B. This is the interest in developing such’

three-dimensional numerical algorithms.

2. _CONNECTION BETWEEN KINETIC AND FLUID MODELS

Tandem mirrors have very large mirror ratios and large flux-surface
distortions and so any numerical representation of the equilibrium must use the
field 1lines as the basis of the coordinate system to place mesh points where
they are needed. This is done by defining the magnetic field in terms of two
scalars (¢,8) as

B = V¥ x Vo (1)

which ensures that VeB=0. In a Stellarator the field lines lie on magnetic
surfaces which naturally identify a set of flux surfaces, Y. In tandem mirrors
the £field 1lines are open and there are no natural magnetic surfaces. However,
the systems are designed so that confined particles move on closed drift
surfaces and, in many designs, these are arranged to be the same surfaces for
almost all particles whose orbits intersect the same field line. These are the
so-called omnigenous drift surfaces of Hall and McNamara 7 and are physically
the relevant choice for ¥. The second flux-line coordinate, 9, is an angle-like
variable chosen to satisfy eqn.l. Even in systems which are not everywhere
omnigenous for particles moving in the vacuum field alone it is speculated that
the plasma transport processes set up radlal electric fields which re-align the
drift orbits much closer to an omnigenous set and this is to be expected also in
toroidal systems. The assumption of omnigenity allows one to connect the
microscopic distribution functions with macroscopic density and pressure
profiles most easily. Most fusion systems now have neutral beam or high-power
RF inputs which directly affect distribution functions and thereby affect the
equilibria, effects which need to be modelled.



114

Tandem mirrors tend to self-anneal for a number of reasons which need
further explanation. In stationary electric and magnetic fields the strong
constants of motion of a single particle of charge, e, mass, m, and velocity, v
are the energy, '

H = %-m Vaz + uB + ef . ‘ (2)
and the magnetic moment,
. mv)

= ' 2
e e (2)

The magnetic moment is an adiabatic invariant and is destroyed by plasma
oscillations at or above the cyclotron frequency, but is not affected by the
global geometry of the field, provided the Larmor parameter, € = (Larmor
radius)/(radial scale) is small. The longitudinal adiabatic invariant, A, is
the action in the bounce motion,

A=[ v a1 ‘ BNE)

- %“‘ -uB - e0)l/24ds (W)

In the paraxial equilibrium theory 10 y¢ is found that B=B(Y,8) in a mirror
cell at high B. (8= the ratio of plasma to magnetic pressure). The distance s
along a field line 1is approximately the distance, 2z, along the axis of the
system and so A = A(H,u,¥) if ¢ is small. The drifts are dominated by the VB
drift and the surfaces are locally omnigenous.

At low B, B is independent of ¥ and so the drift surfaces are determined by
the difference between s and z due to the weak field line curvature. At this
point I introduce Newcomb’s 10 potation for the covariant components of the
field line curvature,

k = 595
= RV + EOVO N ¢))

Then, it can be shown that the net drift off a surface, ¥, in one bounce of
a particle is

8% = =B (vy% +up) 30 (6
e Vn
If B is symmetric about the center of this cell then the integral will

vanish 1f E0 1is designed to be antisymmetric and the drift surfaces will be
omnigenous.

In the paraxial limit the potential is determined by the requirement of
local quasineutrality and then ¢=0(B,¥). Even in a low-8 mirror cell which is
not omnigenous in the vacuum magnetic field, omnigenity is restored by the
potential, determined by radial losses and events in_neighbouring cells. An
example of just such a case is the GAMMA~VI experiment 11, in which the end
plugs are aligned so that fans of field lines enetering the center-cell from the
plugs are both vertical. There are NO confined magnetic drift surfaces in the
centre cell and so the choice of ¥ is determined by the drift surfaces of the
high-temperature plasma in the plugs. These are omnigenous locally, with a
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circular section at the midplane of each plug. These cicles map into an
elliptic cross-section flux tube in the center cell. When the center cell is
filled with plasma the radial losses lead to radial poteatial drops of %= 3-4
Ty. and the drifts are dominated by the EXB drifts and so the total system
becomes omnigenous. Reasonable models of the total pressure tensor can be given
in the forms

P =P(¥,B)
= w(¥) (p, (¥,B) L+ BBH, (¥,B)) (11)

where most of the ¥Y-dependence has been extracted in the density profile
factor w, and_P depends only on weakly varying functions like the mirror ratio,
or on the radial variation of ¢. The electric fields have not been included in
the rest of this paper but will be essential in a fuller model of the tandem
mirror equilibria.

3. _THE CURRENT BALANCE ALGORITHM.

Newcomb and Strauss have derived the paraxial form of the equilibrium
equations from the static and dynamical equations respectively. I therefore
present only the most direct definition of the required relations. In additiomn
to the requirement that Ve¢B=0, which is satisfied by the representation in eqn.

(1), the three-dimensional equilibrium of a guiding center plasma is described-

by the force-balance equation,

JXB = VeP (12)

and Ampere’s law,

VxB = J (13)

In Strauss’ reduction of the dynamical equations, the leading order equilibrium
condition, O(Xo), comes from the perpendicular components of the force-balance.
Eqnse 12 and 13 can be combined to give

v (8%/2 + py) = k(B2 + b - py) (14)

In the paraxial approximation the curvature is small, O(Az), and, on
dropping the curvature, eqn. 14 may be integrated to give

B2/2 + p, = B, (2)%/2 | (15)

This 1s to be solved for B(Y¥,z) to establish perpendicular pressure
balance, where z i{s the distance along the axis of the system and B, 1is the
vacuum field on the axis. The next order equilibrium condition is obtained from
the parallel component of the force balance, which is
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beV + P=0 ; , : (16)

This arises from conservation.of (H,u). The pressure gradient 1is now
determined in £flux coordinates, along with the perpendicular current flow. It
remains to find the parallel current and the actual shape of the flux surfaces.
At this point, the Lagrangian representation of the field is introduced in terms
of the position of a field line as

X = K(¥,8,8) | an

so that
B = BB ='§fB ’ (18)

and X’=0X/3ds is the tangent vector. The parallel current per unit flux, i,
is defined as

B+ J =182 19)

= Bz' . Vx_}g’ B

BX"* (VBXX’ + B VxX’)
- Bzéo.vx}—('o ' (19)

In the paraxial approximation only the axial current contributes and so

ax” 3y’
4 = 1¥,9,2) = 5 - 5
= B([X’,X] + [Y’sY]) (20)

where (x,y,z) are Cartesian coordinates and (X,Y,z) the position of a field
line. The conversion to (¥,0,z) coordinates introduced the bracket notation for

_3fdg _ 3fdg
(£,8] = 3536 ~ 300¢ : (19)
= fy gg - fg 8y (21)

and the Jacobian, in this approximation is

3 = [X,7] | (22)

The definition of the parallel current involves only local quantities, the

position of the field lines, but the equilibrium equations also demand that

=VeJ, + BV 4 (23)
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After substituting for J; from the force balance eqn. (12), and a little
maniputlation, i is found to be the field~line integral

1l s 7, 2,41
1(¥,8,8) = = [Z; bk x V(0B );§ +ip » 24
where
PL=P
o =1+{2h (25)
B2 .

The 1initial plane, s=-L, can be an arbitrary plane in the vacuum outside
the tandem mirror where the integration comstant, i_;, is zero. In the paraxial
approximation,

- = Lz 3 dl 3
1, = 1(¥,8,2) = —fZ; 220 =% 2 +0(A°) (26)
where
p=(pL +0py)/2 : (27)

The current balance algorithm moves the field lines to equate the local
expression, (20), and the integral expression (26)

This is equivalent to setting the integral of the parallel component of the
curl of the force balance to zero in Strauss’ dynamical model.

The starting position for the tandem-mirror field lines is obtained from
one vacuum field line close to the axis of the system of an actual coil
configuration. This gives the field streogth, B, (z), and the ellipticity
factor, c,(z) for the field line coordinates

X =p cos 8 e Cy(2)

Y = p sin 6. e Sv(2) (29)

The radial factor, p, is chosen to give the correct Jacobiam, (13), with
B(Y,z) calculated from the pressure balance, (18):

2 ¥ _df
P 0 5.3 (30

This choice of p takes care of the diamagnetism of the plasma and usually
provides most of the displacement of the field 1lines from their equilibrium
positions.
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Subsequent movement of the field lines must be done incompressibly so as to
preserve the pressure balance,(15), and also the Jacobian, (22), conservation of
which 1s used as numerical test of the accuracy of the calculations. Such a

motion is determined by a velocity potential or two-dimensional ‘Hamiltonian’,
u, for the (X,,Y) motion in each z-plane as

dX(¥,0,2)/dt = Vu x z (31).
If the displacement is small then

X = Xy + V(Ju dt) x z + 0(a%?)

+V0 x z (32)

g@

or, in (¥,8,z) coordinates,

X = Xy + B[X(,U]

This may be substituted into the current balance eqn.(28), and 11
linearised to give the equation for U

4

B
(1g - 1p) + [Uy1g] - BIX(,BU(Xg,—

2 (BU)" _
v2 2= 1

'-B[YO,BU[YO,BB']] +0(u?) - %Ip : | (34)
where . _
15 = B([Xg»Xg] + [¥g,¥l) (35)

Since it does not linearise conveniently, the integral is evaluated, to all
orders in U, from the field line positions at the previous step in the iteration
process. The right hand side of .(34) 1s evaluated on each plane and the
elliptic operator 1is inverted. The boundary conditions for the tandem mirror
are that U=0 on the symmetry planes, 9=0,7/2, and at a distant wall, W=wwall'

The last piece in (34) is needed to symmetrize the numerical representation
of the equation. The tandem mirror has ying-yang symmetry about the mid-point
and so computations are done only in an octant of the configuration. By
definition, every term of (34) has this symmetry exactly, except for the
integral, i_, which is done from z=-L. Without the symmetrizing addition, which
goes separately to =zero at equilibrium, the midplane -is driven away from

equilibrium. Needless to say, some meditation was needed to introduce this
correction to ther numerics.
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A final integration then yields:

L lrz pan 3(Y,0)
¢

The 'incegra:ion constant, ¢, on each field line is now determined by the
condition that the 1integral form of the current should wvanish in  the
symmetrically placed vacuum at z=+L.

Wy Wy
dz

45

d

- gz

B

2

Jl

1% "
(%09 Xg + Ygp¥0)

?|
2]

N
ol

4l:

¥ (B1RqUplg Xg + Xgo (BIXgoU )" + (X41))

+ abgy + bbyg + cdy + ddg + e + 0(U?)
=0 3N

The function ¢ and 1ts derivatives come out of the integral, yielding a
second-order parabolic equation! This. is somewhat strange £for an equilibrium
problem and is a consequence of the paraxial approximation and- the conversion of
the corresponding axial boundary condition on the dynamical formulation into an
integral constraint. It does wnot occur in the fully three-dimensional
treatments (cf. Hall and Mecnamara). The coefficients (a=e) are the
corresponding pieces of the integrals over U, and need not be written explicitly
here, except for “a’ which turns out to be the flute stability integral

2R P
dz ¥
a éTT | (38)

This would vanish at the flute stability boundary, with dire consequences
for the algorithm , but this would always be at betas above the stability limit
for ballooning or rigid-displacement modes.

The factor 1/(wy), is 1inserted in the 1integrals to keep all the
coefficients finite near the plasma boundary, where the whole equation would
otherwise vanish, leaving no useful means of defining ¢. This would also allow
the equation to be extended into the vacuum region but ¢ will then never satisfy
any particular radial boundary condition. There is no current i1in the vacuum
driven by plasma pressure and it seems incorrect to use the constraint on these
field lines. This leaves ¢ completely unspecified in the wvacuum and it can
therefore be chosen to be any smooth function which matches to the plasma ¢ and
which satisfies =0 at ¥=¥_ ;.
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The other boundary conditions on ¢ are therefore ¢=0 on the symmetry planes
8=0,7/2 and, because of the overall quadrupole symmetry of tandem mirrors, at
8=1/4, about which ¢ is actually anti-symmetric. Only one boundary condition in
the Y-direction can be specified in the plasma, ¢(¥=0) = 0, and this parabolic
equation is then integrated outwards from the magnetic axis. This completes the
definition of U and the field line displacements needed to achieve equilibrium.

This completes the description of the basic algorithm.

4. APPLICATION TO STELLARATORS.

I have not written a code for the Stellarator version of this method but
believe it is a straightforward modification. The first change 1is to imsert amn
appropriate analytic guess at the initial conditions, similar to eqns (29-30).
The next point is to confine the problem volume to one period of the Stellarator
and apply periodicity conditions to the calculation. Thus, the integration

constant, i_;, in eqn (24) is a given function of ¥, corresponding to the net
induced current flowing on each surface.

The constraint on the parallel current flow is that it be periodic , which
yields a pair of conditions on the integration constant ¢ and its surface
average. Thus, 1 (? »0,L)=1 _(¥,0 2L)=i (¥,9,nL).  The second part of this leads
to the requirement that the gurface average of the parallel current should equal

(W). The £1irst part 1s constructed by iterating the mapping of the field
line positions at z=0 to their positions at z=L to get the locations at =z=2L.
The periodicity requirement then gives an eqn similar to (37).

5. _A TMX-UPGRADE EXAMPLE

This particular example was the first case successfully brought to
equilibrium by L.D.Pearlstein with the dynamical code in some 11,000 time steps.
The result shown is very close to that and both are close to the TEBASCO result
from the low-8 analytic theory.

The first figure shows the axial magnetic field profile as Brg(Zepm) -

Improved accuracy is obtained by stretching the z coordinate and Fig2 shows
B(s(z)). The 4initial analytic guess at equilibrium gives the parallel current
profile of Fig. 3 at z=0 from the local expression and the profiles of Fig 4.
from the integral. They are far from agreement and the local form shows current
flowing in the vacuum. The axial variation of the local and integral currents
are shown in fig. 5 for a field line in the plasma and one in the vacuum. .The
differences supply most of the source for eqn. (34). The initial flow patterms
in the mid-plane, which is all octupole and higher, and the end plane are in
Figs 6,7. The average beta in a plane has a maximum of 8.3%, peak central beta
being 25% with m=(1—W/W 2. This case converged in ten steps to 1% accuracy
everywhere. Current balgnce is shown in fig 8 and the convergence behaviour in
Figs. 9-12. Note the total current constraint is 0(8) smaller than the other
measures. Flux surface shapes in equilibrium show the characteristic diamond
distortion for a stable equilibrium.
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These results agree closely with the dynamical code and quite well with
Tebasco, the low-beta analytic equilibrium calculation. The  principal
differences are that the parallel current is about 157 higher in the finite-B
calculation and the geodesic curvatures are somewhat -larger. The principal
curvature, and hence the MHD stability are hardly altered by the plasma.

At higher betas the code may fail to converge because the initial guess is
-8imply too far from the answer. Also, in tandems with more cells , numerical
accuracy becomes a problem. Work is continuing on extending the domain of
applicability of the code. :
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Magnetic Equilibria for Square and Circular EBTs

- C., L. Hedrick and L. W. Owen

For closed magnetic field line devices, scalar pressure MHD
implies that the pressure surfaces are the same as surfaces of constant
¢ df/B. This relation can also be developed from the drift kinetic
equation. Here we contrast this result with that obtained from the
bounce averaged drift kinetic equation. We consider a collisionality
regime such that the collision frequency is much less than the bounce
frequency but comparable (within an order of magnitude) to the poloidal
precessioh frequency. Under these circumstances it is reasonable to
assume that scattering causes the distribution = function to be
approximately isotropic and that J is not conserved on a drift time
scale. This assumption allows us to make a direct comparison to the
MHD results which would not be possible for lower collisionality where
the distribution function would be anisotropic and approximately a
function of €, p, and J. Our motivation for discussing this.
collisionality regime lies in its possible application to the EBT-I/S
and NBT-IM experiments as well as to configurations projected for the
near future such as the ELMO Bumpy Square.

There are several ways of obtaining the MHD result that the
pressure surfaces are the same as surfaces of constant ¢ d//B for
closed magnetic field lines. One of the algebraically most compact
procedures fol lows from the equilibrium algorithm introduced by Lortz
[1] (extended to tensor pressure by Grad [2] and others [3], [4]).
This approach makes use of the fact that V < J = O_bnmpiies that a
Clebsch representation can be used for the current: j = Vg X Vp. By
extracting the perpendicular current from this equatlon and comparing
it to that obtained from pressure balance; j, = B x Vp/B2 one finds
that 8¢/0f = 1/B. This result allows one to impose single-valuedness
of the current in the Clebsch representation and obtain

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Ehergy. under contract No. DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc. '
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V&—X Vp:O (l)

A second approach, which more closely follows the procedure which
is convenient for kinetic treatments again begins with the time
independent expression of charge conservation:

V‘]’:O (2)

Here one begins with the observation that V e T" = Bg%(j"/B) and
integrates Eq. (2) around a field line to obtain

§G4V-T =0 3

+ .2 + 2 . . .
From jXxB=Vp, j, =BX Vp/B?; which yields after a little
manipulation

-

Vej =Vpe [VxB+ 28 x vznp]/B? (4)

Noting that Vp is perpendicular to B one next uses the vector identity
- =
for V(B * B) to obtain

Vel =%§- [Bx (& + v2nB)] (5)

where the curvature vector is given by

Z: (B ‘V)B ‘ (6)
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At this juncture, it is convenient to introduce the Clebsch
representation for the magnetic field:

B=VaxVs | ©

and note that o and B are constant along field lines. Since p is
constant along field lines

Vp:%&Vu+%§-VB . ()

and Eq. (5) becomes
Vel =R BT Rewe) | )

where

U, = (v8 x B)/8?

(10
Ug = (B x Vo) /82
and have the properties ﬁhat
Uy *Va=1; U ,evp=0
(11)

- -
UB°VG.‘=0 R Uﬁ'Vﬁ:L

Inserting Eq. (9) into Eq. (3) and noting that p and its o, and B
derivatives are independent yields



129

B g4l oo @ utod)] +%%¢%[ﬁa .« (k+VB)] =0 (12)

One next notes that for closed field lines and arbitrary S

%6&5:—6&56(!. l?__v[ns]

(13)

3 - T vl

s s=+4dsly [€-Vin 9]
Setting S = 1/B in Eq. (13) one finds that Eq. (12) becomes

BB cdl Bp D il '

% BB Pa’s - (14)
Equation (14) is simply Eq. (1) written in component form.

We now turn to the drift kinetic equation [5]

of; . >

EL* vy * Vi + Vpj + VF; =C; ‘ (15)

|

Here fj is a function of €, u and ¥, the position of the guiding
center. (We will soon consider time independent solutions and drop the
time derivative of fj.) The previous MHD analysis suggests that we
integrate over velocity to form the lowest moment of Eq. (15) and then
multiply by the charge, ej, and sum over species to obtain the charge
conservation relation
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.§9_+V°})=0 . ' | (16)

which reduces to Eq. (2) for time independent solutions. Here

Ve -j’" = Ze‘j Jd®v v ij = Zej nj<v“>j A (17)
' J
and
*® ? - . 3 s @ .
Vel = ?el [d vaJ vt (18)
with
Vp; = b x [2¢%¢ + (1 - &)Vin 8] (19)
¢
and
SE V"/V , _(20)

Note that for simplicity e have not included an electrostatic

. potential and the resultant E x B drifts. [Retaining such terms leads

to small corrections of order (p/en) ed/T times the ratio of scale
lengths — usually negligible because of quasi-neutralif.y pfen << 1.]
For isotropic distribution functions, Of; /&J. df:/0¢ = 0 and the
only pitch angle dependence in the integral of Eq. (185 occurs through
the form factor [2g2n + (1 - )V B] appearing in Eq. (19).
Accordingly, it is convenient to define an average drift velocity by

V> = 51 ds Vp (21)

or
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p> =-éT[§B x [« + Vn 8] (22)
and note that since
-‘-;‘-p =Y J dav%mﬂfj (23)

(24)

Inserting Eq. (22) into Eq. (24) yields the MHD result, Eq. (5),
and one again obtains Eq. (14). It is instructive to follow a slightly
different procedure. If we form the $d//B average of the charge
conservation Eq. (16), the divergence of the parallel current vanishes
and in steady state '

Y

1 df :
roAS AT
8

B>
:‘Bivpo[Q D]:-o (25)

B 4‘% | (26)
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Thus if we define

dl . -5 - . -
<ip>> 7*@ 5, 6L Vo - dpp + Ug 2 wp - i} (28)
B -
then
. -%-T L E " 51 -
V> = EFI'] ,;d_’L ] (29)
B

and Eq. (25) can be written

3,
p o FZT_«VD»] =0 (20)
or
-’
Vp * <> = 0 | (31)

Equations (31) and (29) may be interpreted as meaning that 4d//B is a
constant of motion for an "average particle". The relation between p
and U may be interpreted as meaning that the pressure is constant on an
"average" drift surface.
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We notice that the ¢df/B average arose because v0f /o in the
drift kinetic equation [Eq. (15)] led to V o J" in the charge
conservation equation. We also notice that f in Eq. (15) is a function
of €, w, o, B and £. For cases where the collision frequency is small
compared to the bounce or transit frequency we expect that the
dependence of f on Z will be very weak so that Bf/al ~ 0. If the
relation Bf/3f = 0 holds for all species then V o j" =0 and the
motivation for performing the §d//B average vanishes.

For collision frequencies well below the bounce frequency we
expect that the distribution function will satisfy (approximately) the
bounce (or transit) averaged drift kinetic equation:

af: g . -
i ] v rjenen) ¢ @

?U 235~ T 33 (33)

As before we can obtain the equation of charge conservation by
multiplying Eq. (32) by e, integrating over velocity space and summing
over species. The time independent result is

Vel = Lej v <Voj>b - V) = 0 (34)
j

We notice that if colI|S|ons are so infrequent that C; can be neglected
in Eq. (32) then <ij>b Vf‘| =0 and Eq. (34) is automatically
satisfied. On the other hand if collisions are so infrequent that J is
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approximately invariant, one cannot construct an isotropic distribution
function for all a and B — except in certain highly degenerate cases.

In some cases of interest the collision frequency is comparable to
the poloidal precession frequency but wel! below the bounce and transit
frequency. In this instance it is possible to construct an isotropic
distribution function for all a and b. This intermediate collisional
case allows us to draw comparisons between the pressure surfaces
arising from Eq. (32) and those arising from Eq. (15) or MHD. We thus
suppose that fj is independent of the adiabatic invariant p:

fj = fj (e.a,B) | (35)

As Before, the lack of pitch angle (or w) dependence of f: allows
us to pass it through the pitch angle integral implicit in Eq. (34) and
we obtain the analog of Eq. (31):

Vel =V e iy (36)

Note however that the average drift velocity in Eq. (36) is now given
by '

iy = (1 }Ua{l d¢g <?D>b . o
. (Em,, )
+Up 61 dep <y - R (37)
where ﬁ;, Uﬁ, Vo, VB and
$o = V1 - uBp/e

are to be evaluated at the arbitrary point, ib, where Vp is evaluated
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in Eq. (36). The pitch-angle like variable &, has been chosen to make
the correspondence to the earlier formalism more transparent.

In comparing Eqs. (31) and (36) we see that the o-component of
<<VD>> in Eq. (28) is given by

KVp>>g = }E g i J\dg Vo * ng (_m ) (38)

B

while in Eq. (37) we have

<<ﬁD>b>O. = ( i

1 dl o .3

mép
-

and similarly for the B-components. We are thus led to invert the
order of integration in Eq. (35). To facilitate this, we note that

p.:%(l $)=Bi(1-c5) (40)
so that

dd .. _ 150 _1 Yy

59 = B dfdsy = ‘BETHP' dd¢ (41)
and

g = 1@2) [ﬁ] {l o Vy,0 6 ;ﬁ (Va + Vp) (42) -

imv Bo 5 Il

or

Kp>dy = 61 aso 9y o) ] (43)

-imv
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and similarly for the B component. -

We notice that Eq. (43) would reduce to the bounce averaged case
Eq. (37) if the weighting factor, g, were unity. However as given by
Eq. (44), the weighting factor associated with the relatively high
collisionality regime of MHD is not constant. Suppose that the point
io corresponds to a minimum in B (along a field line). Referring to
Eq. (44) we see that if we attempt to apply the high collisionality (or
MHD) formalism to the intermediate collisionality regime, trapped
particles are weighted too weakly (v,g). We also note that T becomes
large for transitional particles, so that the high collisionality (or
MHD) formalism weights transitional particles too heavily.

The net effect then is that the MHD result overestimates the
pressure shift when the collision frequency is comparable to the drift
frequency. For EBT-I/S, this overestimate is uearly a factor of 2 too
large. For EBS where all particle orbit shifts are small, the pressure
shift is also small. Applying the MHD result makes a larger percentage
error than in EBT because transitional particles contribute relatively
more to the pressure shift and MHD overemphasizes these particles. For
EBS the MHD result for the shift is a factor of 3 or 4 too large.
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The Total Dereduction of the Reduced Equations
R. Izzo, D. Monticello and J. Delucia

Princeton Plasma Physics lLaboratory
P.0. Box 451, Princeton, NJ 08544

We have recently reported on the expansion of the Magnetohydrodynamics

(MHD) equations to 4th order in the aspect ratio.’

This high order expansion
(2 orders past leading order) was necessary in order to calculate correctly
the stability and nonlinear evolution of the internal kink. We report here on
the expansion of the MHD equations to sth order in the aspect ratio. Our
motivation is the study of finite beta resistive modes. The work of Glasser,

Greene, and J'ohnson2

has shown that the coupling of the stable interchange
modes to the unstable tearing modes can, at high enough temperature, lead to a
stabilization of the latter. This stabilization is not in the 4th order
redﬁced equations. The modificatons of_the‘4EE.order equations are quite
simple. We use 6 scalar quantities to define general velocity and magnetic
vector fields: |

vV = R2vuxV; *V,x+R VCV; ' | (1)

B=VWVyx Vg + = g_i)+1v;. (2)

1
R V.L(

Using a model density p ~ 1/R2 we find the following modifications to the ath

order equations (see Ref. (1)),

——=-TPY .V, : (3)

£):) v
2 2 2 L " 2 1o
IV I = - - —_— - - —_—
Vl R le R JC(BXC) + I 3c IBR; R 3t ! (4)



139

where

2
VLO-RVuxVZ;.

The 4th order equations contain only a V «V,, in Eq. (3) and the V,, in Eq.

o
(4) was dropped due to a small inertia approximation. The inclusion of the
term VeV gives the sound wave that is necessary for stabilization of the
tearing modes. However, dropping this compression in Eq. (4) means that we

have eliminated the unwanted fast wave that travels in the poloidal plane.

Next, we take ohms law as

E+ VxB=nj (5)

and make a subsidiary ordering of these equations in n. By ordering the

variables as

1/3
Y~n/,
u, ¢, ¢"‘1r
I, P, V.~
’ r Vg YI

B°V,X’f~Y.

We find that we are able to recover the equations of Coppi, Greene, and
Johnson,3 for finite beta tearing modes ‘and that to do so it is necessary to

keep the two terms mentioned above.
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To verify the qualitative and quantitative applicability of our equations -
we have run comparisons in the cylinder with exact codes. HILO is the code
that advances our 5th order equations. It is seen from Fig. (1) and (2) that
our formulation gives excellent agreement with an exact formulation (shooting
code) for ideal modes. The eigenfunctions have also been compared and there
are no significant differences between the eigenfunctions the two codes
produce.

We have also run comparisons for the resitive modes and again find that
our formulation gives excellent quantitative results. Fiqure (3) is a plot of
the growth rate for g=0 tearing modes. It shows the agreement between our
formulation and analytic theory for small resistivity. Fig (3) also shows the
excellent agreement, for all values of resistivity, between an exact code
(FMHD) and HILO. Figuré (4) show that this agreement continues to hold for
finite B interchange modes (distabilizing pressure profile). The dashed line
is the growth rate found from a boundary layer analysis cocde (MATCH), and the
solid line is that for HILO and FMHD. Again the MATCH code only gives good
agreement at very small values of n. The last figure (Fig. (5)) is a plot of
the perturbed flux as a function of time, for a stabilizing (reversed)
pressure profile. Both HILO and FMHD give the same vélues of growth rate and
frequency for these modes, where as the MATCH code is off by a large factor
(~5). We do not, at this time, understand the reason for this large
discrepancy.

We would like to point out several advantages of HILO over an exact
formulation. First the numerics are simpler because the fast wave that travel
across the poloidal plane in time a/VA has been eliminates, in fact only 4
waves, not 6, remain in the problem. Secondly, the equilibrium force balance

is exact, so these equations could be used to find 3-d equilibrium such as
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gtellarator equilbria. The present formulation also allows one to identify
the source of new physics by turning off higher order terms. Lastly, if one
desires, the dynamics can easily be made exact and implicit simply by taking
Vio > vy in Bg. (4) and by following the advancement scheme in Ref. (1). This

then is the reason for the title of this paper.
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Figure Captions

Growth rate vs beta on axis, for g = 30(1-31'2 + 2r3) and inverse

aspect ratio equal ¢ = 0.1.

‘Same as Fig. (1) except here ¢ is wvaried.

Growth rate_zg_resistivity for 3 =0, ¢ = 0.1.

Same as Fig. (3) except here 3=Bo(1 - 3?4 2r3).

Perturbed flux vs time for n=4x10'9 and

8 = 0,25(0.001 + 0.028r2 - 0.059r% + .03r6),

*Note the growth rates and the resistivity in these plots have been scaled by

1/e from those units given in the text, Likewise the time in Fig. 5 has been

scaled by €.
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3-D SIMULATIONS OF LIMITER STABILIZATION
OF HIGH-BETA EXTERNAL KINK-TEARING MODES

Jae Koo Lee and N. Ohyabu
GA Technologies Inc.
San Diego, California

ABSTRACT.

The effects of finite-size poloidal limiters, toroidal limiters,

and general mushroom limiters are examined for high-beta

finite-resistivity tokamak plasmas in free boundary. Even for a linear

stability analysis, a 3-D simulation 1s necessary, in which many
poloidal and toroidal modes are coupled because of the limiter
constraint and finite-beta. When the plasma pressure and resistivity
are small, a poloidal limiter is effective in reducing the growth rate
with a small limiter-size, while a toroidal limiter requires a large
size for a comparable effect. As the plasma pressure or resistivity
increases, a toroidal limiter becomes more effective in reducing the
growth rate than a poloidal limiter of the same size. A small optimized
mushroom limiter might have a stabilizing effect similar to a conddcting
shell.
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The plasma 1instability most widely studied in connection with a
major disruption of a high-beta tokamak has been the pressure and
current driven external kink-tearing models2. This magnetohydrodynamic
mode in general has the largest growth rate at toroidal mode number n=l.
Being a global mode, it shows large perturbations not only throughout
the whole plasma but also in the vacuum region. This finite
perturbation in the plasma-vacuum region can be easily affected by
placing a conducting shell or a finite size limiter. Since a conducting
shell 1is inconvenient in many practical purposes, a limiter covering
only a small fraction of the tokamak circumference is desirable if it
can be as effective as an all-the-way-around conducting shell in

suppressing or slowing down the unstable mode.

For a low-beta ideal plasma in a straight cylinder, it has been

found3 that a poloidal 1limiter 1is very effective in suppressing the
external kink mode, while a toroidal limiter is not. For a high-beta

ideal and resistive tokamak plasma, a toroidal limiter of a various size
has been found to be effective in reducing the growth rate if the size,
i.e., the poloidal extent of the limiter is finite. The objective of
this paper is to examine the comparative effect of a finite-size
poloidal limiter, toroidal 1limiter, and general mushroom-type limiter
for a high-beta finite-resistivity tokamak plasma. For the latter two
limiters, our analyses allow three-dimensional linear mode coupling, so
that toroidal as well as poloidal modes are coupled when the size of the
limiter is finite. We use an initial value code HIB? with appropriate
boundary conditions on perturbed quantities to simulate the limiter
effect; namely, perturbations are allowed to vanish in the region where

the limiter 1is located.

Our results show that a poloidal limiter of a small but finite size
reduces the unstable mode’s growth. rate substantially and is more
effective than a toroidal limiter of a comparable size when the plasma
beta and resistivity are low. These results recover the previous

results3

if the size of the limiter is allowed to be finite rather than
infinftesimal as mentioned in Ref. 3. As the ssp (e is the ratio of

minor to major radius and Bp is the ratio of plasma thermal energy to
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poloidal magnetic energy) or the plasma resistivity increases, a
toroidal limiter of a finite size becomes more effective than a poloidal
limiter. A general mushroomtype limiter whose size 1is finite both in
poloidal and toroidal extents can be optimized in size for a significant
slowing-down of the wunstable mode, thus making feasible a passive

feed~-back stabilizing scheme.

The method of the present analyses was described in details in Ref.
4 together with numerical procedure and parameters for equilibrium and
linear stability. The boundary condition for a finite—~size poloidal
limiter or a general limiter {is similar to that for a finite-size
toroidal limiter®. .For a general limiter covering a poloidal area from
6=§ to 6=-§ and a toroidal area from g=A to g=-4A, this boundary

condition is

- | § A
¢mn(T) = ¢qnlr) --j-f d8S dzsinmé sinng z, , $m’n’(r) sinm’6 sinn’g
12 =8 =A n

fsianﬁ)[A - fsinZnA\q’mn(r)

2m 2n 2

= dgn(r) - (6 -
. L

n-n’ ' n+n’ ; 2

%'#m ;'#n[ o m+m’ T

2m !

- (5 - fsin2m6) [sin(n-n')A _ fsin(n+n’)A1¢mn'(r)
Z'#n n-n n+n’ a2

- (A - fsinZnA) [sin(m-m')G _ fsin(m+m')61¢m'n(r)
2n A'*m m-m" mtm’ 4 72 ’

where f=1 for perturbed velocity stream function ¢ and f=-1 for
perturbed poloidal magnetic flux function y. This boundary condition
has been imposed both for ¢ and ¢.

For the three types of limiter, the growth rates in the unit of the
poloidal Alfven frequency wp, are shown 1in Fig. 1. Here, the
equilibrium has the safety factor on the axis and at the limiter qp=1.05

sin(m-m’)§ _ fsin(m+m')6][sin(n-n')Av_ fSin(n+n')A]¢m'n'(r)
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and q9g=1.7, and aBp=0.11. The rest of the parameters are the same as in
Ref. 4. When the plasma resistivity is small as in the bottom three
curves with n=*10'6 (n=1/1rmA with 1, denoting the jésiétive diffusion
time) a poloidal limiter is very effective in reducing the growth rate
even with a small limiter size. For example, a factor 6f five reduction
in growth rate 1s obtained with F=1/8 where F is the ratio of the
limiter size to the total circumference area. A toroidal limiter,
however, 1is not as effective as a poloidal limiter, thus requiring a

large size to have a comparable effect as a poloidal limiter.

These results for a finite Bp recover the previous results3 for a
zero—Bp straight tokamak if the limiter size 1is finite rather than
vanishingly small as orginally described in Ref. 3. The results for a
poloidal 1limiter in Ref. 3 are applicable oanly to a finite-size
poloidal 1limiter, not to a zero-size poloidal ring limiter. This is
because the term k2r? was neglected in comparison with the m2-term in
the poloidal limiter constraint equation as well as in the unconstrained
éigenfunccion solution and equation such as Eqs. (4) and (5) of Ref.
3. This neglect is justifiable only for a finite-size poloidal limiter.

As the plasma resistivity becomes large to make the unstable mode
dominated by a resistive tearing mode, a toroidal limiter reduces the
growth rate to a greater extenf than a poloidal limiter as shown in the
upper three curves of Fig. 1 with n=10'3. This 1s also observed in
higher—sp cases as in Fig. 2.

An optimized general limiter 1is usually more effective than a
poloidal limiter of the same size as seen in Fig. 1 both for small and
large resistivity. This is because the unstable mode structure {is
shifted outward with respect to the tokamak major axis, thus making a

limiter at the smaller major radius side less effective.

The numerical convergence is 1/N, where N indicates the total mode
number used in the calculation. A typical case is shown in the inset of
Fig. 1, where four calculations for a poloidal limiter of F=1/8 with

different total toroidal mode number found a single growth rate
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corresponding to N=w, Nine poloidal modes are kept 1in these
calculations (typically from m=-3 to m=5); thus, nine poloidal modes and
six to ten toroidal modes are all coupled to simulate a finite-size
poloidal limiter. For a finite-size toroidal limiterA, toroidal modes
are uncoupled and poloidal modes are coupled depending on the magnitude
of EBP; for this case, approximately twenty poloidal modes are used.
Most of the results in the following are based on this numerical

convergence 1/N with at least two differeat N values.

The effect of 8, are shown in Fig. 2, where three values of 8, for
an otherwise same equilibria are used. Here, a broader pressure profile
with u=2 (as in Ref. 4) is employed in contrast to a more peaked one
with u=4 in Fig. 1. It is shown that a toroidal limiter with a small
size F=1/8 1s more effective at high-Bp in reducing the growth rate than
a poloidal limiter of the same size, while an opposite coaclusion is
drawn at IOW‘BP. A poloidal or toroidal limiter of a finite size
usually falls between the fixed boundary curve (i.e., with F=1) and the
complete free boundary curve (i.e., with F=0). This allows a smooth
transition in the stability boundary from the free boundary to the fixed
boundary through a limiter of a finite size. ‘

Since it is clear that the fixed and free boundary limits are the
two limiting boundary for a limiter with a finite size, it is helpful to
examine a normalized growth rate I, where I = (y=Y])/(yg-y;) with vy, and
Yo being the fixed and free boundary value respsectively. These
normalized growth rates are plotted in Fig. 3, showing that a toroidal
limiter i{s increasingly more effective with increasing EBP and that a

poloidal limiter becomes increasingly effective with decreasing EBp.

The present results are based on a linear analysis. The nonlinear
amplitudes are shown 1in general6 to increase monotonically with the
linear growth rates. Thus, a reduction in the linear growth rate could

bring a reduction in the nonlinear amplitude as well.
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In summary, the stabilizing effects of poloidal, t‘oroidal, and
general limiters become significant as the limiter size increases. A
small (on the order of 107 of a conducting shell) optimized
mushroom~type general limiter might have a stabilizing effect similar to
a conducting shell.
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Linear growth rates for weakly resistive (bottom three curves)
and highly resistive (top three curves) plasmas as a function
of the limiter size F. Results for toroidal limiters are open
circles; those for poloidal limiters are filled circles; those
for general limiters are rectangles. The numerical convergeunce
is shown in the insert.
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Dependence of growth rates on €8,. Results for poloidal limiters
with the size F=1/8 are indicated as a dashed line; those for
toroidal limiter with F=1/8 and F=1/2 are indicated as solid curves
marked F=1/8T and F=1/2T. The fixed boundary and no-limiter free

_boundary results are shown as dotted lines with F=] and F=0.
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Normalized external kink growth rates as a function
of eBp for the cases of Fig. 2.
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Extended Abstract
of
Nonlinear Evolution of External Kink Mode in Tokamak
_ and
Comment on Resistive Internal Kink Mode

Toshihide TSUMEMATSU, Gen-ichi KURITA, Masafumi AZUMI
Tomonori TAKIZUKA and Tatsuoki TAKEDA

Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan

1. Introduction
Since the first workshop on the 3-D MHD simulation we have studied

* the disruptive processes in tokamaks from the view point of the resistive

MHD instabilities{1-4} and we have extended our models to ones for the
high-beta and the toroidal plasmas. The results show that the major
disruption process is caused by the nonlinear coupling between the
tearing modes with different helicities as pointed out by Waddell et
al. {5} and that the high-beta or the toroidal effect does not give the
essential effects. The experiments also indicate that this instability
can be suppressed by the control of the profile of the plasma current
when the safety factor at the plasma surface, q,, 1is greater than 2.

When q~2 ; the major disruption occurs except for the case of the
conducting wall close to the plasma surface. This fact indicates that
the m=2/n=1 free boundary. mode plays an important role in the major
disruption process. In this workshop, we show the model of the resistive
free boundary plasma and the validity of our model as the first step to
study the role of the free boundary mode 1in " the major disruption
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process. In the next section we study the structure of the external kink
mode as the candidate of the unstable free boundary mode in the linear
theory and the nonlinear evolution of the mode to estimate the level of
the saturation.

As for the high-beta effect on the internal disruption, we have
shown that the saturation of the m=1 magnetic island due to the
pressure—driven instability in the cylindrical geomerty(2! and have also
pointed out the importance of the toroidal effect on the m=! mode{4;.
The other effect on this mode such as kinetic effect was pointed out by
Biskamp{6}. We make some comments on the kinetic effect on the internal
disruption process in tokamaks in section 3.

2. Nonlinear Evolution of External Kink Mode
2.1 Model and Basic Equations

In the usual analysis of the externmal kink mode, the plasma is
considered to be surrounded by the vacuum region. The equations are
solved seperately both in the plasma and in the wvacuum, and the
connection of the two solutions at the plasma surface gives the
disperéion relation of the external kink mode. This model 1is, however,
very difficult to study in the nonlinear numerical computation because
the motion of the plasma surface has to be precisely traced. In stead of
a real vacuum we put a highly resistive and a small-current region
(a<r<b) outside the plasma column with the radius a (Fig.1). The
conducting wall is places at r=b. The resistivity, n, increases steeply
at r=a from ny=n(r=0) to ne=n(r=b). The piasma current is given by
J=E,/n(r), where E, is the electric field at the conducting wall. The
plasma density, p. decrease steeply at r=a from po=p(r=0) to p.=p(r=b).
The width of the steep change of the equilibrium quantities is denoted by
& in Fig.1. In the highly resistive region the perturbed current
dissipates rapidly and this region is expected to behave as the vacuum.

Ve solve the following reduced set of equations through the whole
region in the cylindrical geometry.
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U v..vu=8-wI )

at

% F VL Vi = nJ<E.(t) + Bs Z—i 4 @)

Vi Van =0 (3)

U= V.% (4)

J=V.2 (S)
.where Vi= 8/8r Vr+ 8/09 V6 ., V. = e;xV.®, B =e,xV,V¥. The

quantities ¥, &, U and J denote the magnetic flux, stream function,
vorticity and longitudinal current density, respectively. The extension
to the toroidal geometry is straightforward.

2.2 Linear Analysis

For the linear analysis we use the linearized equations of
egs. (1)-(3) with respect to the small perturbation, V.. By using the
Fourier expansion, (®,¥,7)=(®,¥,n)a expimb-nz/Rp)+7yt, and the finite
difference method to the radial direction, we have -the asymmetric
eigenvalue equation,

YAr=Bzx . ®)

For mn=0, n.=~ and &=0 (the case of the uniform current density), we
have the analytic solution and the growth rate is given by

Y?=v¢/S : 7>

vhere

pe 1 + (a/b)

S=1+
po 1 — (@b)®™

8)
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and

Ll
1 - (a/b)®
The quantity yr in eq. (9) is the growth rate of the external kink mode

¥ = 2(By/a)?(m-nq) (1 - Q)

for the uniform current distribution. As p. decreases the growth rate,
Y, tends to yr. ‘

' Figure 2 shows the growth rate of the m=2/n=1 mode as the function
of the ratio p./pg for 1r70=10'7 and n.=1.0 obtained by solving eq.(®). In
this case the m=2/n=1 rational surface and the conducting wall are placed
at r=1.2a and b=Pa,respectively. The numerical result (solid line) for
8/a<<l agrees well with the analytic one (dashed line). In spite of the
decrease of the growth rate the structure of the eigenmode is unchanged
by the increase of p./pp. This fact encourages us to study the nonlinear
evolution without the reduction of the Alfven transit time. Next we
study the effect of the external resistivity, n.. Figure 3(a) shows the
growth rate as the function of 7, by fixing ng=107 . For n.<10™* the
growth rate scales as y«-nmﬁ. This means the mode tends from the
external kink mode to the tearing mode. The structures of the m=2/n=1
component of the plasma current for the differnt n, also show the change
of the mode (Fig.3(b), (c) and (d)).

The linear analysis shows that this model describes both the
external kink mode and the tearing mode by changing n. and that the
structure of the eigenmode is insensitive to p..

2.3 Nonlinear Evolution

For the study of the nonlinear evolution of the external kink mode
we integrate egs.(1)-(®) in time by using the Fourier expansion to both
the azimuthal and the longitudinal directions and the finite difference
method to the radial direction. In the cylindrical geometry we can use
the approximation of the single helicity. Typicél numbers of the modes,
M, and the radial meshes, N, are M=5 and N,=201. Eigensolution of the
linear equations is used as the initial perturbation to save the
computational time. The resistivity used in the nonlinear study is
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n=102 and n.=1. _

Figure 4(a) and (b) show the time evolution of the magnetic ensrgy
and the kinetic energy, respectively. The m=2/n=1 rational surface and
the conducting wall are placed at r=1.2a and b=2a, respectively, and
&/a=0.1. Both énergies saturate at t ~ 30tpy . Here tpy is the poloidal
Alfven transit time at r=a. The evolution of the magnetic flux surface
is shown in Fig.5 at t=0 (Fig.5(a)) and t=30vpy (Fig.B{b)),
respectively. The dense lines denote the contors of the resistivity.

~ From Fig.5(b) we have the saturation level of the plasma surface,

¢/a ~ 0.1, which corresponds to the saturation level of the magnetic
field fluctuation, B,/By ~ 0.03. The dependence of B./B; on the
position of the rational surface, ry, is shown in Fig.6. The saturation
level increses as the rational surface becomes close to the plasma
surface. The level and the dependence on r; agree with the result of
neighbouring equilibrium theory given by Itoh(7}.

Qur preliminary results show that the highly resistive region
outside the plasma column can describe the external kink mode in
nonlinear evolution.

3. Comment on Resistive Internal Kink Mode

The intense heating by NBI in the JFT-2 tokamak has shown the
transition from the sawtooth oscillation to the continuous oscillation of
the sof't X-ray signal{8}. We have studied this transition from the view
point of the m=1/n=1 resistive MHD mode and have shown the saturation of
the m=1/n=1 magnetic island due to the pressure—driven mode in the
cylindrical geometry{2}. The m=1/n=1 ideal internal kink mode is,
however, always unstable for the finite-beta value in the cylindrical
model and the saturation width of the magnetic island is independent of
the beta value. In the last workshop we have shown the toroidal effect
plays an essential role in this mode{4}, and proposed the new reduced set
of equations by using V.V/R?=0 in stead of V,-V./R°=0. The new
equation covers both the resistive equations and the imcompressible ideal

equations.
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The other mechanism of the saturation of the m=1/n=1 magnetic island

was pointed out by Biskamp{6}. He has shown thal the kinetic effect

causes the saturation of the magnetic island by using the quasi-linear

theory. In this workshop we show the nonlinear effect on the kinetic

model due to the mode coupling.
The basic equations are given by

au y,2
rri V. V.U - ez-VNXVZL=B-VJ

+ aTie.- VNxVU + uVU - (10)

3y S .

3; + V.-V =90 + (T, + Ti)e:- VN V¥ (11)

aN _ 2.,

g?rv- (NVL) = aB-VJ + kV2N (12)
where

B = Byen + enx Vi 13)

e= e: + r/Roey (14)

J = V3 + By/Ry 15)

Vi= e;xVd (16)

U=V. NV®) a7

& = TepTo/ (@Ba®) ~ w.Tpy (18)
and

a =c¢/Repi) ~ /B (18

We use the same method as in section 2 by

introducing the complex
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variables to our code. The safety factor and the density are chosen suc
that

q(r)={1+ (r/rg 2 (20)

and

N(r)=0.8(1-(r/a)?)?+0.2 . @1)
The parameter ry is determimed so that the m=1/n=1 rational surface is
placed at rs=0.5a.

Figure 7 shows the imaginary part of the eigenfrequency as the
function of w./yr for m=10> and the different values of A. Here yr is
the growth rate of the m=1/n=1 resistive mode. The real part of the
eigenfrequency is @ ~ «. . The numerical result for &=l ksolid line)
agrees with the analytic one (dashed line) given by Waddell et al.({9}.
Figure 8 shows the eigenfunctions for w./yr=5. The lines with the large
amplitude in & and N correspond to the real parts and ¥ ~ i$. The
eigenfunctions show that the drift wave is excited at the rational
surface and propagates outward to decay rapidly. This means thét the
kinetic effect on the m=1/n=1 mode is apparent near the rational surface
and the MHD behavior holds in other region.

In the nonlinear study we use M < 10, N,=201 and =10 . The
énalysis with M=1 gives the same result as that of the quasi-linear
theory given by Biskamp{8}. Next we study the effect of the higher
modes. Figure 9(a) and (b) show the time evolution of the magnetic
energy for «./yr=0 and 3, respectively. We use M=5 in this case. For
w«/y7=0 the internal disruption occurs at ¢t ~ 600ty . This time is
almost independent of M. For d*/77=3 the evolution of the magnetic
energy seems to saturate. The level and time of the saturation, however,
increases as M. The saturation level of the m=0 component of the
magnetic energy, -84y, increases as M (Fig.10). This fact means the
impotance of the coupling with the higher modes and suggests the internal
disruption even for w./yr>1 . The time evolution of the spectra of the
kinetic energy in Fig.11 also ‘indicates the importance of the mode
coupling. The solid lines denote the amplitude of the each m componetnt
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of the kinetic energy for M=5 and the dashad lines are for M=10. With
the lapse of time the higher mode are excited as much as M increases. To
confirm our conjecture we have to take the numbers of modes up to
M~ 50.

4. Summary

In the analysis of the external kink mode the highly resistive
region outside the plasma column describes the “vacuum® both in the
linear and the nonlinear regime. Hereafter we are studying the nonlinear
behavior of the free boundary modes by varying the position of the
m=2/n=1 rational surface and the profile of the plasma current with the
extension to the muliti-helicity simulation.

The analysis of the kinetic effect on the m=1/n=1 mode has shown the
importance of the higher modes in the single helicity and suggests the
internal disruption for w./yr>1.
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as a function of the resistivity at the conducting wall, 7n,. The
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Fig.5 Time evolution of the magnetic flux surface at {(a) t=0 and (b) at
the time of the saturation t=30ts . The dense lines denote the
contors of the resistivity.
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Fig.9 Time evolution of the magnetic energy for (a) w/y1=0 and M=5, and
(b} wa/yr=8. M=1, 5, 7 and 10.
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Fig.1! Spectrum of the kinetic energy at differnt t for M=5 (solid line)
The diamagnetic frequency is chosen such
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1. INTRODUCTION

l | A fully toroidal formalism has been developed which follows very
closely that of Ref. 1. This approach uses the full MHD equations with
l no ordering assumptions. The fluid is, however, assumed to be
incompressible. It can be used to study either ideal or resistive
I modes.

This formalism has been used to construct the computer code FAR,
which is linear and fully-implicit. The fully-implicit nature of the
I numerics allows extremely fast calculations, as will be discussed
below. Detailed comparisons for n=1 modes have been made with the
l computer code RST [2], which uses an ordering formalism due to Strauss
.[3].

. Atl results presented in this paper are linear. This work,
however, is viewed as a first step toward nonlinear calculations.

l Work, in fact, is well underway to be able to do nonlinear studies.

1

1

i

1

2. EQUATIONS

A flux coordinate system (p,0,&) is used where p is a flux-surface
label, © is a poloidal angle-like variable and § is the toroidal angle. -
The angle © is determined from the straight magnetic field line
condition. :

We start with the usual MHD equations,

*Research sponsored by the Office of Fusion Energy, U.S. Department

of Energy under contract DE-AC05-840R21400 with Martin Marietta
Energy Systems, Inc.

e . e
Fusion Energy Division.
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3B _ _

2=-YxXE, (1)
E+yxB=ml. (2

o |
Palgg " W] =-Yp+ %8, | (3)
1=7x8, | “)
7+B=0, | (5)
and
op ,
aTT"'X-'me:O' | (6)

The fluid is assumed to be incompressible and the density constant
in time. This implies

Z' (me,) =0 (M

Therefore, it is useful to assume for the equilibrium mass density the
following form '

o = o)’ ®

Eqs. (1) to (5) can be written in terms of potential functions to
guarantee an exact solution of Eq. (5). To do so, the usual vector
potential, defined by
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2o
1]

2<
*

2>

(9)

is used with the gauge defined by Ao = 0. This choice of gauge allows
the remaining two components of the vector potential to be identified

with the poloidal and toroidal magnetic fluxes.

The time-dependence of A is given by

oA
_~= X -
gL -l
with a the electrostatic potential. The above,

(10)

together with some

rather lengthy algebra, gives six equations for the six unknowns to be

time advanced. These equations are

B __ B _ pg® . o, i
Bt =" B Yo *VE *ig.
-_ 18 _ &p . .p :
T 530 voBP + v B§.+ nJe »

‘%z-veBgfvgBeﬁ-njp,

(11)
(12)

(13)

(14)
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A §%§ 0SS - A1) + 12 (90 - A9

z
R
+ g (U5 - 1°89)) + L 55 (156° - %°) g (19)
and

The six unknowns .are the poloidal flux ¢, the toroidal flux x, the
poloidal velocity stream function ¢, the toroidal velocity stream
function A, the electrostatic potential o, and the pressure p. 1In

terms of these quantities, the magnetic field, velocity and vorticity -

are given by

B=VOxW+WxW (17)
-ﬁgvex VA + ¥ x V&3 | (18)
-Ro ~ ~n ~ ~ )

Rl (19)

A perfectly conducting wall at the plasma boundary (p=a) is assumed
which requires

Bl = VPl oy =0 . (20)

p=3
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Both equilibrium and dynamic quantities are expanded in Fourier
modes as in Ref. 4. '

3. _NUMERTCAL SCHEME

Accurate results must be convergent in the number of grid points
used in p and in the number of Fourier modes used in the expansion of
both the dynamic and equilibrium quantities. In Fig. 1, the n=1 growth
rate as a function of the number of radial grid points is shown and
represents typical behavior. For large A (0.1 Tg%) results are
converged with ~100 grid points. For smalier A, (~0.01 Tﬁ%), however,
a convergence study is needed to extrapolate to an infinite number of
points. In Fig. 2, the convergence behavior when varying the number of
equilibrium modes is shown. The number needed (for errors < 1%) varies
from a few at small B to 5-10 for larger . For the results presented
later (which are n=zl), dynamic modes from m=-1 to m=4 were used, which
gave errors of £ 1§. Since the safety factor varied from 0.9 at the
magnetic axis to 2.3 at the edge, this distribution gave modes through
the resonant region with two additional, above and below.

In Fig. 3, a comparison with the ideal code ERATO [5] is shown.
The agreementﬂfs regarded as excellent.

In order to display the results seen when the time step was
varied, it is useful to define an eigenvalue and a growth rate. The
linearized problem is written as

L‘a—t= Rx » (21)

and the implicit time step algorithm relates the solution vector at
time t to that at t+At by

e - RTE - F R (22)
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In the above, L and R denote the matrices formed from the
operators L and R. In what follows t will denote the physical time
only when At is small. The eigenvalue A is defined by

(Rx) ;

0P @

large ¢

where "large t" means that A is independent of t and <...> means an
average has been taken.
The growth rate is defined by

| x
Y= In (le_t|> | (24)

In Fig. 4, 4 and A are shown for a cylindrical case and'as 2 function
of step size. The eigenvalue is constant over a large range of At,
while the growth rate undergoes a resconant behavior with the resonance
occurring at At = 2/A. Also shown is the velocity in the poloidal
plane (vP and ve). The velocities are identical for values of At at
each end of the range shown and for a value near the resonance. The
behavior for the other unknown quantities is identical. Note that for
small At, A and -~ are identical. It is thus possib]e.to use a very
~ large step size and obtain a solution given by A and the eigenfunction.
This sclution is identical to that found if one uses a small step size
to get a solution given by « and the eigenfunction. The number of time
steps required to find an eigenfunction as a function of At is shown in
Fig. 5. The minimum required is at the resonance given by At = 2/A.
Very careful selection of the step size can give a solution in a very
few (1 or 2) time steps. In Fig. 68, the eigenvalue is shown over a
much wider range of At than that shown in Fig. 4. Discrete changes are
seen at values of At = 2/vﬂ?X} where A; is the value before the change,

and Aj is the value after the change. Also shown is the poloidal
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velocity given by the eigenfunction found for each A. The p component
of the velocity has no nodes for the largest A, one node for the second
largest, and two for the third largest. This is typical behavior for
the most unstable, second-most unstable, and third-most unstable modes.
This is, in fact, what is being selected by the choice of At. Also
shown, for reference, is the resonant values of At for each mode.

The numerical behavior shown in Figs. 4, 5, and 8 can be
understood by assuming the set of eigenfunctions generated form a
complete orthonormal set. Again we write the linear problem as

dx(r,t) ,
L %: Rx(r,t) . (25)

Each member n of the complete set of solutions to the resulting matrix

problem satisfies

An l-}‘n(z) = 51:“ (:.) ' (26)

with the stepping algorithm given as before as
-1 : :
WEh= C-3 L. (@)
and x, and zt related by
%im x8(r,t) = £x eq“t . ' : (28)
t Targe ~ '~ A

When At is small x = A, of course. The solution vector at each time
step may be expanded as

ﬂ zt(z.t) = § aﬁzn(z) . | (29)
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Using Eq. (29) in Eq. (27), using Eq. (26), multiplying by k‘1 and
projecting a, by the assumed orthonormality gives

A AL
(1
A At

(1' 9 )

abeht - al . - (30)

Thus, if At is properly chosen, the eigenfunction m will be selected
due to the denominator in Eq. (30). A resonance will occur at

_ 2
b= (31)

as observed in Fig. 4. Using Egs. (28), (29), and (30), A, and ~, may

be related by

| Aght
1+
+ e"m,At’ = (—AmQM-_) (32)
-

The results shown in Fig. 4 satisfy this relation with the- plus sign
being correct to the left of the resonance and the minus sign to the
right. ‘
The value of At for the transition from one eigenvalue to another
may be found by realizing that the minus sign in Eq. 32 applies to one
of the eigenvalues and the plus.sign to the other giving

(33)

or, by solving for At,

[
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AL = —— (34)

This is the transition At shown in Fig. 8. Thus a fairly simple
algebraic treatment can reproduce the numerical results shown in
Figs. 4, 5 and 8. '

4. _STABILITY RESULTS

In Fig. 7 stability results are shown for a sequence of
flux—conserving equilibria with a safety factor profile ranging from
0.9 to 2.3. In the lower figure, the eigenvalues as a function of f
are shown when the full equations of Section 2 are used. In the upper
figure, results for the same sequence are shown when the reduced
equations of Strauss [3] .are used. Both ideal and 5=10% results are
shown for the full equations, with only $=10° results shown for the
reduced equations since the reduced equations give ideal stability.
The ideal peak for the full equations results from the ideal internal
kink mode, which is not in the reduced eduations since it is of higher
order than that included. The S=10° results for the full equations are
dominated by the ideal internal kink except for the points at the
highest and lowest values of B). These two points, in fact, are in
good agreement, both in eigenvalue and mode structure with the reduced
equations and are eigenvalues for a tearing mode (for the lowest f)
and a resistive ballooning mode (for the highest By). Thus, for n=l,
the reduced and full equations agree at high and low f;, but disagree
at intermediate By where the ideal internal kink is unstable. As seen
in the figure, a second stability region for the internal kink. exists.

We would like to acknowledge very useful conversations with
M. Azumi.
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FIGURE CAPTIONS
Fig. 1. Conver?ence wi%h number of radial (p) grid
points %M). The scale is M™. :
Fig. 2. Convergence with number of Fourier modes.

Fig. 3. Comparison with the ideal code ERATO [4].

Fig. 4. Eigenvalue A and-growth rate 4 as a function of
step size At for the most unstable mode.

Fig. 5. Number of time steps to converge (N) as a
function of step size At.

Fig. 8. Eigenvalue A as a function of step size At.

Fig. 7. Eigenvalue as a function of By for n=l and for
both the reduced and full equations.
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AGENDA

U. S.-JAPAN WORKSHOP ON 3-D MHD STUDIES

March 19-23, 1984

Fusion Energy Design Centef, Oak Ridge, Tennessee

g9:00
9:15

10:00
10:15

11:00
12:00
1:30
2:15
3:00

3:15
4:00

Tuesday, March 20,

9:15
10:00

10:15
11:00

11:45

3:00

3:15
4:00
5:00

Welcome

Morning Session Chairman - X, Hanatani

A. Reiman, "Calculation of Island Widths in Three-
Dimensional Equilibria."

COFFEE BREAK

K. Hanatani, "A 3-D Algorithm for Calculating Drift
Orbits in Nonaxisymmetric Toroidal Devices,"

T. C. Hender, "Equilibrium Studies for Helical Axis
Stellarators."

LUNCH

Afternoon Session Chairman - A, Reiman

K. Hanatani, "Analysis of a Pressure-Driven Instability
in Heliotron-E.,"

J. A. Holmes, "Stellarator Expansion MHD Studies of a
High Beta Torsatron."

COFFEE BREAK

M. S. Chu, "Reduced Equations in 3-D Geometry."
Discussion on 3-D MHD calculations for Stellarators,
Chairman .- B, Carreras

1984

9:15

10:00
10: 15

11:00

12:00

10:00
10:15
11:00

11:45

Morning Session Chairman - T. Hayashi

T. Sato,"Self-Reversal Mechanism in the RFP."

COFFEE BREAK

D. D, Schnack, "Three-Dimensional MHD in the Reversed
Field Pinch."

D. C. Barnes, "Compressible Simulations of RFP
Self-Reversal."

LUNCH

Afternoon Session Chairman - D. Schnack

T. Hayashi, "3-D Simulation of Spheromak Dynamics."

A, Mirin, "Nonlinear MHD Simulations of the Spheromak. and
the Reversed Field Pinch."

COFFEE BREAK

M. Aizawa, "Finite Element Method and Its Application to
3-D Dynamic System."

Discussion on 3-D MHD calculations for RFP and CT,
Chairman - T. Sato

Wednesday, March 21, 1984

9:00

10:00
10:15

11:00

12:00

10:00

10:15
11:00

11:45

1:30

Morning Session Chairman - T. Tsunematsu

B. McNamara, "Rapidly Convergent Algorithm for 3-D Tandem
and Stellarator Equilibria in the Paraxial Approximation.”
COFFEE BREAK

C. L. Hedrick and L. Owen, "Magnetic Equilibria for
Square and Circular EBTs."

D. Monticello, "The Total De-reduction of the Reduced
Equations.”

LUNCH
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Afternoon Session Chairman - M. Aizawa

1:30 - 2:15 J. K. Lee,"3-D Simulations of Limiter Stabilization
of High Beta External Kink-Tearing Mode."
2:15 -« 3:00 T. Tsunematsu, "Nonlinear Evolution of External Kink Mode

in Tokamak."

L. A. Charlton, "Calculations in Toroidal Geometry with

Full MHD Equations."

4:00 - 5:00 Discussion on 3-D MHD calculations for tokamak,
Chairman - D, Monticello
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Thursday - Friday, March 22-23, 1984

Continue discussions at Fusion Energy Division,
Bldg. 9201-2






