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ABSTRACT

A one-dimensional computational model was developed to evaluate
the heat removal capabilities of both prismatic-core and pebble-bed
modular HTGRs during depressurized heatup transients. A correlation
was incorporated to calculate the temperature- and neutron-fluence-
dependent thermal conductivity of graphite. The modified Zehner-
Schlunder model was used to determine the effective thermal conductivity
of a pebble bed, accounting for both conduction and radiation.

Studies were performed for prismatic-core and pebble-bed modular
HTGRs, and the results were compared to analyses performed by GA and
GE, respectively. For the particular modular reactor designs studied,
the prismatic HTGR peak temperature was 2152.2 °C at 38 hours following
the transient initiation, and the pebble-bed peak temperature was
1647.8 °C at 26 hours. These results compared favorably with those
of GA and GE, with only slight differences caused by neglecting axial
heat transfer in a one-dimensional radial model.

This study found that the magnitude of the initial power density
had a greater effect on the temperature excursion than did the initial
temperature. Neglecting the neutron fluence in the prismatic HTGR
caused a 107 decrease in the peak temperature, and modeling gas gaps
between prismatic fuel assemblies produced a 57% increase in the peak
temperature. Replacing the prismatic core with a pebble bed resulted

in a 1% increase in peak temperature.
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1. TINTRODUCTION

Development of High Temperature Gas-Cooled Reactor (HTGR)
Technology has been underway in the United States and other countries
since the 1950's, primarily for use in electric power generation.

A major goal of this development was to achieve high coolant
temperatures, which would lead to high plant efficiencies and possibly
a closed-cycle using gas turbines. This goal led to the choice in the
United States of helium for the coolant, and graphite, with its high
heat capacity and good neutron slowing-down characteristics, for the
moderator and structural material. More recently, a potential has
been identified for the use of HTGRs in the industrial heat market.

In the past, the emphasis has been on the development of large, mono-
lithic nuclear reactors; however, presently under consideration is a
small or "modular" HTGR concept.

One of the major advantages of a small HTGR design is that, when
properly designed, a core auxiliary cooling system need not be included.
Following a loss of forced convection accident, if the system remains
pressurized, natural circulation of the helium will sufficiently cool
the reactor core and internal components. In the "worst case" accident
scenario, the system would depressurize and the gas would become
stagnant. In this case, decay heat removal by passive conduction through
the core and radiation from the vessel will prevent core damage. The
inherent safety of the modular HTGR design makes it particularly
attractive.

Few computer codes are openly available which may be used to analyze

the depressurized heatup transient in both pebble-bed and prismatic HTGRs.




In their analysis of the prismatic HTGR, General Atomic Technologies
(GA) used a proprietary computer code entitled CORCON. Two-dimensional
calculations may be performed using CORCON; however,it is limited to
the analysis of prismatic HTGRs. General Electric .Company (GE) used
the THERMIX-2 computer code, a proprietary code developed by
Kernforschungasanlage Julich GmbH (KFA) in the Federal Republic of
Germany, to analyze the pebble-bed HTGR. The effective pebble-bed
thermal conductivity is input to THERMIX-2 as a function of temperature
only. It would be more precise to allow the pebble-bed effective
conductivity to be determined internally as a function of not only
temperature, but also neutron fluence, pebble diameter, and pebble-bed
porosity. Simple conduction heat transfer codes such as HEATING6 f1]
abound. They, however, are not easily adapted to calculate heat
transfer through graphite or through pebble beds. A computer code which
is openly available and which uses non-proprietary correlations for
graphite and pebble-bed thermal conductivities was deemed useful for
independent evaluation of both pebble-bed and prismatic modular HTGR
designs.

Described herein is a FORTRAN computer code (SHERLOC - Small HTGR
Thgrmal_ggsponseto Loss of girculation) which has been developed to
calculate fuel temperature distributions in modular HTGR concepts during
a loss of forced convection and depressurization accident. Several
studies have been performed and are presented here. A primary concern
in performing decay heat removal calculations for modular HTGRs is the
thermal conductivity of graphite, which is dependent upon both
temperature and neutron irradiation. A correlation modeling this

behavior of graphite conductivity has been incorporated into SHERLOC.




Also, in pebble-bed cores, thermal radiation through the voids between
pebbles must be accounted for as well as conduction. SHERLOC calculates
an effective thermal conductivity for heat transfer by conduction and

radiation in a randomly packed pebble bed.

1.1 Background

1.1.1 Application of Modular HTGRs

Interest in the development of small nuclear reactors

for potential applications in the industrial heat market has been
expressed in the United States, Federal Republic of Germany, Japan,
and the Soviet Union. In the United States, industrial energy
comsumption accounts for 40 percent of the total energy consumption
[2]. Of the industrial energy used, 57 percent is used as process
steam, and 43 percent as direct heat. Methods considered for serving
the industrial heat market include the thermochemical pipeline, steam
transmission, and sensible energy transport. The thermochemical pipe-
line may be used for district heating over long distances. Reactor
heat is used to convert water and methane into hydroben and carbon
monoxide, which are then transported through separate pipes. Where
heat is needed the reverse reaction takes place, liberating energy.
Steam transmission through pipelines can provide heat over short
distances (less than 10 to 20 miles); while sensible energy transport,
in which molten salt is used as the working fluid, can provide heat at
somewhat greater distances than steam transmission.

The HTGR may also have applications in hydrogen production via
several mechanisms: 1) steam reforming of a light hydrocarbon,
2) carbon-steam reaction using a heavy hydrocarbon, 3) thermochemical

water splitting, and 4) electrolyses of water [3]. The HTGR has been




considered for use in steel production by the American Iron and Steel
Institute and the General Atomic Technologies in the United States [3],
and by Japan [4]. West Germany has investigated using a small HTGR for
the following applications: generation of synthetic gas from coal
and natural gas; process steam; generation of synthetic natural gas;
process heat for conversion of fossil-energy raw materials, especially
coal to liquid and gaseous secondary energy carriers; and production
of hydrogen or methanol [5]. 1In addition, the HTGR could be used for
cogeneration of process steam and electrical power. In such a mode,
a small HTGR could provide the energy needs of an industrial community,
a military complex, or an urban area. The Soviet Union is pursuing
applications of HTGRs for cogeneration, hydrogen production, gasification
of coal, reduction of iron ore, and district heating [6].
1.1.2 Summary of Preliminary Designs

It is evident that the HTGR, due to its capability
of producing high temperature gas, has potential in the industrial
heat market. Several preliminary designs for small HTGRs have been
proposed. Designs proposed by General Electric Company, General Atomic
Technologies, and Gesellschaft fur Hochtemperaturreaktor - Technik are

summarized here.

General Electric Company [2] and General Atomic Technologies [7]

The industrial heat market requires a higher availability of its
heat source than does the electric power industry, where electricity
is being channeled into an already existing grid. In the past, HIGR
design has emphasized the large, monolithic HTGR which has a projected

availability of 70 to 80 percent at best. For use as a source of




industrial heat, an availability of close to 100 percent is required.
In response to this requirement, it has been suggested that several
small reactors, or ''modules,'" be used in parallel to support process
heat or a thermochemical pipeline and a normal steam-electric plant.
In the modular concept, one reactor may be shut down for refueling or
maintenance without causing the entire plant to shut down; thus an
availability of at least a portion of the full capacity of greater
than 95 percent may be achieved.

The modular HTGR proposed by GE and GA consists of a prismatic
core with internal, bottom entry control rods in a steel reactor vessel.
The thermal rating of the core is 250 MWt, with a power density of
4.1 Wee and outlet coolant temperature of 950°C. The core diameter is
approximately 3.5 m. With a net electrical power of 11.5 MWe available
for export and 147 MWt of thermochemical energy produced, the overall
efficiency of each modular system is 63.4 percent. The reactor design
employs an upflow, vertical in-line configuration with the heat
exchanger located directly above the core. This configuration is
designed to allow decay heat to be dissipated by natural circulation,
radiation, and conduction; therefore, no core auxiliary cooling system
is present. This design facilitates natural circulation through the
core when forced circulation is lost. Figure 1.1 shows the vessel
configuration; and Figures 1.2 and 1.3 show the coolant natural
circulation paths with an active and inactive steam generator,
respectively. Given a depressurized situation with no circulation

whatsoever, heat would be conducted and radiated from the vessel to the

surrounding environment.
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The modular concept involves locating eight modules at a site
to provide a total thermal rating of 2000 MWt and to achieve the desired
high availability. A high degree of standardization among reactors and
of factory pre-fabrication are expected to yleld a site construction
time of less than four years. The high availability and short
construction time will offset the typically high direct costs of an
HTGR system. Also, with replaceable modular units, the site life is

expected to be one hundred years or more.

Gesellschaft fur Hochtemperaturreaktor - Technik (GHT).[S]

The West German proposed modular reactor design stems from the
design of the 15 MWe Arbeitsgemeinschaft Versuchs-reaktor (AVR), a
steam cycle demonstration plant which has been in successful operation
since 1967. The core of the AVR consists of approximately 100,000
graphite pebbles (6 cm in diameter) containing coated fuel particles.
One of the advantages of the AVR is that on-line refueling is possible.
The fuel pebbles are passed continuously through the core from top to
bottom. After being withdrawn from the core, a pebble is either
discarded or cycled through the core again, depending on its burnup.

The GHT modular reactor design uses a pebble-bed core with a
thermal rating of 170 MWt, a power density of 2.5 W/cc, and a helium
coolant outlet temperature of 950°C. The pebbles are circulated
continuously, allowing on-line refueling - a pebble will pass through
the core about 15 times during its life. Shutdown and control are
accomplished with 6 short absorber rods located in the reflector region
only. No control rods are inserted into the core itself. This control

design limits the core diameter to 3 m and the power density to 2.5 W/cc.
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A side-by-side configuration is used for the steel reactor vessel
and heat exchanger, and is shown in Figure 1.4. Helium coolant flows
down through the core in this design. Because the fuel at the top of
the core has a lower burnup than the fuel at the bottom, the reactivity
is higher at the top of the core. Temperatures would therefore tend
to peak at the top of the core, and downflow allows maximum cooling
of the high reactivity fuel. The side-by-side concept allows greater
ease in maintenance and in-service inspection than does the vertical
in-line configuration. Also, in the event of a scram, components
such as the steam generator, circulator, and reformer are isolated
and will not be exposed to a heat-up transient. Because the vessels
are shorter in the side-by-side design, the reactor building height

will also be considerably shorter.

1.2 Purpose of This Study
The objective of this study was to develop and apply a

computational model to calculate fuel temperature distributions in
modular, graphite-moderated HTGRs in a '"worst case' accident situation -
loss of forced convection and loss of pressure. In this accident
scenario, the gas coolant is stagnant and heat is removed from the
core by conduction and radiation only. The responses of several core
configurations to the depressurized heatup accident have been investigated
and compared.

The study consisted of two parts. The first part involved the
development of the computer code SHERLOC, which analyzes the Small
HTGR Thermal Response to Loss of Circulation. SHERLOC is a one-
dimensional, finite-difference heat transfer code which has the

capability of solving steady-state or transient problems in
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rectangular or cylindrical coordinates and with convective and/or
radiative boundary conditions. A multi-region, multi-material problem
with temperature dependent thermal properties and space and time
dependent internal heat generation may be modeled using SHERLOC.
Considering heat transfer in only one dimension will produce a
conservative analysis of the depressurized heatup accident.

Since the core of an HTGR consists primarily of graphite, the
thermal conductivity of graphite is important in determining heat
transfer from the core. Graphite thermal conductivity is a function
not only of temperature, but also neutron irradiation, and this is
accounted for by SHERLOC in regions specified as graphite. Also,
when a pebble-bed core is considered, conduction is not the only means
of heat transfer in the core - radiation occurs through the voids
between pebbles. The modified Zehner-Schlunder model proposed by
Breitbach and Barthels [8] is used to calculate an effective thermal
conductivity for the pebble-bed which takes radiative heat transfer
into account.

The second phase of this study involved the modeling of both
pebble-bed and prismatic modular HTGRs and the calculation of the
temperature distributions during the depressurized heatup transient.
The effects of power density, initial temperature, neutron fluence, and
vessel boundary conditions were investigated. Also the effects of
modeling small, helium-filled gaps between prismatic fuel assemblies

and of replacing the prismatic core with a bed of pebbles were studied.
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2. CODE DEVELOPMENT

The development of the SHERLOC computer code consisted
basically of four different sections: 1) the steady-state finite
difference equations, 2) the transient finite difference equations,
3) the method of calculating fluence and temperature dependent
graphite thermal conductivity, and 4) the modified Zehner-Schlunder
model for effective conductivity in a pebble bed.

The steady-state and transient finite difference equations were
derived in rectangular and cylindrical coordinates at the following
unique locations: 1) the origin -~ an adiabatic boundary condition
was assumed, 2) a mesh point within a material region, 3) the
interface between two material regions, 4) the left-hand interface
between a material region and a void region, 5) the right-hand
interface between a void region and a material region, and 6) the
outermost boundary - convective and/or radiative boundary conditions
were assumed. At void interfaces and the outermost boundary, effective
heat transfer coefficients are calculated to account for radiation
and/or convection. The heat transfer equations may be non-homogeneous
and non-linear; that is, heat generation may be a function of position
and time, and thermal properties may be functions of temperature
(and fluence for graphite). The mesh spacing within a given region
is uniform; however, the mesh spacing may vary from region-to-region.
The development of the finite difference equations and the methods of
solution were patterned after those used by the HEATING6 computer code

[1], a heat transfer code developed at the Oak Ridge National Laboratory.
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2.1 Heat Transfer Coefficients at Void Interfaces and

Outermost Boundary

Radiation occurs through void regions such as between a core
barrel and reactor vessel, and radiation and/or convection occurs at
the outermost boundary. In calculating heat transfer across the
boundaries of a void region or the outer boundary, an effective heat
transfer coefficient is determined. Radiative heat transfer between

two surfaces is given by:

q = °€12(T1 -Tz) = hr(Tl—Tz) (2.1)
where
q'' = heat flux
-8 2.4
g = Stefan-Boltzmann constant = 5.669x10 = W/m K
612 = effective emittance from surface 1 to 2
hr = effective radiation heat transfer coefficient

T = temperature on surface 1

T = temperature on surface 2

Solving equation (2.1) for hr:

(r, %1%
h = oe .__1____%.__.
T 12 (Tl—Tz)

2 2 2 2
(Tl +T2 )(Tl —T2 )

12 (Tl—Tz)

= ¢0¢

2 2
(Tl +T2 )(T1+T2)(T1—T2)
12 (Tl—Tz)

= 0¢

~ 2,2
h = cre:lz(T1 +T2 )(T1+T2) (2.2)
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The effective emittance €1, (Ref. 9) is given by:

€, = (1_61) . 5l(1_€2) (2.3)
€1 12 A2 €,
where

€1 = emissivity of surface 1

€2 = emissivity of surface 2

A1 = surface area of surface 1

A2 = surface area of surface 2
F12 = shape factor = fraction of radiation leaving surface 1

which reaches surface 2
For infinite concentric cylinders or infinite slabs, F12 = 1,0,

Therefore, manipulating equation (2.2) yields:

1
£ = (2.4)
12 AL

1, LG
€

1 2

N

In rectangular coordinates, A1/A2 = 1; in cylindrical coordinates,

Al/A2 = rl/rz, where r, and r, are the radii of surfaces 1 and 2,

respectively,

The radiation heat transfer coefficient hr must be calculated at
both boundaries of a void region. On the inner surface, equation (2.2)
applies; on the outer void surface, the effective emittance €21 must be

used in equation (2.2) rather than €12 * € is given by:

1
€1 1-e, A, 1-g, (2.5)
( ) + F . +— ( )
€2 21 Al 61
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where

F21 = the fraction of energy leaving surface 2 reaching
surface 1

We have the reciprocity relation (Ref. 9):

AF = AF

112 221
or
Fap = ;% Fi2
Since F12 = 1.0,
Fyy = % (2.6)

By substituting equation (2.6) into equation (2.5), and with some
minor algebraic manipulation and comparison with equation (2.4) we

obtain:

= i— € (2.7)

21 AZ 12

€

On the outermost boundary, it is assumed that the surrounding
area is much greater than the outer surface area; thus Al/A2 goes to
0 in equation (2.3). Therefore, on the outer boundary, the radiation
heat transfer coefficient reduces to:

2 .2
h, = oe (T + T, (T +T,) (2.8)

where

€ = emissivity of the surface material

=]
]

surface temperature

=]
n

ambient temperature
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To obtain the effective heat transfer coefficient at the surface, the
convective heat transfer coefficient hc (which is assumed to be given)

and the radiative heat transfer coefficient are combined in series:

h., = h_+h
r T c

where

hr = effective heat transfer coefficient

2.2 Steady-State Finite-Difference Equations
In the steady-state, no heat is stored in a volume, and the heat

balance on a control volume V may be represented as

Net rate of heat Rate of heat
entering V through generation = 0
its boundaries + in V

2.2.1 Rectangular Coordinates
The one-dimensional, steady-state conduction equation in

rectangular coordinates is:

k(T) LT(Z’Q +8 = 0 (2.9)
dx
where
k(T) = temperature dependent thermal conductivity
g(x) = position dependent volumetric heat generation rate

Consider a mesh point within a given region, as shown in Figure 2.la.

The finite difference heat balance on mesh point i is:
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(a)

Figure 2.1

(a) Internal Mesh Point - Rectangular Geometry

(b) Internal Mesh Point - Cylindrical Geometry
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o o) Tl -g. Ax (2.10)
ivi-1 Ax k i+l Ax i ‘
where
K1 < thermal conductivity between mesh points i and i-1
K1 = thermal conductivity between mesh points i and i+l
Ti = temperature at mesh point i
g, = volumetric heat generation of mesh interval i

Manipulating equation (2.10) yields:

( +

2
$5-1T301 7GR Ts KT = 8 (00 (2.10)
The steady-state, rectangular, finite difference equations for each
unique type of mesh point (listed in Chapter 2) are derived in detail
in Appendix A. It is easily seen that a problem containing n mesh

points will produce n equations in n unknowns, which may be solved

simultaneously. The equations may be represented in the matrix form

AT = b (2.12)
where
A = matrix of coefficients
T = vector of temperatures
S = vector of forcing functions

Since only three terms appear on the left-hand side of the equations,
the coefficient matrix A will be tridiagonal. The equations may be
solved using any one of a number of techinques for solving a linear

system of equations in matrix form.
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2.2.2 Cylindrical Coordinates
The one-dimensional, steady-state conduction equation in

cylindrical coordinates is:

2
km D 4 ) 2EE 4 g - o (2.13)
dr

Again we shall consider here a mesh point within a given region, as
shown in Figure 2.1b. The finite-difference form of the heat balance

equation is:

(T, ,-T.) (T,,,-T.)
i-1 i + omr K i+l i

_ 2 2
21Tra iKi—l Ar b ii+l Ar - _giﬂ(rb Ta )

(2.14)

It is assumed that the mesh spacing within a region will be constant.

Therefore,

r, = r, - Ar/2 (2.15a)

H
"

r, + Ar/2 (2.15b)

Substituting equations (2.15a) and (2.15b) into equation (2.14) and

rearranging:
(ri+Ar/2) (ri-Ar/Z)
Ar fia T Y T i%-1T541
) (ri+Ar/2) .\ (ri-Ar/Z) . .- (ra + rb)(ra - rb)
Ar Ar iNi-1] i T8 2

or
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(r,~-Ar/2) (r.~Ar/2) (r.+Ar/2)
ik Sl o M
Ar ii-1"i-1 Ar ii-1 Ar ii+l
(ri+Ar/2)
Y M -8 T;0r (2.16)

The steady—-state, cylindrical, finite-difference equations for each
unique type of point are derived in detail in Appendix A. Again, a
tridiagonal matrix may be constructed to represent the equations and

may be solved for the temperature distribution.

2.3 Transient Finite-Difference Equations
The heat balance on a control volume V in a transient case may be

represented by

Net rate of heat Rate of heat Energy
entering V through|{ + generation = stored
its boundaries in V in V

2.3.1 The One-dimensional, Transient Conduction Equation in
Rectangular Coordinates

5°T(x,t) 3T (x, t)
K(T) — t g(x,t) = D(T)CP(T) Y
X
where
g(x,t) = space and time dependent volumetric heat generation
Cp(T) = temperature dependent specific heat

p(T) temperature dependent density
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For a mesh point within a given region (see Figure 2.la), the

transient finite difference equation is

o™ (T _,-T9) (T3, =T3)
cC , —t—2Ax = g% Ax+ K i S SO S S
Pi%pt At 1 ivi-1 Ax i+l Ax
(2.18)
where
T: = temperature at node i at time tn
n+1
Ti = temperature at node i at time tn+l

The transient, rectangular, finite difference equations at each
unique type of point are derived in detail in Appendix B. Equation
(2.18) is a forward difference equation; the temperature at time tn+l
is given in terms of the temperature at time tn. However, the forward
differencing scheme, or Classical Explicit Method, may be unstable

for some time steps [10]. If the right-hand side of equation (2.18)

is evaluated at tn+l rather than at tn’ the algorithm is the backwards
Euler, or Classical Implicit Procedure (CIP), and is stable for any
time step [10]. If the right-hand side of equation (2.18) is

evaluated at tn+%’ the procedure is known as central differencing, or
the Crank-Nicholson (CN) procedure. The CN procedure is also stable
for any time step [10]. For stability reasons, a 6-differencing scheme

is employed in SHERLOC. In this procedure, equation (2.18) is given

as
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+1 .n
(T =T7)
n+8 i i 2 _ n n+8 , n+l _n+l
(piCpl) X (&x)" = gi(AX) + 0K (T, Ti )
n+6 , n+l  n+l n+0 . n n+6 ™ n
K1 Tiap~Ty D)+ Q-8RI (T =T + K (T - ) (2.19)

If 8=0.0, equation (2.19) reduces to equation (2.18). If 6=0.5, the
method is the CN method; if 6=1.0, equation (2.19) becomes the CIP.
We shall choose to limit the value of © to 0.5 < 8§<1.0 so that the
solution will be stable for all time steps.

Rewriting equation (2.19) with all the terms evaluated at tn+l

on the left-hand side:

n+1
T
n+6 , n+l _n+l n+6, n+l _n+l n+0 2 74 _
T 00K T Ty ) K TigTy )+ (G () = =
(2.20)
where
n+6 Tn
= (p,¢ )™ 0® 5 + 0’ + (1-9)
Kn+6 (Tn _Tn) + n+6(Tn _Tn) (2.21)
X(ii-1 “Vi-1 74 O T 0 R & R | .
. n+l . i
Collecting the Ti terms in equation (2.20):
n+8 _n+l n+6 _n+l n+0 n+o
- +
0 iKi—l Ti-l + iKi+l Ti+l + e(iKi--l iKi+l)
+ (p )n+6£Ax) Tn+1 - " (2.22)

PsCo1 At i i

i
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Let
2
_ n+8 n+8 n+8 (Ax)
Dy = |9(Kiq * iKiwn) + (PsCp0) At (2.23)
Then
n+0,_n+l n+d nt+l n+l _
O i%i-Tio * X Tam | P01 T T Yy
Solving for T2+1:
ntl _ 1 6, n+l n+d _n+l
Ty B D; By +9 14K 9T iTi+l TiHl (2.24)

Note that Di and Hi are known; they are dependent on temperatures

at time tn’ properties, and geometry. Therefore the superscript n+l

is dropped from equation (2.24) and it is understood that the

temperatures appearing in that equation are evaluated at tn+l' Thus,
1 ntd n+l n+8 _nt+l
= — 2.2
1o " 9180 Tia1 ¥ 1% T (2.25)

The temperature distribution at tn is solved for one mesh point at a

+1

time, beginning with the first mesh point. Therefore, in equation (2.25),

is known, but Ti+1 is not. An estimate must be made for Ti+1’

and an iterative process used to solve for the temperature distribution

i

. . . n .
at t . For the first estimation, T. will be used rather than
n+l i+l
(n+l) . .
Ti+1 . An estimate of the temperature at each node i is solved for,

. Thus we have

and used for the new estimate at Ti+1

T%+1 - H + 6 ot _L+1 n+6_4%

1
= 2.26
i Di i ii~-1l1 "i-1 ivi+ Ti+l ( )
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where the superscript 2+1 refers to the (%+l1)st <‘teration on the

temperature distribution at time tn+l' Iterations are continued until

convergence is reached (convergence will be discussed in Chapter 3).

The iterative process can be further refined by taking Ti+l in

equation (2.26) to be an estimate of the temperature at the (£+l1)st
iteration. Let
241 n+d _2+1 n+8 _f

T 1
E R B+ 005%0 Ti1 ¥ M Tin (2.27)

Then, let the temperature at the (+1)st iteration be defined as

241 £ oA+ 2
T, T, +w (T, - T (2.28)
or
241 2 o 41
T, = (l'“’)Ti + T, (2.29)

where w is referred to as the acceleration factor. The range of w

is 0.0 < w < 2.0, and the solution generally converges faster if

w# 1 [1]. If ¢ < 1, the solution is underrelaxed; if > 1, the
solution is overrelaxed. This process is referred to as point successive
overrelaxation [1]. Combining equations (2.29) and (2.26) yields the
following for the temperature at the (+l)st iteration on the time

tn+l

AL _ L, W 0+ L+l 0+ L
T = Q-w)T] 4+ D, By +003K1 T K Tinm

(2.30)
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2.3.2 Temperature Dependent Thermal Properties
Thermal properties which vary with temperature are treated
in the following manner. Initially the properties are calculated using
the initial temperature distribution, which is given. Then the
iterative procedure given by equation (2.30) is used to calculate

the temperature distribution at the time step tn . However, in this

+1
iterative procedure the thermal properties are not updated, so the
converged solution given by equation (2.30) is only an estimate of

the actual temperature distribution. The thermal properties are
updated, and the procedure repeated. Thus the problem solution consists
of two levels of iteration: the inner loop iterates on the

temperature distribution using equation (2.30), while the outer loop
iterates on the thermal properties. The thermal properties are updated
as follows: T. 1is the final, converged temperature distribution at

i

“n,m . . . .
time tn. Ti’ is the estimate of the temperature distribution at time

t after the mth iteration on properties. The thermal properties

n+l

will be reevaluated at the temperature:

™ - 1-6)T; + eT‘i’ﬂ’m

1 (2.31)

2.3.3 Cylindrical Coordinates
The one-dimensional, transient conduction equation in

cylindrical coordinates is

2
k) EHLE e 2L o gy = pe (m G
5r r Oor P at
(2.32)
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For a mesh point within a given region (see Figure 2.1b) the

transient finite difference equation is

(T2+1'T2) 2 2 2 2 (T3_1-T9)
(QiCpi) 5 Tr(rb -, ) = giw(rb - ra) + 21rrél Kol TR
n n

+ 2mr, K STy (2.33)

b i1+l Ar :

We have the following:
L Ar/2 (2.34a)
r, o= 1, + Ar/2 (2.34b)
2 2

rb - ra = ZriAr (2.34¢c)

Substituting equations (2.34a-c) into equation (2.33) and applying

the 6-differencing scheme described in section 2.3.1 yields the

following
+l n
(17 =T3) (2r,-4r)
n+6 i i n n+6, n+l . n+l i
TNy At (2r Ar) = g; (rydr) + 81K, (T, 3Ty ) —%ar
-
n+6(Tn+1_Tn+1) (2ri+Ar) + (1-9) Kn+6(Tn - (Zri—Ar)
iTi+H1 i+l i Ar ii-1""i-1 "i Ar
(2r, +Ar)
n+6 n n i
K Ty Ty Ar (2.35)
Rewriting equation (2.35) with all the terms evaluated at t 41 OO0 the

left-hand side




28

-9 n+6( n+l_Tn+1) (Zri—Ar) + n+6(Tn+1_ n+l) (2ri+Ar) +
ii-17i-1 i Ar i i+l i+l i Ar

Tn+l
n+6 i _
(picpi) (2riAr) it = Hi (2.36)
where
n
n+6 Ti n
Hi = (piCpi) (2riAr) At + gi(2riAr) + (1-8)

iTi-1 ‘Ti-1 i Ar i+l VUil i Ar '
Collecting the T2+l terms in equation (2.36)
-9 Kn+9 Tn+l (Zri-Ar) n+0 _n+l (2ri+Ar) +
ii-1 "i-1 Ar ii+l TiHl Ar
ol go+e (2r +4r) . e (21 +Ar) + (o.cC )n+6(2riAr) o
ii-1 ~ Ar i1+l © Ar Pi“pi Ar i i
(2.38)
Let
oo . Kn+9 (2ri—Ar) . Kn+6 (2ri+Ar) . (o.c _+42riAr)
i ivi-1 " Ar ii+l T Ar Pi%pi At
(2.39)
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Substituting equation (2.39) into equation (2.38) and solving for

Tr.1+l

i

I R U N [ (2r -Ar) 4+ @9 ol (2r +Ar)
i D i i"i-1 "i-1 Ar i1+l i+l Ar

(2.40)

n+1
Since Ti+

1 is unknown, the iterative procedure described in

section 2.3.1 is used. Combining the notation for the iterative
procedure and the point successive overrelaxation method described in

section 2.3.1, we obtain

(2r.-Ar)
M+ 2 w n+0 _2+1 i
;7 = QwTy + D, By + 01K 1 T4 At
nto g (2Ty¥AT)

i i+l i Ar (2.41)
Again, the inner loop on equation (2.41) must be performed, and then the

outer loop on the thermal properties, until convergence is reached for

both loops.

2.3.4 Summary of Transient Finite Difference Equations
The transient finite difference equations for each unique
type of mesh point are summarized here for both rectangular and
cylindrical coordinates. (These equations are derived in Appendix B.)

The equations have the same form for both types of geometries, but
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with different geometric coefficients.
Table 2.1.
Origin:
241 '3 n+6 L
T, - (1-m)Ti + D H, + e(s1 & Ti+1)
where
n+0 n+652
Dy =8 s 4Ky + (0 Cp) K
s
2 n+9_n n nt+0 .. n
By At (P1Cp1) Ty t By st (1'6){;1 1Ky (T

Internal Node:

241 2, w n+o , 2+1 n+6 L
T (1-w)T] + D, Hy +0(a) K ) Ty )+ 2 3K Tin
where

T a 8
~ n+0 ot "3 ot
Dy = 8la) JK; ;) *a 1K1+%J + At(picpi)
a, n+6 n n i n+0 n n
H = 3= (picpi) Ty + g agt (1-0)ja) Ky (T 4-T))
n+d ,.n
toayiKn (T1+1'T2)

Material Region Interface:

different coefficients as sho

wn in Table 2.1.

i+1”

n
)|

The coefficients are given in

(2.42a)

(2.42b)

(2.42¢)

(2.43a)

(2.43b)

(2.43c)

Same as equations (2.43a-c), but with
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Coefficients for Transient Finite Difference Equations
in Rectangular and Cylindrical Geometries

Table 2.1

Mesh Point Type Coefficient Rectangular Cylindrical
ORIGIN s1 1.0 2.0
2 2
(AXx) (Ar)
Ss 2 2
(2r  -Ar)
1.0 R S
INTERNAL NODE a, AT
(2ri+Ar)
1.0 —
a2 Ar
2
a, (AX) ZriAr
(Zri—Al)
MATERIAL REGION a A,/ (A +A,) —_—
1 2 1 -2 A
INTERFACE 1
(2r +A,)
a, Al/(A1+A2) -——7;;———
A (A1+A2)(ri+A2-A1)
a, 1°272 4

I¢



Table 2.1 (Continued)

Mesh Point Type Coefficient Rectangular Cylindrical
LEFT VOID BOUNDARY a; 1.0 Al
a2 Al ri
2 Al
a, ) Ay Cry-
RIGHT VOID BOUNDARY al Al r,
(ri+A2/2)
a, 1.0 A
2
A
2 2
a, (Al) Az(ri+ 4)
OUTERMOST BOUNDARY b, 1.0 R'ﬁ:/ 2)
b2 Ax R
2 Ar
b3 (Ax) Ar (R- 4)

[43

NOTE: At interfaces - Al refers to mesh spacing to the left of the interface
A2 refers to mesh spacing to the right of the interface



Left Void Boundary:

33

241 L W n+6 _2+1 ntd _4L
T, 1~w)T] + D, [Hi +20(a; JK; [ T a3, hr12 Tiﬂ)‘l
(2.44a)
where
n+0 n+0 a4 n+o
Di = 20 a, iKi—l + a, hr]_z + X (piCpi) (2.44b)
24 n+6_n n ntd ., n n
Hi = A—t-(piCpi) Ti + g; 34 + 2(1-8) Lal iKi-l (Ti_l-Ti)
n+0 n n
+ a, B0 (1, -1 (2.44¢)
12 |
Right Void Boundary:
2+l L w n+f _2+1 2 A
(2.45a)
where
_ n+0 n+0 n+o 23
Di = 26|:a1 hr21 + a, lKi"'ljl + (picpi) it (2.45b)
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a

_ 3 n+6,n n nt6,.n _.n
H, = 33 (picpi) T, + 8 a; + 201 8) |a; her(Ti_l T,)
n+b,.n n
+ a, iKi+e(Ti+l-Ti) (2.45¢)
Qutermost Boundary:
41 L, w n+6 L+l n+d
Ti = (l-u))Ti + Di %%'+ 26(bl iKi—l Ti—l + b2 hT T,) (2.46a)
where
p, = 20[b, K04 00 4 (o.c )“'*eb—3 (2.46b)
1 14i4-17 "2 Pi®pi At '
b3 n+f n n n+6 n n
Hy = 3o (pyCpp) Ty +gy by + 201-0)1B) Ky ) (Ty 4-T))
n+6 n
+ b2 hT (Tm—Ti) (2.46¢)
where
n+0 .
h = effective heat transfer coefficient at boundary
T
T = ambient temperature
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2.4 Thermal Conductivity of Graphite

The transport of heat in graphite occurs primarily by lattice
vibrations (phonons) rather than by electrons or holes. One example
of the evidence supporting this theory is the Weidemann-Franz ratio

RWF in graphite

- ko
RF T
where
k = thermal conductivity
p = electrical resistivity

T = absolute temperature

The value of the Weidemann-Franz ratio is 10 to 100 times higher for
graphite than it is for most metals [11] in which heat conduction occurs
primarily by electron transport. The thermal conductivity of graphite
is approximately proportional to the lattice wave mean free path,

which is essentially the size of the crystal. Lattice waves are
scattered at crystal boundaries and at radiation-induced scattering
centers. Radiation damage in a material may be caused by 1) displace-
ment of atoms from the lattice by transfer of energy from neutrons,

2) excitation of electrons, and 3) transmutation of the atoms in the
solid [12]. 1In graphite, a significant number of free electrons are
present, and thus cannot be permanently displaced. Also, very few
transmutations of atoms by neutron capture will occur relative to the
number of atoms which will be permanently displaced; therefore the
primary cause of radiation damage in graphite is due to displacement

[11]. When a neutron collides with a carbon atom and displaces it, if
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enough energy is imparted by the neutron, the carbon atom may in turn
displace other atoms as it slows down. A good discussion of the
displacement of carbon atoms due to irradiation may be found in

Ref. [11].

The radiation damage caused, and thus the thermal conductivity,
is dependent not only on the fluence, but also the temperature at which
the irradiation occurs. In general, the thermal conductivity will
decrease with increasing neutron fluence, and will increase with
decreasing temperature. (The conductivity of unirradiated graphite
is a maximum near room temperature [11].)

The method used to determine the thermal conductivity of graphite
has been used in other codes at the Oak Ridge National Laboratory
[13]. The method uses the following correlations which were developed

from experimental data obtained in West Germany and the United States:

a(T,) = 1.055 - 0.00057 T_ a>0 (2.48)
H(T) = [1-8.45 x 1072 T(420+1.65T)]a (2.49)
B(T) = 1.116 - 0.000269T, 8 >0 (2.50)

F = 8.8 H(T) {}-exp[}B(Tr) x 10‘21§{> (2.51)
R = (1.0)/ (1L +F K(T)[C(Tr)ﬁ(T) <+ (l—C(Tr))A(T)£> (2.52)

Kg(S,T) = R K(T) (2.53)
where
Tr = temperature at which radiation occurs (K)
T = temperature at which conductivity is to be calculated

(present temp.) (K)
S = neutron fluence (n/cmz)

K = graphite thermal conductivity (W/cmK)
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The values of &(T), A(T), K(T), and C(Tr) are obtained by interpolation
and normalization of data strings. These data strings are given in
Table 2.2 and each parameter is normalized to the second term in its
respective data string. For simplicity, it is assumed that the
irradiation temperature Tr is equal to the initial temperature of the
problem. Figure 2.2 displays the behavior of the thermal conductivity
of graphite as a function of temperature and fluence as calculated using
the algorithm described. The temperature range for the data strings

of Table 2.2 is 300 K to 1600 K. However, the correlation is such

that reasonable values for the graphite conductivity are still obtained

for temperatures greater than 1600 K (see Figure 2.2).

2.5 Effective Thermal Conductivity in a Pebble Bed

In the "'worst case" loss of forced convection and depressurization
accident, it is assumed that the gas remaining in the voids in a pebble
bed is stagnant and does not contribute to heat removal. Therefore,
heat removal will occur via conduction through the pebbles and radiation
through the voids. The cell model of Zehner and Schlunder was
developed to determine an effective thermal conductivity in a packed
bed of spheres, taking conduction and radiation into account. Breitbach
and Barthels developed a modified Zehner-Schlunder model which agrees
well with experimental data [8].

The pebble bed is modeled as an arrangement of unit cells by
Zehner and Schlunder; a unit cell is shown in Figure 2.3. A unit cell
contains two halves of the pebbles which are in contact. The bounding
surfaces which contain the sections of pebbles are termed "base areas."

Zehner and Schlunder assume that the open portions of the base areas
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Table 2.2

Data Strings for Graphite Thermal Conductivity Correlation

Temperature (K) §(T) A(T) C(T) K(T)
300 74,2 1.12 1.0 1.10
350 71.0 0.905 1.0 1.05
400 68.2 0.766 1.0 1.00
500 63.5 0.605 1.0 0.90
600 60.5 0.518 1.0 0.84
700 58.4 0.467 0.7 0.78
800 56.4 0.431 0.7 0.72
900 55.5 0.410 0.7 0.67

1000 55.0 0.394 0.7 0.62
1100 54.9 0.384 0.7 0.58
1200 54.3 0.375 0.7 0.54
1300 54.1 0.368 0.2 0.50
1600 54.3 0.355 0.2 0.46




120.0 ni T T T T T T —T 1
O——# FLUENCE = 0.0 a/cm?
—~ G--mm- o FLUENCE = 0.1x102} n/cm?
X 100.0 ]
< Ao FLUENCE = 0.2x102! n/em?
E;E\ »——-—0  FLUENCE = 0.5x10%} n/cm?
N $— —-—g FLUENCE = 1.0x102! n/cm?
> 80.0 B----- 48 FLUENCE > 3.0x10?! a/cm? B
|._
>
= Ic)
QO | g--9--0---6---6-_ ]
= 60.0
()
D e R
o R RS- Gah - =
O o
| 40.0 1 N
<
=
et
L] -
L 2004 -
— A"
5--8
0.0

T ¥ | i I I Ll ! |
200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0 2000.0 2200.0
TEMPERATURE (K)

Figure 2.2 Temperature- and Neutron-Fluence-Dependent Graphite Thermal Conductivity

6¢



40

Radiation I

P

Radiation

-

Figure 2.3 Unit Cell for the Zehner-Schlunder Model
(Ref. 8)




41

have the same emittance as the pebbles, and the other boundaries are
considered to be specular reflecting surfaces. Zehner and Schliunder
derive the following expression for the effective thermal conductivity

in a pebble bed:

(Bz+l)

2 (1~ -
A;gf - (a él 0] (; )% z 1l o134
-1 -1 z |1+
€ € (_2_ - DA
€ f
(2.54)
where
¢ = porosity of the pebble bed
€ = emissivity of pebble
d = diameter of pebble
0 = Stefan-Boltzmann constant
B, = 1.25 (1—;9)10/9 (2.55)
Af
Af = 3 (2.56)
40T d
Xf = thermal conductivity of pebbles

The first term in the brackets represents the radiation between the
base areas, which dominates at high temperatures.

Breitbach and Barthels modify the Zehner-Schlunder model given
by equation (2.50) by assuming that the open portions of the base areas
are assumed to be black surfaces rather than surfaces with the same
emittance as the pebbles. The modified Zehner-Schlunder equation is

then:
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1 (B +1)
- 1 (1-¢)= z 1 3
keff [1 - (1-¢)%] ¢ + > B 1 40T d
q; -1) z 1 +-*??——————*
_ (‘E— - l)Af

(2.57)

where Bz is known from equation (2.55) and Af is known from equation
(2.56). Breitbach and Barthels assume that Kf in equation (2.56), the
conductivity of the pebble material (in this case graphite), is a
constant. However, we desire to use a thermal conductivity of graphite
which is dependent on temperature and fluence. Therefore, the method
described in section 2.4 is used to calculate graphite conductivity,
which is then used as Af in equation (2.56) and subsequently in equation

(2.57) to obtain the pebble-bed effective thermal conductivity.
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3. PROGRAMMING CONSIDERATIONS

In this chapter, some of the mechanics of the code SHERLOC and

the solution methods used are discussed.

The initial temperature, fluence, and volumetric heat generation

distributions, as well as the thermal properties (density, thermal

conductivity, and specific heat) as functions of temperature, are

input as tabular functions. Tables of the position-dependent

parameters are input for each region, and tables of the temperature-

dependent parameters are input for each material. The input to SHERLOC

is discussed further in Appendix C.

Characteristics of heat transport problems which may be modeled

using SHERLOC include the following:

1)
2)
3)
4)

5)

6)

7)

8)

9)

transient or steady-state;
rectangular or cylindrical coordinates;
one-dimensional;

adiabatic boundary conditions at the origin;

convective and/or radiative conditions at the outermost
boundary
up to 20 different regions - some of which may be void regions;

up to 20 different materials (the total number of materials
must be less than or equal to the total number of regions);
void regions not containing material;

temperature dependent thermal conductivity, density, and/or

specific heat;
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10) temperature and neutron fluence dependent graphite
thermal conductivity;

11) time and space dependent internal heat generation;

12) radiation and conduction within a pebble-~bed region;

13) wup to a total of 200 mesh points; and

14) up to 20 ordered pairs in each tabular function (density,
initial temperature, heat generation, thermal conductivity,

etc.).

3.1 Numerical Techniques
3.1.1 Steady~state Solution Methods

The steady-state finite difference equations are constructed
and placed into the matrix form given by equation (2.12). The system
of n equations in n unknowns is solved using the system subroutines
DGBFA and DGBSL {14], which are in use at the Oak Ridge National
Laboratory. DGBFA factors a banded matrix by elimination, and DGBSL
solves the system using the factors generated by DGBFA. This method
is efficient for narrowly banded matrices (l-or 2-dimensional problems).
Since the equations are solved simultaneously, the method is a direct
solution technique (as opposed to an iterative technique). If a
problem is linear, i.e., constant thermal properties, the solution to
the matrix equation is the final, converged solution. If however, the
thermal properties are not constant, an initial guess at the steady-
state temperature distribution must be supplied in order to estimate the
properties. The properties are evaluated at the initial guess for the
temperature, and the equations solved. However, since the properties

were evaluated at the initial estimate of the temperature, the solution
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is only an estimate of the actual steady-state temperature distribution.
The properties are reevaluated and the equations solved again.

The procedure continues in this fashion until convergence is
reached. Two methods are used to monitor convergence; however, only the
first method is used to determine when the problem is actually solved.
The first method monitors the average relative change in the temperature
distribution from one iteration to the next, and the second method
monitors the heat balance at each mesh point. The relative change in
the temperature distribution converges more slowly than does the heat
balance. Therefore, the convergence criterion for a steady-state
problem is that the average relative change in the temperature
distribution be less than the value input by the user.

The average relative change in the temperature distribution is

calculated by

I
1 Tril - Tril-l
€, = = — .
1 I n (3.1)
Ti
i=1
where
I = total number of mesh points

T? = temperature of mesh point i at the present iteration
Tz_l = temperature of mesh point i at the previous iteration

The value of €1 must be less than the criterion input by the user for

the problem to be considered converged. In general, values of € of
10_6 or 10-7 should indicate a converged temperature distribution.
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The second check for convergence involves performing a heat
balance on each mesh point i. Using the point represented in equation

(2.11), a "heat residual" is calculated at each mesh point i:

e, = -« +gi(Ax)2 (3.2)

2i i®-1T4-1 )T; + 4K

15441 1+1T1+1
where

621 = heat residual at mesh point i

A heat residual of zero at each mesh point occurs when the exact
temperature distribution is reached. Since the temperature distribution
does not converge until after the heat balance converges, the heat
balance is monitored for informational purposes only. In general, when
the temperature distribution 1s converged (el A 10-6) the value of the

10 12

heat residual will be on the order of 10 to 10 ~°. A steady-state

problem should converge in approximately 20 to 30 iteratioms.

3.1.2 Transient Solution Methods
The 8-differencing, implicit technique described in section
2.3.1 is used for transient problems to describe the finite-difference
equations; and the point successive overrelaxation technique, also
presented in section 2.3.1, is used to solve the equations iteratively.
The procedure for solving non-linear problems is as follows:
1) Thermal properties are calculated at the initial temperature
distribution,
2) The temperature distribution is solved using successive
overrelaxation. Iterations are performed until convergence
is reached.

3) The thermal properties are updated.
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4) Step 2 is repeated.

5) Convergence of the outer iteration (on properties) is
checked.

6) 1If converged, the next time step is begun. If not converged,

steps 3 through 5 are repeated.

To determine when the iterative process of the inner loop is
converged, a heat residual is calculated at each mesh point. Consider
the point represented by equation (2.26) as an example. When the

(g+l)st iteration is complete, the entire temperature distribution is

known. Therefore, '1‘i+l is substituted for Ti+l’ and the heat residual
is
_ n+8 _2+1 n+d 2+1 241
& = B+ 01K i * iKom T Y 01Ty (3.3)

The heat residual is normalized by dividing equation (3.3) by Hi:

_ 1 n+6 _2+1 n+d  _2+1 241
3 T Hy + 01K T * %4 Tia| 047 (3.4)

The convergence criteria is supplied by the user, and iterations are
performed until convergence is reached at all mesh points (unless the
number of iterations exceeds the maximum allowed by the user).

To determine when the iterations on the thermal properties are
converged, the norm of the relative temperature difference between the
present property iteration and the previous property iteration is
calculated. If Tz’m is the temperature of mesh point i at time Tn

after the mth iteration on properties, the norm of the relative
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. I T:,m_Tz,m-l
temperature difference is: ¢, = = —_— (3.5)
4 I L
i=1 :
where
I = total number of mesh points

The iterative process is repeated until €, is less than the criteria

4

input by the user (or the number of iterations exceeds that allowed).

3.2 Determination of Properties and Heat Generation Rates
3.2,1 Thermal Conductivity
The temperature dependent thermal conductivity between mesh

points i and i+l (iK ) is calculated by interpolation of a given tabular

i+l

function at the average temperature of the two nodes.

T, )
T = ._l_E&il_ (3.6)

3.2.2 Density and Specific Heat
The density and specific heat at each mesh point determine

the amount of energy which may be stored in a given interval over time,
and thus are required only for transient problems. It should be noted
that using a temperature-dependent density will not satisfy conservation
of mass. In general, the temperature dependent density and specific
heat for a given mesh point in a given material are determined at the
temperature of the mesh point under consideration. However, at material
interfaces (not void/material interfaces) the properties of the differing
regions must be volume averaged. Since the mesh spacing may vary from

region-to-region, let Al be the mesh spacing for region 1 (left of the
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interface) and let A2 be the mesh spacing for region 2 (right of the
interface). Let Py be the property (density or specific heat) of the
material in region 1 at the temperature of the interface, and Py the
property of the material in region 2 at the interface temperature. Then,

in rectangular coordinates, the volume-averaged property at the inter-

face is
bk
s _ _2P173 P
P A, A
&+
2 772
or

(Alp1 + A2 pz)
(A1 + 42)

(3.7

>
|

In cylindrical coordinates, volume averaging occurs as follows:

2 2 2
S T T N2 L P (R VI S LTy P
B - 3 = (3.8)
[Ce 40y /2% = (ry-0 /D)%)

where

r, = radius at mesh point i (interface)

Equation (3.8) reduces to:

~ Al(éri—Al)p1 + A2(4ri+A2)p2
p = (3.9)
(A1+A2)[4ri+(A2—Al)]

At material/void interfaces, the properties are calculated at the
temperature of the interface for the material involved. Since heat will
be stored only in the material, not in the void, the properties are not

volume-averaged over the entire mesh interval. The heat storage term
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in the transient equation will then be multiplied by the volume of
the material portion of the interval, not the volume of the entire

interval (see Appendix B, equations B.25, B.33, B75, and B.83).

3.2.3 Volumetric Heat Generation Rates

Since the volumetric heat generation of a mesh interval will
be multiplied by the volume of the mesh interval, the value of 8 must
be the average volumetric heat generation of the interval. The heat
generation distribution is supplied to the code as a tabular function
of power density versus position. Linear interpolation is used between
the user-supplied data points to obtain the heat generation at each mesh
point 1i.

For a mesh point within a given material region (see Figures 2.la
and 2.1b), it is assumed that the linearly-interpolated value of the
heat generation function is indeed the average heat generation for the
mesh interval. This assumption is reasonable if the given tabular heat
generation function is fairly linear between the data points input by
the user.

We now consider a mesh point i at the origin or at the right-hand
boundary of a void region. No heat is generated in a void region. There-
fore, the average power density for the mesh interval i is

1 1
g = ?[fi+'2'(fi+f )] (3.10)

i+l

where
b3 = linearly interpolated value of the volumetric

heat generation function at mesh point i
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fi+1 = linearly interpolated value of the volumetric heat
generation function at mesh point i+l

Reducing equation (3.10) yields
= 3 1
8 = %5 *%fin (3.11)

Consider mesh point i at the outermost boundary or at the left-hand
boundary of a void region. The average power density for the mesh

interval i becomes
1 3
8y 4 f + 4 f (3.12)

where
fi-l = linearly interpolated value of the volumetric heat

generation function at mesh point i-1

At a material region interface, values for the heat generation must
first be calculated from the functions given for each region, and then
volume—-averaged together. Let 8 be the average heat generation in the
portion of the mesh interval to the left of the interface, and g be the
average heat generation in the portion of the mesh interval to the right

of the interface. We have

- 1 3
8, <~ % fi-l + 7 fi (3.13)
and
- 3 1
gg = 3% Y% Em (3.14)
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Then, volume averaging 8, and g8r in rectangular coordinates:

g. = A]'(_iL_;_i_%f_E (3'15)
* 17 %2
where
Al = mesh spacing in region left of interface
A2 = mesh spacing in region right of interface

Similarly, in cylindrical coordinates:

Al(lori—Al)gL + A2(4ri+A2)gR
gy = (3.16)
(A1+A2)[4ri + (Az—Al)]

3.3 Flow of Problem Solution

Several flowcharts are presented here to depict the progression
of SHERLOC in the solution of a problem. Figure 3.1 contains a very
general flowchart of the entire code, showing the major sections of
the code and how they are reached. Figures 3.2 and 3.3 show more
detailed flowcharts of the steady-state and transient solutions,
respectively. The progression of the subroutine CONDUC, which calculates
the thermal conductivity between each mesh point, is shown in Figure 3.4.
The subroutine GRPHTE, which uses the correlations of section 2.4 to
determine the neutron fluence and temperature dependent graphite thermal
conductivity, is called from CONDUC. A flow diagram of GRPHTE is shown
in Figure 3.5. The effective thermal conductivity for mesh points in
a pebble-bed is calculated in subroutine PEBBLE, which is also called

from CONDUC. Figure 3.6 contains a flowchart of PEBBLE.
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The subroutine INTRPG, INTERP, and PROP are used to interpolate
user-supplied functions. INTRPG determines the volumetric heat
generation of each mesh interval; INTERP calculatesvthe neutron fluence
and initial temperature at each mesh point; and PROP determines the
values of the density and specific heat of each mesh point, volume
averaging where necessary. The progression of each of these sub~-
routines is fairly straightforward.

A complete listing of SHERLOC is found in Appendix D; and an input

guide, a sample input, and a sample output is found in Appendix C.
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4. MODELING OF PRISMATIC-CORE AND PEBBLE-BED HTGRs
FOR DEPRESSURIZED HEATUP ACCIDENT ANALYSIS

The responses of both prismatic-core and pebble-bed modular HTGRs
to the "worst case" depressurized heatup accident were analyzed using
SHERLOC, and the results compared to studies performed by General
Atomic Technologies (GA) and the General Electric Company (GE).
Several sensitivity studies were performed for both types of modular

reactors.

4.1 Prismatic Modular HTGR Model

The one-dimensional SHERLOC model of the GA-designed prismatic
modular (described in Section 1.1.2) is shown in Figure 4.1. The core
is divided radially into six regions. The reflector is modeled as a
single region, as are the core barrel, side plenum (void region between
the core barrel and reactor vessel), and the reactor vessel. A
convective heat transfer coefficient is specified on the outer surface
of the reactor vessel, and the temperature of the surrounding
environment is given as 150°F (338.7 K) following a depressurized loss
of forced convection accident.

The following assumptions were made in modeling the system:

1) the density of each material is constant;

2) the core is treated as a homogeneous region of graphite -

the graphite density in the matrix is smeared over the entire

core volume;
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3) the emittances of the core barrel and reactor vessel (on
inner surface) are assumed to be 0.8;

4) the core barrel is 304 stainless steel, and the reactor
vessel is 2-1/4 Cr : 1 Mo steel;

5) heat transfer through the side plenum is by radiation alone;

6) the fast neutron fluence in the reflector is negligible;

7) heat is transferred from the vessel to the environment
by natural convection and radiation only; and

8) no heat is generated outside of the active core.

Although the active core and the reflector are both graphite,
they have different densities and are thus treated as different
materials by SHERLOC. The volume-averaged core density 1is 1195.5
kg/mB, and the density of the reflector is 1394.8 kg/mB. These
densities were obtained from values of carbon number densities in the
core and reflector supplied by GA. The material properties which
were used are given in Section 4.3.

The volumetric heat generation in the core is given by:
P(r,t) = Po(r)f(t) (4.1)

where
Po(r) = d{nitial power density at radius r(W/mB)
f(t) = decay heat fraction at time t

The decay heat fraction was determined as follows [15]:

f£(t) = 0.128(t + 3.796x10 +)~0+261 (4.2)
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where

t = time after accident initiation (seconds)

The decay heat fraction as a function of time is shown in Figure 4.2

Of primary interest is the peak temperature reached in the core
during the transient. Also of interest are the effects of varying
the power density and initial temperature distributions. To investigate
these effects, the core was divided axially into eight regions, each
with a height of 79.25 cm, and calculations were performed at axial
regions 1 (bottom of core), 3, 4 (just below core mid-plane), and
5 (just above core mid-plane). One would expect the peak transient
temperature to occur where the power density is greatest. The power
density peaks in axial region 4; therefore axial region 4 was chosen as
the reference case.

In addition to the power density and initial temperature effects,
the impact of using a fluence-dependent graphite thermal conductivity
was investigated. This was done by simply neglecting the fluence in
axial region 4 and comparing the results to the reference case (with
fluence). In the cases discussed above, heat transfer from the vessel
occurred via convection and radiation only, with a combined heat
transfer coefficient of 5.0 Btu/hr ft2 °F (28.4 W/mz—K). To determine
the effect on the transient of an active vessel cooling system, a case
was run in which the heat transfer coefficient on the surface of the
vessel was 150 Btu/hr ft2 °F (851.7 W/mzK) [16].

The effect of small gaps between the prismatic fuel assemblies
was studied by placing 0.l-cm-wide gaps every 36 cm radially in the

core. (The prismatic fuel assemblies are 36 cm across flats.) These
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calculations were performed at axial region 4. Heat was assumed to be
transferred by conduction through the helium in these gaps, and no
heat was generated in the gaps.

In order to compare the behavior of a prismatic core and a
pebble-bed core under the same initial conditions and configuration,
the prismatic core was replaced by a pebble-bed core and calculations
were performed using the conditions of the reference case. The pebbles
were assumed to be 6 cm in diameter, have an emittance of 0.8, and a
graphite density of 1.70 gm/cm3. The volume fraction of pebbles to
the entire core was 0.61; thus the volume-averaged core density was
1037 kg/m3.

A summary of the reference case and the sensitivity studies
performed is given in Table 4.1. The steady-state radial power density
(P° in equation 4.1) and temperature distributions for the various
axial locations of interest are given in Table 4.2 and 4.3,
respectively. The radial neutron fluence distribution which was assumed

for all axial locations is given in Table 4.4

4.2 Pebble-Bed Modular HTGR Model

The modular pebble-bed reactor which was studied is similar to
the one proposed by GHT (see Section 1.1.2). The model used was
adapted from a study of the depressurized heatup accident in the
pebble~bed reactor performed by General Electric [17]. The model used
is shown in Figure 4.3, and consists of 11 radial regions; 6 in the
core, 2 in the reflector, and 1 each for the core barrel, side plenum,
and reactor vessel. Heat is removed from the surface of the vessel by

radiation alone to the cooling coils located on the inner surface of
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Table 4.1

Summary of Prismatic Modular
Using SHERLOC

HTGR Cases Analyzed

Case ‘Description

1 - Reference Case Axial region 4 -
location of peak

2 Axial region 5 -

3 Axial region 3

4 Axial region 1 -

5 Axial region 4 -

6 Axial region 4 -

just below core midplane
axial power density

just above core midplane

bottom of core
neutron fluence neglected

active vessel cooling

h = 150 Btu/hr ft2 °F = 851.7 W/m2K

7 Axial region 4 -

0.1 cm, helium filled

gaps between fuel assemblies in core

8 Axial region 4 -

replacing prismatic fuel

with 6 cm DIA fuel pebbles




Steady-State Radial Power Density Distributions at
Various Axial Locations in the
Prismatic Modular HTGR
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Table 4.2

Axial Region 1 3 4 5
Radial Region

1 6.82 W/ce 7.76 Wce .82 W/ee  3.93 Wee

2 6.71 7.64 .69 3.87

3 6.07 6.91 .95 3.50

4 6.17 7.03 .08 3.56

5 5.42 6.17 .22 3.13

6 4.46 5.07 .11 2.57
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Table 4.3

Steady-State Radial Temperature Distributions at
Various Axial Locatiomns in
the Prismatic Modular HTGR

Axial Region 1 3 4 5

Radial Region

1 732.24 °C 915.34 °C 1037.74 °C 1093.3 °C
2 732.24 915.34 1037.74 1093.3

3 732.24 915.34 1037.74 1093.3

4 693.34 839.84 937.74 954 .44

5 693.34 839.84 937.74 954.44

6 693.34 839.84 937.74 954 .44

7 482.24 542.94 586.44 586.44

8 482.24 482.24 482.24 482.24

9 420.0 420.0 420.0 420.0

10 260.0 260.0 260.0 260.0
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Table 4.4

Radial Neutron Fluence Distribution Assumed
for the Prismatic Modular HTGR

Radial Region-: Fluence (xlO21 n/cmz)
1 5.48
2 5.48
3 4.94
4 4.45
5 & 3.90

6 2.95
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the confinement building. The cooling coils are assumed to remain at
a constant temperature of 50°C throughout the transient.
The following assumptions were made in modeling the system:
1) the density of each material is constant;
2) the density of the graphite in the pebbles was smeared
over the entire core to obtain an effective core density;
3) the pebbles have diameters of 6 cm and emittances of 0.8;

4) the volume fraction of pebbles to the entire core is

v
( Eebbles) = 0.6] :

’
core

5) the emittances of the core barrel and reactor vessel are 0.8;
6) heat transfer is via radiation alone through the side
plenum;
7) the core barrel is of 304 stainless steel, and the reactor
vessel is 2-1/4 Cr : 1 Mo steel;
8) the fast neutron fluence in the reflector is negligible;
and

9) no heat is generated outside of the core.

The volume-averaged density of the core is 1037.0 kg/m3,
assuming a pebble graphite density of 1.70 gm/cm3 [17]. The density
of the reflector was assumed to be the same as the density of the
prismatic core reflector, namely, 1394.8 kg/m3. The other material
properties which were used are discussed in Section 4.3.

The time- and space-dependent volumetric heat generation in the core

was determined using equation (4.1), where f(t) is given by [18]:
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£(e) = 0.0622[t 02 = (¢t + e.184x107)70*2) 4.3)

where

t = time after accident initiation (seconds)

The decay heat fraction f(t) for the pebble-bed core is shown
graphically in Figure 4.4.

As with the prismatic HTGR, the reference case for the pebble-bed
reactor was taken at the axial location of the peak power density -
185.2 cm below the ball f111 (top of core). The height of the core
18 926 cm, and if one takes the origin (z=0.0) at the top of the core,
the peak axial power density occurs at z/H=0.2. In addition, cases
were studied at z/H=-.3 and z/H=1.0 (bottom of the core). Since the
pebbles and coolant are flowing downward through the core, the power
is peaked towards the top and the steady-state temperature is greatest
at the bottom of the core.

The functions used for graphite thermal conductivity and heat
capacity by GE in their two-dimensional study were different than the
functions used here. To examine the effects of performing a 1-D
calculation versus a 2-D calculation, the GE conductivity and heat
capacity were used in SHERLOC for z/H=0.2 and z/H=0.3. The GE graphite

thermal conductivity function for the pebble-bed core is [18]:

1.6622

K(T) = 1.1536x10°°(T + 100) 4.4)

where

k(T)

temperature dependent thermal conductivity (W/em °C)

]
[]

temperature (°C)
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The heat capacity of the core is given as [18]:

2
pCp(T) = p 1.75[0.645 + 3.14 (1000) 2.809 (1000)
+ 0.959 (1000) ] (4.5)
where
po = pebble volume fraction = 0.61
T = temperature (°C)

pCp(T) = heat capacity (J/em °C)

The actual values of the properties used by GE for the core barrel
and reactor vessel were unknown; therefore, the properties given in
Section 4.3 were used. These may be somewhat different than the
values used in the GE study.

A summary of the cases studied for the pebble-bed reactor is
given in Table 4.5. The steady-state radial power density (Pbin
equation 4.1) and temperature distributions for the axial locations
investigated are given in Tables 4.6 and 4.7, respectively. The

assumed radial neutron fluence distribution is given in Table 4.8.

4.3 Materials Properties
4.3.1 Graphite
The densities used for the graphite pebble-bed and prismatic
cores and the reflector are given in the preceding section. The
graphite thermal conductivity was calculated using the correlation
described in Section 2.4, and the effective pebble-bed conductivity

was determined using the modified Zehner-Schlunder equation of
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Table 4.5

Summary of Pebble-bed Modular HTGR Cases Analyzed
Using SHERLOC

Case Description

1 - Reference Case z/H = 0.2 - location of peak axial
power density

2 z/H = 0.3

3 z/H = 1.0 - bottom of core
maximum initial temperatures

4 z/H = 0.2 using GE core conductivity and
heat capacity functions

5 z/H = 0.3 using GE core conductivity
and heat capacity functions
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Table 4.6

Steady-State Radial Power Density Distributions
at Various Axial Positions in the
Pebble-bed Modular HTGR

giﬁa;ﬁlmfii‘)’ 185.2(% = 0.2) 277.8(% = 0.3) 926.0(Z = 1.0)
Radius (cm)
0.0 8.21 W/ce 7.37 W/ee 0.76 W/cc

40.0 8.01 7.19 0.74

80.0 7.24 6.50 0.66

101.0 6.67 6.00 0.60

106.0 7.33 6.55 0.64

124.0 6.87 6.13 0.58

145.0 6.96 6.17 0.54
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Table 4.7

Steady~State Radial Temperature Distributions at Various

Axial Positions in the Pebble-bed Modular HTGR

Bl Pl ey 185.2 B =0.2)  277.8 & = 0.3) & = 1.0)
Radius (cm)
0.0 582.0°C 699.0°C 1020.0°C
20.0 579.0 695.0 1010.0
40.0 572.0 684.0 995.0
60.0 560.0 668.0 974.0
80.0 544.0 647.0 950.0
101.0 539.3 639.5 935.9
106.0 538.5 638.1 933.6
124.0 536.0 634.0 927.0
145.0 531.0 628.0 917.0
170.0 466.0 545.0 772.0
194.0 399.0 463.0 644.0
220.0 319.0 372.0 518.0
245.0 310.6 359.3 487.5
248.0 309.0 357.0 482.0
266.0 241.5 279.5 384.5
270.0 220.0 255.0 354.0
282.0 213.0 246.0 334.0
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Table 4.8

Radial Neutron Fluence Distribution Assumed
for the Pebble-bed Modular HTGR

Radial Region Fluence (xlO21 n/cmz)
1 5.48
2 4.90
3 4,50
4 4.50
5 3.90
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Section 2.5. The thermal conductivity of the graphite reflector was
calculated assuming a neutron fluence of 0.0 n/cmz. The specific heat
(Cp) of graphite as a function of temperature [11,19] is shown in

Figure 4.5.

4.3.2 304 Stainless Steel [20]
The core barrel was modeled as 304 stainless steel for both
the pebble-bed and prismatic reactor designs. The density of 304
stainless steel was taken as a constant value of 7800 kg/m3. The

temperature-dependent thermal conductivity and specific heat functions

are given in Figures 4.6 and 4.7, respectively.

4.3.3 2-1/4 Cr : 1 Mo Steel [20]
2-1/4 Cr : 1 Mo steel was used in the reactor vessel for
both reactor types. A constant value of 7675 kg/m3 was used for the
density. The temperature-~dependent thermal conductivity and specific

heat functions are given in Figures 4.8 and 4.9, respectively.

4.3.4 Helium [21]
Properties of helium were required for Case 7 in the prismatic

HTGR study, in which small gaps (filled with stagnant helium) between
fuel assemblies were modeled. Since the reactor was assumed to be
depressurized in this study, properties were taken at a pressure of
1 atm (1.01325 bar). The specific heat (Cp) was given as a constant
value of 5195 J/kg K.

The thermal conductivity may be determined using the following

correlation:

3 T0.7l(l—2x10-4p) (4.6)

k(p,T) = 2.682x10 (1 + 1.123x10" p)
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where
p = pressure (bar)
T = temperature (K)
k(p,T) = thermal conductivity (W/m K)

The helium thermal conductivity as a function of temperature at 1.01325
bar is plotted in Figure 4.10.

The density of helium is calculated using the following

correlation:
48.14(p/T
(,T) (p/T) .7)
0.446
(1+ T
ot
where
p = pressure (bar)
T = temperature (K)
(p,T) = density (kg/m3)

Helium density is plotted as a function of temperature at 1.01325 bar
in Figure 4.11.

Equations (4.5) and (4.6) are valid in the range 1 bar < p < 100
bar and 20°C < T < 1500°C; however, they were assumed to be valid for
temperatures up to v 2200°C for the purposes of this study. The values
of helium conductivity and density obtained from equations (4.5) and
(4.6) at temperatures greater than 1500°C were within 3.7% of the

corresponding values reported in Reference 22.
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5. RESULTS AND CONCLUSIONS

5.1 Solid Graphite and Pebble-Bed Thermal Conductivities

As previously shown in Figure 2.2 (Temperature- and Neutron-
Fluence-Dependent Graphite Thermal Conductivity), radiation damage
to graphite causes a significant reduction in the thermal conductivity
of graphite. It should be noted, however, that fluences greater than
3x1021 n/cm2 result in little further reduction of the conductivity.
At high temperatures (T > 1500°C), the graphite conductivity becomes
independent of the fluence.

Because heat transfer via radiation is effective only at high
temperatures, the effective thermal conductivity of a pebble-bed
predicted by the modified Zehner-Schliinder model is lower than that
of a prismatic core at temperatures below 1750°C. Figure 5.1 shows
the thermal conductivity of a pebble-bed as a function of temperature
(at a neutron fluence of 0.0 for illustrative purposes). The pebbles
were assumed to be 6 cm in diameter, have an emissivity of 0.8, and
the porosity (¢ in equation 2.57) of the pebble-bed was 0.39. These
are the same conditions used in the analysis of the pebble-bed reactor.
At temperatures above 1750°C it is seen that radiation becomes the
dominant mechanism of heat transfer, and the effective pebble-bed
conductivity exceeds that of solid graphite. In addition, due to the

more significant effect of thermal radiation (either as a resistance

to or a mode of heat transfer) in a pebble-bed, the effect of neutron
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radiation damage on the effective conductivity is much less pronounced

( < 15%) than on the conductivity of solid graphite.

5.2 Prismatic Modular HTGR

The peak temperature reached and the time after depressurization
until peaking for the prismatic HTGR cases outlined in Section 4.1
are summarized in Table 5.1. The GA study, using a two-dimensional
model, calculated a peak temperature of 2093°C at axial region 3
occurring 26 hours after reactor trip [16]. Using a one-dimensional
model at various axial planes, we found the peak temperature to be
2152.2°C in axial region 4 occurring 38 hours after reactor trip -

a difference in peak temperature of 37.

The reason for the differences in the axial location of the peak
and the time until peaking between the GA analysis and this study is
that SHERLOC neglects heat transfer in the axial direction. The axial
peaking factors of axial regions 3, 4, and 5 are 1.48, 1.49, and 0.75,
respectively. Therefore, one would expect considerable heat loss
from axial region 4 to the region above it (5) even though axial region
5 is initially at a higher temperature. Figure 5.2 shows the response
of the center-line temperature through the transient for the Reference
Case (axial region 4), and axial regions 1, 3, and 5. Due to the low
power density in axial region 5, it is seen that the temperatures
during the transient are quite low; peaking at only 1430.8°C. Since
the GA study was performed in two-dimensions, it accounted for this
heat loss in the axial direction and produced the peak temperature in

axial region 3. Thus the peak temperature predicted by SHERLOC in axial



Table 5.1

Summary of Results of Depressurized Heatup
Accident Analyses for the Prismatic HTGR

Case Description of Case Peak Temp. Time of Peak
(°0) (hours after
initiation)
GA General Atomic (2-D) 2093 26
1 Reference case - Axial 2152.2 38
region 4
2 Axial region 5 1430.8 14
3 Axial region 3 2144 .4 42
4 Axial region 1 - 1952.3 46
bottom of core
5 Axial region 4 - 1947.9 40
neutron fluence
neglected
6 Axial region 4 - 2108.7 30
active vessel
cooling
7 Axial region 4 - 2252.9 40
with He gaps
8 Replacing prismatic 2172.4 24

core with
pebble-~bed




2300.0 1 4 1 J I 1 ¥ 1 T 1 1 1 1 1

e——=a REFERENCE CASE
@--mn- © AXIAL REGION 3
R & AXIAL REGION 1
—-— AX|AL REGION 5

CENTER LINE TEMPERATURE (°C)

700.0 T T T T T T T T T J T T T T
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0

TIME AFTER ACCIDENT INITIATION (HOURS)

Figure 5.2 Response of the Center-line Temperature to the Depressurized Heatup Accident
for the Prismatic HTGR

z6



93

region 4 is probably somewhat high, and the peak temperature in
region 5 is somewhat low.

‘The radial temperature distribution at axial position 4 at various
times following the accident initiation is shown in Figure 5.3. The
reflector temperature reached a maximum of 1185.7°C at 65 hours, and
the reactor vessel peak temperature was 649,7°C at 80 hours.

The effects of the power densities and initial temperatures are
of interest. Axial region 5 was at a 5% higher initial temperature
and a 50% lower power density than was axial region 4. The resulting
transient was much less severe at axial region 5 than for region 4.
Conversely, axial region 1 (bottom of core) was at a 30% lower
initial temperature and a 137 lower power density than was axial
region 4. While the transient was less severe than for axial region 4,
the peak temperature of 1952.3°C was 36% higher than the peak
temperature in axial region 5. It is evident that the power density
is a greater factor in the peak temperatures than is the initial
temperature.

It is interesting to note the differences in the time until
peaking for axial regions 1, 3, and 4. As seen in Table 4.3, the
initial radial temperature distribution is flattest for axial region
1, and steepest for axial region 4. The flatter the radial temperature
distribution, the slower the temperature will change with time.
Referring to equation (2.33), as AT/Ar decreases, AT/At will also
decrease. Thus for a flatter initial radial temperature distribution,
the time until reaching the peak temperature will increase. This is
seen in that the temperatures of axial regions 1, 3, and 4 peak at 46

hours, 42 hours, and 38 hours, respectively.
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The neutron fluence has a significant effect on the graphite
thermal conductivity, as seen in Figure 2.2. Neglecting the effect
of irradiation in determining the graphite conductivity causes the
predicted peak temperature to decrease by 10%, and produce little
effect on the time until peaking, as seen in Table 5.1. Since the
graphite conductivity is fairly independent of fluence above 1500°C, the
effect on the predicted temperatures would be greater for a transient
which produces lower temperatures. Neglecting the effect of radiation
damage on the graphite conductivity produces non-conservative results.

When active vessel cooling was considered (Case 5 - hT = 851.7
W/mzK), the maximum temperature was decreased by only 2%; however,
the time until peaking was decreased by 8 hours. This indicates that
the maximum core temperature is fairly insensitive to vessel cooling,
but that steady-state will be reached sooner with an active vessel
cooling system. These results are consistent with results reported in
the GA study. Their analysis indicated a decrease in the maximum
temperature of less than 1%, and that steady-state would be reached
sooner with vessel cooling [16].

The result of modeling small helium-filled gaps between prismatic
fuel assemblies was to increase the predicted peak temperature by 57%.
Thus it is important to model the gaps if they are known to be present.

Finally, to examine the effect of the Zehner-Schlunder model for
effective pebble~bed conductivity, the replacement of the prismatic
fuel with pebbles 6 cm in diameter was simulated. The core graphite
density was decreased from 1195.5 kg/m3 to 1037 kg/m3. All initial
conditions and reactor dimensions were left the same as for the

Reference Case. The peak temperature predicted increased by only




96

20.2°C (1%); however, the time until peaking decreased by 14 hours.
Initially the effective pebble-bed conductivity is lower than the
conductivity of solid graphite, but the depressurized transient

produces temperatures which are high enough to cause heat transfer

via radiation to become more effective than heat transfer by conduction.
Therefore, the peak temperatures predicted are very similar. Because
the pebble-~-bed conductivity increases rather than decreases with
temperature (see Figure 5.1), the pebble-bed heat capacity is lower
than the prismatic, and the temperatures themselves are higher than

in the prismatic core, the change of temperature with time is greater

for the pebble-bed case and the temperature peaks earlier.

5.3 Pebble-Bed Modular HTGR

The peak temperature reached and the time after depressurization
until peaking for the pebble-bed HTGR cases outlined in Section 4.2
are summarized in Table 5.2. The GE study predicted a peak temperature
of 1644°C at an axial position of z/H=0.3 (z=0.0 at top of core;

H=926 cm) occurring 27 hours after reactor trip [17]. This study found
the peak temperature to be 1647.8°C at z/H=0.2 occurring 26 hours after
reactor trip - a difference in peak temperature of less than 1%.

As was the case for the prismatic HTGR comparison, the difference
in the axial location of the peak temperature is due to two-dimensional
effects, which are not considered by SHERLOC. Figure 5.4 shows the
response of the center-line temperature throughout the transient at
the following axial positions: z/H=0.2, 0.3, and 1.0. It should be
noted that although the initial temperature is highest at the bottom

of the core (z/H=1.0), the power density is low enough that the
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Table 5.2

Analyses for the Pebble-Bed HTGR

Summary of Results of Depressurized Heatup Accident

Case Description of Case Peak Temp. Time of Peak

(°c) (hours after
initiation)

GE General Electric (2-D) 1644 27

1 Reference case - z/H = 0.2 1647.8 26

2 z/H = 0.3 1583.8 24

3 z/H = 1.0 - bottom of core 1020 0.0

4 z/H = 0.2 - with GE k & pC 1653.1 24

correlations P
5 z/H = 0.3 - with GE k & pC 1616.2 24

correlations
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temperature merely decreases throughout the transient. This is
consistent with GE's findings [17]. Figure 5.5 shows the radial
temperature distribution at z/H = 0.2 at the time of the peak
temperature.

In order to investigate the differences produced by 1-D versus
2-D calculations, SHERLOC was run at z/H = 0.2 and 0.3 with the GE
thermal conductivity and heat capacity functions given by equations
(4.3) and (4.4), respectively. The results are included in Table 5.2.
In comparing the 1-D calculation using the GE correlations to GE's
2-D study, little difference is seen. The pebble-bed axial power
profile is such that little error is introduced by considering only
one dimension.

The peak temperature calculated was higher than that calculated
using the Zehner-Schlunder conductivity model and the graphite specific
heat of Figure 4.5. The reason for this is that the conductivity
correlation used by GE (a function of temperature only) is more
conservative than the combined graphite conductivity correlation of
Section 2.4 and Zehner-Schlinder model. Figure 5.6 compares the thermal
conductivity calculated within SHERLOC for a range of irradiation
temperatures (initial fuel temperatures) at a fluence of 3.0x1021
n/cm2 and the thermal conductivity produced by the GE correlation.

Because the GE conductivity is somewhat lower, the temperatures

calculated are higher.
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6. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY

6.1 Summary

The computer code SHERLOC has been developed to perform a one-
dimensional evaluation of the heat removal capabilities of modular
HTGR designs under depressurized loss-of-forced-convection conditions.
Although developed for this specific purpose, SHERLOC may of course
be used for many other types of transient or steady-state heat
transfer problems. The depressurized heatup accident was analyzed
for both pebble-bed and prismatic-core modular reactors; and the
results compared with studies performed by GE and GA, respectively.
In addition, several studies were performed to determine the effects
on the behavior of the transient of initial temperatures, power
density, neutron fluence; of small helium~-filled gaps between prismatic
fuel assemblies; and of replacing the prismatic core with a bed of
graphite pebbles.

For the prismatic HTGR, a peak fuel temperature of 2152.2°C
occurring 38 hours after the accident initiation was calculated
using SHERLOC. The GA study indicated a peak fuel temperature of
2093°C occurring 26 hours after accident initiation - a peak
temperature difference of 37. For the pebble-bed HIGR, a peak fuel
temperature of 1647.8°C occurring 26 hours after accident initiation
was calculated using SHERLOC; while GE reported a peak fuel temperature
of 1644°C (a difference of less than 1%) at 27 hours following the

accident initiation.
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The primary reason for the discrepancy between the results
obtained using SHERLOC and those obtained by GA and GE is that
SHERLOC performs a one-dimensional analysis, while the codes used
by GA and GE perform two-dimensional calculations. In addition, small
discrepancies in the problem models and the correlations used for
the properties of materials contribute to differences in the results.

The power density was found to have a greater effect on the
magnitude of the temperature excursion than did the initial
temperature. The peak temperature was calculated using SHERLOC
at the axial location of the highest power density, regardless of
the location of the highest initial temperature. Including small
gaps between fuel assemblies in modeling the prismatic reactor
produced a 5% increase in the peak temperature.

If the effect of radiation damage on the graphite conductivity
in a prismatic core is neglected, the resulting peak temperature
is decreased by 10%. Thus it is concluded that the exposure to the
neutron flux should be considered in determining the response of the
prismatic HTGR. It was also seen that at high temperatures (T >
1500°C), the graphite conductivity was independent of the fluence.

If one were modeling a transient in which temperatures were expected
to remain lower than 1500°C, the neutron fluence would play an even
more important role in predicting accurate results.

Because SHERLOC performs a one-dimensional analysis, its results
are the most accurate when the axial power or temperature gradients
are fairly small. The one-dimensional calculation will predict a

conservative value of the peak core temperature in the depressurized
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heatup accident, but it will not necessarily give the exact axial

location or time until peaking.

6.2 Recommendations for Further Study

Further investigation into the thermal conductivity of graphite
at high temperatures should be pursued. The data strings for the
correlations given in Section 2.4 were extrapolated for temperatures
above 1600 K; while reasonable results were obtained, more specific
information at high temperatures is desirable. Also, in this study
the core of the prismatic HTGR was assumed to be solid (except for the
sensitivity study involving gaps between assemblies). The core
actually contains coolant holes and other penetrations. It would be
of interest to develop a more detailed model which would account for
the heterogeneity of the prismatic core.

Saveral modifications could be made to SHERLOC to provide greater
versatility in problems which may be modeled and in the accuracy of
the results; these changes are as follows:

1) SHERLOC should be expanded to perform a two-dimensional
analysis. The actual changes to the finite-difference
equations and solution techniques would be fairly straight-
forward, but the coding changes involved in modifying the
solution techniques and modeling a two-dimensional problem
would be more complex.

2) Boundary condition options for a constant temperature or

a constant heat flux should be added.
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4)

5)

6)

7)
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It would be helpful for the code to use a variable time
step in order to reduce the code running time and increase
the accuracy of the results. A small time step should be
used when parameters are changing rapidly with time, and a
larger time step when the response of the system is
changing slowly.

The initial (steady-state) temperature distribution of the
problem must be specified for a transient problem; it would
be useful to have the code calculate the initial temperature
distribution internally.

The code should be made more "user-friendly," with more
versatility and ease in the input. Although the input is
fairly straightforward (see Appendix C), it would be
convenient to have the option of specifying all distri-
butions (temperature, power density, properties, etc.) as
either tables or analytical functions. Also, it may be
useful to make the input free-format rather than formatted.
An option should be included to allow for heat transfer

by radiation and/or conduction across gas gaps.

Finally, it would be of interest to adapt the code to allow
coolant flow through the core. In normal, steady-state
operation, heat transfer within the core is via forced
convection of the helium coolant. In a pressurized, loss-
of-forced-circulation transient, heat is removed from the
core by natural circulation as well as conduction and
radiation. Modeling coolant flow through the core would

greatly expand the range of applicability of SHERLOC.
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APPENDIX A

Derivation of the Steady-State
Finite Difference Heat Transfer Equations
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The one-~-dimensional, steady-state, finite difference heat transfer
equations must be derived in rectangular and cylindrical geometries at
each of the following unique types of mesh points:

1) origin (assumed to be an adiabatic boundary);

2) a point within a given material;

3) the interface of two different regions, each of which

contains a material;

4) the left-hand (inner) boundary of a void region;

5) the right-hand (outer) boundary of a void region;

6) the outermost boundary

The steady-state heat balance on a control volume V is:

Heat entering V through + Heat generated
the boundaries of V within V

This heat balance is performed for each of the six unique types of
mesh points given above. Figures A.l through A.12 show each of the
points in rectangular and cylindrical coordinates. The control
volume about mesh point i, or the mesh interval, is defined as the

interval enclosed by the dashed lines in Figures A.l through A.12.

A.l1 Rectangular Coordinates
The one-dimensional, steady state, conduction equation in
rectangular coordinates is:

4T (x) .

dx2

k(T) g(x) = 0 (A.1)
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The derivation of the finite difference form of equation (A.l1) at each

of the six unique types of mesh points in rectangular coordinates

follows.
1) Origin t
o Ax
2 |
! {
! t
4
| {
:‘-dx'—*
|
i i+l
Figure A.1

Mesh Interval at the Origin - Rectangular Coordinates

Performing a heat balance on mesh point i of Figure A.1 yields

the following finite difference equation:

K., —ad (a.2)
1441 Ax 81 72 :

where

iKi+l = thermal conductivity between mesh points i and i+l

g8, = average volumetric heat generation in the mesh
1 interval defined by 1

Simplifying:
2
T (Ax)

KT = 8 T (4.3)

iK1 Ty
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2) Mesh Point Within a Material

- Ax
i 2 i
|
A
s I
Ax
i-1 i i+1
Figﬁre A.2

Mesh Interval Within a Material - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i of

Figure A.2 is:

(T, .-T.) (T,,..~-T,)
i1 4 i+l 74
1K4-1 Ax + Kin Ax = -g;(4x) (A.4)
where
iKi-l = thermal conductivity between mesh points i and i-1.

Manipulating equation (A.4) yields:

K, )T, + .K -giMMZ(AJ)

Kiop Tiog =GRy + K )Ty + K Taer =
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3) Interface of Two Materiz Regions

1Al A2
—=| 2 o .
‘ |
' |
i
. . ! .
| i
i-1 Al i A2 i+1
Figure A.3

Interface of Two Material Regions - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.3 is:

I & i U Ty (ﬁ N A_z) A.6)
iti-1 By 171+1 B, 8i'\7 2 y
K K
11— 174-1  1ii+l 1N+ i
T, - + )T, + T —( )
B Ti-1 5, B, B, i+l 2 8178
A T, A
2 K. T A A = + 1 K

- K. . -(,K, ., + LK, ) K, T
(A1+A2) iTi-1"i-1 17i-172 iTi+1T1 (A1+A2) (A1+A2) iTi+l 7441

— 12 (A.7)
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4) Inner Boundary of a Void Region

VOID

Figure A.4

Inner Boundary of a Void Region - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.4 is:

T ~T
i-1 i Al
%5171 7 hrlz(Tiﬂ"Ti) - (A.8)
where
h = radiative heat transfer coefficient from the surface
T12 at mesh point i to the surface at i+l
2
)
iKi1Tio1 — GRyq hrlel)Ti + hrlelTi+l =8 3

(A.9)
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5) Outer Boundary of a Void Region

2 v
!
. ] | .
l
|
i-1 i A2 i+
Figure A.5

Outer Boundary of a Void Region - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.5 is:

T,,,~T @A)
i+1 "1 _ 2
T U T e L (2.10)
21 2
where
hr = radiative heat transfer coefficient from surface at
21 mesh point i to surface at i-1
2
@,
B B2 Typ = Oy B+ R )Ty * i KTy 7 78 (A-11)

Ta1 21
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6) Outermost Boundary

= 5
]
|
|
. . ! . Tco
' 3
| By
|
- l —
i-2 i-1 Ax i
Figure A.6

Mesh Interval at the Outermost Boundary
Rectangular Coordinates

The finite difference form of the heat balance on mesh point 1

of Figure A.6 1is:

T T

i-1771 Ax
-1 Tax o Y P T Ty (4.12)
where
hT = total heat transfer coefficient (sum of radiative
and convective heat transfer coefficients)
T, = ambient temperature

2
- _, (&x)
K (,K + hT Ax)Ti = -8,

£1-1"1-1 7 4N - by Ax T, (4.13)
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A.2 Cylindrical Coordinates
The one-dimensional, steady-state, conduction equation in

cylindrical coordinates is:

2
k(r) & TE;) + KD ) 4 o =0 (A.14a)
r dr :
dr
which may be reyritten as:
14 d1@) i}
k(T) T g7 (r =72 tsr) = 0 (A.14b)
1) Origin
\
. )\ Ar/2
i‘\\\\;\\
l Ar
Ir i+l
a
|
1
Figure A.7

Mesh Interval at the Origin
Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.7 is:

i+l i 2
21rra iKi+1 AT = -mr g (A.15)

- = _o MAr)_
fie1 T K Tin 8 4 (a.16)
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2) Mesh Point Within a Material

r \ T, \T

a’\ \

\ |

— AL e )

P2 !

/ |

/ /

i-1 / i / i+l
Figure A.8

Mesh Interval Within a Material - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.8 is

2T K ir_i._-l-—Ti) + 21T K (Ti—+l._'1;il = ‘n'(r 2_r 2)
aii-1_ Ar b ii+4l ~ Ar 8y Ty 7T,
(A.17)
where
r = r, -5
a i 2
Ar
n, = to
2 =
rb -r, = 2ri Ar
(r,-Ar/2) (r,-Ar/2) (r.+Ar/2)
B S K T I P SR K + D S K T
Ar iTi-1i-1 Ar i7i-1 Ar iTi+l i
(ri+Ar/2)
iy 1K Taer T T8iTAT (a.18)
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3) Interface of Two Material Regions

a i \b
\ \
\
LI A
— 1 -2 !
)2 2
| l
| !
/ /
i-1 / i / i+l
Figure A.9

Interface of Two Material Regions - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.9 1is

211’(1' - A—l—) K _(_'I:‘_j:.-_]':_’f_j‘_). + ZTT(I' + éz) K (Ti+1_Ti)
i 27111 Ay i° 27 1141 A,
Az 2 Al 2
= - (gt 5) - (- ) (A.19)
A, -
R T LT I ouls LA
A Citi-171-1 i~ 2 A A ivi+1) 1
1 1 2 g
(r,+A,/2) . n
i "2 & 1, 2, 2
* A, 15101710 -2 [ri(ﬂl""ﬂz) +2(,7-0,7) (A.20)
- J
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4) Inner Boundary of a Void Region

\ r

v T1 \voID
VoA
— _1
| 2
J
/
/
1-1 ! 1 1+1
Figure A.10

Inner Boundary of a Void Region - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.10 is

A T, .-T A, 2
1 1-1"T4 2 8
m(ry= ) Ky A, +o2mry hrlz(Ti+l-Ti) g{"[ r, - 3)
(A.21)
(1’1:31/2) 1%4-1T41 - (ri;AI/Z) Kyt b Ig+ryh o
1 -t 1 T12 12 4+1
& 8
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5) Outer Boundary of a Void Region

r,
N \
\
VOID
A \
2
—.___l‘-—-
2
/
1
/
i- i i+l
Figure A.11

OQuter Boundary of a Void Region - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i1

of Figure A.1ll is

(T,,,-T)) A, 2
A2 i+l i
arech (T, )-Ty) + 2m(ry + 559 Ky =4 =gmi(r, +5) -1y
21 2
(A.23)
(r,+42/2) (r,+2/2)

r.h rh + —*— k. |T.+—2—— K . .T. K =

i er Ti-l - i er AZ i i+l i A2 i i+l i+l

A

2
- gy/2 8, + ) (A.24)
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6) Outermost Boundary

R
\
\ By
|
— br g
) *
l
/
/
i-1 r i
a

Figure A.12

Mesh Interval at the Outermost Boundary -~ Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.12 is

(T -T.)
r-1 i 2 2
27rra i1 At + 27R hT(Im—Ti) = - ngR -r, ) (A.25)
where
R = radius of outermost surface
r, = R - Ar/2
Rz—ra2 = Ar(R-Ar/4&)
(Rede/2) e 1. . 8iAr(R—Ar/4)+hRT_]
Ar ii-1"41-1 Ar T i 2 T f]

(A.26)
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APPENDIX B

Derivation of the Time-Dependent
Finite Difference Heat Transfer
Equations
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The one-dimensional, time dependent, finite difference heat
transfer equations must be derived in rectangular and cylindrical
geometries at each of the following unique types of mesh points:

1) origin (assumed to be an adiabatic boundary)

2) a point within a given material

3) the interface of two difference regions, each of which

contains a material

4) the left-hand (inner) boundary of a void region

5) the right-hand (outer) boundary of a void region

6) the outermost boundary

The transient heat balance on a control volume V is

Rate of heat entering V Rate of heat Energy
through the boundaries + generated = stored

of V inV inV

The heat balance is performed for each of the six unique types of mesh
points given above. Figures A.l1 through A.12 of Appendix A show

each of the points in rectangular and cylindrical coordinates. The
control volume about mesh point i, or the mesh interval, is defined

as the interval enclosed by the dashed lines in Figures A.l through

A.12,
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B.1 Rectangular Coordinates
The one-dimensional, time-dependent, conduction equation in

rectangular coordinates is

2 ]
k(T) AM + g(x,t) = (T)C (T) T_(Xt;) (B.l)
3x2 P ot
1) Origin

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.l is

n+l _n n n
G.C .) Ty T oax | onax + X Ti1™Ty
Pi%pi At 2 i 2 T 1M+l T Ax

Applying the p-differencing technique described in Section 2.3.1 yields

ntl n
(0.C )nﬁﬁ (Ti —Ti) (Ax)2 - 0 (Ax)2 + 6 Kn,-I-G(Tn+1_Tn+1)
i°pi At 2 Bi 72 141 AT
n+d ,..n n

+ (l—e)l;l(i_’_l(’l‘i_’_l-’l‘i)jl (B.2)
Rewriting equation (B.2) with all the terms evaluated at t 41 OO the
left-hand side

Tn+l 2
nt6 , n+l nt+l ot i (ax)~ _

'6I>1K1+1 (Tgp7 Ty |+ CC) 25 ~ 2 = 8 (B.3)

where

n
T 2
- ntd i (Ax) o n _.n
Hi (picpi) ZE—'——E——'+ (1—6){;Ki+l (Ti+1 Ti) (B.4)
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Collecting the Triﬁ-l terms in equation (B.3),

3
_ nt  n+l n+6 ) (Ax)7|. o+l _ \
0( Ky Ty4p) + [61K1+l + (pyChy) 2Ac |1 = Hy (8.5
Let
3
_ n+0 nt8 (Ax)
b, = l-e Ki41 + P4C4) 2t (B.6)

Substituting equation (B.6) into equation (B.5) and solving for Ttiﬁ-l:

ot o Ly +o K0T (8.7)

Since Tnil is unknown, the iterative procedure described in section

i+l
2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

D i+l "i+l

o a-wrt o+ ﬂ[ﬂ. O A (B.8)
i i i i

2) Mesh Point Within a Material
The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.2 is

G i (Tt -1 I )
c ) i i Ax = n Ax + K i-1 “i + K i+1 1
°iChi At x =8y i’-1 T Ax ifi41 TTAx

(B.9)
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Applying the §-differencing technique described in Section 2.3.1

yields:

n+l .n
(Ti -Ti)
At

n+o 2
(8x) 184-1 Vi-1T0d

_ n 2 n+d nt+l ol
(piCpi) -gi(Ax) +6[K (T T, )

n+e o+l nt+l n+d , n n n+o n
+ K Ty Ty )] + (1-9)'115_1 (Ty 17T + K

i+1”

(B.10)

Rewriting equation (B.1) with the terms evaluated at tn+l on the left-

hand side:

i+1 1

n+0 n+l _n+l n+o n+l .n+l
- G[K (T T ) + iKi+l (T

where

+glen’ + (1—9)LK‘1‘"_*1(T‘1‘_1—T‘1‘)

m s

n+o 2
H = (piCpi) (ax)

.
n+o n n, |
+ K (T1+1'T1)J

n+l

Collecting the Ti

terms in equation (B.1ll)

i4-1 i-1 i 1+171+1 i-1 1 1+1

_ G[Knﬁ Tn+l + Kn+6,1,n+1 +';(1an + Kn-lﬂ) +

w0 (0’| ol |y

(PyChy) t i i

17pi

) 4 (picpi)“*e(Ax)z——-

(B.12)

(B.13)
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Let

3
- n+0 n+9(Ax)
Dy {;(iKi-l oy 1+1) + 0 Cop) e (B.14)

Substituting equation (B.1l4) into equation (B.13) and solving for

n+l
Ti :

ntl 1 n+6 r+l ntd nml
Ty = D, [;1 +O0(K 3 T+ K Ty (B.15)

+
Since T?+i is unknown, the iterative procedure described in

section 2.3.1 is used. Combining the notation for the iterative
procedure and the point successive overrelaxation method
T, o= ) Ti + {;1 +o( KO P, ot

Di 11i-1 i 1 171+171+1

(B.16)

3) Interface of Two Material Regions
The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.3 is

(T“*l-rn) A, A AL A (T -1
(.C.) i (_1+_2)=gn(_1+_2_)+ K _i-1 17
1%p1 At 2 ¥ 72 1713 -1 7 4]
(th,.-TH
i+1 1
t ik TR, (B.17)
n+l n
(1] -T]) 8A Ab, A,
(p,C_,) —= =gt L2 4 ok . (1 .-TH
1%p1 At z i 72 %41 T3 -Ty @)
A
K, (1% %) —t

1i+1 i+ i (A
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Applying the 6 -differencing technique described in Section 2.3.1:

n+l _n
S A B Ut o B S G SR [ U R S A RO
P11 At 2 gi 2 -1 T T @ +,)
o K (qntl_pntly i B PSR 6 L R o0y 2
14+l ‘VTi+l 4 (A +0,) 1 i-1 “Ti-1 i (A1+A2)
1727
A

n+o n 1 '

* (Kiyp (T T @+ (8.18)

Rewriting equation (B.8) with the terms evaluated at T on the left-

n+l
hand side:
-8 Kn+6 (Tn+1_Tn+1) AZ + Kn+6_Tn+1) A1
%1 T D Ty YURaTh ) Ty
A 12 12
n+l
T
1°pi At 2 1 .
where
n
T AA AA A
- nt6 "1 172 n_12 ot ..n 2
B o= (0 " if 7 te 3y +Q e)l- i) (T3 ™) @ )
N
n+6 ™ R
+ Koy (T T @y 2 (8.20)
n+l .
Collecting the Ti terms in equation (B.19)
A A
-5 Kn+6 rI,n+1 2 + Kn+6 Tn+1 1
i7i-1 "i-1 (A ) 17i+1 i+l (A +A )
(B.21)
+ { o] gk L2 g9 4 a0 218\ il
ii-1 (A1+A2) i i+l (A1+A2) + (p.C i) At Ti = H1
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Let
D = 5 Kn+6 A2 + Kn+6 A1 + (0.C )n+8 A1A2

1 1°i-1 (A 40.) 1°i-1 (A.4A.) Pi%p1 2At

172 172
(B.22)

Substituting equation (B.22) into equation (B.21) and solving

for T9+l:

i
n+l 1 n+0 A2 n+l n+0 A1 n+l
i = oo, VM YO @y Tio1 t K Gaay il (B2
i N 172 172

Since Ti+i is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

A
g+l L w o 2 2+1
Ti = (l—w)Ti + D Hi + 8(; i-1 TZ—:KZY 1
A
n+0 1 2
* K @+, Tyt (B.24)

4) Inner Boundary of a Void Region

The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.4 is

@ o e« -
(i€ ) — 5 5 = 8 3+ K. —x ——+h (T -TD
1

P1Cot At 1+177 4

(B.25)
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Applying the 6-differencing technique described in Section 2.3.1:

nt+l _n
(Ti —Ti)
At

nt+o 2

(pic ) A

pi 1-1

n+o o+l n+l n+6 n n+o
hrlZ A1(Ti47-Ty )} + 201~ G)L 1oy Tig~TP + hr12

Rewriting equation (B.26) with the terms evaluated at tn+l

left-hand side:

n+6 n+l _n+l n+o n+l o+l
-2 L -1 Ty ) v (T Ty )] +(04Chy)

where

o aat) n
By = (pyCop) ae T to8y (AP

nﬁe n n n+o n n
* 2(1'6){1 -1 7T P Al(T1+l—Ti):|

Collecting the T;+%erms in equation (B.27):

i-1 "1-1 1 "1+l i-1 1

- 2 Kn+6 Tn+1 + hn+6 A Tn+1 +128¢ Kn+6 hn+6 ALY
1 12 Tyo

2
@4,;)
1 +
+ (picpi)n+9 ™ 1 _ H

At i i

- n+o n+l _nt+l
1 gi (A ) + 26[- (T;_1-Ty )

A (T3,-T )}

(B.26)

on the

2
o A1 a1

(B.27)

(B.28)

(B.29)
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Let
2
@)
At

_ n+0 n+
D, = |B(K,; +h 12) + (piCpi)

n+o

(B.30)

Substituting equation (B.30) into equation (B.29) and solving for
n+l

T,
i
o+l _ 1 nt _n+l n+o nt+l
Ti = 7 H + 26(1Ki_l Ti—l + hr Al Ti+l) (B.31)
i 12 i
Since Tn+i is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

2+1 L me n+6 2+1 nt+o L
M T L T S O T R B %}

) (B.32)

5) Outer Boundary of a Void Region

The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.5 is

ntl _n n _.n
(Ty "-T9) 8, n b2 bl 4 (Tig1Ty)
(°3Co1) ~hc 2 8i v,y T1-17T0 K T A2
(8.33)

Applying the 6-differencing technique described in Section 3.2.1:

+1 n
(7 )(A) 2
1 n (A)) nt+o n+l _n+l
———— = + T ."T
(yCoy) At g 2 20 hr21 BTy =Ty )

n+d n+l  n+l n+o n+6 n _.n
* i T D))t 2(1—9)(;r By (Tg_y~TP + (Kihy (Tgyp=T]| (B.34)
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Rewriting equation (B.34) with the terms evaluated at tn+l on the left-
hand side:
n+o n+l _nt+l n+o n+l _n+l n+6(A2)2 n+l
- % Y BTy 17Ty D) Ky Ty D+ (0gCp) c T ~H
(B.35)
where
n+d (AZ)2 n n 2 n+9 n n
Hy = (0yCpp) " 7 Ty + 85 (87 +2(1-9) hr21 8y(Tyyp~Ty)
n+0 n n
* K (T1+1'T1) (8.36)
n+l .
Collecting the ti terms in equation (B.35):
n+o n+l n+ _n+l n+o n+d
S Bh 8 Tt K Tyap| TG 8, + KD
21 N 21
2
A,)
n+0 2 n+1
+ (piCpi) At Ti = Hi (B.37)
Let
D, = 28|™® A, + kK™% & o.c ) (A2)2 (B. 38)
i Ty 2 114l P1%p1 At :

Substituting equation (B.38) into equation (B.37) and solving for

n+l

Ty
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ntl 1 n+1 n+d n+l
T = D, [; + 26(h 2 T, 1% 1K1+l l+l) (B.39)

+1
Since T?+l is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

" 040 2+l )
(l‘“’)Ti + D, (Hi + 20 (hr21 By Tl 1K1 Tier)

T.Q.+l
(B.40)

6) Outermost Boundary
The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.6 is

+1 .n n n
(17 =T (7 -1
i i Ax _ n Ax . i-1 "1 _on
(;Coy) — 77 2 - 8 7 tiK ) Ty + hp(T-T))  (B.41)

Applying the 6-differencing technique described in Section 2.3.1:

n+l _n

(T -T.)
n+6 i (Ax) n n+l n+l
PiCoi) At 8y @n? + 26[ 1(T1 1Ty )
+h T Ax(T -T“”l)—! +2(1-6) | K ;‘*‘i (T] =T + by Ax(Tm-Tril)‘! (B.42)

Rewriting equation (B.42) with the terms evaluated at t on the left-

n+l
hand side:
2
n+6 n+l _n+l n+o n+l n+ (Ax) nt+l _
- 20 iKi—l (Ti -Ti ) + hT Ax('l‘m-Ti o+ (piCpi) At Ti Hi

(B.43)
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where
n+o (Ax)2 n n 2 n+o n n
Hy = (G “pe Tyt ey 07+ 201-0) K, (T oTy)
+6 n
AX(Im-Ti) (B.44)
n+l
Collecting the '1‘i terms in equation (B.43):
n+6 n+l [ n+o n+o
- 26(i i-1 Ti 1 + h A T) + I26( Ki 1 h Ax)
n+ (Ax)2 n+l
+ (piCpi) “Ac | T4 = Hy (B.45)
Let
2
n+0 n+o ntd (Ax)
D, [26( LR Ax) + (picpi) A (B.46)

Substituting equation (B.46) into equation (B.45) and solving for

T“"'l - L IVH + 20 ( K’_""e 'rn+l + hm'eAx T ):l (B.47)
D i i- - T b

Since the iterative procedure described in Section 2.3.1 used for all
of the other mesh points it must be used on the outer boundary also.
Combining the notation for the iteratire procedure and the point

successive overrelaxation method:

+1 nﬁe 2+1 n+6
r’i - (l-u))T'Q' * 5 {Hi + 20 (KT T 4 n Ak 1) (B.48)
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B.2 Cylindrical Coordinates
The one-dimensional, time-dependent, conduction equation in

cylindrical coordinates is

2
k() EELE 4y L IO g = pmic ) L) (5490
or P t

which may be rewritten as

K(T) % 53; (r aT(T‘;__’-Q) + a(r,t) = p(DC (D) ﬂ—%ﬂ (B.49b)
1) Origin

The finite difference form of the time-dependent heat balance on

mesh point 1 of Figure A.7 is

n+l n n n
©.C ) Y NN SN S (Typ1~Ty)
P1%pi At 2 81 T2 2 i1+l T Ar
(B.50)
nt+l . n
(T, ~-T)) 2 2
i i (Ar) _ n (Ar) n _.n
(iCo1) ~ar 2 T8 3t 2K T Ty)
Applying the 6-~differencing technique described in Section 2.3.1:
ntl .n
(T, ~-T,) 2 2 i
n+ i i’ (Ar) _ n (Ar) nt9 o+l _nt+l
(p;Chy) X 7 = 8Tt LK T )
n+o n n
+ 2(1-9>in+1 (1], ,-TD (B.51)

Rewriting equation (B.51) with the terms evaluated at Tn+l on the left-

hand side:
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2
_ ntd . n+l  n+l ot (Ar) o+l _
26[;K1+1 (Ty°T; )|+ (piCpi) e Ty = Hy (B.52)
where
n+d (Ar)2 n n (Ar)2 n+o n n
By = G e Ty gy T P 20Ky Ty Ty
(8.53)
n+l .
Collecting the Ti terms in equation (B.52)
2
n+9,_n+l n+d o (Ar) n+l _
DR aT) I;e Ky ¥ (05009 2he | Ti o T By (B.54)
Let
n+ n+ (Ar)2
Py = 1% Mt GG e (B.33)

Substituting equation (B.55) into equation (B.54) and solving for

o+l

Ty

_ 1 ntd _n+l
= D, ’;{1 + 200K Ti+l)J (B.56)

Since T?:i is unknown, the iterative procedure described in Section 2.3.1
is used. Combining the notation for the iterative procedure and the

point successive overrelaxation method:

2+1 % W n+d L
T, 1-wT, + 7 Irui+ze(i1<i+l T ) (B.57)

i
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2) Mesh Point Within a Material

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.8 is

(Tn+l_Tn) (Tn _Tn)
(o ) L 1 'rr(rz—r2 n(rz—r ) + 2nr K —i-1 i
P1Co1 At b ra’ T B3 TiTy a ii-1" Ar
(Tril+1'TIil)
+omr K e (B.58)
(- n Ar (T3_;-Tp)
©4Cpg) g (rhn) =gy Qrdn 4 2(r; - PR ——
n n
(Ty41-Ty)

+ 2(r, +Ar
1

27 fi1 T ar (B.59)

Applying the 6-differencing technique described in Section 2.3.1:

n+l _n

(T, ~-T.) (2r,-Ar)
n+o i i n i n+6 n+l n+l

(byCp) ~ ——gg— (2xydr) = g; Q2rAr) + 0| —5— Ky (1] -7 )
+ (2ri+Ar) n+e (Tn+l Tn+1) + (1-9) (Zri—Ar) Kn+e (Tn _Tn)

Ar i i+1 i+1 Ar ii-1 i-1 "1

(2r ,+Ar)

i n+6 n n
A iR Tyt TP (B.60)
Rewriting equation (B.60) with the terms evaluated at t on the

n+l
left-hand side:
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_ 8 (@ry=Ar)  h4e ml ol (2r;+41) g ptl ol
Ar ii-1""41-1 "1 Ar 17i+1 i+1 i
(2r A1)
n+o i n+l
+ ——————— =
(oiCpi) At T, Hy (B.61)
where
(2r ,Ar)
n+o i n n
Hi (piCpi) At Ti + 84 (ZriAr)

T

n n)
i+1 "1

Ar i1-1 (Ti-l'Ti) + K (T (B.62)

+ (1-8) (Zri-Ar) n+o n n (2ri+Ar) n+o
Ar 17i+1

+
Collecting the T? 1 terms in equation (B.61):

T

- 2ryAn) e o, CHMD aie an
Ar -1 4-1 Ar 1hi+l i+l

(2r,-Ar) (2r,+\r) (2r Ar)
+ 9[. i n+o i nﬁé} + (picpi)n+6 i n+l

ar 1%-1 Y A ifa At Ty
(B.63)
Let
I 5 (Zri-Ar) Kn+6 .\ (2ri+Ar) Kp+e ‘. (oC )n+6(2riAr)
1 Ar 1 i-1 Ar i i+l Pi“p1 At
(B.64)
. n+l
Substituting equation (B.64) into (B.63) and solving for Ti :
™ . L0y + o6 (2r -Ar) (0 okl Qr ) e ol
i B Dy i Ar 11-1 “i-1 Ar ivi+l i+l

(B.65)
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+
Since T; 1 is unknown, the iterative procedure described in Section
2.3.1 us used. Combining the notation for the iterative procedure and

the point successive overrelaxation method:

(2r_-Ar)
R 1 8 | 241
Ty T Gty (Bt e[ At it4-1 Ti-1

(2ri+Ar) ntd L

+ —— K T

ir 1K+ Tin (B.66)

3) Interface of Two Material Regions
The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.9 is

A, 2 s, (T;+1—T;) . a, A, 7
©1Cpp) M (ryt ) = (=) | R T gy Tyt )= (rym )
A (Tt _-1h) A (% -1
1 1-1"T4 2 1417 T4
+ ZTT(ri- T) iKi-l —'—A—l— + ZTT(ri+ —2-) iKi+l _K;_— (B.77)
w.c.)|@+.)( +5<AA)@——“(A+A)( + EA,-0))
PiCpg) | B ¥y (xy + (A ,-0y) At = 8, (By¥h,)(xy + 78,04
(™ - (2r,+A.,)
i-1 i i 72 n  _.n
+ Qry-A)) Ky N + A, Kiar Ty T

Applying the ©-differencing technique described in Section 2.3.1:
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(Tn+l—T
ntd 1 i i _n 1
(0yCyq) ‘V(Almz)(ri*' Z(AZ-Al))jj At = gilV(Al*'AZ)(ri*- A(AZ_Al))}

™

+{s (Zri—Al) I(n+6 (Tn+1_Tn+l) + (2r1+A2) Kn+6 (Tn+l_Tn+1)
Al i7i-1 i-1 "1 A2 iti+l i+l i

(2r.-A.)
i L e o _gny

Al 171+l

+ (Zri+A2) Kn+6 (Tn _Tn)
i-1 i A2 iTi+l i+l 1

+ (1-8)

(B.68)

Rewriting equation (B.68) with the terms evaluated at t_,.on the left-

n+l
hand side:
-8 (Zri—Al) Kn+6 (Tn+l_Tn+l) + (Zri+A2) Kp+6 (Tn+l_Tn+l)
Al ii-1 i-1 "1 AZ iTi+l i+l i
Tn+l
-+6 1
+ (picpi)n [}A1+A2)(ri+ Z{AZ—AI){} —%E— = Hy (B.69)
where
_ o7 -
- n+d 1 i ,ion 1o, _
Hy = (0gCpy) | (B Hg) (gt A(AZ—Al)):IAt tlep (By¥tg) (ry+ 3, Al))j
(2r_-A.) (2r_+A.)
i1 n+o , n i 2 n+o n n
+ (1-8) R T e K T G470
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Collecting the TT-]' terms in equation (B.69):

_e[(zri—A_ll Kn+6 n+l (Zri-’-AZ) n+o n+]z| + e[(zri-Al) n+o

Ay 18-1 Tir Y A M Tie A 181
1 2 1
(2r +A.)
i "2 n+o n+o 1 1 n+1l
TR, S| T gG) G (e A DR S T = By
(B.71)
Let
I N I e L R G air % R
i A ii-1 A i1+l
! 2
n+o 1
+ (picpi) (A1+A2) (ri+ Z-(AZ-AI))} (.72)
Substituting equation (B.72) into equation (B.71) and solving for TT-l:
Tn+1 = L i o+ (Zri-Al) Kn+9 Tn+l + (2r1+ AZ) Kn+9 Tn-l-l
i D i A i1i-1 "i-1 A 171+l T4+l
1 ! 2 d
(B.73)

Since T;H-l is unknown, the iterative procedure described in
Section 2.3.1 is used. Combining the notation for the iterative

procedure and the point successive overrelaxation method:

o+l
Ty A i%5-1 Tig

(l-w)TR' + — (H, +6
i 1

(2ri-81) e 41
D 1

(2ri+A2)

n+t _2
+ T3, i%i41 T1+%] (B.74)
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4) Inner Boundary of a Void Region

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.10 is:

n+l n

a, 2| (1% ) A, 2
2 1 Ty n| 2 1
My Copd iy ~(rym ) At 8y|ry ~(rym 3)
n n
+ 2n(r,- A—2) K Li‘l_T—i)— + 2rr,h (T9, . -TD) (B.75)
1m 271-1 A TR UL TS ) g
1 12
A (Tn+l_Tn) A
(0,0 |8, - D | = &} AL (r.- =)
1175117 % At i (1Y%
A (t™ . -T%
i-1 "1 n n
*2rm ) K T *2rh T Ty

1 12

Applying the 6-differencing technique described in Section 2.3.1:

Al (Tn+1 n) Al
YA (r,- D] 2 = A (r,- )
0Co1 1V'17 4 At 1|71V 4

A 11-1""1-1 i r i+1 "1

(r.,-0,/2)
+ 28 i~1 Kn+ (Tn+1 ) +r h (Tn+1_Tn+1)
1 11y,

A 1i74-1 “i-1 i i+1 1

(r,-A,/2)
+ 2(1-8) 17_1_1__ g0 (p0 _pf B+ h“*e(T“ —T“):‘ (B.76)
1 T2
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Rewriting equation (B.76) with the terms evaluated at tn+1 on the

left-hand side:

A )17y Ty i+1 4

(r,-A,/2)
- 2 lr i1 Kn+6 (Tn+1 n+l) +r hn+6 (Tn+1 Tn+1):]
1 12

n+6 [Al(ri_Al/A)] n+l

+ (piCpi) At Ti = Hi (B.77)

where
(A, (r,-4; /8)] AT
1 n n 1
_ n+o T, + g A (r,- -9
Hi = (piCpi) At i 1-1 i 4 |
(r,-A, /2) 7
i1 0 n 8 n n
+ 2(1-8) [ Al iKi—l (T -1 i) +r h 12( i+1 Ti) (B.78)

Collecting the Tn+1

1 terms in equation (B.77):

{(r -
B s i L ¥ S R T 4o
5, a1 e e, Tin

A $Kig Frghp [+ (04C0) At Ty =H

(r -A /2) (A (r,-A,/4)]
+ 20 i> iAl n+o o C n+o 14171 n+l
1 12

(B.79)

Let

D = 26 (ri—All?) Kn+6 +r hn+6 + (0.C )n+6 [Al(ri_Alm)]
- Al 171-1 i Tio Py pi At

(B.80)
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Substituting equation (B.80) into equation (B.79) and solving for

ml

Ty

n+1
A $3-1 Ty-1 ¥ Tybp Tygg| p (B-8D)

H. + 20 (ri_Al/z) n+8 _n+l n+9 _n+l
* 1 12

Since T:+1 is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure
and the point successive overrelaxation method:
A, )
241 g w (381720 _ate w41
Ti = (1l-w) Ti + Di Hi + 28{- Al iKi—l Ti—l

hn+6 TE (B.82)

i r12 i+l

5) Outer Boundary of a Void Region
The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.1ll is:

+1
A, 2 T A, 2
(p.C 7 (r + —2) - 2 f;——-——jz- = gnn (r + —3) -r 2
ipi i At i i 2 i
n n
A (T, ,,-T.)
n 2 i+l i
+ 2nr, h T, (Ti 1~ i) + 2ﬂ(r + 2) iKi+l Az (B.83)

+
l— b, 2 o] (1] ' TP, )
(pyChy) | (xyt —’ ry At = 8|8, (ry+ D)

A (17, ,-TH
n n 2 i+l
Famghy BT+ 20 50 K Ta,
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Applying the 6-differencing technique described in Section 2.3.1:

[A, (x +,/4)] A
n+o 27172 n+l _n n 2
©4Cp1) At Ty T = 31[A2(r1+ 4):,

(r.,+A,/2)
ntd , . n+l _n+l i "2 n+o n+l _n+l
+ 28 l;ihrz]_(Ti—l—Ti ) + 5, K41 (Tygr~Ty )

(r,+A,/2)
n+o n n i 72 n+o n n
+ 218 l> e, T Y TE K (Ti+l_Ti)] (B84)

Rewriting equation (B.84) with the terms evaluated at Tn+l on the

left-hand side:

(r,+A./2) :
n+o n+l _n+l i "2 n+o nt+l _ntl
=20 |rih (T 3-Ty )+ 15541 T307Ty )
|t a1 2
A (r,+\, /4)]
n+o8 2 71 72 n+l
+ (0yC,5) X T, = Hy (B.85)
where
[A,(x,+0,/4)] A
n+o 271 72 n n 2
By = () At Ty * o8y |80yt )
(r,.+A./2) T
. n+d n n i 72 33 as) n _.n
+2(1-0) l'rihrn R e Y T Ti)J (B.86)
m+l

Collecting the T terms in Equation (B.85)

i
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-2 |r hn+6 Tn+1 + (ri+A2/2) Kpﬁe Tn+1
ir i-1 A. 17i+l i+l
21 2
(A, (x4, /4)]
+ {20 rhn+e+(—rii2/—2-)— 0+ o, )0 e 7o+l
t'r,, A, 1141 1“p1 At i
= Hi (B.87)
Let
D = 20 |r hn+6 + ffiiﬁ&lfi Kn+6
i -i Ty, AZ i i+-
(A (xr ,H,/4)]
n+o 21 72
+ (°1Cp1> A (B.88)

t

Substituting equation (B.88) into equation (B.87) and solving for

1
Ti

(r,+A,/2)
1 1 ol 1) o _n+l
TT D, Hy + 2 [rihrZI Ty t 5, i T

Since T:+1 is unknown, the iterative procedure described in Section

2.3.1 is used. Combing the notation for the iterative procedure

and the point successive overrelaxation method:

+1 w ntd | L+1
R R I URE [rihru 241

(r +,/2)
y 1 27 ot A (B.90)

A2 17141 i+l
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6) Outermost Boundary
The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.12 is

©.C_ MR- EL——T—:—) = g n@®%r %) + m(R-r.) K M
i7pi a At i a a’11~-1 Ar

+ 21R hy (T -T)) (B.91)

(piCpi)Ar(R— éf) —(1;—;:11)- = g‘i‘ Ar(R- A—f)

+ 2 (R——ﬁ:ﬂ 1 4-1 (Tz—l-Ttil) + R h‘r(Tm'Tril)

Applying the 6-differencing technique described in Section 2.3.1:

+ 20 [(R+;/2) iK‘i‘ﬁ ('r’i’*_'i—'r‘i‘ﬂ) +R h;"'e ('rm—'r‘i’ﬂ)

- 201-0) [{BBL/D) (W0 (pd 1%y 4+ R bI7 (Tm—Tz):l (8.92)

Rewriting equation (B.92) with the terms evaluated at t on the

m+l
left-hand side:
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_ (R-Ar/2) _n+6 , n+l _n+l n+
zel Ar o 1%-1 Ty Ty ) T

i)n+e AT(R-Ar/4) oo+l _ (B.93)

+ (picp At i i

where

)n+6 Ar(R-Ar/4) . n
i

n Ar
Hi (piCp T + 8y Ar(R- 4)

At 1
+ 2(1-8) {Q%l R I B (Tm-T‘i‘)] (B.94)
n+l

Collecting the T terms in equation (B.93):

i

— 29 [}R?AI/Z) Kn+6 Tn+l + R hn+6T.]

Ar ii-1 "i-1 T ©
(R=-Ar/2) _n+o o o0 Ar(R-Ar/4) n+l _
+ 29[ hr 1%4-1 TR+ (pyCo0) At Iy =H
(B.95)
Let

- (R-Ar/2) _n#d oo 9 Ar(R-Ar/4)
Dy 28 { ar 1%y FRBp O+ (Co) At

(B.96)

Substituting equation (B.96) into equation (B.95) and solving for

o+l |

Ty

n+l 1 (R-Ar/2) _nt  n+l o
T, D, Hy + 29 [——Ar K1 Ty] *R b T (B.97)
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Since the iterative procedure described in Section 2.3.1 is used for

all of the other mesh points, it must be used on the outer boundary

also. Combining the notation for the iterative procedure and the

point successive overrelaxation method:

+1 3 W (R-AT/2) o0 8+l

Ti = (1w Ty + D, Hy + 26 Ar iKi-1 Ti-l
+ R b2
T =)

(B.98)

A summary of the time-dependent finite difference equations may

be found in Section 2.3.4.
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APPENDIX C

User's Guide to SHERLOC
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SHERLOC is a double-precision FORTRAN computer code which solves

one~dimensional, non-linear, non-homogeneous, steady~state or
transient heat conduction problems in rectangular or cylindrical
coordinates using finite-difference techniques. The code was
developed specifically to analyze the "worst case" depressurized
heatup accident for modular High Temperature Gas-Cooled Reactors
(HTGRs) . Because of this specific application, a correlation was
incorporated into the code to calculate the temperature- and
neutron fluence-dependent thermal conductivity of graphite. The
modified Zehner-Schluner model for determining the effective thermal
conductivity in a pebble~-bed [7] was also incorporated into SHERLOC
to account for radiation through the voids in a pebble-bed as well
as conduction through the pebbles.
Characteristics of problems which may be modeled using SHERLOC
include the following:
1) transient or steady-state;
2) rectangular or cylindrical coordinates;
3) one-dimensional;
4) adiabatic boundary condition at the origin;
5) convective and/or radiative conditions at the outermost
boundary;
6) up to 20 different regions - some of which may be void
regions;
7) up to 20 different materials (the total number of materials
must be less than or equal to the total number of regions);

8) void regions not containing material;
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9) temperature-dependent thermal conductivity, density,
and/or specific heat;

10) temperature- and neutron fluence-dependent graphite
thermal conductivity;

11) time~ and space-dependent internal heat generation;

12) radiation and conduction within a pebble-bed region;

13) up to a total of 200 mesh points; and

14) up to 20 ordered pairs in each tabular function (density,
initial temperature, heat generation, thermal conductivity,

etc.).

The input to SHERLOC is fairly straightforward. Information must
be provided as to the type of problem to be solved, the number of
regions and materials, the mesh point spacing, which regions are
pebble beds or voids, the thermal properties of the materials, initial
temperature and volumetric heat generation distributions, and problem
convergence criteria. Data cards are divided into data fields at 12
columns each - no more than six values will appear on any one card,
and some cards will contain fewer than six values. The user should
note that integer and exponential values must be right justified in

their respective data fields. Detailed input instructions for SHERLOC

follow.

Card Group (CG) 1 - 1 card, 80 Alphanumeric characters
TITLE - title of problem

CG 2 1 card, 4 values, all integers

1) IGEOM - geometry indicator; 1 = rectangular,
2 = cylindrical




CG 3

CG 4

CG 5

CG 6
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2) NREG - total number of regions (NREG < 20)

3) NMAT - total number of materials (NMAT <
NREG)

4) ITYPE - problem type indicator; 0 =
steady~state, 1 = transient

NREG values - up to 6 values/card (integers)

MAT - Array containing material number for each
region. NOTE: A region may contain
only one material, but several regions
may contain the same material.

For a void region, MAT < 0 - a void
region does not contain material.

1 card, 1 value (integer)

MGRPH - Material number which represents graphite
(MGRPH = 0 if none of the materials
is graphite). Temperature- and
fluence-dependent thermal conductivity
will be calculated for this material.

NREG values - up to 6 values/card (integers)
PEBFLG - Array containing region type indicators.
region is not pebble-bed or void

region is pebble-bed
region is a void (gap)

0
1
2

]

NOTE: A pebble~bed region must
contain graphite

1 card for each void region, 2 values/card
(reals)

1) emittance of the material in the
region to the left of the void
region

2) emittance of the material in the
region to the right of the void
region

NOTE: Do not take shape factors into
account; they are calculated by
the code
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CG 8

CG 9

CG 10
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1 card, 3 values (reals) - may be blank if
no regions contain pebble-beds,
but a card must be present.

1) DIA - diameter of a pebble (m)

2) F - ¢ - porosity of pebble-bed =

_ Volume of pebbles)

a Volume of core

3) EPS - £ - emittance of pebble

1 card, 3 values (reals) - outermost boundary
conditions

1) HC - convective heat transfer coefficient
on boundary (W/m2K)
HC = 0.0 if there is no convection
2) FEMM - emissivity of outermost surface
3) TINF - T_ - ambient temperature (X)
NREG values, up to 6 values/card (reals)
WM - Array containing width of each region (m)
NREG values, up to 6 values/card (integers)
NM - Array containing number of mesh points
in each region, including inter-

face or boundary mesh points.
(Count interface mesh points

twice).

{ Rgn 1 ‘ Rgn 2 ‘
Example: e - i S i
NM(1) = 4 NM(2) =5

NOTE: A void region may have only
2 mesh points - one on each
interface.

For Transient Problems (1T=1): Do not include Card Group 11

For Steady-State Problems (1T=0): Do not include Card Groups 12

through 18




CG 11

CG 12

CG 13
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1 card, 2 values - steady-state convergence
information

1) IMAX - maximum number of iterations allowed
on thermal properties (integer)

2) CTD - €, - convergence criterion for average
relative temperature difference
between iterations (real)

1 card, 5 values - transient problem specifi-
cations

1) NTIME - total number of time steps (integer)

2) TTOT - problem time until termination of
transient (sec) (real)

3) TH - 8- implicit solution type (real)
0.5<6 < 1.0

8 = 0.5 for Crank-Nicholson
method (this method is preferred)

& = 1.0 for Classical Implicit
Procedure

4) W - - relaxation factor (real) 0 < ( < 2

5) NEDIT - number of time steps between
printing of temperature
distribution (integer)

1 card, 4 values -~ transient convergence
information

1) ITMAX - maximum number of interations on
temperature distribution (inner
loop) (integer)

2) CCl - €, - convergence criterion for
formalized heat residual (real)

3) IPMAX - maximum number of iterations on
thermal properties (outer loop)
(integer)

4) cc2 - €4 — convergence criterion for average
relative temperature difference
between property iterations (real)
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CG 14 NMAT values, up to 6 values/card (integers)

IPRR - Array containing number of ordered pairs
to be read for density vs. temperature
function for each material. (At least
2, and no more than 20 ordered pairs
are to be provided for each material.)

CG 15 NMAT sets of cards - density vs. temperature
functions

NOTE: Using a temperature-~dependent
density will not satisfy
conservation of mass. Each set,
must be started on a new card.
Within a set, there will be up
to 6 values (3 ordered pairs)
per card. Each set has the
number of ordered pairs
indicated by the corresponding
value of IPRR in CG 1l4. An
ordered pair consists of
(temperature (K), density (kg/m ),
in that order.

CG 16 NMAT values, up to 6 values/card (integers)

IPRC - Array containing number of ordered pairs
to be read for specific heat vs.
temperatue function for each material.
(At least 2, and no more than 20
ordered pairs are to be provided for
each material.)

CG 17 NMAT sets of cards - specific heat vs. temperature
functions . Each set must be started
on a new card. Within a set, there
will be up to 6 values (3 ordered pairs)
per card. Each set has the number of
ordered pairs indicated by the
corresponding value of IPRC in CG 16.
An ordered pair consists of
(temperature (K), specific heat
(J/kg K)), in that order.
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2 cards, 12 values - 6 values/car (reals)

DCY - Array containing coefficients for the
analytic, time-~dependent, decay heat
function. (This is for the time
dependence only, the space dependence
will be input later.)

2
gt(t) = A1 + A2t + A3t + AA cos(Ast)

+ A6exp(A7t) + Assin(Agt)

419
+ A (e +A ) (c.1)

The input values represent A through A12 in the
above equation. :

(end of transient information)

CG 19

CG 20

CG 21

NREG values, up to 6 values/card (integers)

IPRG - Array containing number of ordered pairs
to be read for each region for
volumetric heat generation vs.
position function. (At least 2, and
no more than 20 ordered pairs are to
be provided for each region)

NREG sets of cards - volumetric heat generation vs.
position functions. Each set must be
started on a new card. Within a set,
there will be up to 6 values (3 ordered
pairs) per card. Each set has the
number of ordered pairs indicated by
the corresponding value of IPRG in CG
19. An ordered pair consists of
(distance from origin (m), volumetric
heat generation (W/m”)), in that order.

NREG values, up to 6 values/card (integers)

IPRT - Array containing number of ordered pairs to
be read for each region for initial
temperature vs. position function.

(At lease 2, but no more than 20
ordered pairs are to be provided for
each region.)




164

CG 22 NREG sets of cards - initial temperature vs.
position functions. [NOTE: For
steady-state problems, this is the
initial guess at the temperature
distribution, for transient problems,
this is the actual initial temperature
distribution.] Each set must be
started on a new card. Within a set,
there will be up to 6 values (3
ordered pairs) per card. Each set
has the number of ordered pairs
indicated by the corresponding value
of IPRT in CG 21. An ordered pair
consists of (distance from the origin (m),
volumetric heat generation W/m3)),
in that order.

CG 23 NMAT values, up to 6 values/card (integer)

IPRK - Array containing number of ordered pairs
to be read for each material for
thermal conductivity vs. temperature
function. NOTE: For a material which
is graphite, IPRK = 0 - no ordered pairs
will be input for that material
(graphite conductivity will be
calculated). For each of the other
materials, at least 2, but no more
than 20 ordered pairs are to be
provided.

CG 24 NMAT sets of cards if noe of the materials is
graphite. (NMAT-1) sets of cards if
graphite is one of the materials.
Thermal conductivity vs. temperature
functions. Each set must be started
on a new card. Within a set, there
will be up to 6 values (3 ordered pairs)
per card. Each set has the number of
ordered pairs indicated by the
corresponding value of IPRK in CG 23.
An ordered pair consists of
(temperature (K), thermal conductivity
(W/mK)), in that order.

NOTE: If no graphite is present, Card Groups 25 and 26 are omitted.
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CG 25 NREG values, up to 6 values/card (integers)

NFLPT - Array containing number of ordered pairs
to be read for each region for
neutron fluence vs. position function.
(At least 2, but no more than 20
ordered pairs are to be provided for
each region).

CG 26 NREG sets of cards - neutron fluence vs. position
functions. Each set must be started
on a new card. Within a set, there
will be up to 6 values (3 ordered
pairs) per card. Each set has the
number of ordered pairs indicated by
the corresponding value of NFLPT
in CG 25. An ordered pair consists
of (distance from origin (m), fluence
(n/cm2)), in that order. NOTE: The
units on fluence are n/cm2 due to the
thermal conductivity correlation being
used.

A sample problem to be modeled is shown in Figure C.1. While the
sample problem is quite simple, it illustrates most of the qualities
which might be found in a more complex problem. The sample problem
consists of four regions, one of which is a pebble-bed and ome of
which is a void. Since the pebble-bed core and the reflector regions
have different densities (the density of the carbon in the pebbles must
be smeared over the volume of the entire region), they must be treated
as different materials. The temperature-~ and fluence-dependent graphite
conductivity will be calculated for the pebble-bed, and the modified
Zehner-Schlunder model will be used to determine the effective pebble-bed
conductivity. A temperature-dependent thermal conductivity function will
be input for the reflector region. For illustrative purposes, a

combined convective and radiative boundary condition will be used on

the outermost surface. Figure C.2 shows the input for the sample case




REGION 1 REGION 2 REGION 3  REGION 4

Pebble~Bed Void
€ = 0.8 hC = 20.397 W/mzK
NN RN L e =0.8
= 0.8 | s
T, = 50°C
1.745 2,745 3.105 3.305 = 323,16K

Figure C.1 Model for Sample Problem

991



167

|1 SAMFLE FROBLEN - STEADY-STATE

2. 2 [}

3. 1 2 -1
8. 1

S. 1 0 2
6. 0.8 0.8

7. 0.06 0.39 0.8
8. 20.3970 0.8 323.160
9. 1.7850 1.00 0.36
10. 18 n 2
1. 30 1.00-06

12. 6 2 2
13. 0.0 6. 1703 0.7680388
18, -35167 5.2403 1.560775
15. 1. 78S 0.0 2.745
16. 2. 745 0.0 3.10%
17. 3. 105 0.0 3.3050
18. 6 2 2
19. 0.0 1378.16 0.780388
20, 1.35167 1207.16 1.560775
21, 1.7450 1073. 16 2,745
22. 2. 785 873.16 3.10%
23. 3. 108 773.16 3.305
28, 0 16 12
25. 300.0 110.00 400.0
26. 600.0 88.00 700.0
27. 930.0 67.0 1000.0
28. 1200.0 58.0 1300.0
29. 1500.0 87.33 1600.0
30. 1800.0 43.33
n. 323. 16 36.6 8400.0
32. $00.0 37.1 600.0
3. 800.0 3.8 900.0
. 1100.0 27.4 1200.0
38. 6 2 2
36. 0.0 2.07021 0.780388
7. 1.35167 1.72021 1.560775
38. 1.7850 0.0 2.78S
39. 2. 7188 0.0 3.105
80. 3. 105 0.0 3.30%

Figure C.2

0.20
6

2
6.17D3
5.0303

0.0
0.0
0.0

2
1378. 16
1165.16
1073.16
873.16
773.16

100.00
78.0
62.0
50.0
46.0

37.2
36.3
3.6
25.2

2

2.07021
1.55D2!
0.0
0.0
0.0

1.03635
1. 7450

1.0363%
1.7450

$00.0
800.0
1100.9
1800.0
1700.0

450.0
700.0
1000.0
1300.0

1.0363%
1.7850

5.59003
5.51003

1202. 16
1167.16

90.0
72.0
58.0
48.667
48,667

37.3
35.00
29.5
22.8

1.88021
1.22021

Input for SHERLOC Sample Problem - Steady-State
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as a steady-state problem, and Figure C.3 shows the output for the
steady-state solution. The input for the sample case as a transient
problem is shown in Figure C.5. For illustrative purposes, the

transient problem is run for a short length of time.




SABPLE PRORLIM - SIEALY-STAMR
CASE DESCHINI1OB

EBOPLEN TYPR: STEALY STi1X

GEONETRY: CYLINDRICAL

SUNBER C? BEGIONS: @

BONBRR C? EATIRIALS: 3

BATERIAL ¢ 1 IS GRAPRITE ~ GBAPHITE CONDUCIIVITY NILL BE USED

RRGION ¢ 1 IS A PRADLE ERD - GRADHITE AND PEBBLE 13D CALCULATIONS WILL BE PERPORNED
BRGIOP ¢ 3 IS A VOID BRGICE -~ RALIATION OBLY IN TAIS REGION

RRGION MHNATIBIAL IDTR (W) NO.AESE PTIS (INCL DPOUNDS)
] ] 0.17488 01 10

2 2 0.100(D 01 "
3 -1 0.360CD 00 2
L} 3 0.200CD 00 6

HAX. ITERATICES ON PROPBATIES: 30
COBY. C3SITBRIA JOR AVG. BEL. TRNP. DIFR.: 1.00000D-06

691

Figure C.3 Output of SHERLOC Sample Problem - Steady-State



RBGICE EATEDIAL ¢

[SYSYSYSY Y SNSY Y S ]

()

INITIAL SRNPRBATURE DISIRIDUIION

[SYST SR SN SESY Y SN ] )

wWwwWww

AESH PCINT (I)

DIST. FROA ORIGLN (B)
1.0264706D-01
2.05294120-01
3.0794118p-01
4,.10588240-01
S.13235290-01
6.15002350-01
7. 165294 10-01
8.21176470-01
9.23623530-01
1.0264706D 00
1. §291176D 00
1.23176870 00
1.3348118D 00
1.83703680 00
1.53970590 00
1.6823329%0 00
1.74500000 00

1.84500000 00
1.94500000 00
2.043500000 00
2. 184500000 00
2.28500000 00
2.34500000 00
2.44500000 00
2.54500000 00
2.64500000 00
2.78500000 00

3.,10500000 00

3,14500000 00
3.18500000 00
3.22500000 00
3.26500000 00
3.30500000 00

TENP. (DBG
1.1050001D
1. 1050001D
1.10500010
1. 10500010
1.1050001D
1. 10500010
1.10500010
1.10500010
1.009702D
1.0512038D
1.0127054D
9.8693508D
9.6252014D
9.3610525D
9.16849339
8.96231970
9.92885720
8.47618020

8.€000009D
8.0000009D
6.00000090
8.€000009D
§.0000009D
$8.0000009D
§.0000009D
$.0000009D
8.0000009D
6.834708350

$.90000090

$.0000009D
$.0000009D
$.0000009D
5.0000009D
5.0000009D

Figure C.3 (Continued)

INITIAL REAT GER.

6.1700000D
6. 17000000
6.17000000
6.1700000D
6.1700000D
6. 17000000
6.1700000D
6. 17000000
6.07757490
5. 04898060
5.6123864D
5.4870296D
5.3730936D
5.259 15740
5. 15424630
5.0511598D
5.208255210
2.7176040D

00000 © 00000000

00000 ©

(W/nes3)

0LT



PLUERCE DISIRIBUTION
FLUEBCR (B/CN%92)
]

3BSE POINT

2.070000
2.07000D
2.07000D
2.070000
2.07000D
2.070000
2.07000D
2.07000D
2.039720
1.96353D
1.807330
1.83293p
1.76084D
1.72076D
1.65058D
1.56713p
1.80387D
6.17966D
0.0

- X-X-X-X-2-X-X-¥-¥-N-¥_¥-¥-3
REEEEEEREEEEREEREEEE
-N-X-X-X-X-F-F_-X-¥-J¥-¥-¥-¥_¥-3

2
21
21

21
21
21
29

21
21
21
21
20

Figure C.3 (Continued)
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ITERATION @AX. BT R2S.

1.6007 110~ 10
3.3006240-09
3.0198700-10
1.7453630-09
5.93108420~10
1.4952410-09
1.46483040-09
2.095476D-09
9.4953020-10
1. 1641530-09
1.5870060-09
6.9849190-10
4.3C9100-10
1.7808080-09
6.9849 19D-10
5.356620850~10
5.4571860-10
1.4930080-09
1.7316960-09
1.227836D0-09
1.9363320-09
4.6566130-10
4.6566 130~ 10
3.5015%%0-10

Figure C.3 (Continued)

BODER
33
3
28
]
S
3

TRAP(DEE C)
9.923536D
2.27158%
2.83188%
1.6320000
6.5715360
1. 1387400
8. 1550200
3.1522820
8.8305730
1.451360D
9.0722630
1.4513600
1.36706 8D
9.163764D
1.4000200
9.1559270
9.151957
9.15393500
9.1529500
9.15343820
9.1532000
3.170627D
3.13066080
1.367468D

AVG. BEL. TREP.

1.1121180 00
4.9170050-01
1. 1250130 00
3.1302970-01
4.2376350-01
1.4786620-01
1. 1697000-01
S.1920420-02
3.0689C7D-02
1.4099420-02
7.649 154D-03
3.9109%00-03
1.909356p-03
9.9699870-00
5.022086D-00
2.5200120-04
1.266 106D-08
6.3549300-05
3. 1907740-05
1.6016340-05
8.0387920-06
4.0338560-06
2.0230550-06
1.0 189320-06

pirr.

TLT



OUIERNOST BOUBDARY NEAT IRADSFRR COREFPICINNT:

JAN1SIVITE: 0.8000000 00

BADIATICE BTC (W/B%02 K): 9.0350079D 00
COBVECTION BTC (R/0992 K)3 2.039700D0 0V
J0TAL BIC (B/N0e3 K)13 2.985508D 01

Figure C.3 (Continued)
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TERFERATUAR DISTRIBUTICHE

BRGICN HAIRRIAL ¢

] '
1 1
1 1
) )
) ]
1 1
| 1
1 1
] )
! )
1 1
] ]
1 1
i ]
1 1
1 )
1 1
! '
2 2
3 2
] 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
3 -1
L 3
L] 3
L 3
L] 3
L] 3

I8C0021 s2CH

§SSH POINT (D) DIST. PRON ORIGIR (B)
0.0

2 1.02647060-01
3 2.05298130~-01¢
L] 3.07981160-010
] 8. 10568828061
] S.1323%299-0V
7 6. 130823%D-81L
] 7. 1852% 10-01
9 8.21176870-01
10 9.23823530-01
" 1.0264706D 00
12 1. 12911760 80
12 1.23176470 00
18 1.3380 1100 00
15 1.4370508D 00
16 1.5397¢590 00
13 1.68235290 00
] ] 1. 74300000 00
19 1.88500000 00
20 1.98500000 00
F3) 2.045000Cp 00
a2 2. 18500000 00
23 2.26300060 00
28 2. 38500000 00
as 2.40030C000 00
ri 2.54500000 00
7 2.64500000 00
28 2.70300000 00
29 3.10500000 00
30 3.14500000 00
n 3.160500000 00
32 3,.2250C000 %6
3 3.26500000 00
n 3.30500000 00

Figure C.3 (Continued)

TRNR. (DRG
9.16827330
9.15327080
9.1201613D
9.06451100
8.9056171D
§.88202130
8.7530454D
6.59667650
8.00926470D
0.18771120
7.92057%4D
7.625277190
7.26908730
6.08620630
6.33877170
$.6967366D
8.00602350
3. SN

3.45853300
3.40007120
3.3500907
3.3019057
31.256070%
3.2123723
3.1706257
3.1306683D
3.09233690
3.0535687D

1.5090416D

1.4800198D
1.4513604D
1.42305430
1.39509290
136746790

LT



SAHFLE PRCDBLEN -

323,16
573. 16
823, 16
973. 16

6

0.0
1.351671
1.7485
2,785
3,105

6

3.9
1.351671
1. 7850
2, 78S
3,125

1]

300.0
600.0
900.0
1200.0
1500.0
1800.0
323.16
500.0
800.0
1100.90
6

0.0
1.351671
1.7450
2. 745
3.105

Figure C.4

L}
2

0
o.a
0.39
0.8
1.00
"
10890, 0
1. 0D-5
2

860. 1
1398.8
7675S,0
9

725, 715
1675. 8
1978. %
725.75
1675. 8
1978. 4
859.0
558.9
704,11
218, 6

2
3.26D6
2, 71506

0.0
0.0
0.9

2

1378.16
1207, 16
1073. 16
873. 16
773.16
16
110.00
84,00
€7.0
54.0
87.33
83,33
36.6
37.1
33.8
27. 8

2
2,07D2%
. 72021
0.0
0.0
0.0

TEANSIENT
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1700.0

400.0
1000.0
1700.0
400.00
673.16
873.16

2
0.780388
1. 560775
2.745
3.105
3.3050

2

0.780388
1. 560775
2.5

3. 105
3.305

12

500.0
700.0
1900.0
1300.0
1600.0

800.0
600.0
900.0
1200.0

2
0.780388
1.560775
2. 745
3.105
3,305

0.20
6

1.0
1. 00-5

860.1
13943.8
7675,0

994,42
1793.1%
2058, 6
9948.42
1793. 4%
2058.6
489. 8
604.2
756€.6

J.128
2

3.264D6
2., 64D6
0.0
0.0
0.9

2

1378, 16
1165, 16
1073, 16
873,16
773.16

100.0)
78.9
62.0
50.0
86.0

37.2
36.3
3.6
25.2

2
2,)7p21
1.55D21
o.o

o.o
o.o

600.0
1200.0
2300.0

600.0
1200. 0
2300.0
473.16
773.16
923,16

-3,796D~4

1.03635
1.7450

1.03635
1.7850

500.0
800.0
1100.0
14800. 0
1700.0

850.0
790.0
1000.0
1300.0

1.03635
1. 7450

1806,1
1891.1
2156.3
1406. 1
1891.1
2156.3
532.0
663.5
825,9

=0, 261

2.930D6
2,890D6

1282. 16
1167.16

90.0
72.0
58.0
88.667
84.667

37.300
35.00
29.5
22.8

1. 88021
1. 22021

Input for SHERLOC Sample Problem - Transient




SABELE PBORLEN - TRANSIEDS
CAS? DRSCHIEIIOR

SROBLEN TYFPE: TRANSIENT

GEONETRY: CILINDRICAL

BURDRR C¥ KRGIONS: &

BONBER OF BATERIALS: 3

BATERIAL ¢ 1V IS GRAPRITI - GRAPAITE CONDUCIIVIIY WILLl BR USRD

REGION 6 Y IS A ERBDLE ERD ~ GRAPNIIR AMD PESBLE PRD CALCOLATIONS WILL BE PERFORARD
REGION 6 3 IS A VCID BRGICH -~ BALIATION ONLY IR TAIS RRGION

REGION HBAIRRIAL WIDTH (B) ¥O.83SH PTS (INCL  BODNDS)
1 t 0.174%D 01 1
2 2 0.1000D0 01 "
3 -1 0.360CD 00 ]
] 3 0.20000 00 6

BOESALIZEL BEAT RESIDUAL CONVERGENCE CRIT. (INUER LOOPR): 1.000000-09%
HAX. ITERATICNS OB INNER (LIDEAR) LOOR: 50

COBVERGINCE CRIT. CB PROPIRTINS: 1.000000-05

fAX. ITERATICHES O PEOPRITIRS: 50

PIBAL TINR: 1.00000D0 0& SECOWDS
1I8X STRP (DRLTA 7): 6.000000 0V SECORDS
§0. OF TINR STEPS BRTURES TREPERATORR DISIRIBUTION PRINTOUTS:

IBRTA (C.S5 rOR C-B; 1.0 FOR CIP): 1.000000 00

SOR ACCELERATICH FARABRTIER (OHNXGA): 1.000000 00

ANALYTIC DECAY BBAT FUBCIICN CORRFICIENTS:
T(X)=A(1) ¢ A(2)X ¢ A(3) X992 + A(4)*DCOS{A(3)X) * A(6)*DRXP(A(7)IX) ¢ A(O)*DSIN(A(I)X) + A(I0)O((Xed(1N))O9A(12))
A Y =

[ ] (]
[-X-X-X-X-2-X-¥_-X-J

1.28000~-01
«3.7960D-04
-2.61000-01¢

-
-
-
-
-
YR
-
-
-
E ]
-

Figure C.5 Output of SHERLOC Sample Problem - Transient
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ISITIAL TEEPERATERR DISIBIRGTIOR

REGIOS NATEERIAL ¢ ARSE RCIDT (1) DIST. FROE ORIGIN (M) T80, (DRE C) INITIAL NEAT GBE. (U/M**3)
1 ] 1 0.0 1.1050001p 03 3.26000000 06
' ! 1.02647060~01 1.1030001p 03 3.28000000 06
) ) 3 2.05298120-01 1.10500010 0) 3. 25000000 06
] ) 8 3.0794118D~01 1.1050001D 03 3.24000000 06
) 1 S 8. 1058824D~-01 1.10500010 03 3.2000000D0 06
] | 6 $.13235290~01 1. 10300010 0) 3.20000000 06
] ) ? 6. 13882350-01 1.1030001D 03 3.20000000 08
] ] L 7. 105294 1p-0 1 1.10300015 03 3.26000000 06
1 ) 9 8.21176470-01 1.€0970218 03 3.1906004p 06
] ] 10 9.23023%3p-01 1.05120360 03 3.06628208p 06
1 ) " 1.02647060 00 1.01270%40 03 2.9819631D 06
] ] 12 1. 12911760 00 9.0693504D 02 2.8770439%D 06
1 ) 13 1.23176a7 00 9.62520180 02 2.08108401D 06
] ] 14 1.3388 1100 00 9.381082%0 02 2.7598528D 06
1 ) 13 1.8370588D 00 9.1688935p 02 2.7050014D 06
L] ] 16 1.5397059 00 0.96231970 02 2.65100350 06
1 ) 7 1.68235299 00 §.92805720 02 2.7307042D 06
[ ! 10 1.74300000 00 0.87618020 02 1.8253002D0 06
2 2 19 1.843500000 00 §8.00000090 02 0.0
2 2 20 1. 94500000 00 §.00000090 02 0.0
2 2 P 2.04500000 00 0.00000090 02 0.0
2 2 a2 2. 14300000 00 0.£0000090 02 0.0
2 2 23 2.28500000 00 9.00000090 02 0.0
2 2 28 2.34500000 00 0.0000009p 02 0.0
2 2 2% 2.88300000 00 9.0000009p 02 0.0
2 2 26 2.3850000p 00 §.00000090 02 0.0
2 2 ar 2.68500000 00 9.00000090 02 0.0
2 2 26 2.7450000D 00 6.8387035D 02 0.0
3 -1 29 3. 10500000 00 $.90000090 02 0.0
8 k| 30 3.18300000 00 $.00000090 02 0.0
L] k) n 3. 10500000 00 $.00000090 02 0.0
[ 3 7 3.22500000 00 $.€000009D 02 0.0
8 3 33 3.26500000 00 $.0000009 02 0.0
L 3 n 3.30300000 00 $.00000090 02 6.0

Figure C.5 (Continued)
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FLORNCE D13121B0T10H

NESR POINT  FPLURBCE (W/CHee2)
1 070000 21
2 2.07000D 21
3 2.070000 214
. 2.070000 21
s 2.070000 24
¢ 2.070000 21
? 2.07000p 21
. 2.070000 21
9 2.039720 21

10 1.963530 21
n 1.807330 2)
12 1.03293D 21
13 1.70008D 24
18 1.72076p 21
18 1.650500 24
16 1.867130 21
" 1.403070 21
1 6. 179680 20
1 0.0
20 0.0
21 0.0
22 0.0
23 0.0
as 0.0
as 0.0
26 0.0
27 0.0
20 0.0
a9 0.0
30 0.0
3N 0.0
1 0.0
33 0.0
3 0.0

Figure C.5 (Continued)

8LT



T18%(SEC)
3600.000
3600.000
3600.000
3600.0G0
3600.0C0
36006.600
3600.000
3600.000

INBEBR ITER COUNT
J

2
3

[~ SR

HAX. NOBH. KESID. #0DE
2.934093D-08 )
3.6470800-05 29
§.9383040-06 29
2.937519D-04 !
3.658972D-05 29
6.9576870-06 29

TERP (PRG C)
1.2386370 03
$.3701320 62
$.377936p 02

1.2306360 03
$.370058D 02
$.3778570 02

Figure C.5 (Continued)

ITER COUNT

NO&B OF NODE TENP DIFF

6.2938340-00

1.3975090-06

6LT



INTERBAL BYAT GREBRATION DISIRIBUTION - TINE =
BBAT GER. (W/N9%))
L]

NisE POINY

8.0820290145D
8.0620290 1450
8.85202901450
8.0928290 1450
8.05§202901485D
8.0920290 145D
4.05202901450
4.0920290 145D
§.0182290451D
8.630492968%D
4.48027568918D
4.3887 1721470
4.2562290730D
8, 16778253120
4.0050310870D
4.003408701010D
4.153927601 %D
2. 15270613040
0.0

[- X Y- X-X-Y X-X-X - X-N-¥ ¥ X-¥-1
s ® 0 0 0 0

3600.000 sSECONDS

Figure C.5 (Continued)
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OBIIRNOST ROUEDARY NEAT TRADSIER CORFPPICIRNT:

pERISIVITY:

BADIATICE BIC (W/B%¢2 K): 2.960527p 01
COBVECRION 8IC (N/8002 E): 2.0397008 01

10TAL NIC

PROPERATY DISIRIDUTIONS - TINR =

L2 B ¥ XU R F™]1 -

(W/0e92 K) 3

CONDUCTIVITY (W/8 N)

§4.9002279 0°

2.39238 01 8.60100D
2.39015p o1 0.601000
2.303200 01 0.601009
2.37612p 01 8.601000
2.361000 01V 0.601000
2.33%2» 01} 8.601000
2.3038 10 01 0.60100D
2.25% 30 01 8.60100D
2.109070 01 8.601000
2. 112000 01 8.401000
2.01366d 01 8.601000
1.916920 0% 9.601000
1.019690 01 8.60100p
1.72066D 01 8.60100D
1.62744D 01 8.601000
1.517200 00 8.601000
1.38384D 01 8.601000
$.71157p 01V 1. 127080
S.77873%0 01 1.394800
3.036650 01 1.334000
$.00931D 01 1.3940800
S.948166D 01 1.398000
$.99727p 01 1.3948800
6.059%870 01 1.398800
6. 13191 01 1.39%000
6.210100 01 1.394800
6.33016D 01 1.398000
0.0 1.398800
3.336a70 01 7.675000
3.366620 01 7.675000
3.3901% 01 7.67300D
3.831090 01 7.675009
3.46516D 01 7.67500D
0.0 7.675000

Figure C.5 (Continued)

3600.000s2coNDS
DRESITY (RG/N®e))

02
02
02
02
02
02
02
02

SP. NBAT (J/KG N)
3

2.09003%0
2.000300
2.0079%
2.007300
2.00632p
2.0048600
2.00201
1.990370
1. 993500
1.987720
1.90113D
1.97 810
1.95949D
1. 986900
1.93200
1.9187
1.89314D
1.857500
1. 088600
1. 881090
1.03886D
1.020100
1.821720
1.81860D0
1.80683D
1.797000
1. 708760
1. 770370
6.981900
6.795809
6.63984D
6.51077D
6.39833D
6.2662%
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TR0PERATURE DISTRIRUTION AT TINR =

BUSEER OF EBCPERTY IIBRATIONS = 2

RRGICY NATERIAL ¢

S88EE W NMBRRNNNNN

NN N

W ww

axs8 pOINT (I)
)

3600.000 sxcoupDs

DIST. PRON ORIGIN (N

0.0

2 1.02647060-01
3 2.05294120-01
8 3.07981180-01
S 8. 1058824D-01
¢ 5.1323529p-81
? 6. 15882350-01
8 7. 185294 10-01
9 8.21176470-01
10 9.23823%30-01
" 1.0264706> 00
12 1. 12911760 00
13 1.23176847D 00
" 1.33841180 00
15 1.83705080 00
16 1.53970390 60
17 1.6423%29% 00
11 1. 70500000 00
19 1.043500009 00
20 1.94500000 00
21 2.04300000 00
22 2. 18508000 00
23 2.28300000 00
28 2.34500000 00
25 2.4450C000 00
26 2.545000C0 00
27 2.64500000 0
28 2.74500000 00
29 3.10500000 00
30 3. 14500000 00
n 3,18300009 00
32 3.22500000 00
33 3.26300000 00
an 3.305000¢0 00

Figure C.5 (Continued)

TREP. (DEG
1.239%0110D
1.23806760D
1.23758090
1.2352607D
1.2312696D
1.3240209D
1.21518200
1.2013318D
1. 18360920
1. 16170420
1. 13708 190
1.1108181D
1.083352090
1.0546059D
1.0224026D
9.83212290
9.3150806D
58054350

8.3908 137D
8.28862670
$.10890540
7.9803613D
7.8801193D
7.7023018D
7.53516770
7.3020606D
7.12203690
6.0702504D

5.3770%720

5. 1980 184D
9.003957
8.00399720
8.594163%
8.37020800

<)

8T



TIAR(SEC) IANER ITER COUNT BAX. WORS. RESID. ¥ode TERP (DEBG C)

7200.0C€0 1 2.094016D-04 1 1.3175060 03
7200.000 2 3.7885200-05 29 5.1353910 02
7200.000 k| 7.607993D-06 29 5. 135197p 02
7200.0C0

7200.000 ] 2.098996D-08 1 1.317505p 03
2200.000 2 31.794744D-05 29 5.1353220 02
7200.0C0 3 7.625810p-06 29 $. 1351270 02
7200.000

Figure C.5 (Continued)

PROP.

ITER COONT

BORM OF NODE TEMP DIPF

4.8096292-04

1.048476D-06

€8T



INTERWAL HEAT GENERATION DISTRIBUTION ~ TINE = 7200.000 SECORDS
BIAT GEB. (W/He9))

NESE POINT

VONORSEWN

§.08311116750
§.0831111675D
84.0831111675D
8.0831111675D
8.0831111675D
§.08311116750
§.0831111625D
4.0831111675D
§4.02085680 160
3.8641893053D
3.7071521809 10
3.62570670980
3.5510632829D
3.4700157759D
3.40899630900
3.38094710S51D
3.4664910887D
1.7968532207D
0.0

0.0

0.0

[-X-X-X-X-¥-X-¥-N-N-X-¥-J

Figure C.5 (Continued)
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OUTIRNOST POUBDARY NEAT TRANSPER CORFPICIEDI:

BEA1SIVITI: 0.8000000 OC
SADIATICY EIC (/8002 K)3 d.713088D Ct
CCEVYECTION RNTIC (W/N**2 K): 2.039700D 01

TI0TAL RIC (W/H%e2 K): 8.753%584D C1
PEOPEETY DISIRIBUTIONS - TIAR = 7200.000SECONDS
#ESE POINT COWNDUCTIVITY (W/H K) DENSITY (KG/H®9e3) SP. BRAT (J/KG K)

2.610%5¢ 01 8.601000 02 2.02945D 03

2 2.61358D 01 0.601000 02 2.029220 03
3 2.60334p 0V 8.601000 02 2.020%52p 03
8 2.587300 01 8.60100p 02 2.027310 03
$ 2.56880D 01 8.601000 02 2.0255%30 03
[ 2.535060 01 8.601000 02 2.023120 03
7 2.897280 01 8.601000 02 2.020000 03
8 2.48809D 01 8.601000 02 2.01611D 03
9 2.38330D0 01 8.601000 02 2.01137D 03
10 2.307260 01 8.601000 02 2.00578D 03
" 2.20%75%0 0V 8.601000 02 1.99940D0 03
12 2. 100590 01 8.601000 02 1.992220 03
13 1.987270 01 8.601000 02 1.964C9D 03
[} 1.8648290 01 8.60100D 02 1.97280D0 03
13 1.737920 01 8.60100D0 02 1.954230 03
16 1.598890 01 8.60100D0 02 1.93201D 03
17 1.430200 01 8.601000 02 1.90383p 03
18 5.67352p 01 1. 127880 03 1.86318D 03
19 5.759570 0V 1.394800 03 1.852210 03
20 5.83935p 01 1.3%446CD 03 1.84216D 03
21 5.916110 01 1.394800 03 1.83268D 03
22 5.99160c 01 1.398000 03 1.82346D 03
23 6.06800p0 01 1.398800 03 1.01824D 03
28 6. 146800 01t 1.3940800 03 1.808400D0 03
25 6.23618p 01 1.398800 03 1.794990 03
26 6.3434830 01 t.3940800 03 1.76294D 03
27 6.45505p 01 1.394800 03 t.770C1D 03
28 0.0 1.394800 03 1.75660D0 03
29 3.374450 01 7.675000 03 6.74478D 02
k'] 3.401600 01 7.675000 03 6.617770 02
n 3.430370 O1 7.675000 03 «.£139%D 02
32 3.86053p 01 7.67500D0 03 6.804520 02
33 3.491060 01 7.675000 03 6.29036D 02
kL] 0.0 7.675000 03 6.172310 02

Figure C.5 (Continued)
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TENEFRRATORE DISTRIRUTION AT TINE =
NUNBER OF ERCPERTY ITERATIONS = 2

REGION WNATERIAL ¢

-t W s e e s e

X X K ¥ J w NN

R L L L L L T X W X

NN

Wwwww

EESH PCINT (X)

Figure C.5

7200.000 SECONDS

DIST. PRON ORIGIN (B)
0.0

1.02647060-01
2.05294120-01
3.07981180-01
4.1058824D-01
S. 13235290-01
6. 1568235D-01
7.185294 10-01
8.21176470-01
9.23823530-01
1.0264706D 00
1.1291176d 00
1.2317647D 00
1.3388118D 00
1.43705080 00
1.53970590 00
1.64235290 00
1.74500000 00

1.84500000 00
1.94500000 00
2.04300000 00
2. 14500000 00
2.20500000 00
2.3450000D0 00
2.4450C06D 00
2.54500000 00
2.64500000 00
2.743000C(D 00

3.10500000 00

3. 18500000 00
3.18500000 00
3.22500000 00
3.26500000 00
3.3050000p 00

(Continued)

TENF. (DEG
1.3177834D
1.31693250
1.3183133D
1.3097858D
1.30313800
1.2941158D
1.20245300
1.2676937D
1.2501763D
1.2292463D
1.20538684D
1.17833130
1. 14813990
1.1130884D
1.0718692D
1.02056200
9.5601364D
8.6968478D

8.472375%D
8.2665736D
8.0724749D
7.€037704D
71.6950075D
7.50 18024D
7.30101100
7.0910584D
6.87202430
6.6846812D

5.135127D

4.9709257D
84.7958666D
4.6113394D
4.81883190
8.2197964D

98T



T INE (SBC)
10800.000
10800.060
10800.000
10800.000
10800.000
10800.000
10800.0C0
10800.000

INNER ITER COGRY

WA -

(™8 =

NAX. WOBN. RESID.
1.682574D-04
3.4603370-05
7.188196D-06

1.6828850- 04
3.466379D0-05
7.201782D-06

%0DB
29
29

29
29

Figure C.5

TEBP (DBG C)

1.376397D
84.931326D
§.931154D

1.376397D
84.9312720
4.9311000

03
02
02

03
02
02

(Continued)

PROP.

ITER COUNT

BORM OF NOLE TEXP DIFF

3.367723D-04

8.1699730-07

L8T



ISIERNAL HEAT GEWERATION DISTRIBUTION - TINR =

H2SE POINT

"N R X WT W FWY X

10

REAT GEN. (R/89¢))
3.6730884256D 04

3.6730884258D
3.67306868256D
3.6730864258D
3.67308088256D
3.6730884256D
3.6720888250D
3.6730084256D
3.61708559320
3.84761505210D
3.3352150480D
3.2616162280D
3. 19518802670
3. 12075982540
3.0666676395D
3.00%45188200
3.1183808396D
1.6160540321D

- X-X-N-N-X-X-N-R-N_-N_-N-N-X-_¥-¥_J
IREEEEEEEEREEEREREEER)
[-X-X_N-X-K-N-N-N-J-X-JF-N-N-N-¥-J

Figure C.5 (Continued)

['1]
1 ]
['L]
(L]
(L]
1]
('L}
(1]
o
(1}
1]
on
(L)
'L}
'L
'L}
(L]

10800.000 SBECOEDS

88T



OUTIRNOST BOUNDARY HEAT TRANSFER CORPPICIENT:

IBN1SIVITYI: 0.800000D0 00

SADIATICE BIC (W/Nee2 ()3 2.581495D 01
CONYERCTION ATC (W/N*e2 K): 2.039700D 01
10TAL NIC (W/N%e2 )3 4.621195D 01

PACFERTY DISIRIPUTIONS - TINR = 10800.000sxCONDS

BESP POINT  CONDUCTIVITY (W/H K) DENSITY (KG/lee)3) SP. HRAT (J/K6 )

2.785%80 01 8.601000 02 2.04518D 03
2 2.78011D 0V 8.60100p 02 2.084900 03
k) 2.768220 01 8.601000 02 2.08407D 03
] 2.75004D 01 8.601000 02 2.08266D 03
] 2.72%170 01 8.601000 02 2.08064D 02
[ 2.693110 01 8.60100p 02 2.03798D 03
? 2.6353160 01 8.601000 02 2.03863D 03
s 2.601700 01 8.601000 02 2.03050p 03
9 2.538090 01 8.601000 02 2.025530 03
10 2.833440 01 8.601000 02 2.01964D 03
" 2.343600 01 8.60100p 02 2.0120820 03
12 2.22766D 01 8.601000 02 2.00494D 03
19 2.09%880 01 8.601000 02 1.995790 03
" 1.95888p 01 8.601000 02 1.985¢2Dp 03
15 1.801203p 01 8.601000 02 1.968120 03
16 1.64259D 01 8.601000 02 1.942400 03
17 1.4538 10 01 8.601000 02 1.91014D 03
1] 3.66427p 01 1.12784D 03 1.865050 03
19 $.76209D0 0V 1.39480D 03 1.852600 03
20 5.835060 01 1.394800 03 1.88096D 03
21 5.945070 01 1.394800 03 1.829890 03
r¥] 6.032090 01 1.394800 03 1.81917D 03
23 6.118170 01 1.394680D0 03 1.80864D 03
24 6.205320 01 1.394800 03 1.79815D 03
25 6.31354D 01 1.398800 03 1.78641D 03
26 6.822630 01 1.39480D0 03 1.773600 03
27 6.532700 01 1.394800 03 1.760660 03
28 0.0 1.39480D0 03 1.747620 03
29 3.806520 01 7.675000 03 6.394817D 02
30 3.432310 01V 7.675000 03 6.501100 02
N 3.45937D OO 7.675000 03 6.803010 02
32 3.487560 00 7.675000 03 6.30045p 02
33 3.513580 01 7.675000 03 6. 1940C6p 02
38 0.0 7.675000 03 6.084370 02

Figure C.5 (Continued)
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TIMPERATODE DISIRIDUTION AT TINE = 10800.000 SECONDS
NOREER OF EDGREIRTY ITERATIIOBS = 2

REGICE HAIRBIAL ¢
]

NN NN

LR R R X J [~ [SYSENE SRR SY SN SE YN
-

Whwww

I8€0021 sSTCP

8BSE PCINT (I) DIST. PLOMN OBIGIN (B)

2 1.02647060-01

3 2.05294120-01
8 3.07941180-01
S 4.105008240-01
6 S. 13235290-01
? 6.15002350-01
8 7. 185294 10-01
9 8.21176470-01
10 9.23823530-01
" 1.0264706D0 00
12 1. 12911760 00
13 1.23176470 00
1] 1.3308 110D 00
15 1.4370588D0 00
16 1.53970%90 00
7 1.64235290 00
19 1.74500000 00
19 1. 84500000 00
20 1. 94500000 00
21 2. 04500000 00
22 2. 14500000 00
23 2.24500000 00
ri} 2.34300060 00
25 2.44500000 00
26 2.54500000 00
27 2.64500000 00
28 2.78500000 00
29 3. 10500000 00
30 3.14500000 00
k] ] 3.18500000 00
32 3.22500000 00
33 3.26500000 00
N 3.30500000 00

Figure C.5 (Continued)

TRI8P. (DEG
1.3766265D
1.37560110
1.3724846D
1.3672123D
1.3596746D
1.3497216D
1.3371595D
1.3217440D
1.3031435D
1.20 1105 1D
1.2355829D
1.2261230D
1.1919051D
1. 15160860
1.10329390
1.0443553D
9.7039039D
8.7351701D

6.4802943D
$.28207390
8.01541770
7.7960139D
7.5803349D
7.3656197D
7. 14991910
6.9327361D
6.71357120
6.849240825D

4.93110020

§.7781863D
4.60878720
8.4350838D
4.25643260
4,0714895D

06T
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APPENDIX D

Listing of SHERLOC






DONNONONANANONNANANANANNOONNONANAANAANN AOANODONNNNNNONNNNNONOANN

193

...."".“........‘......‘.“.....‘..............................
.......“...‘...‘..‘.‘.....‘........‘.......“.......‘.........“‘

L2 J e
Lad SHERLOC - A CONPUTER CODE TO DETERMINE SNALL HTGE had
had THERSAL RESPONSE TO LOSS OF CIRCULATION had
L2 4 L 2
bad YRITTEN BY: 8 A GIBBS APRIL, 1963 had
had THE PENNSYLVANIA.STATZ ONIVERSITY Ldd
L 2 e
had FONDED BY: U.S. DEPARTNENT OF ENPRGY MWUCLEAR SCIENCE had
Ldd AND ENGINEZRING AND BBALTH PHYSICS hid
hid FELLONSEIP héd
e L 2 J

‘..“‘."‘..“‘.“‘.“.....‘...‘...“....‘.“.......“‘.......‘...

THIS CODE SOLVES ONS~-DINENSIONAL, NOR-LINEAR CONDUCTION HEZAT TRANSPER
PROBLEAS USING PINITE DIFPPRRENCES.

ALTHOOGE DEVELOPED SPECIFICALLY TO ANALY4E MODULAR ETGRS UNDER
LOCA/LOFA CONDITIONS, IT MAY OF COURSE BE OUSED FOR OTHER APPROPRIATELY
HODELED PROBLRAES.

THE POLLOVING CHARACTERISTICS OUTLINEZ THE SCOPE AND FLEXIBILITY OF

THE CODE.
= TRANSIENT OR STEADY-STATE HEAT TRANSPER

CYLINDRICAL OR RECTANGULAR COORDINATES (1-D)

ADIABATIC BOUNDARY CONDITION AT THE ORIGIN

COBVECTIVE ASD/OR RADIATIVE BOUNDARY CONDITIONS

AN INITIAL TENPERATURE DISTRIBUTION AUST BE PROVIDED POR

TRANSIENT PROBLEANS; AN INITIAL GUESS AT TEE TESPERATURE

DISIRIBUTION HUST BE PAOVIDED POR S-S PROBLEANS.

OP TO 20 DIFPERENT REGIONS NAY BE SPECIIPIED

~ OP TO 20 DIPPERENT MATERIALS BAY BE SPECIFIRD
THE TOTAL NUMBER OF AATERIALS NUST BE .LE. THE TOTAL NOUMBER
OF REGIONS. A REGION HAY CONTAIN OWLY ONE MATERIAL, BUT
SEVERAL REGIONS MNAY CONTAIN THE SANE MATERIAL.

= IF A BATERIAL IS GRAPHITE, THE TENPERATURE AND NEUTEON PLIENCE
OBPENDENT THERSAL CONCOCTIVITY WILL BE CALCOULATED.

= IF A EEGION IS A PBBBLE BED, AN EPFECTIVE CONDUCTIVITY WILL
BE CALCULATED TO TAKE RADIATION THROUGH THZ BED INTC ACCOUNT
AS WELL AS CONDUCTION.
BOTE: THE NATERIAL IN A PEBBLE BED MUST BE SPECIFIED AS

GRAPNITE!

= YOID REGIONS HAY BE SPECIFIED (VOIDS MAY NOT CONTAIN A HATERIAL)

= THE THERNAL CONDUCTIVITIES, DENSITIES, AND SPECIPIC HEATS
OF HMATERIALS WAY BE SPECIPIEZD IN TABULAR PORN AS FUNCTIONS
OF TEHPERATURE

= INTERBAL HEAT GEWERATION HAY BZ SPECIFIED IN TABULAR PORN AS
A TUBCTION OF TINE

POR STEADY-STATE PROBLENS, A DIRECT SOLUTION TECHNIQUE IS USED.
THE ROUTINES DGBPA AND DGBSL ARE USED TO SOLVE A SYSTER OF
SIAOLTABEOUS EQUATIONS IN MATEIX FORM.

TRANSIENT PROBLEAS ARE SOLVED USING AN INMPLICIT TECHNIQUE. THE
TRANSIENT FINITE DIFFERENCE EQUATIONS ARE SOLVED AT TINE STEP
NeTHETA, WAERE THETA IS INPUT BY THE USER. IF IHETA=0.5, THE
TECHVWIQUE BECOBES THE CRANK-NICHOLSON TECHNIQUE; IP THETA=}.0,
THE TECHEIQUE BECONMES THE CLASSICAL INPLICIT PROCEDURE, THE
SOLUTION IS STABLE POR ALL TIME STEPS I? 0.5 .LE. THETA .LE. 1.0.
THE OVERRELAXATION PARANETER ONEGA IS INPOT BY THEZ OSER:

0.0 .LE. ONEGA .LE. 1.0.
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63.
68,
65,
66.
67.
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69.
70.
7t.

13.
n.
75.
76.
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79.
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83.
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85.
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88.
89.
90.
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C 9999080069 0808 0060805084090 YT LI IY YT IIRRRR LR LR LA 1L LA L)
C PYTSII R P T AR R DL R R DR AL S ot Ll il d PTII TR IE RIS 22 R 122 L 1)

c

C DINEESION ARRAYS - DECLARE VARIAPLES

c
REAL8 A (200,200) /800000.0/,TENPI (20,20,2) ,G (20,20,2) ,KC, HR,BT,
CO¥D(20,2,20) /800%0.0/,7I¥F, B8N, P (200) /20020.0/, TR, PV (200),
(200) /200%0.0/,K (200) /200%0.0/, B (200) /200%0. 0/,

DELI (20) , ¥ (20) ,X (20) ,ABD (8 ,290) ,B (200) ,SIGHA,DEL,DIST,
CTD,NAX,THP,DIA, P, 2PS, PLPH (20,20,2), PL (200) ,RTD,

€L (200) , TLP (200) ,THEWP (200) ,TT (200),S 1,82,

B1,82,83, 1{200) ,CP (200) ,RPH (20,2,20) ,CPPH (20,2,20) ,D(200) ,H (200},
tH,cc 1,CC2,CONT (200) ,CONP, SUL/0.0/,1T0T,0, DT, GEN (200) ,DCY (12},
ANALPN,TIN,DOBNY,DOBAY2, A (200),A2(200),A3,A8,8R12(20) ,AR21(20),
E1(20) 720#0.0/,E2 (20) /20%0.0/,E12,821, TTL (200) , TIR (200)

INTEGER BEAT, N (20),IPRK(20),HL/1/,H0/1/,8,0, PVT (200),1I0PO,

e Ii,12,K1,400E, REG,RGH,NAT (20) ,AGRPH, PEBFLG (20) 72090/, NFLPT (20),
. STINX, NTI,BPI,ITSAX, IPHAX,IPRR (20),IPRC (20),12/0/,¥EDIT/1/
s ,IEDIT,IPRG (20),IPRT (20)

CONNON / TCDT / TDAT(13) ,DBLTA(13),ATA(13),CH(13)

cossos /TKI¥ /COB(13)

DINENSION TITLE(80)

C
C READ GE¥ERAL PROBLEE INPORNATION
C
READ (5,10) TITLE
10 PORBAT (80A1)
SRITE (6,15) TITLE
15 PORMAT (*1°,80A1)
READ (5,35) IGEON, NREG,BHAT,IT
READ (5,35) (SAT(RGN),RGN=1,NREG)
READ (5,35) BGRPH
READ (5,35) (PEBPLG(I),I=!,NEEG)
DO 23 I=1,EREG
IF (PEBFLG(I) .EQ. 2) WEAD(S5,30) BV (I).B2(I)
IP ((PEBPLG(I) .EQ. 1) .ABD. (SAT(I) .NB. YGRPH)) GO TO 25
23 CONTINUE
GO TO 28
25 JRITE (6,27)
27 FORNAT ('OIFNPUT ERROR - PEBBLE BED REGIOB NUST PB GBAPEITE!®)
GO T0 800
28 READ (5,30) DIA,P,EPS
30 FOREAT (6P12.7)
READ (5,30) MC,ENA,TINP
READ (5,30) (WH(I),I=!,NREG)
READ (5,35) {(WR(I),I=!,NREG)
35 PORAAT (6112)

C
C SRITS GENERAL CASE DESRIPTION
C
85 ¥BRITE (6,50)
50 PORNAT (*0 CASE DESCRIPTION®)
Ir (IT .EQ. 0) WRITE (6,55)
IP (IT .¥R. 0) VRITE (6,60)
55 FORNAT (°0°,T5,'PROBLEM TYPE: STEADY STATE®)
60 PORMAT (°0°*,T5,'PROBLEN TYPE: TRANSIENT')
Ir (IGEOM .EQ. 1) WRITE (6,65)
IP (IGEON .BQ. 2) WRITE (6,70)
65 FOREAT (T5,°GEONETRY: RECTANGULAR')
70 FORMAT (T5,°'GEONETRY: CYLINDRICLL')




123.
128,
125.
126.
127.
128.
129.
130.
LEX N
132.
133,
138,
135,
136.
137.
138,
139.
180,
1.
182,
ni.
184,
185,
186.
187.
188,
189.
150.
151,
152.

158,
155.
156.
157.
158,
159.
160.
%1,
162.
163.
16a.
168,
166.
167,
168.
169.
170.
171.
172,
173,
178,
175.
176,
177;
178,
179,
180,
1.
192.
183.

195

WRITE (6,75) WREG
73 FORSAT (TS,*NUABER OF REGIONS: *,I2)
VRITE (6,80) NEAT
80 PORBAT (IS,'WONBER OF WATERIALS: *,I2)
Ir (BGRPH .NE. 0) WRITE (6,85) HmGRPH
8% PORNAT (TS,°*SATERIAL ¢ ',I2,' IS GRAPNITE - GRAPHITE CO¥DUCTIVITY
* WILL BE USED')
DO 100 I=1,NREG A
IF (PEBFLG(I) .EQ. 1) GRITE (6,90) I
IF (PEBPLG(I) .EQ. 2) WRITE (6,95) I

90 FORBAT (TS, 'REGIOM # *,I2,' IS A PEBBLE BED - GRAPHITE AND
*PESBLE BED CALCULATIONS WILL BE PERFORNED?)
95 FORBAT (25,°'REGION ¢ *,I2,* IS A VOID REGION - RADIATION ONLY

* I3 TRIS RRGION®)
100 comrINUE

§RITE (6,10%5)
105  PORBAT (*0°,TS,'REGION MATERIAL WIDTE (M) NO.RESH PTS (INCL

*BOUNDS) *)

DO 110 Is=t,NRRG

WRITE (6,115) I,BAT(I),VE(X),NE(T)
110 ComTINgs
11$  POREAT (%7,12,T15,12,T24,D10.8,700,13)
IF (IT .B8. 0) GO TO 180

C IFPUT AND OUTPOT OF STYEADY STATE PARAAETERS
C
READ (S5,119) INAX,CTD
119 POREAT (I12,r12.7)
120 PORMAT (2(I2,P12.7))
WRITE (6,125) Imax
125  POREAT (TS,°'SAX. ITERATIONS ON PROPERTIES: *,I2)
WRITR (6,135) CTID
135 POREAT (T5,'CONV. CRITERIA POR AVG. REL. TENP. DIFF.: ', 1PD12.5)
G0 10 220

[
C INPUT OF TRANSIENT PARANETERS
C
190  READ (S, 185) wTlmR,TTOT,TH,N,BEDIT
185 PORSAT (X12,3P12.7,112)
READ (5,120) ITHAX,CC1,IPHAX,CC2
C
C READ DRESITY TABLE
C

READ (5,35) (IPRR(I),I=1, NEAT)
DO 150 Isi,BHAT
81sIPRR (I)
READ (S5,30) ((aFPN(I,L,BH),L=i,2),0=1,R]))
150 CONTINUE

c
C READ SPECIFIC HEAT TABLE
C

READ (5,38) (IPRC(I),I=1,NHAT)
DO I5S I=i,NEAT
at=IPRC (I)
READ (S,30) ((CPFB(I,L,B),L=1,2),0=1,H1)
1S5 CoNTINOR

[
C READ DECAY HRAT FUNCIIOF (PUNCTION OP TINE)
C
CALL READFDN (DCY)
C
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C GRITE TRANSIENT PROBLEN INFORNATION
[
WRITE (6,160) CCI
WRITE (6,16S) ITHAX
160 FORNAT ('0°',TS,°NORMALIZED HEAT RESIDUAL CONVERGENWCE CRIT. (INNER
*L00P): *,T80,1PD12.5)
165 PORSAT (TS,°'MAX. ITERATIONS ON INWNER (LINBAB) LOOP: °*,T80,I3)
WRITE (6,170) CC2
WRITE (6,175) IPAAX
170 PORAAT (T5,°CONVERGENC® CRIT. O PROPERTIES: °*,T60,1PD12.5)
175 PORBAT (T5,°'NAX. ITERATICNS OW PROPERTIES: °,T80,13)
YRITE (6,180) TTOT
0T=TT0T/ (DYLOAT (NTINE))
SRITE {6,185) DT
180 FORBAT (TS,°'PINAL TIAE: °¢,T780,1PD12.5,% SECONDS')
185 PORHAT (T75,°TINE STEP (DELTA T): ¢,T80,1PD12.5,' SECONDS')
WRITE (6,190) NEDIT
190 PORNAT (T5,°NO. OF TINE STEPS BETVEEN TEBUPERATORE DISTRIBOTION
* PRINTODTS:®,T80,13)
WRITE (6,195) TR
WRITE (6,200) ¥
195 FORBAT (T5,°TRETA (0.5 POR C-N; 1.0 POR CIP): °*,780,1PD12.95)
200 PORNMAT (T5,°SOR ACCELERATION PARANETER (OHEGA): ',780,1PD12.5)
VRITE (6,205)
205 PORBAT ('0°,TS,*ANALYTIC DECAY HEAT POUNCTION CORFPICIRNTS: )
WRITR (6,210)
210 PORMAT (' Y(X)=A(!) ¢ A(2)®K ¢ A(3)*X**2 + A(8)*DCOS(A(S)X)
* ¢ A(6)SDEIP(A(7)X) ¢ A(B)SDSIN(A(9)X) » A(10) ¢((Xed(11))eea(12))"*
*)
VRITE (6,218) (X,DCY(I),I=1,12)
21% PORNAT (T5,°'A(*,I2,°) = *,1PDI11.8)
C
C END OF TRANSIENT PARMAETERS
C
C READ INTERNAL HEA? GENERATION PUNCTION - IPRG PAIRS FOR EACH REGION
220 READ (5,35) (IPRG(I),I=1,¥REG)
DO 225 Is=1,3REG
21=IPRG (I)
READ (5,30) ((G(I,L,H),H8=1,2),L=0,81)
225 CONTINUE
[

C READ INITIAL TENPERATORE DISTRIPUTION ESTINATE - IPRT PAIRS POR
C BaCH RECION
READ (5,35) (IPRT(I),I=1,NREG)
Do 230 I=1,MREG
#1=IPRT (I)
READ (5,30) ((TEMPI(I,L.8),Nsi,2),L=1,81)
230 CONTINOE
c

C READ THERNAL CONDUCTIVITY POUNCTION - IPRK PAIRS POR EACH EBAT'L
[

READ (S5,35) (IPRK(I),I=1,NBAT)

DO 235 I=1,NBAT

I? (I .EQ. HGRPH) GO TO 235

Bi=IPRK (1)

READ (S5,30) ((coWD(I,L,H),L=1,2),H8=1,81)
23S COMTINUE

Ir (MGRPR .BQ. 0) GO TO 240

[
C READ PLUENCE DISTRIBUTION
[




2485,
286,
287,
248.
249,
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READ (5,35) (WPLPT(1),I=1,NREG)
DO 237 I=1,BREG
Hi=sNPLPY (1)
READ (5,30) ((PLPB(I,L,H),0=1,2),L=1,01)
237 CONTINUE

C
C PRELIAINARY INITIALIZATIONS AND CALCULATIONS

C
280 =0
SIGHA=5.669E~-08
DO 2845 1I=1,EREGC
NsB+NB (1)
DELI(I)=¥A(I)/(DPLOAT (NN (X)~-1))
285 CONTINOZ
¥=N- (NRBG~1)
NlsN-)
WP=j+e
I())=un ()
Ir (WRXG .EQ. 1) GO TO 250
DO 250 I=2,NREG
X(I) =X (I-1) +WB(I)
250 comTINOE
ICoUNT=)
C
C CALCULATE 1NTERNAL BEAT GENERATION AND INITIAL TENPERATORE
C BSTIHATE AT EACH NESH POINT I.

[«
CALL INTRPG (G,IPRG,P,¥,DELI, I, NREG,PEBFLG, IGEON)
CALL INTERP (TEHPI,IPRT,T,N,DELI,X,WREG)
IF (BGRPH .BE. 0) CALL INTERP (PLPN,NPLPT,PL,N,DELI,X,NREG)
GRITE (6,255)
C

C PRINT INITIAL DISTRIBUTIONS (TBEP, PLUENCE, PROPS, BTC.)

c
255  PORNAT (*1 INITIAL TEBMPERATURE DISTRIBUTION®)
URITE (6,256)
256 PORMAT (*OREGION NATERIAL ¢ AMESH 20INT (I) DIST. PROM ORIGIN
s(m) TEMP. (DBG C)!,T83, INITIAL HEAT GEN. (W/Ree3)?*)
DIST=0.0
RGH=1
DO 260 I=1, N
TPeT (1) -273. 16000
WRITE (6,445) RGN, MAT (RGN) ,I,DIST,TP,P(I)
IP (DABS (X(NREG) -DIST) .LE. 1.0D-6) GO TO 260
Ir (DABS (X (RGN) -DIST) .LE. 1.0D-6) WRITE (6,8450)
IP (DABS (X (RGN) -DIST) .LE. 1.0D~6) RGN=RGN+1
DIST=DIST+DELI (RGH)
260 CONTINUE
IF (8GRPH .2Q. 0) GO TO 280
TRITE (6,265)
265 PORABAT (') FLUENCE DISTRIBUTIONY)
WRITE (6,270)
270 PORMAT (* NESE POINT',T1S,'PLUENCE (N/CN#%2)°)
¥RITE (6,275) (I, PL(I),I=1,N)
275 PORMAT (76,13,T15,1PD12.5)
c
C CHECK POR TRANSIENT OR STEADY STATE PROBLEN

c
280 IP (IT .NE. 0) GO TO #7%
c

4




198

306. C PRI IIIE R d 333 233 21 23R 23411 F 21 31 2)
301. [ o Y e I PP YT R I T RS R RS S ST ST R R I3 21223 247372 ]
308. c

309. c

310. C STEADY STATE SOLUTION

3. c

. c

3. C CALCULATE THERHAL CONDUCTIVITIES AT EACH NESH INTERVAL

3. c

318, DO 282 I=1,2

316. TIR(I) = (T (X) +T(I+1)) /2.0

317, 282 CONTINOE

318. 285 CALL CONDUC (T,K,DELI,NAT,NGRPH,IGEON,NN,X,FL,2PS,P,DIA,IPRK,
319, . COBD,¥REG, PEBPLG, N, TIR)

320. c

321. C CALCULATE HEAT TRANSPER COEPFICIENT OF OUTERNOST BOUNSDARY
322. c

323. 290 HR=ZENSSIGHA® (T (N) *2¢TINP®*2) (T (N)+TINY)

. HT=HR¢HC

325. 294  PORHAT (*1OUTERNOST BOUNDARY HEAT TRANSPER CORPPICIRNT:®)
32s. 295 FORMAT (*0°,%5,'EMNISIVITY: °*,D13.6)

327. 300 FOREAT (75,°RADIATION BIC (W/H®e2 K): ',1PD13.6)

328. 305 PORMAT (75,°CONVECTION BRTC (§/N%*2 K): °*,1PD13.6)

329. 310 PORMAT (T5,'TOTAL HTC (W/M®e2 K): *,1PD13.6)

330, C

331, c

332. 315  Ir (IGPOA .BQ. 2) GO TO 340

333. C

33a. C SLAB GEONETRY

338. Cc

336. C SET UP PIRST AND LAST ROWS OF COEPPICIENT MNATRIX

337, DEL=DELI (1)

33s. AQ1, 1)==(K(1))

339. A(1,2) =K (1)

380. B (1) == ((P (1) *DEL®s2) /2.0)

38, A(N,0=1) =K (N=1)

382, A (N,N) == (ET*DELI(WREG) +K (N-1))

383, B(N) =~ ( (P (N) *DELI (NREG) #2) /2.0+ET*DELI (FREG) *TINF)

3a8, C SET UP RENAINDER OF MATRIX

38, 2GN=]

386, DIST=DELI (1)

w7, DO 338 I=2,NL

a8, IF (DABS(X(RGN)-DIST) .LBE. 1.03-6) GO TO 320

389, AT I-1)=K(I-1)

3s0. AT, I) == (K(I-1)+K(I))

3Is1. A(I,Ie1)=K(I)

3%2. B(I) == (P (I) *DEL##2)

3s3. 60 7O 330

354, c REGION INTEIPACR

3s8, 320 RGNsRGN¢1

356. DEL=DELI (RG N)

357. 17 (PEBPLG(RGN) .EQ. 2) GC TO 325

asse. A(I,I-1)=K(I~1)*DEL/ (DELI(RGE-1)+DEL)

359. A(I.I)=- (K(I)*DRLY (RGN-1) +K (I~1)*DEL)/(DELI (RGN-1)+DEL)
360. A(I,I¢1)=K(I)*DELI (RGN-1)/(DELI (RGN~ 1)+DEL)

361, B (L) =~ (B (I) *DELI (RGN=1) ¢DEL) /2.00

362. 60 T0 330

363. c YOID REGIOS

e, 325 E12% (1.0)/((1.0/E1 (RGH)) ¢ (1.0/B2 (RGN))~-1.0)

365. HR12 (RGH) =SIGMA® B129 (T (I) #92¢F (I¢1)®92) ¢ (T (I) +T(I+1))

366. A{(I,I-1)=K(I-1)




367.
368.
369.
370.
n.
372.
m.
.
375.
3%.
3in.
378.
379.
300.
381.
382.
301.
e,
3ss,
386.
3e87.
388,
389,
”o.

3.
393,

395.
396.
397.
398.
399.
400.
801,
.02.
803.
808,
80S.
806.
807.
408.
809.
810.
.".
812,
813,
818,
8135,
816,
87,
818,
819,
820.
82t
822.
423,
828,
425.
826.
427,

330
335

c
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A(I,I)==(BRI2(RGH) *DELI(RGU~1) ¢K(I-1))
A(I,I+1)=B8R12(RGH) *DELI (RGE~1)
B(I)==(P(I) *DELI (RGN=-1) **2) /2,0
DIST=DISTeDEL

I=Ie

SGN=RGNe1

DEL=DELI (RGN)
A(I,I-1)=HRI2(RGNE~1) *DBL .
A(Z,1)=~(ER12(BGN=1) *DEL+K(I))
A(I,I+1)=K(I)

B(I) =~ (P (I) *DEL**2) /2.0
DIST=DISTDEL

CONTINOB

GO

TO 365

C CYLINDRICAL GROBETRY

c
[
380

SBT UP PIRST AND LAST ROWS OF COERFPICIENT MATRIX
DEL=DELI(1)
A(t, 1) ==K (1)
A(1,2)=K(1)
B (V) =~ (P (1) *DEL**2/4.00)
A (B ,¥=1)=K (N=-1) *(X (NREG) ~DELI (NRZG) /2.0) /DELI (NREG)
.l @ By == ( ((X(NREG) -DELI (NREG) /2.0) *K (¥~ 1) /DELI (NREG)) ¢

X (NAEG) *BY)

B(N)==((P(N) *(X(WREG) -DELI (NREG) /8.0) *DBLI (WREG)) /2.0¢
*

X (BREG) *HTI*TINPF)

C SET UP REBAINDER OF HATRIX
2GEs1
DISI=DRLI(1)

c
348

3aso

Do

360 I=2,5L

Ir (DABS (X (RGN) -DIST) .LB. 1.03-6) GO T0 35
A(I,I-1)=((DIST-DEL/2.0) *K (I-1)})/DEL
A(Z,I)=~((DIST*DEL/2.0) *K(I) /DEL¢ (DIST-DEL/2.0)*K (I~-1)/DEL)
A(X,I¢1)=((DIST+DRL/2.0) *K(I)) /DEL

B(I) == (P(I) *DIST*DEL)

60 70 355

REGION INTERFACE

Y01D

RGE=RGEe)

DEL=DRLI (RGE)

IP (PRBPLG(RGW) .BQ. 2) GO TO 350

A(I,1I-1)= (DIST-DELI (RGH-1) /2.0) *K (I~ 1) /DELI (RGN-1)

A(1,I)e~=((DIST+DEL/2.0)*K (I) /DEL+(DIST-DELI (RGN=~1)/2.0) *
K (I~ 1) /DBLI (RGE=1))

A(I,I¢1)= (DIST+DEL/2.0) *K(I) /DEL

B (1) e~ (P(I) /2.0) *(DIST® (DELI (RGN=1) ¢DEL) ¢0.25¢ (DEL®**2~

DELI (RGN~ 1) ®*2))

G0 TO 385

sZGION

E12=(1.0)/((1.0/81 (RGN) ) # (DIST/ (DIST+DEL) ) * ((1.0/E2 (RGN) ) ~1.0) )

P21= (DIST/(DIST+DEL) ) *E12

HR12 (RGN) sSIGHA® RI2# (T (I) #%24F (T¢ 1) ®92) ¢ (T (I) ¢T (I¢1))

HR21 (RGH) aSIGHA®E21# (T (I) 92T (I¢ 1) *+2) ¢ (T (1) +T(I¢1))

A(X,I~1)=K(I=-1)*(DIST-DELI (RGN~ 1)/2.0)/DELI (BGE-1)

A(T,1) == (((DIST=-DELTI (RGE~1) /2.0) *K (I-1) /DELI(RGE=-1)) +
DIST*HR12 (RGH))

A(I,1¢1) =DIST*HR 12 (RGH)

B ()=~ (P(I) *DELI (R3GN=1) * (DIST-DELI (RG¥=1) /8.0) ) /2.0

DIST=DIST+DEL

Ialel

RGUSRGH+ |
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829.
830.
a3t
832.
833,
438,
43S,
836.
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480.
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a8,
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8488,

4s0.
451,
as2.
453.
ass.,
4SS,
&456.
457,
[ 11N
459,
460.
861,
862.
863.
468,
846S.
866.
467,
868.
869.
870.
87t.
872,
473.
LY.L
875.
876.
477.
8478.
879.
480.
881,
482,
4813,
Q88 .
8485,
486.
487,
408.

200

DEL=DELI (BGH)

A(Z,I-1)=DIST*HR2! (RGN-1)
A(ZeI)==(((DIST*DEL/2.0) *K (I) /DEL) +DIST*HR21(RGN=1))
A(I,I+1)=K(X)*(DIST+DEL/2.0) /DEL

B (I) =~ (P (I) *DEL® (DIST+DEL/S8.0)) /2.0

355 DIST=DIST+DEL
360 CONTINUE
C

C SET GUP TRIDIAGOWAL NATRIX AWND TRANSFER P! TERNS PFROH B

C
369 BelLeN0¢ )
DO 375 J=1,0
PlI(J) =B (J)
I1=HAXO0 {1,J~00)
I2=nIN0 (N ,J+HL)
DO 370 I=It,I2
KimJ=Jel
ABD(K1,J) =A{I1,d)
370 CONTINUE
373 CONTINUER

C
C SOLYE RATRIX BQUATIONS BY ELIRINATION USING DGBPA AND DGBSL
C

CALL DGBPA (ABD,&,¥,HL,NU,IRPVT, INPO)

CALL DGBSL (ABD,&,N,HL,HU,IPYVE,B,0)

DO 380 I=1,0
c SAYE TEE PREVIOUS TENPERATURE DISTRIBOUTION 1IN ARBAY TL
TL(I) =T (1)
c TRANSFER SOLUTION PRON ARRAY B TO ARRAY T
T(I)=B(I)

380 CONTINUE

C

C CH3CK POR CONVERGENCE
C

C CALCOLATE THE REAT RESIDUAL AT EACH NODE AND THE AVERAGE RELATIVE
C TENPEBATURE DIPPERENCE BETWEEN THE PREVIOUS AND PRESENT ITERATIONS.
c

E(U=(A(,N*T(N))+(A(1,2)*T()-PI(]))

B(N)=(A(E,N=1) *T(U=1) )+ (A(N,N) *T(N))-P1 (W)

SUR=DABS (T (1) ~TL (1)) /72 (1) *DABS (T (N) ~TL (N) ) /T (¥)

DO 385 Is2,NL
E(I)=(A(X,1=1)9T (I=1) ) * (A (I, I) *T(X) ) ¢ {A(I,I+ 1) *T(I+1))-PI(T)
SUB=SUR+DABS (T (1) -TL(I)) /T (1)

385 CONTINGE
RTD=(1.0/DFLOAT (N) ) *SUN

C CHECK CONVESRGEECE
IP (RTD .GI. CTD) GO TO 800
GO TO 830

C
C PRINYT CONVERGENCE INPORNATION

C
800 IP (ICOONT .BQ. 1) WRITE (6,805)
805 PORBAT('( ITERATION HAX. HT BES. NODE TEHNP(DEG C)*,T52,
¢ ¢3Av¥G. REL. TENP. DIPP.')
HAX=DABS (B (1))
NODE=1
THP=T (1) ~273.16000
DO 810 I=2,N
IF (DABS (B(I)) .LT. HAX) GO T0 &10
HAX=DABS (E(I))
NODE=]




499.
490.
491,
492,
493,
a9,
895,
496.
.91.
498.
499,
500.
S01.
502.
503.

50S.
506.
507.
Sos.
509.
S10.
Sti.
S12.
54.
Sta.
518,
S16.
517.
S18.
519.
520.
521.
S22.
S23.
528,
525.
526.
S27.
S26.
S29.
530.
S31.
$3.
$33.
53a.
$3s.
536.
537.
538.
539.
Sa0.
581,
Se2.
Sa3.
544,
Sas.
546.
587.
Sa8.
549.
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TARP=T (1) -273.16000
810 CONTINUR
BRITE (6,815) ICOUNT,MAX,BODE,THP,RTD
815 PORMAT (T9,12,T15,1PD83.6,729,13,736, 1PD13.6,752, 1PD13.6)
IF (ICOUNT .GE. INAX) GO T0 820

ICOUNT=ICOUNT+ 1

C

C IF ROT CONVERGED, CALCULATE A WEW TEAFERATURE DISTRIBUTION
60 TO 285

C

820 WRITE (6,425)
825  PORBAT (* ITERATIONS ON TNERNAL PROPERTIES BXCEEDED®)
C
C FRINT OUTERAOST BOUNDARY BTC
C
430 ERITE (6,294)

WRITE (6,29S) Bum

WRITE (6,300) HR

WRITE (6,305) BC

BRITE (6,310) HT
[o
C PRINT TENPIRATURE DISTRIBUTION
[o

ERITE (6,435)
435  POREAT (°1 TEAPERATORE DISTRIBUTION®)
WRITE (6,880)
880 PORBAT ('OREGION NATERIAL # ARSH POINT (I) DIST. PRON ORIGIN
*(N) TEMP. (DEG C)°)
DIST=0.0
2GH=1
DO 4SS I=1,¥
TP=T (I) -273. 16000
BRITE(6,485) RGN, MAT (RGH),I,DIST,TP
"ns POREAT (T4,12,712,12,T26,13,T82,1PD13.7,763,1PD14.7,783,
. 12D 14.7)
IF (DABS(X(WREG)-DIST) .LE. 1.0R-6) GO TO 4SS
IP (DABS (X (RGW)-DIST) .LE. 1.0B-6) WRITE (6,850)
480 PORNAT (* ’)
IP (DABS(X(RGEN) -DIST) .LE. 1.0B-6) EGE=RGN+1
DIST=DIST+DELI (RGYX)
SS  CONTINGE

]

C

C END OF STEADY STATE PROBLENM
GO T0 800

(o

hadd dd R AL S A2 R A S P P2 It Rt L P T T T T
S NS ESL VLS SRS SR E SIS LE SO SRS SRS s 88

[
C
C
c
C
C TRANSIEFT SOLUTION
[
C INITIALIZE ARRAYS COSTAINING TENPERATURES AT VARIOUS ITBRATION LEVELS,
C TBEPERATURE AT WHICE TO CALCULATE PROPERTIES, AND IRRADIATION TEMPS.
[
475 DO SO0 I=|,»

TL (1) =T (I)

ILP (I) =T (1)

THEWP (I)=T(I)

TIR(I)=(T(X)+T(I+1)) /2.0
500 CORTINUE



550.
551,
$S2.
553.
554,
555,
556.
557.
5Se.
559.
560.
561,
562.
563.
564.
565.
566.
567.
568.
569.
570.
S11.
572.
573,
578,
575.
576.
577.
578.
579.
580.
S81.
S82.
583.
S584.
585.
586.
587.
588.
589.
590.
591,
592.
593.
594,
595.
596.
597.
598.
599.
600.
601.
602.
603.
608,
605.
606.
607.
608.
609.
610.
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DT=TTOT/(DPLOAT (FTINE))
IBD1IT=0

C
C BEGIN TINE STEP
C

DO 670 J=,NTINE
TIA=DTI*DFLOAT(J)
IEDIT=IEDIT 1
C SAVE THE COBVERGED TENPERATURE DISTRIBUTION PROM PREVIOUS TINE STEP
(o I¥ ARRAY TTL.
DO 502 Is=i,¥
IP (J .BQ. 1) TTL(I)=T(I)
IPF (J .BE. 1) TIL(I)=TIT(I)

502 CONTINUR
(o
C UPDATE HEAT GEBBERATION DISTRIBUTION AT TIAE STEP J
[«
501 DO 505 I=t,¥ -
GEN (I)=P (I)*ARALFY¥ (DPLOAT (J) *DT,DCY)
505 CONTINOE
(o

C INITIALIZE INNER (NTI) AND OGTER (NPX) ITERATION COUBTERS
(o
§PI=0
C THE OYTER ITBEATIOR LOOPS BACK TC LINE 509
509 ¥TI=0
C THE INNER ITERATION LOOPS BACK TO LINE 510
510 DEL=DBLI(N)
[

C UPDATE THERHAL PEOPERTIES
c
C CALCULATE BOUSDARY EEAT TRANSPER COEPPICIENT
ER=BEASSIGHA® (THEWR (W) ¢¢2+TINPee2) * (THEUR (¥) +TINP)
ET=RR¢BC
C OPDATE ETC POR VOID REGIONS
LeBa (1)
DO SN RGE=2,BREG
I=Lepa (RGH) -1
IP (PEDPLG(RGN) .NE. 2) GO TO S8
212 (1.0)/((1.0/21 (RGN) ) + (X (RGH~1) /X (RGN) ) * ((

. 1.0/82 (RGN)) = 1.0) )
I? (IGROE .EQ. 2) GO TO 512
c SLAB
221=E12
G0 TO S13
c CYLISDER
512 E21= (X (RGN~ 1) /X (BGH) ) *R12
513 AR12 (RGH) sSIGHASEI2* (THEGP (L) **2¢TUERP (L~ 1) *#2) ¢ (TNERP(L) ¢
. THEEP (L-1))
NE21 (RGN) =SIGHASE2 1% (THEWP (L) *#2¢THBUP (L~ 1) $$2) * (THEFP (L) ¢
. THEWR (L-1))

518 CONTINGE
C OPDATE CONDUCTIVITY, DENSITY, AND SPECIFIC HEAT
515 CALL CONDUC (TEEWP,K,DELI,NAT,HGRPH,IGEOR, NB,X,FL,EPS,F,DIA,
. IPRK,COBD, NREG,PEBFLG, ¥, TIR)
CALL PBOP (TNEWP,R,RPN,DELI,IPRR,HAT,N,X,NREG,IGEON)
CALL PROP (TNEWP,CP,CPFN,DELI,IPRC,HAT,N,I,NREG,IGEOH)

C

C SOLVE BQUATIONS FOR TENPERATURE DISTRIBUTION
C

C ORIGID
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611, c

612, c COBPPICIENTS

613. c

618, $19 IF (IGECA .EQ. 2) GO 70 520

61S. c FECTANGULAR GEOARTRY

616. S1s1.0

617. S2% (DEL¢2) /2.0

618, G0 T0 $30

619. c CYLINDRICAL GEONETRY

620. $20 S1=22.0

621, S2= (DEL*%2) /2.0

622. c BQUATIONS

623. $30 D(1) =THeS 1eK (1) +R (1) *CP (1) *S2/DT

624, M(1)=S20R (1) &CP (1) STTL(1) /DT+GEN (1) $S2¢ (1.0~-TH) * (SI®*E (1)*
625. L] (TTL (2) ~TTL (1)) )

62:. TT(1)=(1.0-8)*TL(1) +0 (1.0/D (1)) * (X (1) +TH* (S I*K (1) *TL (2)))
627. [

628, C IFTERBAL NODES

629. Cc

630, c

631, 2GE=1

632. DIST=DELI (1)

633. DO 360 1I=2,NL

63, IF (DABS (X (RGNM)-DIST) .LE. 1.0B-6) GO TO S0

63s. C  RBGION INTEREAL WODB

636. c

637, c COEPFICIENTS

636. IP (IGEOH .BQ. 2) 60 TO 535"

639. c RECTABGULAR GEONETRY

680, AN(I)=1.0

TN 22(I)=1.0

682, A3=DILee?

3. G0 TC 550

san, c CYILINDRICAL GECAETRY

s, $3% AV (X)=(2.0DIST-DEL) /DEL

6a6. A2(I)=(2.0eDIST+DEL) /DEL

687, ‘A3e2,00DISTeDRL

6as. G0 TO 350

6a9. C SATERIAL INTBRFACE

650. S80 RGE=RGRe |

631, DEL=DELI (EG¥)

652, IF (PEBBPLG(RGW) .XQ. 2) GO TO 552

653. IF (IGR2ON .EQ. 2) GO TO 545

658, c RECTANGULAN GEONETRY

€3S, A (I)=DEL/(DBLI (RGE-1) +DEL)

656. A2(I)=DELI(RGR-1) /(DELI (RGN-1) +DEL)

637. A3=DELI (RGH-1) ®DEL/2.0

636, G0 TC 350

€59. < CYLIINDRICAL GEONPTRY

660. a8 A1(I)=(2.0DIST-DELI (RGE~1)) /DELI (RGH~1)

661, A2(I)=(2.0eDISTDEL) /DEL

662. A3= (DELI (RGN~-1) +DEL) * (DIST+ (DRL-DELI (RGE-1)) /8.0)
663. c EQUATIONS

66a. 530 D (I) »TH® (A1 (I)*K(I-1) +A2(I) *K(I)) +A3*R (I) *CP (I) /DT
665, H(I)=A3%R (I) *CP (I) *TTL (I) /DT+GEN (I)*Ad¢ (1.0-TH) ¢ (A1 (I)*
666. . K(I-1)®(TTL (I-1)=PTL(I) ) A2 (I) *K(I) ® (TTL (I+1) -TTL(D)))
667. 2T (I) = (1.0-0) ®TL (X) +¥8(1.0/D(I) ) ® (H(I) +TH® (A1 (I) *K (I-1)*
668, . TT (X-1) ¢A2(I) *K(I) *TL(I+1)))

669. DIST=DISTDAL

670. G0 T0 360

671. C vOID IEGION




672.
673,
678,
675.
676.
677.
678.
679.
680.
681,
682,
683.
688,
685.
686.
687,
688.
689.
690.
691,
692.
693.
654,
695.
696.
697.
696.
699.
700.
701,
702.
703.
T08.
705.
706.
707.
708.
709.
710.
1.
112,
713,
AL NS
715,
716.
7.
718,
719.
720.
721%.
722,
723.
728,
725.
726.
727.
728.
729.
730.
731,
732,
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c LEPT HAND POINT
c SLAD
582 IF (IGEON .EQ. 2) GO TO 553
AN(I)=1.0
A2(I) =DELI (RGN-1)
A3=DELI(RGN-1) *s2
G0 TO SS&
c CYLIINDER )
553 A1 (I) = (DIST-DELI (RGN~ 1) /2.0) /DELI (RGN~ 1)
A2 (1) =DIST
A3eDELI(RGB=1) ® (DIST-DELI (RGE=1) /6.0)
c EQUATIONS
558 D (I) »2.0%TA® (A1 (I)*K (I-1) ¢A2(T) *HR 12 (RGE) ) +A3sR (I) *CP (I) /DT
H(I) *A3%R (I) $CP (I) *TTL(I) /DT+GEN (I)*A3¢2.0% (1.0~TH)*
. (A1 (I)*K (I~1)*(TTL (I~1)~TTL (I}) ¢A 2 (I) *HR 2 (AGH) »
. (TTL (T+ 1) -TTL(T)))
T (I) = (1.0-¥) *TL(I) +0* (1.0/D (1) ) ® (N (I) +2.0%TH*
. (A1 (1)K (Z=1)*TT (I-1)¢A2 (1) ®HR12 (RGN) *TL (I¢ 1) })
DIST=DIST+DEL
c RIGHT NAND BOINT
I=Iel
RGNSEGN+ 1
DEL=DELI (RGN)
IFr (IGEON .BQ. 2) GO TO S35
c SLAB
AV (I)=DEL
A2(I)=1.0
A3=DEL®e2
60 TC 556
c CYLINDER
11 ] A1 (I)=DIST
A42(I)=(DIST+DEL/2.0)/DEL
A3=DRL® (DIST+DEL/A.0)
c EQOATIONS
556 D (I) =2.0%TE® (22 (I)*K (I) *A1(I) *HR2 1 (RGE=1)) +AI*R (1) *CP(I) /DT
H(I) =A3*R (I) *CP(I) *TTL(I) /DT+GEN (I)*A3+2.0% (1.0~TH) »

* (A2 (I) *K (X) * (TTL (I+1) =TTL (I) ) *A 1 (I) *HR21(RCN-1) ¢
. (T2L (I-1) -TIL(I)))
TT(I)=(1.0-8) *TL(I) *u*(1.0/D (X)) * (H(I) *+2.0%TU*
. (A2 (I) *K (1) *TL (I¢1) *A 1 (1) *8R21 (RGN~ 1) *TT (I-1)))
DISTsDISTDEL
560 CONTINUE
C
C BOJHNDARY

c
C CORPPICIENTS
Ir (I6X0A .2Q. 2) 60 TO 570
€ SECTABGULAR GROANTRY
B1=1.0
32=DELI (NREG)
B3= (DELI(NREG) **2)
Go TO 580
€ CILINDRICAL GRONBTRY
570 Bi= (X (NREG) ~DELI (NREG) /2.0) /DELI (NREG)
82=X (NREG)
P3=DELI (NREG) *(X (NREG) ~DELI(NREG) /8. 0)
C  EBQUATIONS
580 D(N)=2.00TH® (B1*K (N=-1) +B29HT) +BI*R (N) *CP (W) /DT
B (N)=B3R (N) *CP (N) STTL (N) /DT +GEN (N) *B3¢2.0% (1.0-TH) *
* (B1%K (N=1) * (TTL (N=1) =TTL (N) ) ¢ B2*UT* (TINP-TTL(¥)))
TT(F) =(1.0-7)*TL (N) +9% (1.0/D (N) ) * (H (%) +TH® (2. 0¢BI1*K (N=1)




733,
138,
13S.
136.
737,
738.
739.
780.
781,
702.
763,
748,
S,
746,
7.
748,
789,
750.
151,
752.
753.
754,
755.
756.
57.
758.
759.
760.
768,
762,
763.
768,
765.
766.
767.
768.
769.
770,
m.
172,
173.
T,
775.
776.
177.
778.
779.
780.
781,
782,
783.
788,
788.
786.
787.
788,
789.
790.
791,
792.
793.
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* STT(N-1) +B2%2.0*HT*TINP))
UTIsNTI+!
C
C CHECK POR CONVERGENCE OF ITERATIONS AT THIS PROPERTY STEP

c
C CALCULATE HEAT RESIDUAL AT EACH NODE
E(1)=H(1) #THSS1¢K (1) TT(2) =D (1) *TT (1)
:é:):l(I)OTH‘(Z.O‘BI‘I(I-Il‘TT(l-l)082‘2.0‘!1‘!1!!)-0(l)'TT(l)
DIST=DELI (1)
DEL=DELI (1)
DO $90 I=2,NL
IP (DABS (X (RBGN) ~DIST) .GT. 1.0D-6) GO TO 585
RGU=RGRe |
DEL=DELI (RGHN)
IP (PESYLG (RGN) .NE. 2) GO TO 585
B(X)=H (I)+2.0¢THS (A1) (I) oK (I-1) ¢TT (I-1) A2 (I) *HR 12 (RGH) *
. TT (I+1) ) =D (I) *TT (1)
DIST=DIST+DEL
IsIe
RGEN=EGHNe )
DELsDELI (3G¥)
B(I)=H(I)+2.0TH® (A2 (I)*K(I)*TT(I+1)+al (I)*qR21(RGH=1)
. *TT (I-1) ) ~D (1) *TT(I)
DIST=DIST+DEL
G0 TO %90
$8S E(I) =8 (X) +TA® (31 (I) *K (I-1) *TT (I-1) +A2 (I) *K (I) *TT (I+1))
. =D (I) *TT(I)
DIST=DISTDEL
$90 CONTINOE
DO 600 I=1, ¥
CONT (I) =DABS (B (I) /B (I))
600 CONTINGE
c
C PIND SAXINUN HEAT RESIDUAL AND PRINT CONVERGENCE INPO
c
Ir (((¥PI .NE. 0) .OR. (NTI .BE. 1)) .OR. (IEDIT .NE. NEDIT))

L G0 TO 592
WRITE (6,591)
591 POREAT (*ITIHE(SEC)*,TI5,*INNER ITER COUNT',T3S,
L *MAX. NORX. RESID.',T60,°NODE®’,T70,°'TEAP (DEG C)',T8S,
* *PROP. ITER COUNT',TV110,*NORN OP NODE TERP DIPFP')
592 HAX=CONI (1)
HODEB= 1

THP=TT (1) -273. 1600
DO 593 Is2, N
IF (CONT(I) .LT. HAX) GO TO 593
HAX=CONT (I)
NODE=T
THP=TT (I) ~273.1600
593 CONTINUE
IF (IEDIT .NE. NEDIT) GO TO 595
WRITE (6,594) TIN,NTI,NAX,NODE,THP

594 PORBAY (* *,PF12.3,720,18,735,1PD13.6,160,18,170,12PD13,6)
595 IF (MAX .LE. CC1) GO TC €10
602 IP (NTI .GE. ITHNAX) GO TO 608

DO 605 I=1,¥
TL (I) =TT (I)
60S CONTINUE
C
C IF NCT CONYERGED, ITERATE ON THIS PROPERTY STEP AGAIN




206

794, c

795. G0 TO 510

796. c

797. C TINING ITERATICNS RXCEEDED

798. 608 NRITE (6,609) NPI,NTI

799. 609 PORMAT (* TINING ITERATIONS EICEEDED ON PROP ITERATION ¢,I3,% -
800. * 1,13, ¢ TINING ITERATIONS PERFORNED')

8o1t. c

802. C CHECK COSVERGENCE CN PROPERTIES

803. c

808, 610 NPI=NPIe|

805. SUN=DABS (TT (1)-TLP (1)) /TT (V)

206. DO 620 I=2,¥

807. SUN=SUNSDABS (TT (I)-TLE(I)) /2T (1)

808. 620 CONTINDE

809. CONP= (1.0 /DPLOAT (N) ) *SUN

810. Ir (IEDIT .NE. NEDIT) GO TO 622

e, WRITE (6,621) TIN,NPI,CONP

812. 621 PORMAT (' *,P12.3,788,I4,T110,12D12.6)

813. 622 I? (CONP .LB. CC2) GO TO 640

sla. Ir (NPI .GE. IPNAX) GO TO 635

815, c

816. C CALCULATE TEMPERATOURES AT WHICH TO PIND NEW TNERMAL PROPERTIES
817, c

818, DO 625 I=1, N

819. I? (J .EQ.1) THEWP (I)=(1.0-TH) *T(I)+TE*TT(I)
820. I? (J .NE. 1) TMEWP(I)=(1.0-TE) *TTL(I) +TH*TT (I)
821. 623 TLP (I) 1T (I)

822. IF (J .EQ. 1) TL(I)=T(I)

823. I7 (J .GT. 1) TL(I)=TTL(I)

92s. 625 CONTINUE

825. c

826. C 60 BACK 70 TINX ITERATIONS ON TINE STEP J

827. C

828. GO TO 509

829. C PROPERTY ITERATIONS EXCEEDED

830. 638 URITE (6,638) J,NPI

831, 638 PORNAT (' PROPERTY ITERATIONS BXCEEDED ON TINE STEP *,I13,
832. . ¢ - 0,13, ITERATIONS?)

833, c

834. C CONVERGED ON PROPERTIES - INCRENEST TINE STEP

a3s. c

a3e. 680 DO 655 I=1,N

837. TL (I) =TT (I)

83a. TLR (I) =TL(I)

839. THEEP (1) sTL (I)

840. 655 CONTINDE

881, c

842, C CHECK FOR EDITS

.k N [

asa. I? (J .EQ. BTIME) GO TO 657

845, I? (IEDIT .NE. NEDIT) GO TO 670

an6. 657 WRITE (6,503) <TIY

a47, 503 FORBAT (*1INTERNAL HEAT GENERATION DISTRIBUTION - TINE = %,P12.3
as8. s .' SECONDS')

as9, SRITE (6,504)

850. S04 PORMAT (' MESH POINT®,T15,'HEAT GEN. (W/N®%3)°?)
ast. WRITE (6,506) (I,GEN(I),I=1,N)

as2. $06 FORMAT (T6,13,T1S,18D17.10)

as3. C PRINT PROPERTY DISTRIBUTIONS, EIC.

ass. WRITE (6,29%)




8s5Ss.
856.
8s57.
858,
859.
860.
861.
862.
8613.
868,
86S.
866.
867.
868.
869.
870.
8.
872.
873.
.
87s.
876.
&77.
87e8.
879.
880.
881,
“2.
8813,
888 .
88s.

ee7.
888.
89.
890.
891,
092.
893,
888,
89S.
096,
897.
898.

900.
o1,
902.
903.
904,
905.
906.
907.
908.
909.
910,
111,
912.
913.
914,
915,

516
517

518
660
662
C
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ERITR (6,295) Eam
URITE (6,300) &R
BRITE (6,305) ABC
URITE (6,310) ar
ERITR (6,516) TIm
FORSAT (*OPROPERTY DISTRIBUTIONS ~ TINR = °*,F12.3,'SECONDS')
NRITE (6,517)
PORBEAT (*0BBSHE POINT',T1S,°'CONDUCTIVITY (W/a K)*,T80,
‘DENSITY (KG/H®*3) ¢,T60,*SP. HRAT (J/KG K)*)
SRITR (6,518) (I,K(I),R(I),CP(I),I=1,N)
PORSAT (T6,I3,T1S,1PD12.5,740,1PD12.5,T60, 1#D12.5)
BRITR (6,660) TIN
PORSAT (°! TENPERATURE DISTRIBUTION AT TINE = °,P12.3,° SECONDS')
BRITE (6,662) mPI
FORBAT (* BUNBER OF PROPERTY ITERATIONS = *,I3)

C PRIVT CONVERGED TEAFERATURE DISTRIBUTION

(o

670
800

[+
Cesses

RIS
1 1]

nanNONAan

20
25
]

C CaEC
C CHEC

URITR (6,8480)

pIST=0.0

RGE=

DO 665 I=1,8
IP=2T(1)-273.16000
SRITR(6,845) RGN, HAT (RGH),I,DIST,TP
I? (DABS(X(¥REG)-DIST) .LE. 1.0D-6) GO TO 665
Ir (DABS(X(RGF)-DIST) .LE. 1.0D-6) ERITE (6,850)
I¥ (DABS (X (RGN) -DIST) .LE. 1.0D~-6) RGUsRGE+ |
DIST=DIST+DELI (RGN)

CoutINue

IBDIT=0

CONTIRUR

S0P

b 1

08009009800 ¢ ¢ 800055850500 ¢¢¢00¢00E¢SS S 000 S 0S¢0 $20S ¢ COCE S0 00

SUBROUTINE INTRPG (Y,L.Z,9,DBLI,X,WREG,PEBPLG,IGEON)

SUBROUTINE INTERPOLATES A TABULAN PUNCTION POR AEAT GEBNERATION

I BACE REGION TO FIBD VALURS AT EACRH EESH POINT I. THE AVERAGE AEAT

RATIOR IS CALCULATED IN BACH INTERVAL; IT IS VOLUNE AVERAGED AT

BATSRIAL REGION IBNTERPACES

REAL®S Y (20,20,2),%(200),X(20),DELI(20) ,DIS?,GR,GL,DISTI
INTRGER RGN,PRBFLG (20),¥, NREG,IFLAG,IPLAG2,L (20),1G20H
2GR=1
DIST=0.0
IPLAG2=~1
DO 100 I=1,N
IFr (I .2Q. 1) IPLAGs!
J2=L (RGD)
D0 20 J=1,J2
IF (((T (RGD,J,1)-DIST) .LE. 1.0D~6) .AND. ((DIST-Y(RGN,J*1,1)
) <LB. 1.0D~6)) GO TO 25
CONTINUE
()= (((T(RGD,I+1,2)~-Y (RGD,J,2))* (DIST-Y (RGD,J, 1))/
(Y (RGU,J¢1,1) -T.(RGD,J, 1)) ) +Y (RGD,J, 2)
K POR ADJUSTHERT TO ORIGIN OR RIGHT BOUNDARY OF YOID REGION
I? (1 .BQ. IFLAG#1) I (I-1)=0.75¢2 (I~1)+0.2593 (1)
K FOR ADJOSTHENT TO INTERPACE




916.
917.
918.
919.
920.
921.
922.
923.
928,
925.
926.
9217.
928.
929.
930.
931.
932.
9133.
938,
938.
936.
9317.
936.
939.
980.
9.
982.
9a3.
9,
9S.
9%6.
987,
988,
989,
950.
951,
952.
953.
954,
95S.
956.
987.
958.
9%9.
960.
961.
962.
963.
968,
965 .
966.
967.
968.
969.
970.
971.
972.
973.
978.
978.
976.
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IP (I .BE. IFLAG2+1) GO TO 30
GR=0.75932 (I-1) +0.25%Z (1)
1P (IGEON .EQ. 1) Z(I-1)=(DELI(RGN=-1)9GL+DELI (RGH)*GR)/
* (DELI (RGH=1) +DELI (RGH))
IF (IGRCH .EQ. 2) Z(I-1)=(DELI(BGN-1)*(N.0¢DISTI-DELI (RGH-1))
*GLeDELI (RGN) ® (8. 0¢DISTI¢DELI (RGH) ) *G1) /

. ((DELI(RGY) +DELI (RGN~-1)) *(8.09DISTI*DELY (RGN) ~DELI (RGN=1)))
C CHRCK PCR BOUNDARY
30 IP (DABS (DIST-X (NREG)) .GT. 1.0D-6) GO TO IS
Z(¥) =0.7S9Z(¥) +0. 2507 (N~1)
G0 T0 100
C CHECK POR INTRAPACR
3s I? (DABS (DIST-X (RGN)) .GT. 1.0D-6) GO TO 95

¢ RRGION INTRRPACE

IGE=RGE+

C CHECK WBBTHER VOID OR NOT

IP (PBDFLG(RGH) .NR. 2) GO TO &0
Z(1)=0.7392Z(I)+0.252 (I~1)
IPLAG=]I+1
DIST=DIST+DRLI(RGW)
ICE=igne 1
G0 T0 100
(o NORNAL INTERIFACE
40 GL=0.7592 (X) +0.25%2 (I-1)
IPLAG2=]
DISTI=DIST
IsI-1
G0 TO 100
95 DIST=DIST*DRLI (RGH)
100 COoNTINGE
RETORN
2D

S0P 0 00000000080 0200000000860 02 0000000009000 ¢ 0 0000000 OO 0

SUB 2OUTINE INTER? (Y,L,2,9,DELI,X,NREG)

no ann

C TBIS SUDROUTINR INTRRPOLATRS A TABULAR FUNCTION FOR INITIAL
C TENPERATOURE OR PLUERNCE TO PIND VALUES AT EACN NESH POINT I.
C
8EAL®*8 Y (20,20,2),2(200),X(20),DRLI(20) ,DIST,GR,6GL
INTEGER RGH,N, NREG,IFLAG2,L (20)

RGN
DIST=0.0
IPLAG2=0
DO 100 I=1,N
J2eL (RGN)
DO 20 J=1,32
IP (((Y(RGN,J,1)~DIST) .LE. 1.0D~-6) .AND. (DIST .LE.
. Y (RGN,J+1,1))) GO 1O 25
20 CONTINGE
2s T(I)=(((Y(RGW,3¢1,2)-Y (RGN,J,2) ) *(DIST~Y (RGN,J, 1))) /
. (Y (RGW,J¢1, 1) =Y (RGX,J, 1))) ¢Y (RGN, J, 2)

C CBECK FOR ADJUSTHENT TO INTBEFACE
IF (I .NR. IPLAG2) GO TO 30
GR=Z (I)
2 (I)=(DRLI(RGN-1)*GL*DELI (RGN)*GR) /(DELI (RCN~1) +DBLI (RGW))
C CHECK PCR BOUNDARY
30 IP (DABS (DIST-X (NREG)) .LE. 1.0D-6) GO T0 100
C CHECK POR INTERPACE




1008,
100%.
1040,
0%
[ AN
383,
1088,
05,
ILETW
LI B
R
3219,
1020,
1628,
923,
16EL.
VAR,
1635,
1026,
027,
1028,
1029.
3G,
102,
1032.
1033,
U3,
1035,
U316,
V537,

ho
2
)

I¥ (DABS (DISY-X (UGH)} .5T. 1.0D=-8) GO T3 35
< BEGICR XWIREFECE

hixs3 L3 ieF R
GL=F (1}
IPLAG2wYE
Ial~7
€0 10 100
a5 DIST=DIST+DELY (20N
160 CO¥TINGE
25T ORY
HEp
C PSRBT EREEE RS TR UMV BRI VAT ACLEINIRGL LSRN SR SARE G DR S ARSI AT VIS S SR A
SUBROCIYUR PROP (T, P,RPN,DELI,IFR,BAT,N,X,NE8G, IGEON)
C
C T8L3 JCHRCUTINE IFTERPOLATRS 3 TABULAR PUNCTIION OF DENSITY OR SPECIPIC
C BERY ¢5. TENPRRATORE POB EACH REGIOM 0 OBTAIN VALUES AT ZACH HESA
£ BOIRY. YALORS OF AATRAYAL INTEEYACES ARE VOLUMEZ AVERAGED.

RE3Le® T{A0Q), P(I0O0) , PrPE{20,%,205 ,OBLI(20) , X (20} ,DIST.PLASY
IwTBEUBY YFP2({20} ,BRT(20) . BGH, N, JTOP, PLAG, IGBOY
Bo¥e1
PLAG=DQ
DIST=0.0
£3% Be 155 Isi B
JTOF=IPR (8LT (RGN} ) -1
Bo 180 Jei,J7T0R
1y {{2(X) .GEB. PFrU(HAT(RGW),1,J)) .AND. (T(XI) .LE. PFH(MAT({

° BGE), §,J¢1)}} GO TG 145

142 CoNTIROR

185 PLj={ ( (PPN (AT (RGN) ,2,J+ 1) ~PEW(NAT (RGW) ,2,J) ) * (T (J) =
® PPN (BAT (BGE) ,1,3) } )/ (PFE (NAT (RGN), 1,0+ 1) ~PPN (HAT (KGH) ,
& 1,3))) ¢ PP (RAT.{8CH) , 2,J)

€ CRECK POR REGIOE IBRTRRFACE -~ PROPERTIBS HUST BE VOLGME AVBRAGED
IP (PLAG .MB. 1) GO TO 189
I¥ (IGBOM .BQ. 1) P(lj=(DBLI(KGW-~!} *PLAST+DELI (RGH) *P(1))/

® (DBLI(BGN~1) >DRLI (RGH))
I¥ (IGRCA .RBQ. 2) P(I)=(DELI(RGA~1)#* (3.09DIST-DELI(RGH~1})*
hd PLASTODRLY (#GH) & (8. 0*DIST «DELI (RGN) ) *P (1) )/
® ({DBLY (BGE-1) ¢DBLY (RGW) } * (X, 08DIST+DELI (EGH) -DELI (RGE~1))}
FLALuQ
89 IP {OABS(DISY-L (¥REG}) .LE. '.0D-6) GOC 2O 15%

I7 (DABS{DIST-X{RGE)) .5T. 1.0D-6) GO TO 153
¥ {BAT(BGNe1} .LT. 0) GO T0O IS¢

PLAST=F{I}
UGH=RGHE §
¥Ligw
imkei
&0 TC 15Y%
c YGID REGION
150 RIST=UISTeDRELY (AGE+ 1)
SGNuRGE+Q
G¢ TC 155
3 DITT=DISTeDELY (KGH)
1338 COMTIRGE
BETORE
3 /]
¢
C GERFERL 6PIBHHEBLOSEVRABIAIONECOOSRIVERSVTE XN NEE RSN ASNS NSO HT G RN
c
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1038. SUBROUTINE COWDUC (T,K,DELI,MAT,MGRPH,IGEOM, N®,X,FL,EPS,P?,D,IPEK,
1039. . COND,NREG, PEBPLG,N,TIR)

1040. c

t0a1. C YHIS SUBROUTINE IS USED TO CALCULATE THE THERNAL CONDUCTIVITY OF
1062, C EACH MESH INTERVAL (BETWEEN EACH POINT). IP THE MATERIAL IN A REGION
1043. C IS GRAPHITE, THIS BOUTINE CALLS THE® APPROPRIATE SUBROUTINE TO

1044, C CALCULATE GRAPHITE CONDOUCTIVITY. IF A REGION IS A PEBBLE BED REGION,
1045. C THE ROUTIMNE TO CALCULATE BPFECTIVE THERSAL CCNDUCTIVITY IS CALLED.
1046, C IF THE MATERIAL IS M¥OT GRAPBITE, A TABULAR PUNCTION OF CONDOCTIVITY
1047. C ¥S TEMPERATURE IS INTERPOLATED TO FIND THE CONDUCTIVITY OF EACH
1048. C INTERVAL IN THAT REGION.

1049. o

1050. REAL®8 T (200),K(200),DBLI(20),X(20),PL (200),RBPS,?,D,COND (20,2,20)
1051. . ,DIS?,SIGHA,TAVG,PHI,TIR (200)

1052. INTEGEE MAT (20) ,AGEPH, IGZON, NN (20) ,IPRK (20) ,WNREG,RGN,PEBPLG (20)
1053, * «JICP, N

1054, S1GHA=S5.669D-8

1055. BGH=1

1056. DIST=DELI(}Y)

1057. 135 DO 155 I=2,0

1058. C CHECK FCR GRAPHITE

10%9. IP (MAT (RGN) .¥NE. MGRPH) GO TO 139

1060. I2=I+NN(RGR) -2

1061. DO 138 L=I,12

1062. TAVG= (T(L~1) +T (L)) /2.0

1063. PHI=(PL(L-1)+PL (L)) /2.0

1064. CALL GRPHTE (TAVG,TIE(L-1),PRI, K(L-1))

1065. E(L~1) =100.00%K (L~1)

1066. 138 CONTINUE

1067. DIST=X (RGN)

1068. C CHECK FOR PEBBLE BED

1069. IP (PBBFLG (RGN) .EQ. 1) CALL PEBBLE(K,T,SIGMA,EES,F,D,I,
1070. . I+88 (RGH) ~2)

1071, IF (MAT (RGN) .BQ. MGRPH) IsI+¥M (RGN)-2

1072. IF (HAT (RGN) .EQ. MGRPB) GO TO 150

1073. 139 Ir (2EBPLG(BRGN) .EQ. 2) K(I-1)=3.00

1074. IF (PEBFLG(BGN) .EQ. 2) GO TO 150

107S. TAVGs (T (1~1) +T(1)) /2.0

1076. JTOP=IPRK (MAT (RGN)) - i

1077. DO 140 J=1,JTOP

1078, IF ((TAVG .GE. COND (NAT (BGN),1,J)) .AND. (TAVG .LE.
1079. . COND (MAT (RGN) ,1,J+1))) GO TO W5

1080. 140 CONTINGE

1081. 1as E(I-1)= (((COND (MAT (RGN), 2,J+ 1) ~COND (MAT (RG¥) ,2,J) ) * (TAVG~COND
1082. * (MAT (RGY) , 1,J)) )/ (COND (MAT (RGN) , 1,J41) ~CCND (MAT (RGN) ,1,J)) )+
1083. *CCHD (MAT (RGY¥), 2,J)

1084. 150 IP (DABS(DIST-X (NREG)) .LE. 1.0D-6) GO TO 155

108S5. IF (DABS(DIST-X (EGH)) .LE. 1.0D-6) LGM=RGN+¢|

1086, DIST=DIST+DELI (RGN)

1087. 155 CONTINDE

1088. RETURN

1089. END

1090. [«

1091. C“tl.l‘tltl‘lt‘t‘.lt.‘lt.l‘ll“t.t“‘lttt.tttll“‘tlttlltllttll‘tl
1092. Cc

1093. SUBROUTIRE® GRPRTE (T,TIR,PSI,CONIR) GRACOD
1094. c

1095. C THIS SUBROUTIXE CALCULATED THE THERMAL CONDUCTIVITY OF GRAPHITE AS
1096. C A PUNCTION OP PLOENCE, TEMPERATURE, AND IREADIATION TEMPERATURE.
1097.

C
1098, BREAL*8 T,TIR,PSI,CONIR,DELT,DELBAR,ATABAR,COUN,ALPHA,RATIO,




1099.
1100.
1101,
1102,
1103.
1104,
1105.
1106.
1107,
1108.
1109.
1110,
1.
1112,
113.
1118,
1115,
1116,
117,
1118,
119,
1120.
1121,
122,
1123,
1124,
1125,
1126.
1127,
1128,
1129,
1130.
i3t
1132,
1133,
1134,
11358.
1136.
1137,
1138,
1139,
1140.
1iai,
1142,
1143,
1188,
1148,
11a6.
1147,
1158,
1149,
1150.
1151,
1152,
1153,
1154,
1155,
115€6.
1157.
1158,
1159,
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* CONIR,PTIR,BETA
COHHO¥ / TCDT / TDAT{13) ,DBLYTA(13),ATA(13),CH(13)
COBNON /TKIN /CON(13)

DG 100 I=2,12
I¥ (T.LT.TDAT(I}) GO TO 110
100 CONTINUE
I=13
110 coMTiNue
JI=I-|
DELT= (T-TDAT (I))/{TDAT (J) ~TDAT(I))
DELBAR= {(DRLT#® (DELTA (J) ~DELTA (I) ) +DELTA (I}) /DELTA (2)
ATLBAR= (DELT* (ATA{J} ~ATA(I})) #ATA(I)) /ATA (2)
COUN= {DELT * {CO¥ (J) ~COM (I} ) +CON (I} ) /CON (2)
IF (T.EQ.TIR) GO TO 140
po 120 I=2,12
IF (TIR.LT.TDAT(I)) 60O TO 130
120 CONTINOE
1213
130 coaTIEUE
JnI=1
DELT=(TIR -TDAT(I})/(TDAT(J) ~TDAT (T})
180 Cs= (DBLT* (CH(J) ~CE(I)) +CH{I))
ALPHA=1.055<.00057 ¢TIR
I? (ALPHA.LT.0) ALPRA=0
He (1.-8.45E~8¢T%(420.+1,65¢T) ) *ALPHA
BETA=1. 116~-.000269+TIR
I? (BETA.LT.0) BETA=0
Y=BETA® (PSI*1.2~21}
IF (Y.GT.100) Y=100.
IP (Y.G6T..000) Ysi.~EXP(-¥)
PTIR=8.8%A0Y
'BATIO™ 1./ (1.¢FTIE*COUN* (CSDELBAR+(1.~C) *ATABAR))
COMIR=RATIO®COUN®CON(2)
IF (CONIR.LT. (0.1%CON(2))) CONIR=(0.1%CON(2))
BETORN
2HD
c
CESERBEERARRLSE ISR EE RV ERR R RIS IR EE SRS RIERE LR SIE S SE S LB S EB SR SN SE G S
c
SOBROUTINE PEBBLE (L®,T,SIGHA,EZPS,P?,D,11,I2)
c
C THEIS SUBROUTINE CALCULATES THE EFFECTIVE THERSAL CONDUCTIVITY IN A
C PEBBLE BED USING THE MODIFIED ZEHNEE-SCHLOENDER MODEL,
c
2EAL*8 LF(200),7T(200) ,B,SIGHA,EPS,F,D,LAN,TAVG
Be1.25% (((1=P) /P) #%(10.0/9.0))
DG 100 I=IV,I2
TAVG= (T (I-1) +T(I)) /2.0
LAB=LE (I-1) /(4. 0®SIGHASTAVGS*38D)
LE (I-1) = (4. 08SIGNASTAVG®®3%D) & ( (1. 0~DSQRT (1.0~-F) ) *P+ (DSQRT (

. 1.0-P)*(B*1.0) /((2.0/EPS~1.0) *B) )  (1.0/(1.0+1.0/
. ((2.0/EPS~1.0) *LAN) ) ))
100 CONTINCE
RETURN
END

C
C SS0LSISEESIIISLEISISIFSRES S ASRBIERINSSINRSISIII SRS ERIIIRS SRR SN
c
PONCTION AHALFN (X,CO)
C

GRACO0030
GRACO0040
GRACO00S50
GRAC0060
GRACO0070
GRAC0080
GRAC0090
GRAC0100
GRACO110
GRACO120
GEACO0130
GRACO 140
GRACO 150
GRAC0160
GRACO 170
GRAC0180
GRACO0190
GRAC0200
GEAC0210
GHAC0220
GRACJ230
GRAC0240
GHRACO0250
GRAC0260
GRAC0270
GRAC0280
GRAC0290
GRACO310
GRACO0320
GRAC0330
GRACO340
GRAC0350
GRAC0360
GRAC0380
GRAC0520
GRACO0530
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