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ABSTRACT

A one-dimensional computational model was developed to evaluate

the heat removal capabilities of both prismatic-core and pebble-bed

modular HTGRs during depressurized heatup transients. A correlation

was incorporated to calculate the temperature- and neutron-fluence-

dependent thermal conductivity of graphite. The modified Zehner-

Schliinder model was used to determine the effective thermal conductivity

of a pebble bed, accounting for both conduction and radiation.

Studies were performed for prismatic-core and pebble-bed modular

HTGRs, and the results were compared to analyses performed by GA and

GE, respectively. For the particular modular reactor designs studied,

the prismatic HTGR peak temperature was 2152.2 °C at 38 hours following

the transient initiation, and the pebble-bed peak temperature was

1647.8 °C at 26 hours. These results compared favorably with those

of GA and GE, with only slight differences caused by neglecting axial

heat transfer in a one-dimensional radial model.

This study found that the magnitude of the initial power density

had a greater effect on the temperature excursion than did the initial

temperature. Neglecting the neutron fluence in the prismatic HTGR

caused a 10% decrease in the peak temperature, and modeling gas gaps

between prismatic fuel assemblies produced a 5% increase in the peak

temperature. Replacing the prismatic core with a pebble bed resulted

in a 1% increase in peak temperature.
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1. INTRODUCTION

Development of High Temperature Gas-Cooled Reactor (HTGR)

Technology has been underway in the United States and other countries

since the 1950's, primarily for use in electric power generation.

A major goal of this development was to achieve high coolant

temperatures, which would lead to high plant efficiencies and possibly

a closed-cycle using gas turbines. This goal led to the choice in the

United States of helium for the coolant, and graphite, with its high

heat capacity and good neutron slowing-down characteristics, for the

moderator and structural material. More recently, a potential has

been identified for the use of HTGRs in the industrial heat market.

In the past, the emphasis has been on the development of large, mono

lithic nuclear reactors; however, presently under consideration is a

small or "modular" HTGR concept.

One of the major advantages of a small HTGR design is that, when

properly designed, a core auxiliary cooling system need not be included.

Following a loss of forced convection accident, if the system remains

pressurized, natural circulation of the helium will sufficiently cool

the reactor core and internal components. In the "worst case" accident

scenario, the system would depressurize and the gas would become

stagnant. In this case, decay heat removal by passive conduction through

the core and radiation from the vessel will prevent core damage. The

inherent safety of the modular HTGR design makes it particularly

attractive.

Few computer codes are openly available which may be used to analyze

the depressurized heatup transient in both pebble-bed and prismatic HTGRs.



In their analysis of the prismatic HTGR, General Atomic Technologies

(GA) used a proprietary computer code entitled CORCON. Two-dimensional

calculations may be performed using CORCON; however,it is limited to

the analysis of prismatic HTGRs. General Electric.Company (GE) used

the THERMIX-2 computer code, a proprietary code developed by

Kernforschungasanlage Julich GmbH (KFA) in the Federal Republic of

Germany, to analyze the pebble-bed HTGR. The effective pebble-bed

thermal conductivity is input to THERMIX-2 as a function of temperature

only. It would be more precise to allow the pebble-bed effective

conductivity to be determined internally as a function of not only

temperature, but also neutron fluence, pebble diameter, and pebble-bed

porosity. Simple conduction heat transfer codes such as HEATING6 [1]

abound. They, however, are not easily adapted to calculate heat

transfer through graphite or through pebble beds. A computer code which

is openly available and which uses non-proprietary correlations for

graphite and pebble-bed thermal conductivities was deemed useful for

independent evaluation of both pebble-bed and prismatic modular HTGR

designs.

Described herein is a FORTRAN computer code (SHERLOC - Small HTGR

Thermal Response to Loss of Circulation) which has been developed to

calculate fuel temperature distributions in modular HTGR concepts during

a loss of forced convection and depressurization accident. Several

studies have been performed and are presented here. A primary concern

in performing decay heat removal calculations for modular HTGRs is the

thermal conductivity of graphite, which is dependent upon both

temperature and neutron irradiation. A correlation modeling this

behavior of graphite conductivity has been incorporated into SHERLOC.



Also, in pebble-bed cores, thermal radiation through the voids between

pebbles must be accounted for as well as conduction. SHERLOC calculates

an effective thermal conductivity for heat transfer by conduction and

radiation in a randomly packed pebble bed.

1.1 Background

1.1.1 Application of Modular HTGRs

Interest in the development of small nuclear reactors

for potential applications in the industrial heat market has been

expressed in the United States, Federal Republic of Germany, Japan,

and the Soviet Union. In the United States, industrial energy

comsumption accounts for 40 percent of the total energy consumption

[2]. Of the industrial energy used, 57 percent is used as process

steam, and 43 percent as direct heat. Methods considered for serving

the industrial heat market include the thermochemical pipeline, steam

transmission, and sensible energy transport. The thermochemical pipe

line may be used for district heating over long distances. Reactor

heat is used to convert water and methane into hydroben and carbon

monoxide, which are then transported through separate pipes. Where

heat is needed the reverse reaction takes place, liberating energy.

Steam transmission through pipelines can provide heat over short

distances (less than 10 to 20 miles); while sensible energy transport,

in which molten salt is used as the working fluid, can provide heat at

somewhat greater distances than steam transmission.

The HTGR may also have applications in hydrogen production via

several mechanisms: 1) steam reforming of a light hydrocarbon,

2) carbon-steam reaction using a heavy hydrocarbon, 3) thermochemical

water splitting, and 4) electrolyses of water [3]. The HTGR has been



considered for use in steel production by the American Iron and Steel

Institute and the General Atomic Technologies in the United States [3],

and by Japan [4]. West Germany has investigated using a small HTGR for

the following applications: generation of synthetic gas from coal

and natural gas; process steam; generation of synthetic natural gas;

process heat for conversion of fossil-energy raw materials, especially

coal to liquid and gaseous secondary energy carriers; and production

of hydrogen or methanol [5]. In addition, the HTGR could be used for

cogeneration of process steam and electrical power. In such a mode,

a small HTGR could provide the energy needs of an industrial community,

a military complex, or an urban area. The Soviet Union is pursuing

applications of HTGRs for cogeneration, hydrogen production, gasification

of coal, reduction of iron ore, and district heating [6].

1.1.2 Summary of Preliminary Designs

It is evident that the HTGR, due to its capability

of producing high temperature gas, has potential in the industrial

heat market. Several preliminary designs for small HTGRs have been

proposed. Designs proposed by General Electric Company, General Atomic

Technologies, and Gesellschaft fur Hochtemperaturreaktor - Technik are

summarized here.

General Electric Company [2] and General Atomic Technologies [7]

The industrial heat market requires a higher availability of its

heat source than does the electric power industry, where electricity

is being channeled into an already existing grid. In the past, HTGR

design has emphasized the large, monolithic HTGR which has a projected

availability of 70 to 80 percent at best. For use as a source of



industrial heat, an availability of close to 100 percent is required.

In response to this requirement, it has been suggested that several

small reactors, or "modules," be used in parallel to support process

heat or a thermochemical pipeline and a normal steam-electric plant.

In the modular concept, one reactor may be shut down for refueling or

maintenance without causing the entire plant to shut down; thus an

availability of at least a portion of the full capacity of greater

than 95 percent may be achieved.

The modular HTGR proposed by GE and GA consists of a prismatic

core with internal, bottom entry control rods in a steel reactor vessel.

The thermal rating of the core is 250 MWt, with a power density of

4.1 Wcc and outlet coolant temperature of 950°C. The core diameter is

approximately 3.5 m. With a net electrical power of 11.5 MWe available

for export and 147 MWt of thermochemical energy produced, the overall

efficiency of each modular system is 63.4 percent. The reactor design

employs an upflow, vertical in-line configuration with the heat

exchanger located directly above the core. This configuration is

designed to allow decay heat to be dissipated by natural circulation,

radiation, and conduction; therefore, no core auxiliary cooling system

is present. This design facilitates natural circulation through the

core when forced circulation is lost. Figure 1.1 shows the vessel

configuration; and Figures 1.2 and 1.3 show the coolant natural

circulation paths with an active and inactive steam generator,

respectively. Given a depressurized situation with no circulation

whatsoever, heat would be conducted and radiated from the vessel to the

surrounding environment.
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The modular concept involves locating eight modules at a site

to provide a total thermal rating of 2000 MWt and to achieve the desired

high availability. A high degree of standardization among reactors and

of factory pre-fabrication are expected to yield a site construction

time of less than four years. The high availability and short

construction time will offset the typically high direct costs of an

HTGR system. Also, with replaceable modular units, the site life is

expected to be one hundred years or more.

Gesellschaft fur Hochtemperaturreaktor -Technik (GHT) [5]

The West German proposed modular reactor design stems from the

design of the 15 MWe Arbeitsgemeinschaft Versuchs-reaktor (AVR), a

steam cycle demonstration plant which has been in successful operation

since 1967. The core of the AVR consists of approximately 100,000

graphite pebbles (6 cm in diameter) containing coated fuel particles.

One of the advantages of the AVR is that on-line refueling is possible.

The fuel pebbles are passed continuously through the core from top to

bottom. After being withdrawn from the core, a pebble is either

discarded or cycled through the core again, depending on its burnup.

The GHT modular reactor design uses a pebble-bed core with a

thermal rating of 170 MWt, a power density of 2.5 W/cc, and a helium

coolant outlet temperature of 950°C. The pebbles are circulated

continuously, allowing on-line refueling - a pebble will pass through

the core about 15 times during its life. Shutdown and control are

accomplished with 6 short absorber rods located in the reflector region

only. No control rods are inserted into the core itself. This control

design limits the core diameter to 3 m and the power density to 2.5 W/cc.
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A side-by-side configuration is used for the steel reactor vessel

and heat exchanger, and is shown in Figure 1.4. Helium coolant flows

down through the core in this design. Because the fuel at the top of

the core has a lower burnup than the fuel at the bottom, the reactivity

is higher at the top of the core. Temperatures would therefore tend

to peak at the top of the core, and downflow allows maximum cooling

of the high reactivity fuel. The side-by-side concept allows greater

ease in maintenance and in-service inspection than does the vertical

in-line configuration. Also, in the event of a scram, components

such as the steam generator, circulator, and reformer are isolated

and will not be exposed to a heat-up transient. Because the vessels

are shorter in the side-by-side design, the reactor building height

will also be considerably shorter.

1.2 Purpose of This Study

The objective of this study was to develop and apply a

computational model to calculate fuel temperature distributions in

modular, graphite-moderated HTGRs in a "worst case" accident situation -

loss of forced convection and loss of pressure. In this accident

scenario, the gas coolant is stagnant and heat is removed from the

core by conduction and radiation only. The responses of several core

configurations to the depressurized heatup accident have been investigated

and compared.

The study consisted of two parts. The first part involved the

development of the computer code SHERLOC, which analyzes the Small

HTGR Thermal Response to Loss of Circulation. SHERLOC is a one-

dimensional, finite-difference heat transfer code which has the

capability of solving steady-state or transient problems in
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rectangular or cylindrical coordinates and with convective and/or

radiative boundary conditions. A multi-region, multi-material problem

with temperature dependent thermal properties and space and time

dependent internal heat generation may be modeled using SHERLOC.

Considering heat transfer in only one dimension will produce a

conservative analysis of the depressurized heatup accident.

Since the core of an HTGR consists primarily of graphite, the

thermal conductivity of graphite is important in determining heat

transfer from the core. Graphite thermal conductivity is a function

not only of temperature, but also neutron irradiation, and this is

accounted for by SHERLOC in regions specified as graphite. Also,

when a pebble-bed core is considered, conduction is not the only means

of heat transfer in the core - radiation occurs through the voids

between pebbles. The modified Zehner-Schlvinder model proposed by

Breitbach and Barthels [8] is used to calculate an effective thermal

conductivity for the pebble-bed which takes radiative heat transfer

into account.

The second phase of this study involved the modeling of both

pebble-bed and prismatic modular HTGRs and the calculation of the

temperature distributions during the depressurized heatup transient.

The effects of power density, initial temperature, neutron fluence, and

vessel boundary conditions were investigated. Also the effects of

modeling small, helium-filled gaps between prismatic fuel assemblies

and of replacing the prismatic core with a bed of pebbles were studied.
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CODE DEVELOPMENT

The development of the SHERLOC computer code consisted

basically of four different sections: 1) the steady-state finite

difference equations, 2) the transient finite difference equations,

3) the method of calculating fluence and temperature dependent

graphite thermal conductivity, and 4) the modified Zehner-Schlunder

model for effective conductivity in a pebble bed.

The steady-state and transient finite difference equations were

derived in rectangular and cylindrical coordinates at the following

unique locations: 1) the origin - an adiabatic boundary condition

was assumed, 2) a mesh point within a material region, 3) the

interface between two material regions, 4) the left-hand interface

between a material region and a void region, 5) the right-hand

interface between a void region and a material region, and 6) the

outermost boundary - convective and/or radiative boundary conditions

were assumed. At void interfaces and the outermost boundary, effective

heat transfer coefficients are calculated to account for radiation

and/or convection. The heat transfer equations may be non-homogeneous

and non-linear; that is, heat generation may be a function of position

and time, and thermal properties may be functions of temperature

(and fluence for graphite). The mesh spacing within a given region

is uniform; however, the mesh spacing may vary from region-to-region.

The development of the finite difference equations and the methods of

solution were patterned after those used by the HEATING6 computer code

[1], a heat transfer code developed at the Oak Ridge National Laboratory.
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2.1 Heat Transfer Coefficients at Void Interfaces and

Outermost Boundary

Radiation occurs through void regions such as between a core

barrel and reactor vessel, and radiation and/or convection occurs at

the outermost boundary. In calculating heat transfer across the

boundaries of a void region or the outer boundary, an effective heat

transfer coefficient is determined. Radiative heat transfer between

two surfaces is given by:

q" = aei2(Tl4"T24) = WV (2-1}

where

q'

-8 2 4
a = Stefan-Boltzmann constant = 5.669x10 W/m K

e - = effective emittance from surface 1 to 2

h = effective radiation heat transfer coefficient
r

T1 = temperature on surface 1

T~ = temperature on surface 2

Solving equation (2.1) for h :

4 4(T^-T/)
h = ere,'r ^12 (TrT2)

2 2 2 2(T^+T,/) (Tx -T2 )
= oe.'12 (Tj-Tj)

(T12+T22)(T1+T2)(T1-T2)
= a£12 (Tx-T2)

hr = a£12(Tl2+T22)(Tl+T2) (2'2)
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The effective emittance e.. „ (Ref. 9) is given by:

where

el2 " 1-e A 1-e (2,3)
^ +Fi2 +a^>

£.. = emissivity of surface 1

£_ = emissivity of surface 2

A = surface area of surface 1

A_ = surface area of surface 2

F „ = shape factor » fraction of radiation leaving surface 1
which reaches surface 2

For infinite concentric cylinders or infinite slabs, F „ • 1.0.

Therefore, manipulating equation (2.2) yields:

£12 = A 1 (2'4)
_L + __l tr -i)
£1 A2 2

In rectangular coordinates, A1 /A_ = 1; in cylindrical coordinates,

A /A_ = r1/r„, where r1 and r„ are the radii of surfaces 1 and 2,

respectively.

The radiation heat transfer coefficient h must be calculated at
r

both boundaries of a void region. On the inner surface, equation (2.2)

applies; on the outer void surface, the effective emittance £„.. must be

used in equation (2.2) rather than e1 „ • £_.. is given by:

£21 * 1-e, A, 1-e. (2#5)
^+F21+A7^>
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where

F?1 = the fraction of energy leaving surface 2 reaching
surface 1

We have the reciprocity relation (Ref. 9):

or

A1F12 ~ A2F21

*1
F = — Fr21 A2 12

Since F 2 = 1.0,

Al
F21 - T2 (2'6)

By substituting equation (2.6) into equation (2.5), and with some

minor algebraic manipulation and comparison with equation (2.4) we

obtain:

£21 =^£12 (2'7)
On the outermost boundary, it is assumed that the surrounding

area is much greater than the outer surface area; thus A /A_ goes to

0 in equation (2.3). Therefore, on the outer boundary, the radiation

heat transfer coefficient reduces to:

where

h = ae (T 2+ T 2)(T + T ) (2.8)
r SS oo/vsoo'

e = emissivity of the surface material

T = surface temperature

T = ambient temperature
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To obtain the effective heat transfer coefficient at the surface, the

convective heat transfer coefficient h (which is assumed to be given)

and the radiative heat transfer coefficient are combined in series:

where

h = h + h
r re

effective heat transfer coefficient

2.2 Steady-State Finite-Difference Equations

In the steady-state, no heat is stored in a volume, and the heat

balance on a control volume V may be represented as

Net rate of heat

entering V through
its boundaries

Rate of heat

generation
in V

2.2.1 Rectangular Coordinates

The one-dimensional, steady-state conduction equation in

rectangular coordinates is:

where

k(T)

g(x)

2

k(T) dT(?X) + g(x) = 0 (2.9)
dx

temperature dependent thermal conductivity

position dependent volumetric heat generation rate

Consider a mesh point within a given region, as shown in Figure 2.1a.

The finite difference heat balance on mesh point i is:
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18

~l

2

Ax —

(a)

I
Ar

Ar /

Ar
>s/

(b)

1

Figure 2.1

(a) Internal Mesh Point - Rectangular Geometry

(b) Internal Mesh Point - Cylindrical Geometry
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(T._ -T.) (T. -T.)

iKi-l "x X + kKi+l \l * = ^i Ax <2'10>

where

.K. = thermal conductivity between mesh points i and i-1

.K 1 = thermal conductivity between mesh points i and i+1

T. = temperature at mesh point i

g. = volumetric heat generation of mesh interval i

Manipulating equation (2.10) yields:

iKi-iTi-i "(iKi-i+Ki+i)Ti +iKi+iTi+i " "Si(Ax)2 <2'U)

The steady-state, rectangular, finite difference equations for each

unique type of mesh point (listed in Chapter 2) are derived in detail

in Appendix A. It is easily seen that a problem containing n mesh

points will produce n equations in n unknowns, which may be solved

simultaneously. The equations may be represented in the matrix form

AT = b (2.12)

where

A = matrix of coefficients

T = vector of temperatures

b = vector of forcing functions

Since only three terms appear on the left-hand side of the equations,

the coefficient matrix A will be tridiagonal. The equations may be

solved using any one of a number of techinques for solving a linear

system of equations in matrix form.
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2.2.2 Cylindrical Coordinates

The one-dimensional, steady-state conduction equation in

cylindrical coordinates is:

k(T)^I +k(T)i^ + g(r) =0
dr

(2.13)

Again we shall consider here a mesh point within a given region, as

shown in Figure 2.1b. The finite-difference form of the heat balance

equation is:

(T. ,-T.) (T.,,-T.) 9 9
2rrr 4K. . 171 x + 2TTr, .K. .. ^ X = -g.TT(r. -r/)

a i l-l Ar b l l+l Ar l b a

(2.14)

It is assumed that the mesh spacing within a region will be constant.

Therefore,

r = r. - Ar/2
a i

r^ = r. + Ar/2
b l

(2.15a)

(2.15b)

Substituting equations (2.15a) and (2.15b) into equation (2.14) and

rearranging:

(r.+Ar/2) (r.-Ar/2)

1 .K. ,,T.,, + —^rz -•£_. -.T,
Ar i i+1 i+1 Ar i i-1 i-1

or

(r.+Ar/2) (r -Ar/2)
1 - + ——> .K.
Ar Ar i i-1

T. - -g.
(ra + V(ra " rb}



(r.-Ar/2)
-K. ,T.

Ar 1 i-1 i-1
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(r.-Ar/2) (r.+Ar/2)
1 K. , + —^_ .K.

Ar i i-1 Ar i i+1

(r.+Ar/2)

+~^ iKi+lTi+l = "%riAr (2.16)

The steady-state, cylindrical, finite-difference equations for each

unique type of point are derived in detail in Appendix A. Again, a

tridiagonal matrix may be constructed to represent the equations and

may be solved for the temperature distribution.

2.3 Transient Finite-Difference Equations

The heat balance on a control volume V in a transient case may be

represented by

Net rate of heat

entering V through
its boundaries

Rate of heat

generation

in V

Energy

stored

in V

2.3.1 The One-dimensional, Transient Conduction Equation in
Rectangular Coordinates

K(T)
9 T(x,t) 9T(x,t)

3x

— + g(x,t) = p(T)Cp(T) ^r

where

g(x,t) = space and time dependent volumetric heat generation

C (T) = temperature dependent specific heat

p(T) = temperature dependent density
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For a mesh point within a given region (see Figure 2.1a), the

transient finite difference equation is

(Tn+1-T.n) (Tn .-T?) (Tn+1-Tn)
P.C 4 \ X Ax = gn Ax + .K. , ^ X- + .K. .. 1+^ 1
i pi At 6i 1 l-l Ax l l+l Ax

(2.18)

where

T = temperature at node i at time t

T. = temperature at node i at time t ..

The transient, rectangular, finite difference equations at each

unique type of point are derived In detail in Appendix B. Equation

(2.18) is a forward difference equation; the temperature at time t ..

is given in terms of the temperature at time t . However, the forward

differencing scheme, or Classical Explicit Method, may be unstable

for some time steps [10]. If the right-hand side of equation (2.18)

is evaluated at t ., rather than at t , the algorithm is the backwards
n+1 n

Euler, or Classical Implicit Procedure (CIP), and is stable for any

time step [10]. If the right-hand side of equation (2.18) is

evaluated at t ., , the procedure is known as central differencing, or
n+*s

the Crank-Nicholson (CN) procedure. The CN procedure is also stable

for any time step [10]. For stability reasons, a 9-differencing scheme

is employed in SHERLOC. In this procedure, equation (2.18) is given

as
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(Tn+1-Tn), _, .n+8 i i /A\2 n,A .2 , nJ T,n+8,mn+l mn+l,
(picpi> —s—<Ax> -Si<ix) +e\iKi-i(Ti-rTi >

+,«l<^} +«M iC^-rT"> +iOTi+rT?> <2-19>

If 9=0.0, equation (2.19) reduces to equation (2.18). If 9=0.5, the

method is the CN method; if 9=1.0, equation (2.19) becomes the CIP.

We shall choose to limit the value of 8 to 0.5 < 9<1.0 so that the

solution will be stable for all time steps.

Rewriting equation (2.19) with all the terms evaluated at t -

on the left-hand side:

where

Tn
H, =(p.C .)n+9(Ax)2 •£ +gn(Ax)2 + (1-9)
l l pi At l

*IiK°-i (I°-rTi> +iC'W > <2-21'

Collecting the T. terms in equation (2.20)

^'iV^V1- Hi (2-22)

(2.20)
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K.Kn+^+.Kn^) +(p.C .)n+6^f
1 i-I i i+I i pi At

n+9Tn+l n+8 Tn+1
li- i-1 i i+I i+I

+ D. Tn+1
l l

= H.

n+1
Solving for T

„n+l vn+9_,n+l vn+9 n+1
,'X. 1 1 . 1 T .J\. .- 1...
i i-I i-1 l i+I i+I

(2.23)

(2.24)

Note that D and H. are known; they are dependent on temperatures

at time t , properties, and geometry. Therefore the superscript n+1

is dropped from equation (2.24) and it is understood that the

temperatures appearing in that equation are evaluated at t .. . Thus,

Ti = DTSHi+e
n+9 n+1 n+9 _n+l

1 1-1 1-1 1 1+1 1+1
(2.25)

The temperature distribution at t - is solved for one mesh point at a

time, beginning with the first mesh point. Therefore, in equation (2.25),

T. , is known, but T.,, is not. An estimate must be made for T.,,,
i-1 i+I i+I

and an iterative process used to solve for the temperature distribution

r.n
at t .... For the first estimation, T.,- will be used rather than

n+1 i+I

T.j, . An estimate of the temperature at each node i is solved for,

and used for the new estimate at T.,,. Thus we have
i+I

.Kn+? T£+l
l 1-1 l-l

+ .KnreT£ ,
1 1+ 1+1

(2.26)
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where the superscript Jt+1 refers to the (£+l)st iteration on the

temperature distribution at time t -. Iterations are continued until

convergence is reached (convergence will be discussed in Chapter 3).

Jl+1
The iterative process can be further refined by taking T in

equation (2.26) to be an estimate of the temperature at the (JL+l)st

iteration. Let

i+1 Vn+B JL+1 vn+8 A
iVl Ti-1 + iKi+l Ti+1 (2.27)

Then, let the temperature at the (£+l)st iteration be defined as

or

.i+1 J. ^ ,1 i+1 JL
i = i W ( i " Ti*

_Jl+l ,. Smi ^ 1 l+l
T = (I-(jj)T + T.

(2.28)

(2.29)

where co is referred to as the acceleration factor. The range of co

is 0.0 < co < 2.0, and the solution generally converges faster if

co ^ 1 [1]. If a) < If the solution is underrelaxed; if to > 1, the

solution is overrelaxed. This process is referred to as point successive

overrelaxation [1], Combining equations (2.29) and (2.26) yields the

following for the temperature at the (£+l)st iteration on the time

Vi

Ta+i
i

(l-oo)T. + DCO je4?^ + .<?t*
i i-I i-1 l i+I i+I

(2.30)
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2.3.2 Temperature Dependent Thermal Properties

Thermal properties which vary with temperature are treated

in the following manner. Initially the properties are calculated using

the initial temperature distribution, which is given. Then the

iterative procedure given by equation (2.30) is used to calculate

the temperature distribution at the time step t . However, in this

iterative procedure the thermal properties are not updated, so the

converged solution given by equation (2.30) is only an estimate of

the actual temperature distribution. The thermal properties are

updated, and the procedure repeated. Thus the problem solution consists

of two levels of iteration: the inner loop iterates on the

temperature distribution using equation (2.30), while the outer loop

iterates on the thermal properties. The thermal properties are updated

as follows: T is the final, converged temperature distribution at

time t . T ' is the estimate of the temperature distribution at time

t - after the mth iteration on properties. The thermal properties

will be reevaluated at the temperature:

Tn+e = (i-e)Tj + 9T^+1'm (2.31)

2.3.3 Cylindrical Coordinates

The one-dimensional, transient conduction equation in

cylindrical coordinates is

k(T)l2TirJtl +k(T)IM^t! + g(r>t) = p(T) (T) 3T|t)
3r p

(2.32)



27

For a mesh point within a given region (see Figure 2.1b) the

transient finite difference equation is

( n+1 n. ( n _ n.
Vi. i.) j ? 2 2 v i-1 i

(p.C .) ——k Ti(rf - r ) = g.TT(r^ - r ) + 2irr .K, . x/
i pi At b a 6i b a a i i-1 Ar

(Tn -Tn)
Ui+1 V

+ 2irr, ,K
b i i+1 Ar

We have the following:

r = r. - Ar/2
a l

r, = r. + Ar/2
D 1

2 2
r, - r = 2r.Ar
b a i

(2.33)

(2.34a)

(2.34b)

(2.34c)

Substituting equations (2.34a-c) into equation (2.33) and applying

the 6-differencing scheme described in section 2.3.1 yields the

following

(Tn+1-Tn)
,n+9

(PiCpir^ ^t ' (2riAr) =gi(2riAr) +9
„n+6,Tn+l Tn+1. (2ri"Ar)
iKi-lCTi-l"Ti } Ar

-lo u.i j.i (2r.+Ar)
+ .K^T^-T^1) —J

l i+I i+I i Ar

j« (2r.+Ar)
+ Kn 9 CTn -Tn") 1
+ iKi+l CTi+l V Ar

+ (1-6) .K?+?(Tn ,-Tn) |
i i-1 i-1 i Ar

(2.35)

Rewriting equation (2.35) with all the terms evaluated at t - on the

left-hand side
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i i-I i-I i Ar i i+I i+1 i ' Ar

„n+l

,n+9,(p.C .)n+0(2r.Ar) -±— = H.
Vhi pi' i At i

where

.n+9

Hi = (piCpi) (2riAr) AF + 8i(2riAr) + (i-0)

«*o - (2r -Ar) .« (2r.+Ar)"n+8 , n n. i . vn+9 . n ik i
iKi-i (Ti-i V AT + iKi+i (Ti+rV —at—

Collecting the T. terms in equation (2.36)

-9
r,4-fl r,j-i (2r -Ar) (2r.+Ar)"n+9 n+1 i . „n+9 n+1 l

i i-1 xi-l Ar + iRi+l Xi+1 Ar +

Kn+9 (2ri+Ar> + n+9 (2ri+Ar)
•**• • 1 A""" "T" ,JS. , ,, .
i i-I Ar i i+1 Ar ^v-^f-.

Let

D. =
l

T,n+9 (2VAr> + n+9 (2VAr>
i i-1 Ar + i*i+l Ar

(2r Ar)
+ (p.c .f+9—i—

Ki pi At

(2.36)

(2.37)

(2.38)

(2.39)
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Substituting equation (2.39) into equation (2.38) and solving for

mn+l

-n+1

D.
l

H. + 9
r,j.fl „j.i (2r -Ar) (2r.+Ar)"n+9 Tn+1 i „n+9 n+1 l

l i-1 Xi-1 Ar i^i+1 ii+l Ar

(2.40)

r.n+1
Since T is unknown, the iterative procedure described in

section 2.3.1 is used. Combining the notation for the iterative

procedure and the point successive overrelaxation method described in

section 2.3.1, we obtain

/+1
i

= (l-w)Tj + CO
H. + 8

Kn+9 .l+l (2VAr)
.IX. . i, , .
l i-I i-1 Ar

i i+l i Ar
(2.41)

Again, the inner loop on equation (2.41) must be performed, and then the

outer loop on the thermal properties, until convergence is reached for

both loops.

2.3.4 Summary of Transient Finite Difference Equations

The transient finite difference equations for each unique

type of mesh point are summarized here for both rectangular and

cylindrical coordinates. (These equations are derived in Appendix B.)

The equations have the same form for both types of geometries, but
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with different geometric coefficients. The coefficients are given in

Table 2.1.

Origin:

Ml (1-uOT. + - Hi +9(S1 iKi+t Ti+1>

where

,. n »,n+9 . , _ *n+9 2

Di = e si iKi+ + (picpi} aF

H.
n+9mn , n

i = AT (PicPi) Ti + gi s2 + (1"e)

Internal Node:

n+8, n n.

Sl iKi+l^Ti+l"Ti;

~.l+l /-, \^l . co
Ti " d-«>Ti + rT H. + 9(ax 1Ki_1 T1_1 + a2 ±K.+1 T±+1)

where

H.

D. = 9 a Kn+e + a K1*"9al iKi-l + a2 iKi+l

3 , - vn+6„n , n ,, „..

At" (piCPi) Ti + gi a3 + (1"e)

+ »2 iK"S <Ti+r*

♦ &W"

"l iKi-l "i-l'V

(2.42a)

(2.42b)

(2.42c)

(2.43a)

(2.43b)

(2.43c)

Material Region Interface: Same as equations (2.43a-c), but with

different coefficients as shown in Table 2.1.



Mesh Point Type

ORIGIN

INTERNAL NODE

MATERIAL REGION

INTERFACE

Table 2.1

Coefficients for Transient Finite Difference Equations
in Rectangular and Cylindrical Geometries

Coefficient Rectangular

1.0

(Ax)'
2

1.0

1.0

(Ax)3

A2/(AX+A2)

A1/(A1+A2)

A1A272

Cylindrical

2.0

(Ar)'
2

(2r±-Ar)
Ar

(2^+Ar)
Ar

2r±Ar

(2^-A^

Al

(2r±+A2)

A2

(A1+A2)(ri+A2-A1)

OJ



Mesh Point Type Coefficient

LEFT VOID BOUNDARY

RIGHT VOID BOUNDARY

OUTERMOST BOUNDARY

Table 2.1 (Continued)

Rectangular

1.0

A,

(AjV

1

1.0

(Ax)'

1.0

Ax

(Ax)5

NOTE: At interfaces - A, refers to mesh spacing to the left of the interface

A„ refers to mesh spacing to the right of the interface

Cylindrical

<VV2>

A ( Alv
Ai(rr t>

(r±+A2/2)

A2

A2(ri+ ^>
(R-Ar/2)

Ar

R

Ar(R-•£>
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Left Void Boundary:

ml+l ,, s„i , coT. = (l-oo)^ + - H. +28(ax .Ki_1 T1_]_ +a2 h^ T±+1)

where

28
^n+8 _,_ ,n+8

a K. + a h1 I i-I 2 r-2 ♦ i <p4V"*

H.
3/ „ xn+6_n , n , „,„ „N

^iV Ti + 8i "3 + 2a"e>

. ,n+8 ,_n _nx
+ a2 hr12 (Ti+rTi)

Right Void Boundary:

*i i£2 <Ti-r^>

J.+1 -, .-I , co
Ci = (1-u>Ti+ d"

l

H 4- ?fUa hn+Q Ti+1 4- n -n,"e T£ ^H. +28(ax h^ Ti_1 +a2 ^±+1 T±+1)

where

D. = 28
l

,n+8 _,_ „n+6
a. h + a_ .K.,-1 r21 2 l i+I +(p.c .)n+6^VMi pi' At

(2.44a)

(2.44b)

(2.44c)

(2.45a)

(2.45b)
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Hi = AF ^iSi^^i +8i a3 +2(1-9) a, hn+6(Tn -Tn)1 rn i-l i

+ a Kn+6(Tn -Tn)+ a2 iKi+9Ui+l i;

Outermost Boundary:

cf1 - a-*nl +f-
i

„t ♦ 29ftl ^ ijs +,2 „r\>

where

D. = 29
n+8 n+9

bl iKi-l + b2 hT
, „ ,n+8 b3

+ <PlCpi} AT

«i ' tt (PiCpi)n+9 T" +8" b3 +2<1"9) \ & "i-rT">

+ b2 b^CVTj)

where

(2.45c)

(2.46a)

(2.46b)

(2.46c)

n+Q
h = effective heat transfer coefficient at boundary

T

T = ambient temperature



35

2.4 Thermal Conductivity of Graphite

The transport of heat in graphite occurs primarily by lattice

vibrations (phonons) rather than by electrons or holes. One example

of the evidence supporting this theory is the Weidemann-Franz ratio

RyF in graphite

R, = *£
^TF T

where

k = thermal conductivity

p = electrical resistivity

T = absolute temperature

The value of the Weidemann-Franz ratio is 10 to 100 times higher for

graphite than it is for most metals [11] in which heat conduction occurs

primarily by electron transport. The thermal conductivity of graphite

is approximately proportional to the lattice wave mean free path,

which is essentially the size of the crystal. Lattice waves are

scattered at crystal boundaries and at radiation-induced scattering

centers. Radiation damage in a material may be caused by 1) displace

ment of atoms from the lattice by transfer of energy from neutrons,

2) excitation of electrons, and 3) transmutation of the atoms in the

solid [12], In graphite, a significant number of free electrons are

present, and thus cannot be permanently displaced. Also, very few

transmutations of atoms by neutron capture will occur relative to the

number of atoms which will be permanently displaced; therefore the

primary cause of radiation damage in graphite is due to displacement

[11]. When a neutron collides with a carbon atom and displaces it, if
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enough energy is imparted by the neutron, the carbon atom may in turn

displace other atoms as it slows down. A good discussion of the

displacement of carbon atoms due to irradiation may be found in

Ref. [11].

The radiation damage caused, and thus the thermal conductivity,

is dependent not only on the fluence, but also the temperature at which

the irradiation occurs. In general, the thermal conductivity will

decrease with increasing neutron fluence, and will increase with

decreasing temperature. (The conductivity of unirradiated graphite

is a maximum near room temperature [11].)

The method used to determine the thermal conductivity of graphite

has been used in other codes at the Oak Ridge National Laboratory

[13]. The method uses the following correlations which were developed

from experimental data obtained in West Germany and the United States:

a(Tfc) = 1.055 - 0.00057 Tr a>0 (2.48)

H(T) = [1-8.45 x 10"8 T(420+1.65T)]a (2.49)

B(T) = 1.116 - 0.000269T 8 > 0 (2.50)

F = 8.8 H(T) il-exp|-B(Tr) x10_21S > (2.51)
R - (1.0)/ il + F K(T)[C(T )6(T) + (1-C(T ))A(T)]> (2.52)

K (S,T) = R K(T) (2.53)
g

where

T = temperature at which radiation occurs (K)

T = temperature at which conductivity is to be calculated

(present temp.) (K)

2
S = neutron fluence (n/cm )

K = graphite thermal conductivity (W/cmK)
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The values of 5(T), A(T), K(T), and C(T ) are obtained by interpolation

and normalization of data strings. These data strings are given in

Table 2.2 and each parameter is normalized to the second term in its

respective data string. For simplicity, it is assumed that the

irradiation temperature T is equal to the initial temperature of the

problem. Figure 2.2 displays the behavior of the thermal conductivity

of graphite as a function of temperature and fluence as calculated using

the algorithm described. The temperature range for the data strings

of Table 2.2 is 300 K to 1600 K. However, the correlation is such

that reasonable values for the graphite conductivity are still obtained

for temperatures greater than 1600 K (see Figure 2.2).

2.5 Effective Thermal Conductivity in a Pebble Bed

In the "worst case" loss of forced convection and depressurization

accident, it is assumed that the gas remaining in the voids in a pebble

bed is stagnant and does not contribute to heat removal. Therefore,

heat removal will occur via conduction through the pebbles and radiation

through the voids. The cell model of Zehner and Schliinder was

developed to determine an effective thermal conductivity in a packed

bed of spheres, taking conduction and radiation into account. Breitbach

and Barthels developed a modified Zehner-Schlunder model which agrees

well with experimental data [8].

The pebble bed is modeled as an arrangement of unit cells by

Zehner and Schliinder; a unit cell is shown in Figure 2.3. A unit cell

contains two halves of the pebbles which are in contact. The bounding

surfaces which contain the sections of pebbles are termed "base areas."

Zehner and Schliinder assume that the open portions of the base areas
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Table 2.2

Data Strings for Graphite Thermal Conductivity Correlation

Temperature (K) 6(T) A(T) C(T) K(T)

300

350

400

500

600

700

800

900

1000

1100

1200

1300

1600

74.2 1.12 1.0 1.10

71.0 0.905 1.0 1.05

68.2 0.766 1.0 1.00

63.5 0.605 1.0 0.90

60.5 0.518 1.0 0.84

58.4 0.467 0.7 0.78

56.4 0.431 0.7 0.72

55.5 0.410 0.7 0.67

55.0 0.394 0.7 0.62

54.9 0.384 0.7 0.58

54.3 0.375 0.7 0.54

54.1 0.368 0.2 0.50

54.3 0.355 0.2 0.46
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Figure 2.3 Unit Cell for the Zehner-Schlunder Model
(Ref. 8)
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have the same emittance as the pebbles, and the other boundaries are

considered to be specular reflecting surfaces. Zehner and Schliinder

derive the following expression for the effective thermal conductivity

in a pebble bed:

eff

where

£

d

a

A,

[l-q-yhU + (lHfrfr (Bz+1)
(f -1) (f -1) Bz •

porosity of the pebble bed

emissivity of pebble

diameter of pebble

Stefan-Boltzmann constant

1.25 (W0'9
4>

4aT3d

= thermal conductivity of pebbles

4crT3d
1 +

(f - l)Af

(2.54)

(2.55)

(2.56)

The first term in the brackets represents the radiation between the

base areas, which dominates at high temperatures.

Breitbach and Barthels modify the Zehner-Schlunder model given

by equation (2.50) by assuming that the open portions of the base areas

are assumed to be black surfaces rather than surfaces with the same

emittance as the pebbles. The modified Zehner-Schlunder equation is

then:
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r

"

[1 - u-o*] * +-&=*£
(f-1)

V

(Bz+1)
4oT3d

1 +

<t " 1)Af-i
(2.57)

where B is known from equation (2.55) and hc is known from equation
z t

(2.56). Breitbach and Barthels assume that Af in equation (2.56), the

conductivity of the pebble material (in this case graphite), is a

constant. However, we desire to use a thermal conductivity of graphite

which is dependent on temperature and fluence. Therefore, the method

described in section 2.4 is used to calculate graphite conductivity,

which is then used as A in equation (2.56) and subsequently in equation

(2.57) to obtain the pebble-bed effective thermal conductivity.
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3. PROGRAMMING CONSIDERATIONS

In this chapter, some of the mechanics of the code SHERLOC and

the solution methods used are discussed.

The initial temperature, fluence, and volumetric heat generation

distributions, as well as the thermal properties (density, thermal

conductivity, and specific heat) as functions of temperature, are

input as tabular functions. Tables of the position-dependent

parameters are input for each region, and tables of the temperature-

dependent parameters are input for each material. The input to SHERLOC

is discussed further in Appendix C.

Characteristics of heat transport problems which may be modeled

using SHERLOC include the following:

1) transient or steady-state;

2) rectangular or cylindrical coordinates;

3) one-dimensional;

4) adiabatic boundary conditions at the origin;

5) convective and/or radiative conditions at the outermost

boundary

6) up to 20 different regions - some of which may be void regions;

7) up to 20 different materials (the total number of materials

must be less than or equal to the total number of regions);

8) void regions not containing material;

9) temperature dependent thermal conductivity, density, and/or

specific heat;



44

10) temperature and neutron fluence dependent graphite

thermal conductivity;

11) time and space dependent internal heat generation;

12) radiation and conduction within a pebble-bed region;

13) up to a total of 200 mesh points; and

14) up to 20 ordered pairs in each tabular function (density,

initial temperature, heat generation, thermal conductivity,

etc.).

3.1 Numerical Techniques

3.1.1 Steady-state Solution Methods

The steady-state finite difference equations are constructed

and placed into the matrix form given by equation (2.12). The system

of n equations in n unknowns is solved using the system subroutines

DGBFA and DGBSL [14], which are in use at the Oak Ridge National

Laboratory. DGBFA factors a banded matrix by elimination, and DGBSL

solves the system using the factors generated by DGBFA. This method

is efficient for narrowly banded matrices (1-or 2-dimensional problems).

Since the equations are solved simultaneously, the method is a direct

solution technique (as opposed to an iterative technique). If a

problem is linear, i.e., constant thermal properties, the solution to

the matrix equation is the final, converged solution. If however, the

thermal properties are not constant, an initial guess at the steady-

state temperature distribution must be supplied in order to estimate the

properties. The properties are evaluated at the initial guess for the

temperature, and the equations solved. However, since the properties

were evaluated at the initial estimate of the temperature, the solution
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is only an estimate of the actual steady-state temperature distribution.

The properties are reevaluated and the equations solved again.

The procedure continues in this fashion until convergence is

reached. Two methods are used to monitor convergence; however, only the

first method is used to determine when the problem is actually solved.

The first method monitors the average relative change in the temperature

distribution from one iteration to the next, and the second method

monitors the heat balance at each mesh point. The relative change in

the temperature distribution converges more slowly than does the heat

balance. Therefore, the convergence criterion for a steady-state

problem is that the average relative change in the temperature

distribution be less than the value input by the user.

The average relative change in the temperature distribution is

calculated by

where

e = I
1 I

1-1

Tn - T*"1
l l

*S
(3.1)

I = total number of mesh points

= temperature of mesh point i at the present iterationTn

T. = temperature of mesh point i at the previous iteration

The value of e.. must be less than the criterion input by the user for

the problem to be considered converged. In general, values of e1 of

10 or 10 should indicate a converged temperature distribution.
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The second check for convergence involves performing a heat

balance on each mesh point i. Using the point represented in equation

(2.11), a "heat residual" is calculated at each mesh point i:

£2i " iKi-lTi-l "(iKi+l)Ti +iKi+lTi+l +*i(Ax)2 (3'2)

where

e . = heat residual at mesh point i

A heat residual of zero at each mesh point occurs when the exact

temperature distribution is reached. Since the temperature distribution

does not converge until after the heat balance converges, the heat

balance is monitored for informational purposes only. In general, when

the temperature distribution is converged (e., % 10 ) the value of the

heat residual will be on the order of 10~ to 10 .A steady-state

problem should converge in approximately 20 to 30 iterations.

3.1.2 Transient Solution Methods

The 9-differencing, implicit technique described in section

2.3.1 is used for transient problems to describe the finite-difference

equations; and the point successive overrelaxation technique, also

presented in section 2.3.1, is used to solve the equations iteratively.

The procedure for solving non-linear problems is as follows:

1) Thermal properties are calculated at the initial temperature

distribution.

2) The temperature distribution is solved using successive

overrelaxation. Iterations are performed until convergence

is reached.

3) The thermal properties are updated.
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4) Step 2 is repeated.

5) Convergence of the outer iteration (on properties) is

checked.

6) If converged, the next time step is begun. If not converged,

steps 3 through 5 are repeated.

To determine when the iterative process of the inner loop is

converged, a heat residual is calculated at each mesh point. Consider

the point represented by equation (2.26) as an example. When the

(£+l)st iteration is complete, the entire temperature distribution is

known. Therefore, T.,, is substituted for T.,,, and the heat residual
i+I i+1

is

= H. + 8
l

„n+9 Tl+1 n+6 Tl+1
iKi-l Ti+1 + iKi+l Ti+1 + D.T,

l i

£+1
(3.3)

The heat residual is normalized by dividing equation (3.3) by H.:

e3i = ri{\ +
n+9T*+l + .K*+eT*+l

l i-I i-I l i+I i+I
+D.Ti*+1/> (3.4)

The convergence criteria is supplied by the user, and iterations are

performed until convergence is reached at all mesh points (unless the

number of iterations exceeds the maximum allowed by the user).

To determine when the iterations on the thermal properties are

converged, the norm of the relative temperature difference between the

present property iteration and the previous property iteration is

calculated. If T.' is the temperature of mesh point i at time T

after the mth iteration on properties, the norm of the relative
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temperature difference is: £,=-=-

i=l

where

Tn,m_Tn,m-l
i i

T. '
1

(3.5)

I = total number of mesh points

The iterative process is repeated until e, is less than the criteria

input by the user (or the number of iterations exceeds that allowed)

3.2 Determination of Properties and Heat Generation Rates

3.2.1 Thermal Conductivity

The temperature dependent thermal conductivity between mesh

points i and i+1 (.K..,) is calculated by interpolation of a given tabular

function at the average temperature of the two nodes.

T =

(T.+T.+1)
(3.6)

3.2.2 Density and Specific Heat

The density and specific heat at each mesh point determine

the amount of energy which may be stored in a given interval over time,

and thus are required only for transient problems. It should be noted

that using a temperature-dependent density will not satisfy conservation

of mass. In general, the temperature dependent density and specific

heat for a given mesh point in a given material are determined at the

temperature of the mesh point under consideration. However, at material

interfaces (not void/material interfaces) the properties of the differing

regions must be volume averaged. Since the mesh spacing may vary from

region-to-region, let A., be the mesh spacing for region 1 (left of the
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interface) and let A2 be the mesh spacing for region 2 (right of the

interface). Let p.. be the property (density or specific heat) of the

material in region 1 at the temperature of the interface, and p„ the

property of the material in region 2 at the interface temperature. Then,

in rectangular coordinates, the volume-averaged property at the inter

face is

Al A2
~ pl + — p2

P = Ai A2

or

(Vl + A2 P2>
P = (A1 +A2> °-7)

In cylindrical coordinates, volume averaging occurs as follows:

[r 2-(r -A /2)2]Pl + [(r +A /2)2 -r2]p„
P - ±-± j1 ^ * 2- (3.8)

[(r±+A2/2)Z - (rj-Aj/2)^]

where

r. = radius at mesh point i (interface)

Equation (3.8) reduces to:

A (4r -A )p + A (4r +A )p
p = -i x £ x (3.9)

(A1+A2)[4ri+(A2-A1)]

At material/void interfaces, the properties are calculated at the

temperature of the interface for the material involved. Since heat will

be stored only in the material, not in the void, the properties are not

volume-averaged over the entire mesh interval. The heat storage term
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in the transient equation will then be multiplied by the volume of

the material portion of the interval, not the volume of the entire

interval (see Appendix B, equations B.25, B.33, B75, and B.83).

3.2.3 Volumetric Heat Generation Rates

Since the volumetric heat generation of a mesh interval will

be multiplied by the volume of the mesh interval, the value of g. must

be the average volumetric heat generation of the interval. The heat

generation distribution is supplied to the code as a tabular function

of power density versus position. Linear interpolation is used between

the user-supplied data points to obtain the heat generation at each mesh

point i.

For a mesh point within a given material region (see Figures 2.1a

and 2.1b), it is assumed that the linearly-interpolated value of the

heat generation function is indeed the average heat generation for the

mesh interval. This assumption is reasonable if the given tabular heat

generation function is fairly linear between the data points input by

the user.

We now consider a mesh point i at the origin or at the right-hand

boundary of a void region. No heat is generated in a void region. There

fore, the average power density for the mesh interval i is

*i = i[fi+K +fi+i)] (3-10)

where

f » linearly interpolated value of the volumetric

heat generation function at mesh point i
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f.,, = linearly interpolated value of the volumetric heat

generation function at mesh point i+1

Reducing equation (3.10) yields

% = ffi+K+i (3-n>

Consider mesh point i at the outermost boundary or at the left-hand

boundary of a void region. The average power density for the mesh

interval i becomes

»i = K-i +ffi (3-i2>

where

f._, = linearly interpolated value of the volumetric heat

generation function at mesh point i-1

At a material region interface, values for the heat generation must

first be calculated from the functions given for each region, and then

volume-averaged together. Let &. be the average heat generation in the

portion of the mesh interval to the left of the interface, and g be the
R

average heat generation in the portion of the mesh interval to the right

of the interface. We have

*l = K-i+f fi (3-13)
and

*R * f fi+K+l (3-l4)
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Then, volume averaging gT and g in rectangular coordinates:
L K

AA + VR
«! • »; +i/ «-i5)

where

A.. = mesh spacing in region left of interface

A. = mesh spacing in region right of interface

Similarly, in cylindrical coordinates:

A1(4r.-A1)gL + A2(4r,+A2)gR
g = (3.16)

(A1+A2)[4ri + (A^)]

3.3 Flow of Problem Solution

Several flowcharts are presented here to depict the progression

of SHERLOC in the solution of a problem. Figure 3.1 contains a very

general flowchart of the entire code, showing the major sections of

the code and how they are reached. Figures 3.2 and 3.3 show more

detailed flowcharts of the steady-state and transient solutions,

respectively. The progression of the subroutine CONDUC, which calculates

the thermal conductivity between each mesh point, is shown in Figure 3.4.

The subroutine GRPHTE, which uses the correlations of section 2.4 to

determine the neutron fluence and temperature dependent graphite thermal

conductivity, is called from CONDUC. A flow diagram of GRPHTE is shown

in Figure 3.5. The effective thermal conductivity for mesh points in

a pebble-bed is calculated in subroutine PEBBLE, which is also called

from CONDUC. Figure 3.6 contains a flowchart of PEBBLE.
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The subroutine INTRPG, INTERP, and PROP are used to interpolate

user-supplied functions. INTRPG determines the volumetric heat

generation of each mesh interval; INTERP calculates the neutron fluence

and initial temperature at each mesh point; and PROP determines the

values of the density and specific heat of each mesh point, volume

averaging where necessary. The progression of each of these sub

routines is fairly straightforward.

A complete listing of SHERLOC is found in Appendix D; and an input

guide, a sample input, and a sample output is found in Appendix C.
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4. MODELING OF PRISMATIC-CORE AND PEBBLE-BED HTGRs
FOR DEPRESSURIZED HEATUP ACCIDENT ANALYSIS

The responses of both prismatic-core and pebble-bed modular HTGRs

to the "worst case" depressurized heatup accident were analyzed using

SHERLOC, and the results compared to studies performed by General

Atomic Technologies (GA) and the General Electric Company (GE).

Several sensitivity studies were performed for both types of modular

reactors.

4.1 Prismatic Modular HTGR Model

The one-dimensional SHERLOC model of the GA-designed prismatic

modular (described in Section 1.1.2) is shown in Figure 4.1. The core

is divided radially into six regions. The reflector is modeled as a

single region, as are the core barrel, side plenum (void region between

the core barrel and reactor vessel), and the reactor vessel. A

convective heat transfer coefficient is specified on the outer surface

of the reactor vessel, and the temperature of the surrounding

environment is given as 150°F (338.7 K) following a depressurized loss

of forced convection accident.

The following assumptions were made in modeling the system:

1) the density of each material is constant;

2) the core is treated as a homogeneous region of graphite -

the graphite density in the matrix is smeared over the entire

core volume;
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3) the emittances of the core barrel and reactor vessel (on

inner surface) are assumed to be 0.8;

4) the core barrel is 304 stainless steel, and the reactor

vessel is 2-1/4 Cr : 1 Mo steel;

5) heat transfer through the side plenum is by radiation alone;

6) the fast neutron fluence in the reflector is negligible;

7) heat is transferred from the vessel to the environment

by natural convection and radiation only; and

8) no heat is generated outside of the active core.

Although the active core and the reflector are both graphite,

they have different densities and are thus treated as different

materials by SHERLOC. The volume-averaged core density is 1195.5

^ 3
kg/m , and the density of the reflector is 1394.8 kg/m . These

densities were obtained from values of carbon number densities in the

core and reflector supplied by GA. The material properties which

were used are given in Section 4.3.

The volumetric heat generation in the core is given by:

P(r,t) = PQ(r)f(t) (4.1)

where

3
P (r) = initial power density at radius r(W/m )
o

f(t) = decay heat fraction at time t

The decay heat fraction was determined as follows [15]:

f(t) = 0.128(t + 3.796xl0"V0,261 (*-2)
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where

t = time after accident initiation (seconds)

The decay heat fraction as a function of time is shown in Figure 4.2

Of primary interest is the peak temperature reached in the core

during the transient. Also of interest are the effects of varying

the power density and initial temperature distributions. To investigate

these effects, the core was divided axially into eight regions, each

with a height of 79.25 cm, and calculations were performed at axial

regions 1 (bottom of core), 3, 4 (just below core mid-plane), and

5 (just above core mid-plane). One would expect the peak transient

temperature to occur where the power density is greatest. The power

density peaks in axial region 4; therefore axial region 4 was chosen as

the reference case.

In addition to the power density and initial temperature effects,

the impact of using a fluence-dependent graphite thermal conductivity

was investigated. This was done by simply neglecting the fluence in

axial region 4 and comparing the results to the reference case (with

fluence). In the cases discussed above, heat transfer from the vessel

occurred via convection and radiation only, with a combined heat

2 2
transfer coefficient of 5.0 Btu/hr ft °F (28.4 W/m -K). To determine

the effect on the transient of an active vessel cooling system, a case

was run in which the heat transfer coefficient on the surface of the

vessel was 150 Btu/hr ft2 °F (851.7 W/m2K) [16].

The effect of small gaps between the prismatic fuel assemblies

was studied by placing 0.1-cm-wide gaps every 36 cm radially in the

core. (The prismatic fuel assemblies are 36 cm across flats.) These
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calculations were performed at axial region 4. Heat was assumed to be

transferred by conduction through the helium in these gaps, and no

heat was generated in the gaps.

In order to compare the behavior of a prismatic core and a

pebble-bed core under the same initial conditions and configuration,

the prismatic core was replaced by a pebble-bed core and calculations

were performed using the conditions of the reference case. The pebbles

were assumed to be 6 cm in diameter, have an emittance of 0.8, and a

3
graphite density of 1.70 gm/cm . The volume fraction of pebbles to

the entire core was 0.61; thus the volume-averaged core density was

1037 kg/m3.

A summary of the reference case and the sensitivity studies

performed is given in Table 4.1. The steady-state radial power density

(P in equation 4.1) and temperature distributions for the various

axial locations of interest are given in Table 4.2 and 4.3,

respectively. The radial neutron fluence distribution which was assumed

for all axial locations is given in Table 4.4

4.2 Pebble-Bed Modular HTGR Model

The modular pebble-bed reactor which was studied is similar to

the one proposed by GHT (see Section 1.1.2). The model used was

adapted from a study of the depressurized heatup accident in the

pebble-bed reactor performed by General Electric [17]. The model used

is shown in Figure 4.3, and consists of 11 radial regions; 6 in the

core, 2 in the reflector, and 1 each for the core barrel, side plenum,

and reactor vessel. Heat is removed from the surface of the vessel by

radiation alone to the cooling coils located on the inner surface of
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Table 4.1

Summary of Prismatic Modular HTGR Cases Analyzed
Using SHERLOC

Case Description

1 - Reference Case Axial region 4 - just below core midplane
location of peak axial power density

2 Axial region 5 - just above core midplane

3 Axial region 3

4 Axial region 1 - bottom of core

5 Axial region 4 - neutron fluence neglected

6 Axial region 4 - active vessel cooling
h = 150 Btu/hr ft2 °F - 851.7 W/m2K

7 Axial region 4-0.1 cm, helium filled
gaps between fuel assemblies in core

8 Axial region 4 - replacing prismatic fuel
with 6 cm DIA fuel pebbles
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Table 4.2

Steady-State Radial Power Density Distributions at
Various Axial Locations in the

Prismatic Modular HTGR

Axial Region

Radial Region

6.82 W/cc 7.76 Wcc 7.82 W/cc 3.93 Wcc

6.71 7.64 7.69 3.87

6.07 6.91 6.95 3.50

6.17 7.03 7.08 3.56

5.42 6.17 6.22 3.13

4.46 5.07 5.11 2.57
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Table 4.3

Steady-State Radial Temperature Distributions at
Various Axial Locations in

the Prismatic Modular HTGR

Axial Region 1 3 4 5

Radial Region

1 732.24 °C 915.34 °C 1037.74 °C 1093.3 °C

2 732.24 915.34 1037.74 1093.3

3 732.24 915.34 1037.74 1093.3

4 693.34 839.84 937.74 954.44

5 693.34 839.84 937.74 954.44

6 693.34 839.84 937.74 954.44

7 482.24 542.94 586.44 586.44

8 482.24 482.24 482.24 482.24

9 420.0 420.0 420.0 420.0

10 260.0 260.0 260.0 260.0
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Table 4.4

Radial Neutron Fluence Distribution Assumed
for the Prismatic Modular HTGR

Radial Region Fluence (xlO21 n/cm2)

5.48

5.48

4.94

4.45

3.90

2.95
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the confinement building. The cooling coils are assumed to remain at

a constant temperature of 50°C throughout the transient.

The following assumptions were made in modeling the system:

1) the density of each material is constant;

2) the density of the graphite in the pebbles was smeared

over the entire core to obtain an effective core density;

3) the pebbles have diameters of 6 cm and emittances of 0.8;

4) the volume fraction of pebbles to the entire core is

(!ne|bles) =^ .
core

5) the emittances of the core barrel and reactor vessel are 0.8;

6) heat transfer is via radiation alone through the side

plenum;

7) the core barrel is of 304 stainless steel, and the reactor

vessel is 2-1/4 Cr : 1 Mo steel;

8) the fast neutron fluence in the reflector is negligible;

and

9) no heat is generated outside of the core.

The volume-averaged density of the core is 1037.0 kg/m3,

assuming a pebble graphite density of 1.70 gm/cm3 [17]. The density

of the reflector was assumed to be the same as the density of the

prismatic core reflector, namely, 1394.8 kg/m3. The other material

properties which were used are discussed in Section 4.3.

The time- and space-dependent volumetric heat generation in the core

was determined using equation (4.1), where f(t) is given by [18]:
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f(t) =0.0622[t"°-2 - (t + e.l84xl07)"0-2] (4.3)

where

t = time after accident initiation (seconds)

The decay heat fraction f(t) for the pebble-bed core is shown

graphically in Figure 4.4.

As with the prismatic HTGR, the reference case for the pebble-bed

reactor was taken at the axial location of the peak power density -

185.2 cm below the ball fill (top of core). The height of the core

is 926 cm, and if one takes the origin (z=0.0) at the top of the core,

the peak axial power density occurs at z/H-0.2. In addition, cases

were studied at z/H=-.3 and z/H=1.0 (bottom of the core). Since the

pebbles and coolant are flowing downward through the core, the power

is peaked towards the top and the steady-state temperature is greatest

at the bottom of the core.

The functions used for graphite thermal conductivity and heat

capacity by GE in their two-dimensional study were different than the

functions used here. To examine the effects of performing a 1-D

calculation versus a 2-D calculation, the GE conductivity and heat

capacity were used in SHERLOC for z/H=0.2 and z/H=0.3. The GE graphite

thermal conductivity function for the pebble-bed core is [18]:

k(T) = 1.1536xl0"6(T + 100)1-6622 (4.4)

where

k(T) = temperature dependent thermal conductivity (W/cm °C)

T = temperature (°C)
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The heat capacity of the core is given as [18]:

pCp(T) = Pq 1.75[0.645 +3.14 (^) -2.809 (j^)2

+ 0.959 (j^q)3] (4.5)

where

p = pebble volume fraction = 0.61

T = temperature (°C)

pC (T) = heat capacity (J/cm °C)

The actual values of the properties used by GE for the core barrel

and reactor vessel were unknown; therefore, the properties given in

Section 4.3 were used. These may be somewhat different than the

values used in the GE study.

A summary of the cases studied for the pebble-bed reactor is

given in Table 4.5. The steady-state radial power density (P in

equation 4.1) and temperature distributions for the axial locations

investigated are given in Tables 4.6 and 4.7, respectively. The

assumed radial neutron fluence distribution is given in Table 4.8.

4.3 Materials Properties

4.3.1 Graphite

The densities used for the graphite pebble-bed and prismatic

cores and the reflector are given in the preceding section. The

graphite thermal conductivity was calculated using the correlation

described in Section 2.4, and the effective pebble-bed conductivity

was determined using the modified Zehner-Schlunder equation of
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Table 4.5

Summary of Pebble-bed Modular HTGR Cases Analyzed
Using SHERLOC

Case Description

1 - Reference Case z/H = 0.2 - location of peak axial
power density

z/H « 0.3

z/H = 1.0 - bottom of core
maximum initial temperatures

z/H =0.2 using GE core conductivity and
heat capacity functions

z/H =0.3 using GE core conductivity
and heat capacity functions
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Table 4.6

Steady-State Radial Power Density Distributions
at Various Axial Positions in the

Pebble-bed Modular HTGR

Distance Below

Ball Fill (cm)
185.2(jj = 0.2) 277.8(£ = 0.3) 926.0(£ = 1.0)

H

Radius (cm)

0.0 8.21 W/cc 7.37 W/cc 0.76 W/cc

40.0 8.01 7.19 0.74

80.0 7.24 6.50 0.66

101.0 6.67 6.00 0.60

106.0 7.33 6.55 0.64

124.0 6.87 6.13 0.58

145.0 6.96 6.17 0.54
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Table 4.7

Steady-State Radial Temperature Distributions at Various
Axial Positions in the Pebble-bed Modular HTGR

Distance Below

Ball Fill (cm)
185.2 (f = 0,

£1
•2) 277.8 (§ - 0,

n
.3) (f-1.0)

Radius (cm)

0.0 582.0°C 699.0°C 1020.0°C

20.0 579.0 695.0 1010.0

40.0 572.0 684.0 995.0

60.0 560.0 668.0 974.0

80.0 544.0 647.0 950.0

101.0 539.3 639.5 935.9

106.0 538.5 638.1 933.6

124.0 536.0 634.0 927.0

145.0 531.0 628.0 917.0

170.0 466.0 545.0 772.0

194.0 399.0 463.0 644.0

220.0 319.0 372.0 518.0

245.0 310.6 359.3 487.5

248.0 309.0 357.0 482.0

266.0 241.5 279.5 384.5

270.0 220.0 255.0 354.0

282.0 213.0 246.0 334.0
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Table 4.8

Radial Neutron Fluence Distribution Assumed

for the Pebble-bed Modular HTGR

21 2
Radial Region Fluence (xlO n/cm )

5.48

4.90

4.50

4.50

3.90

2.95
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Section 2.5. The thermal conductivity of the graphite reflector was

2
calculated assuming a neutron fluence of 0.0 n/cm . The specific heat

(C ) of graphite as a function of temperature [11,19] is shown in

Figure 4.5.

4.3.2 304 Stainless Steel [20]

The core barrel was modeled as 304 stainless steel for both

the pebble-bed and prismatic reactor designs. The density of 304

3
stainless steel was taken as a constant value of 7800 kg/m . The

temperature-dependent thermal conductivity and specific heat functions

are given in Figures 4.6 and 4.7, respectively.

4.3.3 2-1/4 Cr : 1 Mo Steel [20]

2-1/4 Cr : 1 Mo steel was used in the reactor vessel for

3
both reactor types. A constant value of 7675 kg/m was used for the

density. The temperature-dependent thermal conductivity and specific

heat functions are given in Figures 4.8 and 4.9, respectively.

4.3.4 Helium [21]

Properties of helium were required for Case 7 in the prismatic

HTGR study, in which small gaps (filled with stagnant helium) between

fuel assemblies were modeled. Since the reactor was assumed to be

depressurized in this study, properties were taken at a pressure of

1 atm (1.01325 bar). The specific heat (C ) was given as a constant

value of 5195 J/kg K.

The thermal conductivity may be determined using the following

correlation:

k(p,T) = 2.682xl0_3(l +1.123xl0"3 p)T0.71(1-2x10-%) (4.6)
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where

p = pressure (bar)

T = temperature (K)

k(p,T) = thermal conductivity (W/m K)

The helium thermal conductivity as a function of temperature at 1.01325

bar is plotted in Figure 4.10.

The density of helium is calculated using the following

correlation:

(n Ti - 48.14(P/T) - „(P'T) -(1+o^ <">
T

where

p • pressure (bar)

T = temperature (K)

3
(p,T) = density (kg/m )

Helium density is plotted as a function of temperature at 1.01325 bar

in Figure 4.11.

Equations (4.5) and (4.6) are valid in the range 1 bar < p < 100

bar and 20°C < T < 1500°C; however,they were assumed to be valid for

temperatures up to ^ 2200°C for the purposes of this study. The values

of helium conductivity and density obtained from equations (4.5) and

(4.6) at temperatures greater than 1500°C were within 3.7% of the

corresponding values reported in Reference 22.
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5. RESULTS AND CONCLUSIONS

5.1 Solid Graphite and Pebble-Bed Thermal Conductivities

As previously shown in Figure 2.2 (Temperature- and Neutron-

Fluence-Dependent Graphite Thermal Conductivity), radiation damage

to graphite causes a significant reduction in the thermal conductivity

of graphite. It should be noted, however, that fluences greater than
21 2

3x10 n/cm result in little further reduction of the conductivity.

At high temperatures (T > 1500°C), the graphite conductivity becomes

independent of the fluence.

Because heat transfer via radiation is effective only at high

temperatures, the effective thermal conductivity of a pebble-bed

predicted by the modified Zehner-Schlunder model is lower than that

of a prismatic core at temperatures below 1750°C. Figure 5.1 shows

the thermal conductivity of a pebble-bed as a function of temperature

(at a neutron fluence of 0.0 for illustrative purposes). The pebbles

were assumed to be 6 cm in diameter, have an emissivity of 0.8, and

the porosity (<p in equation 2.57) of the pebble-bed was 0.39. These

are the same conditions used in the analysis of the pebble-bed reactor.

At temperatures above 1750°C it is seen that radiation becomes the

dominant mechanism of heat transfer, and the effective pebble-bed

conductivity exceeds that of solid graphite. In addition, due to the

more significant effect of thermal radiation (either as a resistance

to or a mode of heat transfer) in a pebble-bed, the effect of neutron
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radiation damage on the effective conductivity is much less pronounced

( < 15%) than on the conductivity of solid graphite.

5.2 Prismatic Modular HTGR

The peak temperature reached and the time after depressurization

until peaking for the prismatic HTGR cases outlined in Section 4.1

are summarized in Table 5.1. The GA study, using a two-dimensional

model, calculated a peak temperature of 2093°C at axial region 3

occurring 26 hours after reactor trip [16]. Using a one-dimensional

model at various axial planes, we found the peak temperature to be

2152.28C in axial region 4 occurring 38 hours after reactor trip -

a difference in peak temperature of 3%.

The reason for the differences in the axial location of the peak

and the time until peaking between the GA analysis and this study is

that SHERLOC neglects heat transfer in the axial direction. The axial

peaking factors of axial regions 3, 4, and 5 are 1.48, 1.49, and 0.75,

respectively. Therefore, one would expect considerable heat loss

from axial region 4 to the region above it (5) even though axial region

5 is initially at a higher temperature. Figure 5.2 shows the response

of the center-line temperature through the transient for the Reference

Case (axial region 4), and axial regions 1, 3, and 5. Due to the low

power density in axial region 5, it is seen that the temperatures

during the transient are quite low; peaking at only 1430.86C. Since

the GA study was performed in two-dimensions, it accounted for this

heat loss in the axial direction and produced the peak temperature in

axial region 3. Thus the peak temperature predicted by SHERLOC in axial
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Table 5.1

Summary of Results of Depressurized Heatup
Accident Analyses for the Prismatic HTGR

Description of Case Peak Temp.

(°C)
Time of Peak

(hours after
initiation)

GA General Atomic (2-D) 2093 26

1 Reference case

region 4
- Axial 2152.2 38

2 Axial region 5 1430.8 14

3 Axial region 3 2144.4 42

4 Axial region 1 _ 1952.3 46

bottom of core

Axial region 4 -

neutron fluence

neglected

Axial region 4 -
active vessel

cooling

Axial region 4 -
with He gaps

Replacing prismatic
core with

pebble-bed

1947.9 40

2108.7 30

2252.9 40

2172.4 24
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region 4 is probably somewhat high, and the peak temperature in

region 5 is somewhat low.

The radial temperature distribution at axial position 4 at various

times following the accident initiation is shown in Figure 5.3. The

reflector temperature reached a maximum of 1185.7°C at 65 hours, and

the reactor vessel peak temperature was 649.7°C at 80 hours.

The effects of the power densities and initial temperatures are

of interest. Axial region 5 was at a 5% higher initial temperature

and a 50% lower power density than was axial region 4. The resulting

transient was much less severe at axial region 5 than for region 4.

Conversely, axial region 1 (bottom of core) was at a 30% lower

initial temperature and a 13% lower power density than was axial

region 4. While the transient was less severe than for axial region 4,

the peak temperature of 1952.3°C was 36% higher than the peak

temperature in axial region 5. It is evident that the power density

is a greater factor in the peak temperatures than is the initial

temperature.

It is interesting to note the differences in the time until

peaking for axial regions 1, 3, and 4. As seen in Table 4.3, the

initial radial temperature distribution is flattest for axial region

1, and steepest for axial region 4. The flatter the radial temperature

distribution, the slower the temperature will change with time.

Referring to equation (2.33), as AT/Ar decreases, AT/At will also

decrease. Thus for a flatter initial radial temperature distribution,

the time until reaching the peak temperature will increase. This is

seen in that the temperatures of axial regions 1, 3, and 4 peak at 46

hours, 42 hours, and 38 hours, respectively.
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The neutron fluence has a significant effect on the graphite

thermal conductivity, as seen in Figure 2.2. Neglecting the effect

of irradiation in determining the graphite conductivity causes the

predicted peak temperature to decrease by 10%, and produce little

effect on the time until peaking, as seen in Table 5.1. Since the

graphite conductivity is fairly independent of fluence above 1500°C, the

effect on the predicted temperatures would be greater for a transient

which produces lower temperatures. Neglecting the effect of radiation

damage on the graphite conductivity produces non-conservative results.

When active vessel cooling was considered (Case 5 - h = 851.7

2
W/m K), the maximum temperature was decreased by only 2%; however,

the time until peaking was decreased by 8 hours. This indicates that

the maximum core temperature is fairly insensitive to vessel cooling,

but that steady-state will be reached sooner with an active vessel

cooling system. These results are consistent with results reported in

the GA study. Their analysis indicated a decrease in the maximum

temperature of less than 1%, and that steady-state would be reached

sooner with vessel cooling [16].

The result of modeling small helium-filled gaps between prismatic

fuel assemblies was to increase the predicted peak temperature by 5%.

Thus it is important to model the gaps if they are known to be present.

Finally, to exa%Lne the effect of the Zehner-Schlunder model for

effective pebble-bed conductivity, the replacement of the prismatic

fuel with pebbles 6 cm in diameter was simulated. The core graphite

3 3
density was decreased from 1195.5 kg/m to 1037 kg/m . All initial

conditions and reactor dimensions were left the same as for the

Reference Case. The peak temperature predicted increased by only
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20.2°C (1%); however, the time until peaking decreased by 14 hours.

Initially the effective pebble-bed conductivity is lower than the

conductivity of solid graphite, but the depressurized transient

produces temperatures which are high enough to cause heat transfer

via radiation to become more effective than heat transfer by conduction.

Therefore, the peak temperatures predicted are very similar. Because

the pebble-bed conductivity increases rather than decreases with

temperature (see Figure 5.1), the pebble-bed heat capacity is lower

than the prismatic, and the temperatures themselves are higher than

in the prismatic core, the change of temperature with time is greater

for the pebble-bed case and the temperature peaks earlier.

5.3 Pebble-Bed Modular HTGR

The peak temperature reached and the time after depressurization

until peaking for the pebble-bed HTGR cases outlined in Section 4.2

are summarized in Table 5.2. The GE study predicted a peak temperature

of 1644°C at an axial position of z/H=0.3 (z=0.0 at top of core;

H=926 cm) occurring 27 hours after reactor trip [17] . This study found

the peak temperature to be 1647.8°C at z/H=0.2 occurring 26 hours after

reactor trip - a difference in peak temperature of less than 1%.

As was the case for the prismatic HTGR comparison, the difference

in the axial location of the peak temperature is due to two-dimensional

effects, which are not considered by SHERLOC. Figure 5.4 shows the

response of the center-line temperature throughout the transient at

the following axial positions: z/H=0.2, 0.3, and 1.0. It should be

noted that although the initial temperature is highest at the bottom

of the core (z/H=1.0), the power density is low enough that the
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Table 5.2

Summary of Results of Depressurized Heatup Accident
Analyses for the Pebble-Bed HTGR

Case Description of Case Peak Temp. Time of Peak
(°C) (hours after

initiation)

GE General Electric (2-D) 1644 27

1 Reference case - z/H =0.2 1647.8 26

2 z/H - 0.3 1583.8 24

3 z/H = 1.0 - bottom of core 1020 0.0

z/H = 0.2 - with GE k & pC 1653.1 24
correlations ^

z/H = 0.3 - with GE k & pC 1616.2 24
correlations p
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temperature merely decreases throughout the transient. This is

consistent with GE's findings [17]. Figure 5.5 shows the radial

temperature distribution at z/H = 0.2 at the time of the peak

temperature.

In order to investigate the differences produced by 1-D versus

2-D calculations, SHERLOC was run at z/H =0.2 and 0.3 with the GE

thermal conductivity and heat capacity functions given by equations

(4.3) and (4.4), respectively. The results are included in Table 5.2.

In comparing the 1-D calculation using the GE correlations to GE's

2-D study, little difference is seen. The pebble-bed axial power

profile is such that little error is introduced by considering only

one dimension.

The peak temperature calculated was higher than that calculated

using the Zehner-Schlunder conductivity model and the graphite specific

heat of Figure 4.5. The reason for this is that the conductivity

correlation used by GE (a function of temperature only) is more

conservative than the combined graphite conductivity correlation of

Section 2.4 and Zehner-Schlunder model. Figure 5.6 compares the thermal

conductivity calculated within SHERLOC for a range of irradiation

21
temperatures (initial fuel temperatures) at a fluence of 3.0x10

2
n/cm and the thermal conductivity produced by the GE correlation.

Because the GE conductivity is somewhat lower, the temperatures

calculated are higher.
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6. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY

6.1 Summary

The computer code SHERLOC has been developed to perform a one-

dimensional evaluation of the heat removal capabilities of modular

HTGR designs under depressurized loss-of-forced-convection conditions.

Although developed for this specific purpose, SHERLOC may of course

be used for many other types of transient or steady-state heat

transfer problems. The depressurized heatup accident was analyzed

for both pebble-bed and prismatic-core modular reactors; and the

results compared with studies performed by GE and GA, respectively.

In addition, several studies were performed to determine the effects

on the behavior of the transient of initial temperatures, power

density, neutron fluence; of small helium-filled gaps between prismatic

fuel assemblies; and of replacing the prismatic core with a bed of

graphite pebbles.

For the prismatic HTGR, a peak fuel temperature of 2152.2°C

occurring 38 hours after the accident initiation was calculated

using SHERLOC. The GA study indicated a peak fuel temperature of

2093°C occurring 26 hours after accident initiation - a peak

temperature difference of 3%. For the pebble-bed HTGR, a peak fuel

temperature of 1647.8°C occurring 26 hours after accident initiation

was calculated using SHERLOC; while GE reported a peak fuel temperature

of 1644°C (a difference of less than 1%) at 27 hours following the

accident initiation.
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The primary reason for the discrepancy between the results

obtained using SHERLOC and those obtained by GA and GE is that

SHERLOC performs a one-dimensional analysis, while the codes used

by GA and GE perform two-dimensional calculations. In addition, small

discrepancies in the problem models and the correlations used for

the properties of materials contribute to differences in the results.

The power density was found to have a greater effect on the

magnitude of the temperature excursion than did the initial

temperature. The peak temperature was calculated using SHERLOC

at the axial location of the highest power density, regardless of

the location of the highest initial temperature. Including small

gaps between fuel assemblies in modeling the prismatic reactor

produced a 5% increase in the peak temperature.

If the effect of radiation damage on the graphite conductivity

in a prismatic core is neglected, the resulting peak temperature

is decreased by 10%. Thus it is concluded that the exposure to the

neutron flux should be considered in determining the response of the

prismatic HTGR. It was also seen that at high temperatures (T >

1500°C), the graphite conductivity was independent of the fluence.

If one were modeling a transient in which temperatures were expected

to remain lower than 1500°C, the neutron fluence would play an even

more important role in predicting accurate results.

Because SHERLOC performs a one-dimensional analysis, its results

are the most accurate when the axial power or temperature gradients

are fairly small. The one-dimensional calculation will predict a

conservative value of the peak core temperature in the depressurized
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heatup accident, but it will not necessarily give the exact axial

location or time until peaking.

6.2 Recommendations for Further Study

Further investigation into the thermal conductivity of graphite

at high temperatures should be pursued. The data strings for the

correlations given in Section 2.4 were extrapolated for temperatures

above 1600 K; while reasonable results were obtained, more specific

information at high temperatures is desirable. Also, in this study

the core of the prismatic HTGR was assumed to be solid (except for the

sensitivity study involving gaps between assemblies). The core

actually contains coolant holes and other penetrations. It would be

of interest to develop a more detailed model which would account for

the heterogeneity of the prismatic core.

Several modifications could be made to SHERLOC to provide greater

versatility in problems which may be modeled and in the accuracy of

the results; these changes are as follows:

1) SHERLOC should be expanded to perform a two-dimensional

analysis. The actual changes to the finite-difference

equations and solution techniques would be fairly straight

forward, but the coding changes involved in modifying the

solution techniques and modeling a two-dimensional problem

would be more complex.

2) Boundary condition options for a constant temperature or

a constant heat flux should be added.
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3) It would be helpful for the code to use a variable time

step in order to reduce the code running time and increase

the accuracy of the results. A small time step should be

used when parameters are changing rapidly with time, and a

larger time step when the response of the system is

changing slowly.

4) The initial (steady-state) temperature distribution of the

problem must be specified for a transient problem; it would

be useful to have the code calculate the initial temperature

distribution internally.

5) The code should be made more "user-friendly," with more

versatility and ease in the input. Although the input is

fairly straightforward (see Appendix C), it would be

convenient to have the option of specifying all distri

butions (temperature, power density, properties, etc.) as

either tables or analytical functions. Also, it may be

useful to make the input free-format rather than formatted.

6) An option should be included to allow for heat transfer

by radiation and/or conduction across gas gaps.

7) Finally, it would be of interest to adapt the code to allow

coolant flow through the core. In normal, steady-state

operation, heat transfer within the core is via forced

convection of the helium coolant. In a pressurized, loss-

of-forced-circulation transient, heat is removed from the

core by natural circulation as well as conduction and

radiation. Modeling coolant flow through the core would

greatly expand the range of applicability of SHERLOC.
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APPENDIX A

Derivation of the Steady-State
Finite Difference Heat Transfer Equations
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The one-dimensional, steady-state, finite difference heat transfer

equations must be derived in rectangular and cylindrical geometries at

each of the following unique types of mesh points:

1) origin (assumed to be an adiabatic boundary);

2) a point within a given material;

3) the interface of two different regions, each of which

contains a material;

4) the left-hand (inner) boundary of a void region;

5) the right-hand (outer) boundary of a void region;

6) the outermost boundary

The steady-state heat balance on a control volume V is:

Heat entering V through

the boundaries of V

Heat generated

within V

This heat balance is performed for each of the six unique types of

mesh points given above. Figures A.l through A.12 show each of the

points in rectangular and cylindrical coordinates. The control

volume about mesh point i, or the mesh interval, is defined as the

interval enclosed by the dashed lines in Figures A.l through A.12.

A.l Rectangular Coordinates

The one-dimensional, steady state, conduction equation in

rectangular coordinates is:

k(T)^+g(x) -0
dx

(A.l)
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The derivation of the finite difference form of equation (A.l) at each

of the six unique types of mesh points in rectangular coordinates

follows.

1) Origin ,

.! ax
2

i+1

Figure A.l

Mesh Interval at the Origin - Rectangular Coordinates

Performing a heat balance on mesh point i of Figure A.l yields

the following finite difference equation:

where

iKi+l

Simplifying:

iKi+l Ax
(Ti+i-V Ax

-8± -J (A.2)

thermal conductivity between mesh points i and i+1

average volumetric heat generation in the mesh
interval defined by i

"iKi+l Ti + iKi+lTi+l • "g.
(Ax)'

i 2
(A.3)
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2) Mesh Point Within a Material

i-1

-^— Ax—*

Ax ^— '

Ax

i i+1

•

Figure A.2

Mesh Interval Within a Material - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i of

Figure A.2 is:

where

(Ti-l~Ti) (Ti+rV
iKi-l Ax + 'K- -J±L-±-i i+1 Ax

-g±(Ax) (A.4)

iKi_^ = thermal conductivity between mesh points i and i-1.

Manipulating equation (A.4) yields:

iKi-l Ti-1 " (iKi-l + iKi+l>Ti + iKi+lTi+l " ~h(Ax) (A-5)
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3) Interface of Two Materia Regions

i-1

i Al

'I T

I

I

Al

A2

r
j

A2 i+1

Figure A.3

Interface of Two Material Regions - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.3 is:

<Ti-rV
iKi-i a"; + iKi+i

(Ti+rV A +\ (A.6)

i+1 =1K+VA, Ti-1 ( Ar A0 ;ii + A_

A T. A
2 ..K, ,T. , -(,K, ,L., + ,K.^A-,),.. X. , + .K..X(A^) 1*1-1*1-1 "vi'l-r2 ' ri+lul/(A1+A2) (Ax+A2) i i+1 i+1

" -8-.
A1A2

i 2
(A.7)
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4) Inner Boundary of a Void Region

VOID

i-1 i+1

Figure A.4

Inner Boundary of a Void Region - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.4 is:

where

T -T
i-1 i

.K. n A1 + h (T_-T.) =
i i-I Al r i+1 i

Al

"h 2 (A.8)

"12

radiative heat transfer coefficient from the surface

at mesh point i to the surface at i+1

.K, ,T. n - (.K. . + h A.)T. + h A^.,,
l i-1 i-I l i-1 r 1 l r 1 i+I

= -g

(Ax)'
i 2

(A.9)
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5) Outer Boundary of a Void Region

A.,

i-1 i+1

Figure A.5

Outer Boundary of a Void Region - Rectangular Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.5 is:

h (T, -T.) + .K...
r-.. i-1 i i i+1

where

T -T
i+1 i

= "g
i 2

(A.10)

21

radiative heat transfer coefficient from surface at

mesh point i to surface at i-1

(A )'

hrnA2 Ti-1 "Chr21 A2 +iKi+l)Ti +iKi+lTi+l =~h — (A.11)
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i-2 i-1

117

Ax

Ax

2

Figure A.6

Mesh Interval at the Outermost Boundary
Rectangular Coordinates

• T
oc

The finite difference form of the heat balance on mesh point i

of Figure A.6 is:

where

T -T

i i-1 Ax
+ hT (T^-T^ Ax

"8i 2

h = total heat transfer coefficient (sum of radiative

and convective heat transfer coefficients)

T = ambient temperature

,K4_-J4_-, " (,K,_-, + K Ax)T4 = -g,
(Ax)'

i"i-n-l vi"i-l '"T "**'*! 6i 2 " hT Ax T»

(A.12)

(A.13)
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A.2 Cylindrical Coordinates

The one-dimensional, steady-state, conduction equation in

cylindrical coordinates is:

HT)ilM_ +k^d££L + g(r) =0 (A.14a)
dr

which may be rewritten as:

k(T) 7 ^ (r ^f~) +gU) - 0 (A. 14b)

1) Origin

Figure A.7

Mesh Interval at the Origin

Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.7 is:

T -T. _

2Trr .K... 1 7 X = -tt r g. (A. 15)
a l i+I Ar a 6i

where

Ar

ra = ~2

-iKi+i+ iKi+i Ti+i = -H^ir- (A-16)
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2) Mesh Point Within a Material

i-1;

rA vri ^rb
v \ *
* !„l Ax— "*— a4
1 2 1

/ / /
; / 'J ±1 l

Figure A.8

i+1

Mesh Interval Within a Material - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.8 is

(T -T ) (T -T )
i v i-1 i . , v i+1 i2irr .K. , — + 2irrt _.K,

a i i-1 Ar b i i+1 Ar

where

, 2 2,
8i *<rb "ra >

(A.17)

r
a

=

ri"
Ar

2

rb =
j. Ar

ri + T

2 2

b a
= 2r± Ar

(r -Ar/2)

—^ -K.
Ar l l- lTi -1 "

(r±-Ar/2)
Ar

(r.+Ar/2)
i 1 ... V T — _r» t- A-r

(r±+Ar/2)
iKi-l + AT iKi+l

(A.18)
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3) Interface of Two Material Regions

J i II l
Figure A.9

i+1

Interface of Two Material Regions - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.9 is

Ai (Ti-rV A2 (Ti+rVMr,- -ir)^ , V 1 + 27r(r,+ -/) 4r i+1 i
i 2 'i i-1 A, "i 2 ' i i+1 A,

V

A2 2 A 2
(r±+ T) - U±- T)

(r±-A1/2)
iKi-lTi-l

(r + A,/2)
J. i —~ V T

A. i i+1 i+1

Al jKj-l (rj+ T}
Ui* 2}""AT* + AT iKi+l

it
2

r±(A1+A2) +\{h22-k2)

(A.19)

(A.20)
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4) Inner Boundary of a Void Region

i-1,

\ li \VOID

\ A. \
I 2
I

/
/

i+1

Figure A.10

Inner Boundary of a Void Region - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.10 is

27r(v t>±ki-i ^^+^i hr12(Ti+rV

(r1-A1/2)
iKi-lTi-l

gi ^!
TAi(ri "IT>

(r^/2)
iKi-l+ ri hr

12

g±TT
2 , \2

ri -(V T}

(A.21)

Ti + ri hr T1 12li+1

(A.22)
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5) Outer Boundary of a Void Region

iVOID

/

l-J i+1

Figure A.11

Outer Boundary of a Void Region - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.11 is

^/Vl-V +27T(ri +f> A+l "'A, ^ &1 (ri + T} ~ ri

rihr T
1 r21 xl-l

(r.+A2/2)

r.h + —\ .K...i r2 A2 i i+I

-g1/2A2(ri+-T)

(A.23)

(r +A2/2)

T. + ——. .K-.iT..,
i i» l i+I i+I

(A.24)
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6) Outermost Boundary

Ar 1
2

hp

i-1 r i
a

Figure A.12

Mesh Interval at the Outermost Boundary - Cylindrical Coordinates

The finite difference form of the heat balance on mesh point i

of Figure A.12 is

(T -T.)
2-rrr .K. . —^=—— + 2ttR hm(T -T.) =

a i i-1 Ar T °° i

where

R = radius of outermost surface

r = R - Ar/2
a

R2-r 2 = Ar(R-Ar/4)
a

(R-Ar/2)
Ar i i-1 i-1

(R-Ar/2)
Ar

+ Rh„

2 2- g±ir(R -ra ) (A.25)

g.Ar(R-Ar/4)
+ hmR T

T 00

(A.26)
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APPENDIX B

Derivation of the Time-Dependent
Finite Difference Heat Transfer

Equations
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The one-dimensional, time dependent, finite difference heat

transfer equations must be derived in rectangular and cylindrical

geometries at each of the following unique types of mesh points:

1) origin (assumed to be an adiabatic boundary)

2) a point within a given material

3) the interface of two difference regions, each of which

contains a material

4) the left-hand (inner) boundary of a void region

5) the right-hand (outer) boundary of a void region

6) the outermost boundary

The transient heat balance on a control volume V is

Rate of heat entering V
through the boundaries

of V

Rate of heat

generated

in V

Energy

stored

in V

The heat balance is performed for each of the six unique types of mesh

points given above. Figures A.l through A.12 of Appendix A show

each of the points in rectangular and cylindrical coordinates. The

control volume about mesh point i, or the mesh interval, is defined

as the interval enclosed by the dashed lines in Figures A.l through

A.12.
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B.l Rectangular Coordinates

The one-dimensional, time-dependent, conduction equation in

rectangular coordinates is

k(T) ^T(*?t) + g(x,t) = (T)C (T) T^'t}
3x2 P 3t

(B.l)

1) Origin

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.l is

n+1 n

f r ^ i i Ax
(picPi} ~~Al T

Tn -Tn
n Ax i+1 i

gi 2 i i+1 Ax

Applying the 9-differencing technique described in Section 2.3.1 yields

(Tn+1-Tn) 2 2trs r ->n+9 i i (Ax)^ _ n (Ax)^ fl
(piCpi) ~~Ai 2~" gi~T- +9

+ (1-9)
n+8 . n n.

iKi+ltTi+l V

n+9, n+1 Tn+1.
iKi+lCTi+l"Ti ;

(B.2)

Rewriting equation (B.2) with all the terms evaluated at t , on the

left-hand side

n+8 ,Tn+l Tn+1
iKi+l CTi+l"Ti )

where

Tn+1
n+9 i

At+ (piCpi)
(Ax)'

= H.

V^sr^^^ ,«& «?+1-t°>

(B.3)

(B.4)
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-n+1Collecting the T terms in equation (B.3),

Let

-9( Kn46 Tn+1l +btiKi+l Ti+1} +
a v-n+9 , n+9 (Ax)'

fl „n+9 n+9 (Ax)'
9 iKi+l + tPiCpi) ~1aT

iT - Hl (8.5)

(B.6)

Substituting equation (B.6) into equation (B.5) and solving for Tn+1:

Tn+1 = -L
1 Di Hi +V^l Ti+1 (8.7)

„n+l
Since T±+1 is unknown, the iterative procedure described in section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

Tfl = (1_.)T* +£Hi+ QAH Ti+i (B.8)

2) Mesh Point Within a Material

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.2 is

(Tn+l_Tn}

<P±V At X Ax
(Tn -Tn) (Tn -Tn)

gn Ax + K ^ * + K i+1 igi Ax + iKi-l Ax + iKi+l A^

IB.9)
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Applying the 9-differencing technique described in Section 2.3.1

yields:

(Tn+l_Tn}
(PiCpi)n*W *Afc 1 =gn(Ax)2 +6

At

n+9 n+1 n+1.

iKi-l <Ti-l i ^

+ K**3 (Tn+1-Tn+1)+ iKi+l Ui+1 i ; + (1-9)
n+9, n _Tn. n+9 , n _„n.

l-l (Ti-l Ti} + iKi+l Ui+1 Vii

(B.10)

Rewriting equation (B.l) with the terms evaluated at tn+1 on the left-

hand side:

- 9
n+9 n+1 n+1. n+9 n+1 n+1

iKi-l C i-I i ; i i+1 Ui+1 i '

where

mn
T.2 L±n+9

i " <PiV (AX) AT

+ i^i+l Ui+1 V

n,. N2g±(Ax) (1-9)

.n+1

+9/. s2 i+(Picplrw ^ =h.

n+9 . n n.

iK±-rTi-i V

(B.ll)

(B.12)

„n+lCollecting the T terms in equation (B.ll)

- 0
„n+9 Tn+1 n+9 n+1

iKi-l L±-l i^i+^i+l

n+9 (Ax)'

'"iV*
Tn+1 - HTi " Hi

evfi +tO +

(B.13)



Let

131

Of Kn+6 + Kn+^ + (n r .Q+gCAx)'
°(iKi-l + iKi+l} + (piCpi) ~^T (B.14)

Substituting equation (B.14) into equation (B.13) and solving for

~n+l

Tn+1 = -L
1 "Di Hi + 9(iKi-l Ti-1 + iKi+l Ti+1> (B.15)

..n+1
since T.+1 is unknown, the iterative procedure described in

section 2.3.1 is used. Combining the notation for the iterative

procedure and the point successive overrelaxation method

cj+i - (1-w) Tj + f f n+9 l+l n+9 I .
Hi +9(iKi-l Ti-1 + iKi+lTi+l)

(B.16)

3) Interface of Two Material Regions

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.3 is

(P,C.)

/mn+l _nx . .

(Ti "Ti) ,A1 .A2 n Al .V (Tn -Tn)
^ i-1 V

i pi' At

(Tn -Tn)
v i+1 V

+ J
i i+1 Ar

(T +-) = gt(T +T) + ±K±.
1 An

(Tn+1-Tn) A A A.A. A„
CP.C^) -^—^ -il = gn 4^ + ,K4_, (Tn ,-Tn) 2
i pi' At i 2 i i-1 vi-1 V (A1+A2)

+ ^^(T^-l'?)i 1+1v i+1 i' (Ax+A2)

(B.17)
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Applying the 9-differencing technique described in Section 2.3.1:

, r ,n+9<J^>AlA2 nAlA2 +fl
(piCpi) —& 2" = 8i "T" + 9

n+9 .n+1 n+1. 2

ii-i Ui-r^ ; (ax+a2)

n+9 /Tn+1 Tn+1. 1
iKi+l lTi+l~Ti ;(A1+A2)

T^n+9 ,_n _n.
+ .K.., (T., ,,-IJ

i i+1 v i+1 i' (A+A )

+ (1-9)
n+9 . n n, 2

iKi-l QTi-l"Ti; (al+a2)

(B.18)

Rewriting equation (B.8) with the terms evaluated at T . on the left-

hand side:

- 9
,n+9 ,mn+l mn+l n+9 „n+lx

iKi-l (Ti-l"Ti } (Ax+A2) + (iKi+l"Ti } (Ax+A2)

+(r ^r1 aia2
+ (picPi) "at ~ H, (B.19)

where

. . ,n+9 Ti A1A2 + n A1A2
Hi = (piCpi} AT -2" + 8i ~2~ (l-e)

n+9 , n n. 2

i i-1 (Ti-l~l±} (Ax+A2)

+ ^ (T° -T?)i i+1 'i+1 i' (A1+A2)

Collecting the T. terms in equation (B.19)

Rn+9 Tn+1 + ,Kn^ T*4"1- 9 i i-1 i-1 (A1+A2) i i+1 i+1 (A-j+A^

+ <9
n+9

iKi-l (A +A2) + .K
n+9

i i+1 (Ax+A2) , ,n+9 A1A2 VTn+1
+ (picPi} IaT / Ti

(B.20)

(B.21)

H.
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Let

^ J^. + *»•* Al
i i-1 (A1+A2) i"i-l (A1+A2) + (P,C .)

n+9 A1A2
i pi' 2At

Substituting equation (B.22) into equation (B.21) and solving

C mH+1
for T. :

1

Tr- \\\** ,n+9 2 Tn+^ + *?" 1 Tn+1
i i-1 (Ax+A2) xi-l T i^i+1 (Ax+A2) xi+l

(B.22)

(B.23)

»n+l
Since T is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

rj-i . <!-„,/ + ± { a± +e

+ .K
n+9

i i+1 (Ax+A2) i+1

n+9 2 £+1

i i-1 (A1+A2) Vl

(B.24)

4) Inner Boundary of a Void Region

The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.4 is

(PiCpl)

/mn+l mn. .(T± -T±) Ax
At

A, (Tn n-Tn)

(B.25)
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Applying the 9-differencing technique described in Section 2.3.1:

/Tn+1 Tn.

<picpi)lH* -±ITJL- <Ai>2 - 4 (Ai)2 +29
n+9 , n+1 n+1

iKi-l tTi-l"Ti ;

, n+9 /-Tn+1 Tn+1^+hr12 Al(Ti+rTi > + 2(1-9) iCi "J-i"*? +"£ VW
(B.26)

Rewriting equation (B.26) with the terms evaluated at t - on the

left-hand side:

,n+9 (A1}' n+1
- 26

n+9 ,Tn+l Tn+lv ,n+9 /Tn+1 Tn+1.
iKi-i (Ti-rTi }+hr12 (Ti+rTi >+(PiV "ATTi =Hi

where

__LQ (A,) 0

Hi * (piCpi) "AT- Ti + 8i (A1>

+ 2(1-9)
n+9 ( n ik n+9 , n n

iKi-l ^i-1 V + r AlUi+l V

Collecting the T^ terms in equation (B.27)

- 29
n+9 n+1 n+9 n+1

iKi-l Ti-1 +hru Al Ti+1 29^ +h^A,)

+ (piCpi}
n+9 <*!>'

At
Tf1 - H±

(B.27)

(B.28)

(B.29)
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29(±Kn^ hn4*)
r12
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+ (piCpi)
n+9 <*!>'

At
(B.30)

Substituting equation (B.30) into equation (B.29) and solving for

mn+l

Tn+1
i "l +»<i»£ *£. +*£ 41 O (B.31)

Since T. , is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

Jt+1T.
1

(l-w)T* + zf H. + 29(.Kn4t T*+* + h"*6 A, T* )
i l i-I i-I r „ 1 i+1

(B.32)

5) Outer Boundary of a Void Region

The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.5 is

(Tf1-^) A,
(piCPi) At T

Aon 2

h T hr21(T;-rT? +iKi+l
,^n _nx

(Ti-+rTi)
A2

(B.33)

Applying the 9-differencing technique described in Section 3.2.1:

.n+1 mn

(piCpi}
n+9(Ti -Ti)(A2> n(A„)g~ ^2, + 2Q ^ A?(TfJ-Tfl)r21 2 i-1 1At

+ Kn4€ (Tn+1-Tn+1)+ iKi+l <Ti+l Ti ' + 2(1-6) "£ V^-r1? +/"« (Ii+rT?> (B.34)
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Rewriting equation (B.34) with the terms evaluated at t ,., on the left-
n+1

hand side:

- 29
n+9 n+1 n+1 n+9 . n+l_ n+1

r21 2 i_1 * i 1+1 i+1 i
(B.35)

where

Hi-<PicPi)BWTT-T;+'5cA2>2 +«M> hn4€ A (Tn -Tn)r21 a2ui+l V

+iC ^+rT?>

Collecting the t. terms in equation (B.35)

- 29

Let

hn+6 A„ Tf} + .Kn4j T^r21 2 i-1 i i+I i+1 29(h^A2 +1K^)

D, = 29

n+9 <A2>'
+ (P-C .)

1 pi At
Tf1 = H.

i l

/•un+9 a ^_ irn+9, , , „ xn+9 (A2^
(hr21 A2 + iKi+l> + (piCpi) ~aT

(B.36)

(B.37)

(B.38)

Substituting equation (B.38) into equation (B.37) and solving for

Tn+1.
i *
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H. + 29 (h?6 A2 Tf} + .£« Tnthi r21 2 i-1 i i+I i+l' (B.39)

-n+1
Since T1+1 is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

„l+l **»< +^ "i +»< *2 & *At tJ«>
(B.40)

6) Outermost Boundary

The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.6 is

8? A?+.K
(Tn -Tn)

1-1 ±- +hT(Ta>-Tn) (B.41)
( n+1 n}

(o C ) —i -L **Wi pi' At X 12 i i-1 Ax

Applying the 9-differencing technique described in Section 2.3.1:

(Tn+1-Tn) 2
n+9 n+1 n+1.

iKi-l(Ti-rTi }

. , n+9 . ,_ _n+l,+ hT Ax(Too-T± ) + 2(1-9) i^i (Ti-rTi) +V^Ax<T~-Ti> (B.42)

Rewriting equation (B.42) with the terms evaluated at t , on the left-
n+1

hand side:

- 29
n+9 . n+1 n+lv xn+9. ,T n+1,

iKi-l (Ti "Ti } + hT Ax(T=o-Ti > Ki pi At i i

(B.43)
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where

H, = (p.C J1146 -^f- Tn + gn (Ax)2 + 2(1-9)
i 1 pi at 1 1

+h^Ax(TM-Tn)

-n+1Collecting the T terms in equation (B.43)

n+9 ,Tn _n,
iKi-i (Ti-rv

26(iK^1Tn^ +h^AxToo) + 28(1K^ +hJ*6Ax)

Let

.n+9 (Ax)'
+ (piCpi) At

-n+1
H,

28(lKf1 +^) +WlCpi^^

(B.44)

(B.45)

(B.46)

Substituting equation (B.46) into equation (B.45) and solving for

™n+l

„n+l Hi +29<iKfiTi-i +hrAxv (B.47)

Since the iterative procedure described in Section 2.3.1 used for all

of the other mesh points it must be used on the outer boundary also.

Combining the notation for the iteratire procedure and the point

successive overrelaxation method:

if1 u->ij ♦ f± H± ♦»(,!*• I^ +hftaV (B.48)
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B.2 Cylindrical Coordinates

The one-dimensional, time-dependent, conduction equation in

cylindrical coordinates is

K(T) 1%^ +k(T) ii%^ +g(r,t) =p(T)C (T) ^^l (B.49a)
8r

r 3r 8t

which may be rewritten as

K(T) i ± (r 9T(arr>t}) +e(r,t) =p(T)Cp(T) ^^ (B.49b)

1) Origin

The finite difference form of the time-dependent heat balance on

mesh point i of Figure A.7 is

( n+1 n n n
. r . v i V ,Ar.2 n ,Ar,2 . _ Ar v Ui+1 V
(picPi) Al ^T* - h ^T* + 27r T iKi+i AT

T^-T? .. ,2
(D c )—i t- (Ar)^Pipi; At 2

n (Ar) n n}
gi 2 zi*i+lui+l V

(B.50)

Applying the 6-differencing technique described in Section 2.3.1:

,_n+l _nN
(T. -T.)

(D c )n_f+J —i i- ^iLlPipi; At 2 = Sl^f- + 29

+ 2(1-9)
n+9 . n n

iKi+l Ui+1 V

n+9 .n+1 n+1

iKi+l(Ti+l"Ti ;

(B.51)

Rewriting equation (B.51) with the terms evaluated at T ... on the left-
n+1

hand side:



29

where

n+9 ,Tn+l Tn+1
iKi+l (Ti+l"Ti }
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+^V"" ^
„n+l

= H. (B.52)

2 2
h = fn r ^n+e (Ar) n n (Ar) n .
Hi (picPi) ^att1! + gi ~r~ + 2(1-e) iKm <T*+rT?>

Collecting the T terms in equation (B.52)

2e<tCC> +

Let

26 ,£» + (p.C .)»" -^i i+1 Vhi pi' 2At

(B.53)

T?+1 = H. (B.54)
i i

D. =
l

n+9 , n+9 (Ar)29 .K.+1 + (PiCp.) -1ZF (B.55)

Substituting equation (B.55) into equation (B.54) and solving for

-n+1

-n+1

»i +2e<iCO (B.56)

Since T. ^ is unknown, the iterative procedure described in Section 2.3.1

is used. Combining the notation for the iterative procedure and the

point successive overrelaxation method:

Cj+1 = (1-^tJ + f- H.+29(iKnf1T£i+1) (B.57)
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2) Mesh Point Within a Material

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.8 is

(Tn+1-Tn) (Tn _Tn
fci^ 1At 1 ff<rh-r,> -8><rK"r2) + 2™ ,K. , ^ ii pi At b a °i b a a i i-1 Ar

+ 2™b iKi+l Ar (B.58)

(T^-T?) A (Tn -Tn)
(piV "IT1 (2riAr> =h t2riAr) +2<ri "T>iKi-i -^aT"^

(Tn -Tn)
+2(r. +f) K+1 i+/ *

l 2 i i+I Ar
(B.59)

Applying the 9-differencing technique described in Section 2.3.1:

(T?+1-Tn)
(piV

n+9 v i^-^(2r±Ar) =gn(2r±Ar) +9"'^ ^ B-J^l,
Ar i"l-l Vii-l Ai

+ (2V*r) Kn+9 .-n+1 Tn+1"
Ar iKi+l (Ti+rTi }

(2r.+Ar) _
+ 1 Kn+9 fTn T^s

Ar iKi+l (Ti+l Ti)

+ d-9)

(2r -Ar)
1 Vn+H _n n,
Ar iKi-l Ui-l~V

(B.60)

Rewriting equation (B.60) with the terms evaluated at t , on the
n+1

left-hand side:
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- 9
(2VAr) Kn+9rTn+l Tn+1. . <2V*r> „n+9 n+1 _n+l,

&r~ iKi-i(Ti-rTi } + Ar iKi+i (Ti+rTi >

+<p, ^f^fi^i
Ki pi At 1

where

= H,

m> (2r.Ar)

Hi -(picpi} -AT" T? +gi (2riAr)

+ d-9)

"(2r -Ar) ,n (2r^+Ar) .»
-4— «Kj* (Tn .-Tn) +—4 ,KnT? (Tn+1-Tn)

Ar i i-1 i-1 i Ar i i+I i+1 i

Collecting the T. terms in equation (B.61)

- 9
"(2ri-Ar) „n+9 Tn+1 + (2ri+Ar) Kn+9 n+1

Ar 1 i-1 i-1 Ar i i+1 i+1

n+9 (2riAr)
+ <9

"(2VAr) n+9 + <2ri*r> n46
Ar 1 i-1 Ar i i+1 + <piV At

Let

(B.61)

(B.62)

-n+1

(B.63)

'(2ri"Ar) Kn+9 + <2ri*r> Kn+9 n+9(2riAr)
+ (piVAr i i-1 Ar i i+1 At

(B.64)

n+1
Substituting equation (B.64) into (B.63) and solving for T

-n+1
7T" < H, + 9D± ^ i

'"'f^ K„« Tn+1 + "V*" Kn*S Tn+1
Ar i i-1 i-1 Ar i i+1 i+1

(b!65)
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-n+1
Since T is unknown, the iterative procedure described in Section

2.3.1 us used. Combining the notation for the iterative procedure and

the point successive overrelaxation method:

ri+1 = «-<*< +if \ =± + e (2ri-Ar) Kn+9 T£+l
Ar i i-1 ""i-l

+ (2V*r> Rn+9 Tl '
Ar i^i+1 ii+l (B.66)

3) Interface of Two Material Regions

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.9 is

(p±Cp±) ir
A, 2 A, 2"

(r1+ -£) -(V JL) (if1-!*) n
At

= g± it

Ai ^i-r1^ A2+2*(r±- T) ^ ** +21r(ri+ -f) ^

n(ifX-Tn)

A A 2

(r±+ ^)-(rr -A)

(Tn -Tn)
Ui+1 V

(B.77)

(piCPl) (Ai+A2)(r± +J(A2-A1))
At - g. (A1+A2)(ri +^-(A2-A1))

(T* .-T°) (2r +A-)

+(2W iKi-l -^AT2- +-^ iKi+l (1i+rTi>

Applying the 9-differencing technique described in Section 2.3.1:
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(piCpi)
n+9 (A1+A2)(r±+ ^(A^))

(Tn+1-Tn)
Al

n

" g-r (A1+A2)(ri+|(A2-A1))

+<fl (2ri"Al} ^n+9 /Tn+1 Tn+1^ + (2W „n+9 r„n+l n+1.
+<8 A, iKi-l (Ti-rTi } + A, iKi+l (Ti+l"Ti }

(2r--Ai) ^ (2r.+A.) ^

(B.68)

Rewriting equation (B.68) with the terms evaluated at t +1on the left-

hand side:

(2rJ_nA1) n+e ± , (2ri4A2) „n+9 .n+1 n+1
~9< A, iKi-l (Ti-l_Ti )+ A. iKi+l (Ti+l"Ti }

-. „n+l

+ (piCPi)
n+9 (A1+A2)(r±+ ^(Aj-Ap)

At
= H.

where

„n

(B.69)

Hi • fciV
n+9 (A1+A2)(r±+ J^-A^)

At
gn (A1+A2)(ri+f(A2-A1))

(2r.-An) j. (2r.+A.) ..
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„n+l
Collecting the T. terms in equation (B.69)

- 9
^V Kn+9 _n+l . <2ri*V n+9 n+l"

A, iVl L±-l + A, iKi+l Ti+1 + <9 (2ri^l> -+9
A, iKi-l

, (2W Kn+9*
A. iKi+l

Let

n+9

+ (piCPi) (A1+A2)(r±+i(A2-A1))

"(2ri-Al} Kn+9 +<2W n+9*
An i*i-l + A, iKi+l

n+9

+ (piCPi) (A1+A2)(ri+|(A2-A1))

_L \ Tn+1
At / Li H,

(B.71)

(B.72)

n+1Substituting equation (B.72) into equation (B.71) and solving for T

„n+l

Di ^ X
«V±*1> Vn+B Tn+1 M<2rj+ Vxr^ rrt + —?—^ .Kn_H? t"*1

i i-1 i-1 i i+1 i+1

(B.73)

-n+1
Since T. is unknown, the iterative procedure described in

Section 2.3.1 is used. Combining the notation for the iterative

procedure and the point successive overrelaxation method:

F1 " (1->T"i +^<Hi +°

+ (2ri+A2) n+9 Tl '
A. i i+1 Ti+1

(2VAi> n+9 A+l

iKi-l Ti-1

(B.74)
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4) Inner Boundary of a Void Region

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.10 is:

^iV
21 Vri -(ri" T}

(Tf1-^)
At

n 2 r Vri -(V 1?

A (Tn -Tn)+2ir(V f )iKi_1 ^ 1 +^^(T^)

(piV

-i ,„n+l mnN

(Ti -T? n
At 8iW t> W f >

A,+2<V T> A-i %f^+2'A^W'

(B.75)

Applying the 9-differencing technique described in Section 2.3.1:

n+9

^iV Ai<V T>
(Tn+1-Tn)

At

n

Ai(ri" T>

"(ri-V2) .,n+ ,mn+l mn+lKir" (T"r"-T"'") + r h1^ (Tn+1-Tn+1)Ax iKi-l(Ti-l Ti j i\2 Ui+1 Ll }+ 29

+ 2(1-9)
"(ri-V2) „n+9 ,„n ^

iKi-l Ui-1 V i nr.„ui+l 1J
n+8 ^n ^n,

:12
(B.76)
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Rewriting equation (B.76) with the terms evaluated at t ., on the
n+1

left-hand side:

- 29
,(r1-A1/2) n46 n+l n+i n+9 n+l Tn+1.

a1 iKi-i(Ti-rTi >+rihr12 (Ti+rTi }

n4ft [A (r.-A./4)] .-

where

n+9 —-—r— TV + g
Hi * (piCpi>

CAl(ri-Al/4>] Tn
TiAt VV -f)

+ 2(1-9)
i 1 rrn+9 ,Tn _n> n+9. n n.
ax iKi-i (Ti-rV +rihr12(Ti+rTi)

Collecting the Tn terms in equation (B.77)

- 28 ^V^. .Kf? Tn+| +ry*> Tn:^
A, l i-1 i-I 1 rio i+1

(B.77)

(B.78)

(ri"Al/2) „n+9 . , n+9
.K. 1 + r.hi i-1 i r12 ^v-i^^r1-^+ ( 29

Let

29
(ri-Al & „n+9 . .n+9
—A^ iKi-l +rihru

(B.79)

+ (piCpi}
n+9 ^l(VAl/4)]

At

(B.80)
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Substituting equation (B.80) into equation (B.79) and solving for

mn+l

-n+1 '£- H. + 29iDi 1
(ri~Al/2) n+9 n+1 n+9 n+1
^^ iKi-l Ti-1 +rihr12Ti+l (B.81)

Since T. is unknown, the iterative procedure described in Section

2.3.1 is used. Combining the notation for the iterative procedure

and the point successive overrelaxation method:

T*+1 = (l-w) T* + f- {E± +29

n+9 I
+ r .h T-..1l r12 i+1

(ri"Al/2) ..n+9 Tl+1
A, iKi-l Ti-1

(B.82)

5) Outer Boundary of a Void Region

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.11 is:

(piCpi)7T r +V 2(ri+ T} "ri
(Tn+1-Tn)

l l n

AT" "V
t +V 2(ri+ T> "ri

+ ^.h^^-T*) +2ir(r1+ -£> ±K.+± -^±-±-

(piV
i +v 2(r±+ T) -r.

/mn+l mn.
(T. -T.)

l l _ n

At gi VV f >

A. (Tn+1-Tn)
+2rihr2/T?-rTi> +2<V T> iKi+l \\

(B.83)
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Applying the 9-differencing technique described in Section 2.3.1:

(piCpi}
n+9 tA2<W4)] ,„»+]- n

At
(Tj-Vrp = g£ A2(ri+X>

+ 29 r hn^(Tn+1-Tn+1) + (ri4A2/2) Kn+« (Tn+l_Tn+l.rinr21Ui-l Xi ; + A2 iKi+l (Ti+l Ti J

+ 2(1-6) r h11^ (Tn -Tn) + (W2) n+9 n ni r21 ^Ti-1 V + A2 iKi+l (Ti+l V (B84)

Rewriting equation (B.84) with the terms evaluated at T ., on the
n+1

left-hand side:

-29 r hn_H) (Tn+1-Tn+1) +(W2) Kn-+6 (T^-T-*1)irn Ui-1 Ti ; + A2 iKi+l (Ti+l Ti }

)n+9 iVVV^l Tn+1 .
+ tpiCpi) At Ti Hi

where

Hi = (piCPi>
n+9 [A2(r±+A2/4)j

At Ti + 8i A2(ri+t>

+ 2(1-8) r h** (Tn -Tn) + (W2) K1^ (Tn -Tn)i r21 Ui-1 l±} + A2 iKi+l CTi+l V

n+1
Collecting the T terms in Equation (B.85)

(B.85)

(B.86)
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r . n+9 _,n+l (r±+A2/2) ^ ±
rinrn Ti-1 + A2 iKi+l Ti+1

[A-(r +A./4)]

+ < 29
n+9 . <ri+V2) n+9

r.h +i rn iKi+l

Let

+ (piCpi>

28
" hn+9 + <ri^2/2) vn+9"

i r21 ^ i i+1

n+9 [A2(r1+A2/4)1

(B.87)

(B.88)

Substituting equation (B.88) into equation (B.87) and solving for

mn+l

if1 -^<Hi +26 .n+9 Tn+1 . (ri4A2/2) „n+9 n+1
r.h T. , + ,K T. .-i r21 i-1 A2 i i+1

Since T is unknown, the iterative procedure described in Section

2.3.1 is used. Combing the notation for the iterative procedure

and the point successive overrelaxation method:

*r (1-0)) tJ + f- Ĥ± +29

(W2) n+9 Jl "
A, i i+1 i+1

irn i-1

(B.90)
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6) Outermost Boundary

The finite difference form of the time-dependent heat balance

on mesh point i of Figure A.12 is

2 , Clf^Tj) n 2 2 «? !"T^
(piCpi)nR "ra > At = 8i ^R "ra >+ *»-VA.l Zr

+ 2ttR ^(T^-T^

(Tf"1-^)
(PiCpi)Ar(R- *£) -^-1

+2iR=|ri21 ^ (T^_T? +2R ^^-n „nN

n . /T, Ar.g± Ar(R- -j-)

n.

(B.91)

Applying the 9-differencing technique described in Section 2.3.1:

. .n+9 Ar(R-Ar/4). n+1 _,n.
lPipij At Ui ~V

n . ,_ Ar.
8i Ar(R~ T0

+ 29
(R-Ar/2) n+9. n+1 n+1. u"+9,T Tn+1.

Ar" iKi-l(Ti-l"Ti } + R hT (T~~Ti '

= 2(1-9)
(R-Ar/2) Kn+9 , n n n+9 n

Ar iKi-l CTi-l V + R nT CT»_Ti; (B.92)

Rewriting equation (B.92) with the terms evaluated at t . on the

left-hand side:
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- 29
(R-Ar/2) n+9 .n+1 n+1 n+9 fT Tn+1.

Ar iKi-l (Ti-l"Ti } + R hT (Tco"Ti }

+ rn r ^ Ar(R-Ar/4) n+1 _
CPipi; At Ti " Hi

where

kn+9 Ar(R-nAr/4) n n
At Li 8iHi = »iV "'^r'^ TV + g';Ar(R-^)Ar,

4

+ 2(1-6) (R-Ar/2) ..n+9 ,_,n ^n n+9•arL£L n-ro , n n. n-w . n.

Ar iKi-l CTi-l V + R "t (VTi>

Collecting the T terms in equation (B.93)

- 29
(R-Ar/2) n+9 n+1 n+9T

Ar iKi-l Ti-1 + R hT T»

+ / 29
(R-Ar/2) ^n+9 , „ .n+8

Ar i i-1
K. I + R

n+9 Ar(R-Ar/4)
At+ (piCpi)

Let

(B.93)

(B.94)

*r • -i
(B.95)

26 &£&• ,** +Rhf6
Ar i i-1 T

, , .n+9 Ar(R-Ar/4)
+ (Pipi; At

(B.96)

Substituting equation (B.96) into equation (B.95) and solving for

„n+l

-n+1

D^ \ Hi +29 ^^21 .k^ TfJ +Rh^T
Ar i i-1 i-1 T «

(B.97)
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Since the iterative procedure described in Section 2.3.1 is used for

all of the other mesh points, it must be used on the outer boundary

also. Combining the notation for the iterative procedure and the

point successive overrelaxation method:

rj+1 = (i-u) tJ + £_
i

+»-r\

H. + 29
(R-Ar/2) „n+9

Ar iKi-lKT"" T*+1

i-1

(B.98)

A summary of the time-dependent finite difference equations may

be found in Section 2.3.4.
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APPENDIX C

User's Guide to SHERLOC
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SHERLOC is a double-precision FORTRAN computer code which solves

one-dimensional, non-linear, non-homogeneous, steady-state or

transient heat conduction problems in rectangular or cylindrical

coordinates using finite-difference techniques. The code was

developed specifically to analyze the "worst case" depressurized

heatup accident for modular High Temperature Gas-Cooled Reactors

(HTGRs). Because of this specific application, a correlation was

incorporated into the code to calculate the temperature- and

neutron fluence-dependent thermal conductivity of graphite. The

modified Zehner-Schluner model for determining the effective thermal

conductivity in a pebble-bed [7] was also incorporated into SHERLOC

to account for radiation through the voids in a pebble-bed as well

as conduction through the pebbles.

Characteristics of problems which may be modeled using SHERLOC

include the following:

1) transient or steady-state;

2) rectangular or cylindrical coordinates;

3) one-dimensional;

4) adiabatic boundary condition at the origin;

5) convective and/or radiative conditions at the outermost

boundary;

6) up to 20 different regions - some of which may be void

regions;

7) up to 20 different materials (the total number of materials

must be less than or equal to the total number of regions);

8) void regions not containing material;



158

9) temperature-dependent thermal conductivity, density,

and/or specific heat;

10) temperature- and neutron fluence-dependent graphite

thermal conductivity;

11) time- and space-dependent internal heat generation;

12) radiation and conduction within a pebble-bed region;

13) up to a total of 200 mesh points; and

14) up to 20 ordered pairs in each tabular function (density,

initial temperature, heat generation, thermal conductivity,

etc.).

The input to SHERLOC is fairly straightforward. Information must

be provided as to the type of problem to be solved, the number of

regions and materials, the mesh point spacing, which regions are

pebble beds or voids, the thermal properties of the materials, initial

temperature and volumetric heat generation distributions, and problem

convergence criteria. Data cards are divided into data fields at 12

columns each - no more than six values will appear on any one card,

and some cards will contain fewer than six values. The user should

note that integer and exponential values must be right justified in

their respective data fields. Detailed input instructions for SHERLOC

follow.

Card Group (CG) 1-1 card, 80 Alphanumeric characters

TITLE - title of problem

CG 2 1 card, 4 values, all integers

1) IGEOM - geometry indicator; 1 = rectangular,
2 = cylindrical
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2) NREG - total number of regions (NREG £ 20)

3) NMAT - total number of materials (NMAT _<
NREG)

4) ITYPE - problem type indicator; 0 =
steady-state, 1 = transient

CG 3 NREG values - up to 6 values/card (integers)

MAT - Array containing material number for each
region. NOTE: A region may contain
only one material, but several regions
may contain the same material.

For a void region, MAT < 0 - a void
region does not contain material.

CG 4 1 card, 1 value (integer)

MGRPH - Material number which represents graphite
(MGRPH » 0 if none of the materials
is graphite). Temperature- and
fluence-dependent thermal conductivity
will be calculated for this material.

CG 5 NREG values - up to 6 values/card (integers)

PEBFLG - Array containing region type indicators.

0 = region is not pebble-bed or void
1 = region is pebble-bed
2 = region is a void (gap)

NOTE: A pebble-bed region must
contain graphite

CG 6 1 card for each void region, 2 values/card
(reals)

1) emittance of the material in the

region to the left of the void
region

2) emittance of the material in the

region to the right of the void
region

NOTE: Do not take shape factors into
account; they are calculated by
the code
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CG 7 1 card, 3 values (reals) - may be blank if
no regions contain pebble-beds,
but a card must be present.

1) DIA - diameter of a pebble (m)

2) F - <p - porosity of pebble-bed =

. Volume of pebbles.
Volume of core

3) EPS - e - emittance of pebble

CG 8 1 card, 3 values (reals) - outermost boundary
conditions

1) HC - convective heat transfer coefficient
on boundary (W/m2K)
HC = 0.0 if there is no convection

2) EMM - emissivity of outermost surface

3) TINF - T - ambient temperature (K)

CG 9 NREG values, up to 6 values/card (reals)

WM - Array containing width of each region (m)

CG 10 NREG values, up to 6 values/card (integers)

NM - Array containing number of mesh points
in each region, including inter
face or boundary mesh points.
(Count interface mesh points
twice).

Rgn 1 Rgn 2

Example:

NM(1) = 4 NM(2) = 5

NOTE: A void region may have only
2 mesh points - one on each
interface.

For Transient Problems (1T=1): Do not include Card Group 11

For Steady-State Problems (1T=0): Do not include Card Groups 12
through 18
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CG 11 1 card, 2 values - steady-state convergence
information

1) IMAX - maximum number of iterations allowed
on thermal properties (integer)

2) CTD - e2 - convergence criterion for average
relative temperature difference
between iterations (real)

CG l2 1 card, 5 values - transient problem specifi
cations

1) NTIME - total number of time steps (integer)

2) TTOT - problem time until termination of
transient (sec) (real)

3) TH - 9- implicit solution type (real)
0.5 < 8 < 1.0

9 = 0.5 for Crank-Nicholson
method (this method is preferred)

9 - 1.0 for Classical Implicit
Procedure

4) W - - relaxation factor (real) 0 < co < 2

5) NEDIT - number of time steps between
printing of temperature
distribution (integer)

CG 13 1 card, 4 values - transient convergence
information

1) ITMAX - maximum number of interations on
temperature distribution (inner
loop) (integer)

2) CC1 - e - convergence criterion for
normalized heat residual (real)

3) IPMAX - maximum number of iterations on
thermal properties (outer loop)
(integer)

4) CC2 - £4 - convergence criterion for average
relative temperature difference
between property iterations (real)
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CG 14 NMAT values, up to 6 values/card (integers)

IPRR - Array containing number of ordered pairs
to be read for density vs. temperature

function for each material. (At least
2, and no more than 20 ordered pairs
are to be provided for each material.)

CG 15 NMAT sets of cards - density vs. temperature

functions

NOTE: Using a temperature-dependent
density will not satisfy
conservation of mass. Each set^
must be started on a new card.

Within a set, there will be up
to 6 values (3 ordered pairs)
per card. Each set has the
number of ordered pairs
indicated by the corresponding
value of IPRR in CG 14. An

ordered pair consists of ~
(temperature (K), density (kg/m )),
in that order.

CG 16 NMAT values, up to 6 values/card (integers)

IPRC - Array containing number of ordered pairs
to be read for specific heat vs.
temperatue function for each material.
(At least 2, and no more than 20
ordered pairs are to be provided for
each material.)

CG 17 NMAT sets of cards - specific heat vs. temperature
functions . Each set must be started

on a new card. Within a set, there

will be up to 6 values (3 ordered pairs)
per card. Each set has the number of
ordered pairs indicated by the
corresponding value of IPRC in CG 16.
An ordered pair consists of
(temperature (K), specific heat
(J/kg K)), in that order.
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CG 18 2 cards, 12 values - 6 values/car (reals)

DCY - Array containing coefficients for the
analytic, time-dependent, decay heat
function. (This is for the time
dependence only, the space dependence
will be input later.)

2gfc(t) = A1 + A£t + A3t + A^ cos(A5t)
+ A6exp(A?t) + Agsin(A9t)

A12+ A1A(t + A.,) " (C.l)
10v 11'

The input values represent A through A,0 in the
above equation.

12

(end of transient information)

CG 19 NREG values, up to 6 values/card (integers)

IPRG - Array containing number of ordered pairs
to be read for each region for
volumetric heat generation vs.
position function. (At least 2, and
no more than 20 ordered pairs are to
be provided for each region)

CG 20 NREG sets of cards - volumetric heat generation vs.
position functions. Each set must be
started on a new card. Within a set,

there will be up to 6 values (3 ordered
pairs) per card. Each set has the
number of ordered pairs indicated by
the corresponding value of IPRG in CG

19. An ordered pair consists of
(distance from origin (m), volumetric
heat generation (W/m3)), in that order.

CG 21 NREG values, up to 6 values/card (integers)

IPRT - Array containing number of ordered pairs to
be read for each region for initial
temperature vs. position function.
(At lease 2, but no more than 20
ordered pairs are to be provided for
each region.)
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CG 22 NREG sets of cards - initial temperature vs.

position functions. [NOTE: For
steady-state problems, this is the
initial guess at the temperature
distribution, for transient problems,
this is the actual initial temperature

distribution.] Each set must be
started on a new card. Within a set,

there will be up to 6 values (3
ordered pairs) per card. Each set
has the number of ordered pairs
indicated by the corresponding value
of IPRT in CG 21. An ordered pair
consists of (distance from the origin (m),
volumetric heat generation (W/nH)),
in that order.

CG 23 NMAT values, up to 6 values/card (integer)

IPRK - Array containing number of ordered pairs
to be read for each material for

thermal conductivity vs. temperature

function. NOTE: For a material which

is graphite, IPRK = 0 - no ordered pairs
will be input for that material
(graphite conductivity will be
calculated). For each of the other

materials, at least 2, but no more
than 20 ordered pairs are to be
provided.

CG 24 NMAT sets of cards if noe of the materials is

graphite. (NMAT-1) sets of cards if
graphite is one of the materials.
Thermal conductivity vs. temperature

functions. Each set must be started

on a new card. Within a set, there

will be up to 6 values (3 ordered pairs)
per card. Each set has the number of
ordered pairs indicated by the
corresponding value of IPRK in CG 23.
An ordered pair consists of
(temperature (K), thermal conductivity
(W/mK)), in that order.

NOTE: If no graphite is present, Card Groups 25 and 26 are omitted.
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CG 25 NREG values, up to 6 values/card (integers)

NFLPT - Array containing number of ordered pair&
to be read for each region for
neutron fluence vs. position function.
(At least 2, but no more than 20
ordered pairs are to be provided for
each region).

CG 26 NREG sets of cards - neutron fluence vs. position
functions. Each set must be started

on a new card. Within a set, there
will be up to 6 values (3 ordered
pairs) per card. Each set has the
number of ordered pairs indicated by
the corresponding value of NFLPT
in CG 25. An ordered pair consists
of (distance from origin (m), fluence
(n/cm2)), in that order. NOTE: The
units on fluence are n/cm2 due to the
thermal conductivity correlation being
used.

A sample problem to be modeled is shown in Figure C.l. While the

sample problem is quite simple, it illustrates most of the qualities

which might be found in a more complex problem. The sample problem

consists of four regions, one of which is a pebble-bed and one of

which is a void. Since the pebble-bed core and the reflector regions

have different densities (the density of the carbon in the pebbles must

be smeared over the volume of the entire region), they must be treated

as different materials. The temperature- and fluence-dependent graphite

conductivity will be calculated for the pebble-bed, and the modified

Zehner-Schlunder model will be used to determine the effective pebble-bed

conductivity. A temperature-dependent thermal conductivity function will

be input for the reflector region. For illustrative purposes, a

combined convective and radiative boundary condition will be used on

the outermost surface. Figure C.2 shows the input for the sample case



r(m)

REGION 1

Pebble-Bed

REGION 2 REGION 3 REGION 4

Void

e = 0.8

e = 0.8

1.745 2.745 3.105 3.305

Figure C.l Model for Sample Problem

h =20.397 W/mK
c

e = 0.8
s

T = 50°C
00

- 323.16K
o>
o>
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1. StlCLS nOBLIB -- CTB1ST-ST1TE

2. 2 * 3 0

3. i 2 -1 3

«. i

S. i 0 2 0

6. 0.8 0.8

7. 0.06 0.39 0.8

8. 20.3970 0.8 323.160

9. 1.7*50 1.00 0.36 0.20

10. 18 11 2 6

II. 30 1.00-06

12. 6 2 2 2

13. 0.0 6. I7S3 0.780388 6. I7D3 1.03635 S.590D3

1*. .351671 5.2*03 1.560775 5.0303 1.7*50 5.51003

15. 1.7*5 0.0 2.7*5 0.0

16. 2.7*5 0.0 3.105 0.0

17. 3.105 0.0 3.3050 0.0

18. 6 2 2 2

19. 0.0 1378.16 0.780388 1378.16 1.03635 1282. 16

20. 1.351671 1207.16 1.560775 1165.16 1.7*50 1167.16

21. 1.7*50 1073. 16 2.7*5 1073.16

22. 2.7*5 873.16 3.105 873.16

23. 3. 105 773.16 3.305 773. 16

2«. 0 16 12

25. 300.0 110.00 «00.0 100.00 500.0 90.0

26. 600.0 8*.00 700.0 78.0 800.0 72.0

27. 900.0 67.0 1000.0 62.0 1100.0 58.0

28. 1200.0 5«.0 1300.0 50.0 1*00.0 *8.667

29. 1500.0 *7.33 1600.0 «6.0 1700.0 M.667

30. 1800.0 • 3.33

31. 323.16 36.6 «00.0 37.2 •50.0 37.3

32. 500.0 37.1 600.0 36.3 700.0 35.00

33. 800.0 33.* 900.0 31.6 1000.0 29.5

3«. 1100.0 27.* 1200.0 25.2 1300.0 22.8

35. 6 2 2 2

36. 0.0 2.07021 0.780388 2.07021 1.03635 1.88021

37. 1.351671 1.72D2I 1.560775 1.55021 1.7*50 1.22021

38. 1.7*50 0.0 2.7*5 0.0

39. 2.7*5 0.0 3.105 0.0

•0. 3.105 0.0 3.305 0.0

Figure C.2 Input for SHERLOC Sample Problem - Steady-State
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as a steady-state problem, and Figure C.3 shows the output for the

steady-state solution. The input for the sample case as a transient

problem is shown in Figure C.5. For illustrative purposes, the

transient problem is run for a short length of time.



starts aaottia - sisaci-sius

cisi DBscamxoB

IBOBLBa IIf11 SIIICI STISI
OBOBBTBIl cuiaoaicu
IBBBBB CI aiOIOISi «
IOBBIB Cf BUlBUISt 3
aasBBZii i i is caaiaiti - oairazia cobdociititi ant >a osao
«««! ! I II ! lllV-i *" " •»»«« »™ '"BIB IIO C41C0UTIOBS Bltt BI rBBPOBBBO
I1CI0B I 3 IS * VOID BICICB - BBEI1TI0B OBIT IB TBIS BBOIOB

BB6XCib aiTiaiBi BIDTB (B) BO. aasa bis (ibcl boo
1 I 0.17**0 01 18
2 2 0.1O0CO 01 u
3 -1 0.360GB 00 2
« 3 0.200CD 00 6

an. ITCBIIICBS OB FlOfBillfS: 30
COBV. CIIIBIia BOB tfS. ibi. nut. onr.x t.oooooo-06

Figure C.3 Output of SHERLOC Sample Problem - Steady-State

ON



IBItlll (IBBBSMOBB OISIBIBOtlOB

B«ICB B1T11I1L • BBSB BCIBT II) oisf. ftoa oaieiB (i) TBBB. (DBG C) IBITIIL BUT GBB

1 0.0 1.1050001D 03 6.I700000D 03

2 1.026*7060-01 1.105000 ID 03 6. I700000D 03

3 2.0529*120-01 1.10500010 03 6.I700000D 03

* 3.079*1180-01 1.105000 ID 03 6.17000000 03

5 4.105882*0-01 1.10500010 03 6.17000000 03

6 S.I323529O-01 1.10500010 03 6. I700000D 03

7 6.15882350-01 1.10500010 03 6.1700000D 03

a 7.18529*10-01 1.105000ID 03 6. 17000000 03

9 8.21176*70-01 1.C897021D 03 6.07757*90 03

10 9.23623530-01 1.OS 120380 03 5.8**98060 03

11 I.0264706D 00 1.012705*0 03 5.612386*0 03

12 1. 12911760 00 9.869350*0 02 S.4870298D 03

13 1.23176*70 00 9.625201*0 02 5.37309360 03

14 1.334* MSB 00 9.38105250 02 3.259 157*0 03

IS 1.4370588B 00 9.168493SD 02 5.15*2*630 03

16 1.53970590 00 8.9623197D 02 5.051159*0 03

17 1.6*235290 00 8.92885720 02 5.2425521D 03

18 1.7*500000 00 8. 4761*020 02 2.71760400 03

1 19 1.8*500000 00 8.C000009D 02 0.0

t 20 1.9*500000 00 8.00000090 02 0.0

t 21 2.04S0000D 00 8.0000009D 02 0.0

1 22 2.1*500000 00 8.C00O0O9O 02 0.0

1 23 2.2*500000 00 8.00000090 02 0.0

I 2* 2.3*500000 00 8.00000090 02 0.0

t 25 2.««50000D 00 8.0000009D 02 0.0

t 26 2.5*500000 00 8.0000009D 02 0.0

I 27 2.6*500000 00 8.0000009D 02 0.0

I 28 2.7*500000 00 6.4347835D 02 0.0

i . 1 29 3.10500000 00 5.9000009D 02 0.0

} 30 3.1*500000 00 5.00000090 02 0.0

1 31 3.18500000 00 S.0000009D 02 0.0

I 32 3.22SO000O 00 5.0000009D 02 0.0

1 33 3.26S0000D 00 5.0000009D 02 0.0

1 34 3.30500000 00 5.0000009D 02 0.0

Figure C.3 (Continued)
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laaisivmt o.aoooooo 00
BiBitucB arc ta/a**2 at* 9.osao79o oo
COBVICTIOB BtC (B/B**2 B)l 2.039700D 01
101»L HC (B/B»*2 R|S 2.94S508B 01

Figure C.3 (Continued)
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saafaaatva

aSOIOB BB11BUL •

1 OISTBIBOTICB

BBSB fOIBT m disx. ffioa OBzaza (H tlBf. (DBG C)

1 0.0 9.I642733D 02

2 1.02447060-01 9.15327080 02

3 2.03294120-•01 9.12016130 02

4 3.47941180-01 9.04451100 02

S 4.10500240-•01 0.983(1710 02

6 S. 13233290-•01 0.00242130 02
7 6.15882350--01 0.75344S4D 02

1 7.1852941D-01 0.39667050 02

9 0.2117(470-•01 0.4092470D 02

10 9.23023530-01 8. 18771120 02

11 1.0264706D 00 7.92037340 02

12 1. I29I176B 00 7.62S2779D 02
13 1.2317647D 00 7.2(904730 02

14 1.3344 HOB 00 6.04620(30 02

IS I.4370S88D 00 6.33477170 02
16 I.5397CS9D 00 5.(9(734(0 02
17 1.6423S29B 00 4.84(02350 02

10 1.74S0000O 00 3.31141170 02

19 I.84S0000B 00 3.454333 ID 02

20 I.94S0000B 00 3.40087120 02

21 2.045000CD 00 3.35009070 02

22 2. 14500000 00 3.30190370 02
23 2.243000CD 00 3.2560705D 02

24 2.34300000 00 3.21237230 02
25 2.4430C00D 00 3.170(2370 02

20 2.34300000 00 3.1300(030 02

27 2.64500000 00 3.09235(90 02

20 2.74300000 00 3.0333(470 02

29 3.10300000 00 1.5090*160 02

30 3.14SOOOOP 00 1.40001900 02

31 3. 18500000 00 1.4313(040 02

32 3.22300000 00 1.42305430 02

33 3. 26300000 00 1.39509290 02
34 3.3050000O 00 1.3(74(790 02

ZBC0O2Z stc* 0

Figure C.3 (Continued)
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175

1. S1IEX.B PBCBLEB - TF.aBSZBBT

2. 2 « 3 1
3. 1 2 -1 3
4. 1

5. 1 0 2 0
6. 0.8 0.8
7. 0.06 0.39 0.8
8. 20.3970 9.8 323.ICO
9. 1.7650 1.00 0.36 0.20

10. 18 11 2 6
11. 180 10690.0 1.0 1.9 60
12. 59 1.00-5 £0 1.0D-5
13. 2 2 2

1*. 0.9 860.1 1.0D* 860.1
15. 0.9 139*.8 1.00* 1394.8
16. 0.0 7675.0 1.0C* 7675.0
17. 9 9 10
18. 300.3 725.75 400.0 994.42 600.0 1406.1
19. 8OC.0 1675.4 1000.0 1793.4 1200.0 1891.1
23. 1*00.0 1978.4 1700.0 2958.6 2300.0 2156.3
21. 300.0 725.75 400.0 99*.42 600.0 1406.1
22. 800.9 1675.* 1000.0 1793.4 1200.0 1891.1
23. 1*00.9 1978.4 1700.0 2058.6 2300.0 2156.3
24. 323.16 *59.0 400.00 489.4 473.16 532.0
25. 573. 16 558.9 673.16 604.2 773.16 663.5
26. 823.16 704.1 873.16 756.6 923.16 825.9
27. 973. 16 918.6
28.
29. 9.128 -3.796D-4 -0.261
30. 6 2 2 2
31. 0.9 3.2406 0.780388 3.2406 1.03635 2.930D6
32. 1.351671 2. 75D6 1.560775 2.6406 1.7450 2.89006
33. 1.7*5 0.0 2.745 0.9
34. 2.7*5 0.0 3.105 0.0
35. 3.105 0.9 3.3050 0.9
36. 6 2 2 2
37. 3.0 1378.16 9.780388 1378.16 1.03635 1282. 16
38. 1.351671 1297.16 1.560775 1165.16 1.7450 1167.16
39. 1.7*50 1073. 16 2.745 1073.16
40. 2.7*5 873.16 3.105 873.16
41. 3.135 773.16 3.305 773.16
42. 0 16 12
43. 390.0 110.00 400.0 109.0) 500.0 90.0
44. 600.0 84.00 700.0 78.9 800.0 72.0
»5. 900.0 67.0 1000.0 62.9 1100.0 58.0
46. 1209.0 54.0 1300.0 50.9 1400.0 48.667
47. 1509.0 *7.33 1600.0 46.0 1700.0 44.667
• 8. 1800.0 • 3.33

49. 323.16 36.6 400.0 37.2 • 50.0 37.300
50. 500.0 37.1 600.0 36.3 790.0 35.00
51. 800.0 33.* 900.0 31.6 1000.0 29.5
52. 1100.0 27.* 1200.0 25.2 1300.0 22.8
53. 6 2 2 2
5*. 9.0 2.07D21 0.780388 2.97D21 1.0363 5 1.88D21
55. 1.351671 1.72D21 1.560775 1.55D21 1.7450 1.22D21
56. 1.7*50 9.0 2.745 0.0
57. 2.7*5 0.0 3.105 9.0
58. 3.105 0.0 3.305 0.0

Figure C.4 Input for SHERLOC Sample Problem - Transient



SlflflB BBOBIIB - XBtBSItBt

C4SI DBSCIIfHOB

IBOBLBB tlBBi XBaBSIBBt
CIOBBTBIl CIUBDBICat

•OBBBB Cf BBGIOBSs 4
10BB1B Of BiTIIUlS: 3
BMBBIII • 1 IS GBlPBItl - GBaFBITB COBDOCIIVIfl Bill BB OSBD
BBGIOB • 1 IS 4 fSBBLf CBD - GBlPBItt BBD flBBtf BBD CalCBUTIOBS Bill BE PEifOlBBD
BBGIOB • 3 IS 4 fOIO BB6ICB - BICIatlOB OBIT IB TB18 8B6IOB

BOOBDS)BBGIOB BltBBIaL BIDTB |B) BO.BSSa MS (IBCl

1 1 0. I745D 01 ia

2 2 O.IO00D 01 ii

3 -1 0.360CD 00 2

4 3 0.2000D 00 6

BOBBaLItZS BBat BESIDOaL COBfZBGBBCB CBIT. (IBBBB LOOP):
an. itiiiiiois oa ibbbb (iimat loop:
C0BVBB6IBC1 CBZt. CB fBOfBBtlfSt
biz. ztiaatzcas oa tBOfaatiasi
risai tifli:

IIBB SXff (OBIT* t)I
BO. OP IIBB StBfS BBIBBBB XBBBBBiTOBB DIStBIBOtlOB PBIBtOOISl
IBBM (C.S fOB C-Bj 1.0 IOB CZP) I
sob accumtzcB miasm (obbgix

1.00000D-05

50

1.000000-0 5
so
1.000000 04 SBCOBDS
6.00000D 01 SBCOkDS
60
I.0O00OD 00
1.000000 00

IBaLTIIC BIC1I BBAt fDBCIZCB COBfllCZIBlSl
m>-Mi» ♦ 1(2)*Z ♦ 1|3)*I**2 * a(4)*DCOS(k(S)Z)

II D " 0.0

»<.2) - 0.0

*< 3) - 0.0

»t M - 0.0
»( 5) - 0.0

ai (» - CO

»< 7) - 0.0
<( 8) - 0.0

»l 9) - 0.0
BftO) • I.2800D-0I

aoi) " -3.79600-04

»|I2) - -2.61000-01

♦ l(6)*DBZf<a(7|I) ♦ k(8)*DSIB(a(9)I) ♦ k(IO) •( (!♦«< II)) ••*< 12))

Figure C.5 Output of SHERLOC Sample Problem - Transient
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ZBZXZkl XUffBBaXOBB BISIBZBBXZOB

BB8IOB Bk IBIkt • USB PCIBt H) ozsx. pbob oaioia (at XBflf, (BBS C| IBITIkl BBkX GBB.
1 0.0 1.10300010 OS 3.24000000 06
2 1.02(470(0-01 1.105000 IB 03 3.24000000 06
3 2.03294120-01 1.10SOOOID 03 3.24000000 06
4 3.0794II8D-0I 1.103000 ID 03 3.24000000 06
3 4.10380240-01 1.10300010 03 3.24000000 06
( 3.13233290*01 l.t03000ID 03 3.2400000D 06
7 (. 13(02330-01 1.10500010 03 3.24000000 06
0 7. 10929410-01 I.I0300010 03 3.2400000D 06
9 (.2117(470-01 1.C897021D 03 3.19060040 06

10 9.23023330-01 1.OS 120300 03 3. 06(28280 0*
It 1.02(470(0 00 1.0I27054B 03 2.9419(510 04
12 1.129117(0 00 9.0(933040 02 2.8770439D 06
13 1.2317647D 00 9.(23201*0 02 2.8I64401D 06
14 1.33441100 00 9.3810525D 02 2.7598S24D 06
IS 1.4370S00B 00 9.1(849330 02 2.70308140 06
14 1.33970390 00 0.9(231970 02 2.(5108350 06
17 1.64233299 00 8.92883720 02 2.75070420 06
18 1.7*500000 00 0.47(14020 02 I.425S082D 04

19 1.04300000 00 0.00000090 02 0.0
20 1.94300000 00 0.00000090 02 0.0
21 2.04300000 00 8.00000090 02 0.0
22 2.14SO0OOB 00 O.C000009D 02 0.0
23 2.24S0000B 00 o.eoooooto 02 0.0
24 2.34SO0O0B 00 0.00000090 02 0.0
25 2.4450000D 00 0.00000090 02 0.0
26 2.34300000 00 8.0000009D 02 0.0
27 2.(4300000 00 0.00000090 02 0.0
28 2.7430000B 00 (.4347035D 02 0.0

29 3. 10500000 00 3.90000090 02 0.0

36 3.14300000 00 3.00000090 02 0.0
31 3.I8S00O0D 00 S.0000009D 02 0.0
32 3.22SO00OO 00 S.C000009D 02 0.0
33 3.2(300000 00 $.00000090 02 0.0
34 3.30S0000O 00 S.0000009D 02 0.0

Figure C.5 (Continued)

(B/B»*3)
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xibi(sbc) IBBBB ItBB coon aaz. aoaa. bbsio. BODB TBBf (DBG C) PBOP. IXEB COOBT BOBB OP BODE TBNP
3600.0C0 1 2.9340930-04 1 1.230(170 03
3600.000 2 3.6470680-05 29 5.3781320 02
1600.000 3 6.9385040-06 29 5.37793(0 02
3600.0CO 1 6.2«34340-04
3600.0C0 1 2.937519D-04 1 1.23063(0 03
3600.000 2 3.6S8972D-0S 29 5.3780540 02
3600.000 3 6.957647D-06 29 5.3778570 02
3600.000 2 1.3975090-06

Figure C.5 (Continued)
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XBisaau aikt c amnios DiaiaiaoTZOB
aisi poibx aakt CBB. (B/B«*3)

1 4 .8928290145D 04

2 4 .8928 290 1430 04

3 4 .8(282901430 04

4 4 .89282901430 04

5 4 .89282901450 04

6 4 .89282901450 04

7 4 .85282901450 04

8 4 .8928290 USD 04

9 4 .41822904510 04
10 4 .63049296850 04

11 4 .44275689180 04

12 4 .3447 172147D 04

13 4 .25(22987300 04

14 4 .16774253120 04
IS 4 .01503108700 04

16 4 .00348711100 04

17 4 .15392760110 04

18 2 . 1327061304D 04

19 0 .0

20 0 .0

21 0 .0

22 0 .0

23 0 .0
24 0 .0
25 0 .0

26 0 .0
27 0 .0

26 0 .0

29 0 .0
30 0 .0

31 0 .0
32 0 .0
33 0 .0

34 0 .0

IIBB - 3600.000 SBCOBDS

Figure C.5 (Continued)
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oatiBBoax loaaotai aaat lakasrsa coaffZciBaxi

BkOZkXZCB ate (B/o*<•2 Bit 2.06OS27D 01
coaiactioii ate ia/a**3 a>t 2.0397000 01
total ate (B/B**2 B)l 4.9002270 0<

PBOPBBXt DISIBIBBtlOBB - TIB8 <• 3600.000SECOBDS

aasa pozbx COBDOCXIVZXt (B/B B) D8BSITI |IG/a»*3) SP. BBkT (J/IO
1 2. 392280 01 8.601000 02 2.008390 01
2 2.390ISD 01 8.60100B 02 2.000300 03
3 2.385200 01 0.60I00B 02 2.007990 03
* 2.37(120 01 0.601000 02 2.00730D 03
3 2.3(1000 01 8.601000 02 2.00(320 03
( 2. 3376 2D 01 0.601000 02 2.004(00 03
7 2. 303010 01 0.(01000 02 2.0020IO 03
0 2.239(30 01 0.(01000 02 I.99S37D 03
9 2.10907D 01 8.(01000 02 1.993500 03

10 2.112000 01 8.(01000 02 1.907720 03
11 2.0I366D 01 8.(01000 02 1.901130 03
12 1.916920 01 8.(01000 02 1.97 1410 03
13 1.819(90 01 0.(0I00D 02 1.959490 03
14 1.7200*0 01 8.(01000 02 1.94(900 03
IS 1.(27440 01 8.(01000 02 1.932010 03
16 I.SI720B 01 8.(01000 02 1.915710 03
17 1.303440 01 8.(01000 02 1.893140 03
10 S.7II37D 01 I.I2704D 03 I.0S7S0D 03
19 5.778730 01 1.394800 03 1.048(00 03
20 3.836(30 01 1.394000 03 I.041C90 03
21 3.8893 ID 01 1.394000 03 1.0344(0 03
22 5.94166D 01 I.39400B 03 1.820100 03
23 S.99727D 01 1.394000 03 1.021720 03
24 6.059070 01 1.394000 03 1.014(00 03
23 6. 1319 ID 01 1.394000 03 1.806430 03
26 6.210180 01 1.394000 03 1.797000 03
27 (.3341(0 01 1.394900 03 1.704760 03
28 0.0 1.394800 03 1.770370 03
29 3.33(470 01 7.(75000 03 (.941900 02
30 3.3(6(20 01 7.(75000 03 6.795B0B 02
31 3.398150 01 7.(75000 03 6.639040 02
32 3.431090 01 7.(75000 03 6.SI877D 02
33 3.4(5160 01 7.(75000 03 (.394330 02
34 0.0 7.(75000 03 (.2(6250 02

Figure C.5 (Continued)
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aao

lapaBkxoaa oisti
bib or factaatt

UEOTIOB kX XIBB -
IIBBkXIOBS - 2

3(00.000 iiBcoaoa

10B BktlBIkl • BBSS POZBX (Z) DISX. PBOB OBIGIB (B) TBBf. (DBG C)
i i 1 0.0 1.2390II ID 03
1 i 2 1.02(470(0-01 1.230(7(00 03

i i 3 2.0529412D-•01 1.23734090 03
t i 4 3.07941190--01 1.2352(070 03
i i 3 4.10588240--01 1.2312(9(0 03
i i ( 3.13235290--01 1.22482090 03
i i 7 (.13882350--01 1.2I3142ID 03
i i 8 7.18529410--01 1.20133140 03

i i 9 8.21176470--01 1.103(0920 03

i t 10 9.23823S3B-01 1.1(170420 03

i i II I.0264706D 00 1.13705I9D 03
i t 12 1.129117(0 00 1.11081S1D 03

i i 13 1.2317(470 00 I.0835209D 03

t i 14 1.3344110B 00 1.054(0390 03
i i IS 1.43703000 00 1.022402(0 03

i i 16 1.5397059D 00 9.0321229D 02
i i 17 1.(4239290 00 9.315080(0 02
i i 10 I.7450000B 00 8.5005435D 02

2 2 19 1.0*3000OB 00 8.39041370 02

2 2 20 I.94S0000D 00 0.244(2(70 02
2 2 21 2.04S0000B 00 0.10090S4D 02

2 2 22 2. 1430000B 00 7.9003(130 02

2 2 23 2.24300000 00 7.0401193D 02
2 2 24 2.34300000 00 7.7023010D 02

2 2 23 2.44S0CO0O 00 7.3351(770 02

2 2 26 2.545000CD 00 7.3420(0(0 02

2 2 27 2.(4300000 00 7.12203(90 02

2 2 28 2.74500000 00 (.(7(25040 02

3 -1 29 3.10500000 00 5.3778S72D 02

4 3 30 3. I430000B 00 3.I980I44D 02

4 3 31 3.10S0000B 00 3.00393710 02
4 3 32 3.22300000 00 4.00399720 02
4 3 33 3.2(300000 00 4.3941(330 02

4 3 34 3.30S000CB 00 4.37020000 02

Figure C.5 (Continued)
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tib! (sbc) laaaa IIBB COOBT BkZ. aoaa. BBBZD. HODB TBBP (DBG C)
7200.OCO 1 2. 0940160-04 1 1.3175060 03
7200.000 2 3.7045200-05 29 5.135391D 02
7200.000 3 7.607993D-06 29 5. I35I97D 02
7200.0C0
7200.000 1 2.094996D-04 1 1.3175050 03
7200.000 2 3.794744D-05 29 5. 13S322D 02
7200.OCO 3 7.425410P-06 29 5.135127D 02
7200.000

Figure C.5 (Continued)

PBOP. ZTBB COOBT BOBB OP BODE TEBP DIFF

4.4096290-04

1.044476D-06
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IBtlBBU. BUT GBBBBkTZOB OISTBIBOTIOB - TlflB
aisa poibt aikt sbb. (b/b »•!)

1 4.083I1I167SD 04

2 4.0831111675D 04

3 4.0831 1116150 04

4 4.083111167SD 04

5 4.08311116750 04
6 4.0831111(750 04

7 4.08311II67SD 04
8 4.083111167SD 04

9 «.02085680160 04

10 3.86*18930530 04
11 3. 707521809 ID 04

12 3.62570678980 04

13 3.5S18632829D 04

1* 3.*7801977S9D 04

15 3.*0(99630900 04

16 3.3*09*710510 04

17 3.46649108870 04

18 I.7964532207D 04
19 0.0

20 0.0
21 0.0
22 0.0
23 0.0
24 0.0

25 0.0
26 0.0

27 0.0
28 0.0
29 0.0
30 0.0
31 0.0

32 0.0
33 0.0
34 0.0

7200.000 SBCOBDS

Figure C.5 (Continued)
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ooxiaaosx Booaokai but lakasrsa coeppzcibbti

I1DI11IC1 8TC (B/B**2 B) I 2.7I3844D Ct
CCBfBCTIOl1 BTC |B/B**2 I) J 2.0397000 01
tOXkl 11C (B/B**2 1Di *.7535*40 CI

BOPBBTI 0IS1BIB0TIOBS - TZBE "• 7200.000SECOBDS

8SB POIBT COBDOCTITIIT (B/B B) DBBSZTI (KG/B**3) SP. BBkX (J/KG K)
1 2.6I8S5B 01 8.60100D 02 2.02945D 03
2 2.6I358D 01 8.60IOOD 02 2.02922D 03
3 2.60334D 01 8.6OI0OD 02 2.028S2D 03
4 2.58730D 01 8.601000 02 2.027310 03
5 2.564800 01 8.601000 02 2.0255 3D 03
6 2.S3S06C 01 8.60100D 02 2.023I2D 03
7 2.49728D 01 8.601000 02 2.02000D 03
8 2.44809D 01 8.601000 02 2.0I6IID 03
9 2.38350D 01 8.601000 02 2.011370 03

10 2.30726D 01 8.60I00D 02 2.00578D 03
11 2.2057SD 01 8.601000 02 1.99940D 03
12 2. 10059D 01 6.60IOOD 02 I.99222D 03
13 1.987270 01 8.60I00D 02 1.984C9D 03
14 I.86429D 01 8.6OI00D 02 I.97240D 03
IS 1.737920 01 8.601000 02 1.954230 03
16 I.59489D 01 8.60I00D 02 1.9320 ID 03
17 1.430200 01 8.60100D 02 1.903830 03
18 S.67352D 01 I.I2784D 03 I.86318D 03
19 S.7S9S7D 01 1.39480D 03 I.85221D 03
20 S.8395SD 01 I.3949CO 03 I.8«2I6D 03
21 5.916110 01 1.394800 03 1.832680 03
22 5.99I60C 01 I.39480D 03 I.82346D 03
23 6.06800D 01 1.394600 03 1.614240 03
24 6. I4680D 01 I.39480D 03 I.80480D 03
25 6.236180 01 I.39480D 03 1.79499D 03
26 6.34343D 01 I.39480D 03 1.7829*0 03
27 6.4SS05D 01 I.39480D 03 1.770C1D 03
26 0.0 1.394800 03 I.7S660D 03
29 3.374450 01 7.67S0OD 03 6.74478D 02
30 3.401600 01 7.67500D 03 6.6I777D 02
31 3.43037D 01 7.67500D 03 6.513950 02
32 3.460530 01 7.67500D 03 6.404S2D 02
33 3.49186D 01 7.67500D 03 6.29036D 02
34 0.0 7.675000 03 6. 1723 ID 02

Figure C.5 (Continued)
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BBC

BBfBBkTOBl D131II101IOB kt TIBB - 7200.000 SBCOBDS

BBB OP (BCPBBtt ZtlBkTIOBS - 2

IOB BkllBIkl 6 IBSH PCIBT (1) DISt. PBOB OBIGIB |l| IBBf. (DBG C)

1 1 1 0.0 I.3I77834D 03

1 1 2 1.0264706D-01 1.3I69325D 03

1 1 3 2.05294120-01 1.3143 1330 03

1 1 4 3.07941180-01 I.30978S8D 03

1 1 5 4. 10588240-01 I.303I380D 03

1 1 6 5. 1323S29D-01 1.29411580 03

1 1 7 6. I50823SD-0I I.2824530D 03

1 1 8 7.1852941D-01 1.26789370 03

1 1 9 8.2II7647D-0I 1.25017630 03

1 1 10 9.2382353D-01 1.22924630 03

11 II I.0264706D 00 I.20S3884D 03

1 1 12 1.129I176D 00 1.17653130 03

1 1 13 I.23I7647D 00 I.148I399D 03

1 1 14 1.33441180 00 1.11308*40 93

1 1 15 I.4370S00D 00 I.07I4692D 03

1 1 16 1.53970S9D 00 1.0205620D 03

1 1 17 l.*423S29D 00 9.56013640 02

1 1 18 1.74500000 00 8.6968478D 02

2 2 19 1.84500000 00 8.47237550 02

2 2 20 I.94S0O0OO 00 8.2665736D 02

2 2 21 2.04500000 00 8.0724749D 02

2 2 22 2.1450000D 00 7.8837704D 02

2 2 23 2.24300000 00 7.69S007SD 02

2 2 24 2.345000CO 00 7.50IB024D 02

2 2 25 2.44S0C0CD 00 7.3010110D 02

2 2 26 2.54SO000O 00 7.09I0544D 02

2 2 27 2.64500000 00 6.8720243D 02

2 2 28 2.745000CD 00 6.6446812D 03

3-1 29 3.I030000D 00 5.I3SI27ID 02

4 3 30 3.I450000D 00 4.97092570 02

4 3 31 3.I850000D 00 4.7958666D 02

4 3 32 3.2250000D 00 4.61133940 02

4 3 33 3.26300000 00 4.4188319D 02

4 3 34 3.30500000 00 «.219796*0 02

Figure C.5 (Continued)
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TIBI(SBC) IBBEB ITBB COOBT Bkl. BOBB. BESID. BODB TEBP (DBG C) PBOP. ITEB COOBT BOBB OF BODE
10800.000 1 1.682574D-04 1 1.376397D 03
IO8O0.OC0 2 3.4603370-05 29 4.931326D 02
10800.000 3 7.1881960-06 29 •.93II54D 02
10800.000 1 3.367723D-04
10800.000 1 1.6828850-04 1 1.376397D 03
10800.000 2 3.468379D-05 29 4.93I272D 02
10800.OCO 3 7.2017820-06 29 4.931100D 02
10800.000 2 8.1699730-07

Figure C.5 (Continued)
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IBtBBflU BIkT GBBBBkTIOB OISTBIBOTIOB - TIBB « 10800.000 SBCOBDS
HISS POIBT BUT 6BB. (B/B**3)

1 3.6730884258D 04

2 3.6730884258D 04

3 3.67306842580 04
4 3.6730884258D 04

5 3.67308842580 04

6 3.6730684258D 04

7 3.6730884258D 04

a 3.67308842580 04

9 3.61708559320 04

10 3.4761S05210D 04

it 3.33521544880 04

12 3.2616 162280D 04

13 3. 19518802670 04

14 3. I287598254D 04

15 3. 0666676 395D 04

16 3.0054S16620D 04
17 3. II8388S396D 04

18 1.61605483210 04

19 0.0

20 0.0

21 0.0

22 0.0

23 0.0

24 0.0

25 0.0

26 0.0

27 0.0

28 0.0

29 0.0

30 0.0

31 0.0

32 0.0
33 0.0
34 0.0

Figure C.5 (Continued)
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OOXIBBOSX BOOBDkBt BBkX XBkBSPBB COBPPICIBBXi

aaaisifixt: o.ooooood oo
BkDIkXZCB BXC (B/B**2 B)t
COBTBCXIOB BXC (B/B**2 I):
lOXkL B1C (B/B**2 B)t

PBCPBBTt DIS1BIB0XIOBS - TIBB -

2.58149SD 01
2.039700D 01
4.62II9SD 01

10800.000SBCOBDS

B) DEBSITI (KG/a**3) SP. BBkt (J/BG B)
8.6010OD 02 2.04S18D 03
8.601000 02 2.044900 03
8.60 IOOD 02 2.044070 03
8.601000 02 2.04266D 03
8.601000 02 2.04064D 03
8.60I00D 02 2.037980 03
8.601000 02 2.034630 03
0.60IOOD 02 2.030SOD 03
8.601000 02 2.02553D 03
8.601000 02 2.019640 03
8.601000 02 2.0I202D 03
6.60100D 02 2.00494D 03
0.60IOOD 02 I.99579D 03
8.601000 02 1.985C2D 03
8.601000 02 1.968120 03
8.601000 02 I.94240D 03
8.601000 02 I.9I0IID 03
1.127040 03 I.86S0S0 03
1.394600 03 1.852600 03
1.394800 03 1.84096D 03
1.394800 03 1.829690 03
1.394800 03 1.819170 03
I.39480D 03 I.00864D 03
1.394800 03 1.79815D 03
1.394800 03 1.7864 ID 03
1.394800 03 I.77360D 03
1.394800 03 1.760660 03
1.39480D 03 I.74762D 03
7.67500D 03 6.594I7D 02
7.675000 03 6.501100 02
7.675000 03 6.4030ID 02
7.675000 03 6.300450 02
7.67S00D 03 6. 194C60 02
7.67S00D 03 6.084370 02

BESI POZBT COBDOCtlfZXt
1 2.78S9SD 01
2 2.780I1D 01
3 2.76022D 01
4 2.7S004D 01
5 2.723170 01
6 2.693110 01
7 2.633160 01
8 2.60170D 01
9 2.S3409D 01

10 2.453440 01
11 2.343800 01
12 2.2276*0 01
13 2.099880 01
14 1.9S888D 01
IS 1.812030 01
16 1.642590 01
17 1.4538 ID 01
16 5.66427D 01
19 5.7(2890 01
20 5.8SS860 01
21 5.945070 01
22 6.03209D 01
23 6.II0I7D 01
24 6.205320 01
25 6.313540 01
26 6.4226 30 01
27 6.532700 01
28 0.0
29 3.406520 01
30 3.432310 01
31 3.4S937D 01
32 3.4S754D 01
33 3.5I3S8D 01
34 0.0

(B/a

Figure C.5 (Continued)
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IIBPBBkTOBI DISIIIB8TI0B kT TIBB - 10800.000 SBCOBDS

BOBBIB OP IIOPIBTt ItBBktlOBS - 2

BBGIOB BklBBIU I BBSB PCIBt (I) DISI. fkOB OBIGIB |B TEBP. (DBG C)

1 1 1 0.0 1.37662650 03

1 1 2 I.02647060-01 1.375601 ID 03

1 1 3 2.05294120-01 1.3724848D 03

1 1 4 3.07941180-01 1.3672123D 03

1 1 5 4.10588240-01 I.3596746D 03

1 1 6 5.13233290-01 1. 34972 1(0 03

1 1 7 6.15802350-01 1.337I595D 03

1 1 6 7. 18329410-01 I.32I7440D 03

1 1 9 0.21176470-01 1.30314350 03

1 1 10 9.23023S3O-0I 1.201105 ID 03

1 1 11 1.02647060 00 1.2S55829D 03

1 1 12 1. 12911760 00 1.2241230D 03

1 1 13 1.2317(470 00 1.19190S1D 03

1 1 14 1.33441100 00 1.131(08(0 03

1 1 15 1.43703880 00 1.1032939D 03

1 1 16 1.5397 0390 00 I.0443553D 03

1 1 17 1.64233290 00 9.7039939D 02

1 1 to 1.74500000 00 6.735170 ID 02

2 2 19 1.84500000 00 8.4802943D 02

2 2 20 1.94500000 00 8.24207390 02

2 2 21 2. 04300000 00 0.01541770 02

2 2 22 2.14500000 00 7.79(01590 02

2 2 23 2.24500000 00 7.58033490 02

2 2 24 2.34300000 00 7.3(5(1970 02

2 2 25 2.44500000 00 7. 149919ID 02

2 2 26 2.34500000 00 (.93273(10 02

2 2 27 2.(4300000 00 (.7I3S7I2D 02

2 2 28 2.74500000 00 6.49248250 02

3 -1 29 3.10500000 00 4.931I002D 02

4 3 30 3.1450000B 00 4.7741863D 02

4 3 31 3.I850000D 00 4.60070720 02

4 3 32 3.2250000D 00 4.41584380 02

4 3 33 3.2650000D 00 4.25(432(0 02

4 3 34 3.3050000D 00 4.0714895D 02

IBC002I StCf 0

Figure C.5 (Continued)
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APPENDIX D

Listing of SHERLOC
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1. C •****•*•••*•••*•*••*•••••••*•+••*»****»»*** fwi*++a++,t„tmmtm
2. C *****«*****«*»»»**»»**»«***»«***»*»»0f*t^t»m00m***»0m**9***»**90
3. C •• ,„
•• c ** SBEB10C - A COBPOTEB CODE TO DETEBBIRE SHALL HTGB aa
\' c *• THBBSAl BBSPOBSB TO LOSS OF CIBCOLATZOB •*
6. C ** 00
1' C ** BBITTEB BI: B A GIBBS APSIL, 1983 ••
•* c ** «B PSBBSTLTAHIA.STATE OSIFBaSIII **
9. C ♦• .,

10. C *• FOBDBD BI: O.S. DBPARTBEBI OF EBEBGT BOCLEAB SCIEBCE ••
••• c ** ABD EBGIflEEBIBG ABO HEALTH PHISICS ••
'2. C ♦• FELLOBSHIP ••
13. C •* mm
14. C ••••••••••••••••••••••••••9**»**»m»0*»»»m^*«tm**»»**0*»**0»»m0mt»
15. C

16. C IBIS CODB SOLVES OBB-DIBEBSIOBAL. BOB-LIBBAB COBDOCTIOB HEAT TEAISFER
17. C PEOBLBBS USIBG PIBITE DIFPEBEBCBS. «aa««
18. C ALTBO90B DEVELOPED SPECIFICALLY TO ABALKE B090LAB BTSBS DIKES
'»• c XOCA/IOPA COBDITIOBS. IT HAI OF COOBSE BB OSBD FOB OTBEB APPB0PBIATE1I
2U C

22. C TBB POLLOBIBG CBkBkCTBBISTZCS OOTLIBE TBB SCOPE AID FLEXIBILITY OF
23. C TBB CODE.

28• c " IB4BSIBBT OB STBADT-STATE BBAX TPABSPBB
29. C - CILIBDBICAL OB BBCTABGOLkB COOBDIBATES (1-D)
26. C - AOIABATZC BOOBDABY COBDITIOB AT THE ORIGIB
27. C - COBVECTIVE ABD/OB BADIkXIVE 300BDABI COBDITIOBS
28• c -*• IBITIAt TEBPBBATOBB OISTBIBOTIOB HOST BB PBOVIDED FOB
29- C TBABSIBBT PBOBLEflS; AB IRITIAL GOESS AT TBB TEBPBBATOBB
30. C DISXBIBOTIOB HOST BE PBOVIDED FOB S-S PBOBLEBS.
31* C - OP TO 20 DXPFEBEBT BEGIOBS BAT BE SPBCIIFIED
32. C - OP TO 20 DIFFEB2BT BATBBIAXS BAT BE SPECIFIED
33- C TBB TOTAL 10BBEB OP BATZBIALS BOST BE .LE. THE TOTAL ROflBEB
38• C OP BEGIOBS. A BBGIOB SAT COBTAIB OBLT OBE BATBBIAL, BOT
35- C SBVEHAL BEGIOBS BAT COBTAIB THE SANE BATERIAL.
30- c - IP 4 BkTEBIAL IS GBkPBITE, TBB TERPEFATOBE ABD BEOTEOB FL3EBCE
3". C DBPEBDEBT TBBBBAL COBBOCTITITI BILL BE CALCOLATED.
38- c - IF A BBGIOB IS A PEBBLE BBD, AB EFFECTIVE COBDOCTIVITT BILL
3'- C BB CALCOLATED TO TAKE BADIAIIOB THBOOGB TBE BBD IBTO ACCOOBT
*0. C AS BBLL AS COBDOCTIOB.
•'• C BOTE: TBE BATBBIAL IB A PEBBLE BED HOST BE SPECIFIED AS
42. C C8APBIT8I
•3- c * »OXO BEGIOBS BAI BB SPECIFIED (VOIDS BAT BOT COBTAIB A BATBBIAL)
••• C - TBE THERBAI COBDUCTIVITIBS, OBESITIES, ABD SPECIFIC HEATS
*5- c 0' HATBBIALS SAT BE SPECIFIED IB TABOLAB FOBB AS rOBCTIOBS
46. C OF TEBPBBATOBB
*7- C - IBTEBBAL BEAT GEBEBATIOB BAT BE SPECIFIED IB TABOLAB FOBB AS
48. C A POBCTIOB OF TIBE
•9. C

50. C FOB STBADI-STATE PBOBLEBS, A DIHECT SOLOTIOB TECHBIQOB IS USED.
51. C THE ROOTIBES DGBFA ABD DGBSL ABE OSBD TO SOLVE A SISTEH OF
52. C SZB0LTABEO0S EQUATIONS IB BkTEIX FOBB.
53. C

54. C TBABSIEBI PBOBLEBS AEE SOLVED OSIBG AB IMPLICIT TECHBIQOB. THE
55. C TBABSIBBT FIBITE DIFFEBEHCB EQUATIOBS ABE SOLVED AT TIBE STEP
56. C I+THETA, HBBBB TBBTA IS IBPOT BI THE OSES. IF FHETA-0.5, THE
57. C TECHHIQOE BECOBES THE CBAHK-BICHOLSOB TECHBIQOB: IF THETA-1.0,
58. C THE TBCHBIQOE BECOBES TBE CLASSICAL IHPLICIT PBOCEOOBE. THE
59. C SOLOTIOB IS STABLE FOB ALL TIBE STEPS IF 0.5 .LE. THETA .LB. 1.0.
60. C TBB OVEBBBLAXATIOH PABABBTEB OHEGA IS IHPOT BT THE OSES:
61. C 0.0 .LE. OHEGA .LE. 1.0.
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62 C
63* C •••••—••••••••••••*•••*•**•••*****************************
64* C *••*••••*••*•••*••*••••••••*••************************************
65! C
66. C DIBEBSIOB ABBAIS - DECLARE VkBXkELES
67 C6a" BEAL*8 A(200,200) /»0000»0.0/,TBBPI (20,20,2) ,G(20,20,2) ,HC,HB.BT,
69. a cOHD(20,2,20)/800*0.0/,TIfF,BBB,P(200)/200«0.0/,TP,Pl(200),
70. • T(200)/200«0.0/,K(200)/200*0.0/,B(200)/200*0.0/,
71. a OELI(20),BB(20),X(20),ABD(*,290),B(200),SiaaA,DBl,DIST,
72. a CTD,BAZ,TBP,DZA,F,BPS,PXPB(20,20,2),FL(200),BTD,
73. a TL (200) ,TLB (200) ,TBEHF (200) ,TT (200) .S I.S2,
7*. * B1,92,B3,B(200),CP(200),BFB(20,2,20),CPPB(20,2.20),D(200).H(200),
75. * TH.CCI,CC2,CO*T(200),COHP,SOH/0.0/,TTOI,B,DT,GEB(200),DCI( 2),
76* a hIiPb'tZB.DOBHT,DOHBT2.AI(200).A2(200),A3,A4,HB12(20),HB2I(20),
77. a B1(20)/20*0.0/.E2(20)/20»0.0/.812,B21,TTL(200).TZB(200)
76. IBIBGSB BB4T,BH(20) ,IPB«(20) ,BL/I/,BO/l/.B.B.«™ <200> •IBPO.
79. a ll,I2.II.BODE,BBBG,BGB,akT(20).BGBPH.PEBPLG(20)/20*0/.BFLPT(20).
go! * BTIBE,BXI,BPI,ITakZ,IPHkZ,IPBB(20),IPBC(20),IT/0/,BBDIT/V
81. • ,IBDIX,IPBG(20),IPBT(20)
82. COBBOB / ICDX / IDkT(13) ,DBlTk(l3),kIk(13),CB(13)
83. COBBOB /Till /COB(13)
84. DIHEBSIOB TITLE (80)
85. C
86. C READ GEBEBAL PROBLEB IBPOBHATIOB
87. C
88. BBAO (5.10) TITLE
89. 10 FOB BAT (B0A1)
90. BBITE (6,15) TITLE
91. 15 FOBBAI ('l'.eOkl)
92. BBAD (5,35) IGEOB. BBBG.BBAT.IT
93. BBAD (5,35) (BAT(BGB) ,BGB-I,BBBG)
94. BEAD (5,35) BGBPfl
95. BEAD (5,35) (PEBFLG(I) ,1-1,BBBG)
96. DO 23 I-I, MEG
97. IF (PEBFLG(I) .BQ. 2) BEAD (5,30) B1(I),B2(I)
98. IF ((PBBPLS(I) .BQ. I) .ABD. (HAT (I) .BB. BGBPB)) GO TO 25
99. 23 COBTIBOE

100. GO TO 28

,02! 27 FOBBAT ('OIBPOT EBaOB - PEBBLE BED BBGIOB BOST BB CBAPHITEI*)
103. GO TO 600
104. 28 BEAD (5,30) DIA.F.SPS
105. 30 FOBBAT (6P12.7)
106. BEAD (5,30) RC.EHH.TZBP
107. BBAD (5,30) (SB(I),I»I,BREG)
106. BEAD (5.35) ilHtf) .1-1.»BBG)
109. 35 FOBBAT (6112)
110. C
111. C BBITB GEBBBAL CASB DESBIPTIOB
112. C
113. 45 BBITE (6,50)
114. 50 FOBBAT («0 CASB DBSCRIFTIOE')
115. IP (II .«Q- 0) BBITB (6,55)
116. IF (II -BB. 0) BBITE (6,60)
117. 55 FOBBAT (•0*.T5,'PBOBLEH TTPB: STEADY STATE')
118. 60 FOBBAT (•O'.TS.'PBOBLBH TIPB: TBABSIBBT')
119. IF (IGEOB .BQ. 1) BBITE (6,65)
120. IP (IGEOB .EQ. 2) BBITE (6,70)
121. 65 FOHBAT (T5,'OEOBBTBI: HBCTABGOLABM
122. 70 FOBBAT (T5,*GBOSETBY: CYLIBDBICAl')
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123. BBITB (6,75) BBBG
12*. 75 FOBBkX (I5.'B0aSBB OF BB6I0BS: «,I2)
125. BHIIB (6,80) BBkX
126. 80 POBHkX (TS,'BOBBER OF HAXBBIALS: '.12)
127. IF (BGBPH .HE. 0) BBIXB (6,85) BGBPB
128. 85 FOBBkX (T5,"HATEBIAL • '.12,' IS GRAPHITE - GBBPHITE COBOOCTIVITT
129. • HILI BE OSBD')
130. DO 100 la 1,BBBG
131. IP (PBBFLG(I) .BQ. I) BBITB (6,90) I
132. IF (PBBPLG(I) .BQ. 2) BBITB (6,95) I
133. 90 FOBBAT (X5,'BBGIOB • ',12,* IS k PEBBLE BED - GRAPHITE ABD
13*. *FSBBLE BBD CALCOLATIOBS BILL BE P8BPOBHBD')
135. 95 FOBBkX (15.'BBGIOB • ',12,' IS k VOID BBGIOB - BkDIkTIOB OBLY
136. • IB XBIS BBGIOB')
137. 100 COBXZBOB
138. BBIXB (6,103)
139. 103 POBBkX(«0'.X5,'BBGIOB BkTEBIAL BIDTB (H) BO.BBSfl PTS (ZBCL
1*0. *BOOBDS)')
1*1. 00 110 1-1,BBBG
1*2. BBIXB (6,113) I,BAT(I) ,Hfl(I),BB(I)
1*3. 110 COBXZBOB
1*4. IIS POBBkX ft7,Z2,TtS,Z2,X24,DI0.4,!40,I3)
143. IP (ZX .BB. 0) SO XO 140
144. C

147. C IBPOT kBD OOXtOX OP STEkDI STkTB PABABETEBS
148. C

149. BEAD (3,119) IBU.CTD
150. 119 POBHkX (I12,ri2.7)
151. 120 FOBBkX (2 (112, P12.7))
152. BBZXB (6,125) I BAI
153. 125 FOBBAT (TS.'BkZ. ITEBATIOBS OB PBOPBBXZES: ',12)
154. BBIXB (6,135) CXD
155. 135 POBBkX (XS.'COBV. CBIXBBZk FOB kVG. BBL. TEBP. DZPP.: ',1PD12.5)
136. GO XO 220
157. C
138. C IBPOT OP TBABSIBBT PkEANETEES
139. C
160. 140 BBkD (3,145) BTIHB.TTOT.IH,H.HEDIT
1(1. 145 POBBkX (I12,3P12.7,I12)
162. BBkD (5,120) ITBAI.CC 1,IPHAI,CC2
163. C
164. C BEAD DBBSITI TABLE
163. C
166. EBAD (3,33) (IPBB(I) ,I« t.BBAT)
167. DO ISO Z-1,aakT
168. BI-ZPBB(I)
169. BBkD (5,30) ((BPB(Z,l,B) ,L-I,2) ,H> l,BI)
170. ISO COBTZBOB
171. C
172. C BBkD SPECIPIC BBkX TkBLE
173. C
174. BBAD (5,35) (IPBC(I) ,I>I.BSAT)
173. DO ISS I>t.BBAT
176, BlalPBC(I)
177: BEAD (3,30) ((CPFB (I,L,B) ,1- 1,2) ,B« I.HI)
170. ISS COBXIBOB
179. C
180. C BBAD DECAY BBkX POBCIIOB (POBCTIOB OF TIBB)
181. C
182. CALL BBADPB(DCI)
183. C
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184. C BBITB TBABSIBBT PB08LBB IHFOBBAIIOH

185. C
186. BBITE (6,160) CC1
187. BBITE (6,165) ITHAX
188. 160 FOR HAT ('0',T5,'BOBBAIIZBD HEAT BXSIDOAL COBVBBGBBCB CBIT. (IBBBB
189. *LOOP): ',T80,1PD12.5)
190. 165 FOBBAT (TS.'BAZ. ITEBATIOBS OB IBBBB (LIBBAB) LOOP: ',180.13)
191. BBITB (6,170) CC2
192. BBITE (6,175) IPHAI
193. 170 FOB HAT (T5,'COBVEBGEBC! CBIT. OB PROPERTIES: • ,T80, IPD12.5)
194. 175 FOBBAT (15,'BAI. IXBBATICBS OB PBOPEBTIZS: ',T80,I3)
195. BBIXB (6, 180) TTOT
196. DT-TTOT/ (DFLOAT (BTIBE))
197. BBITE (6,185) DT
198. 180 POBBAX (XS.'PIBAL TIBB: •,T80, IPDI2.5,' 58COBDS')
199. 185 FOBBAT (TS.'TIBE SIBP (DELTA T) : •,180,1PD12.5,' SBCOBDS')
200. BBIXB (6,190) BBDIT
201. 190 FOBBAT (XS.'BO. OF TIBB STBPS BBTBEBB XBBPBBkXOBB OISTBIBOTIOB
202. • PBIBXO0XS:',T80,I3)
203. BBITE (6,195) TB
204. BBITB (6,200) B
205. 195 POBBkX (XS.'XBBXk (0.5 FOB C-B; 1.0 FOB CIP): ',180, IPD12.5)
206. 200 POBRAX (XS.'SOB ACCELBRATIOB PABABETER (OBEGA) : ',180,1PD12.S)
207. BBZXB (6,205)
208. 205 FOBBkX ('O'.TS,'ABALYTIC DECAY BEAT POBCTIOB COEFFICIEBTS: •)
209. BBITB (6,210)
210. 210 POBBkX (• I(Z)-k(l) ♦ k(2)»E ♦ k(3)*I»*2 ♦ k(4) «DCOS(k (5) X)
211. • ♦ A(6)*DBZP(A(7)Z) ♦ A(8) *DSIB (A (9)I) ♦ A(10| •( (Z*A (11) )**A(12)) •
212. • )
213. BBITB (6,215) (I.DCI (I) ,1-1, 12)
216. 215 FOBBAT (X5,'A(',I2,') - '.1PD11.4)
215. C
216. C BBD OF TBABSIBBT PABABETERS
217. C
218. C BBAD IBTBBBAL BBAX GBBBBATIOB POBCTIOB - IPBG PAZBS FOB BACH BBGIOB
219. 220 BBkD (5,35) (IPBG(I),1-1,BBBG)
220. DO 225 1-1,BBBG
221. fll-IPBG(I)
222. BBkD (5,30) ((6(I.L.B).8-1.2) ,L-I,HI)
223. 225 COBTIBOB
224. C
225. C BEAD XBITXAL TEBPBRAIfiBE OISTBIBOTIOB ESTIBAT8 - IPRT PAIBS FOB
226. C EACH BBGIOB
227. BBAD (5,35) (IPBT(I) ,1-1,BBBG)
228. DO 230 1-1,BBBG
229. BI-ZPBT(I)
230. BBAD (5,30) ((TESFI (I,l,B) ,H- 1,2) ,L« 1,81)
231. 230 COBTIBOB
232. C
233. C BBAD THERHAL COBDOCTIVITY POBCTIOB - IPRK PAIBS FOR EACH HAT'L
234. C
235. BBAD (5,35) (IPBK(I) ,I-1,BBAT)
236. DO 235 I-1.BBAT
237. IP (I .BQ. BGBPB) GO TO 235
238. 81-IPRK (I)
239. BEAD (5,30) ((COHD (I.L.B) ,1-1,2) ,8-1,H I)
240. 235 COBXZBOB
241. IF (BGBPB .BQ. 0) GO TO 240
242. C
243. C BEAD PLOEBCE OISTBIBOTIOB
244. C
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245. BEAD (5,35) (BPLPT(I) ,1-I.BBBG)
246. DO 237 I-I.BBBG
247. HI-BPLPX(I)
248. BEAO (5,30) ( (FLFB (I.L.B) ,H-1,2) ,L-1,H1)
249. 237 COBTIBOB
250. C

251. C PBBLIBIBABI IBIXIALXZATIOBS ABD CALCOLATIOBS
252. C

253. 240 B-0

254. SIGHA-5.669B-08
255. DO 245 I-I.BBBG
256. B«i*BB(I)
257. DBLI(I)-VB(I)/(0FLOAT(BH(I)-1))
258. 245 COBTIBOB
259. B-B-(BBEG-I)
260. BL-B-1
261. BP-B«1
262. Z(I)-BH(I)
263. ZP (BBBG .BQ. 1) GO TO 250
264. DO 250 Z-2.BBBG
265. Z(Z)«Z(Z-1)*HB(I)
266. 250 COBTIBOB
267. ZCOOBT-1

266. C

269. C CALCOLAIE IBTERIAL BEAT GBBBBATIOB ABD IBITIAL T8BPEBAT0BB
270. C ESTIHATE AT BACH HBSB POIBT I.
271. C

272. CALL IBTBPG (G.IPBG.P, B.DELI,I.BBBG,PEBFLG,IGBOH)
273. CALL IBTEBP (TBBPI,IPBT,T,H,OBLI,Z.BBEG)
274. IP (BGBPB .BE. 0) CALL IBTEBP (PLFB,BFLPT,FL,B,DBLI,Z,BBEG)
275. BBITE (6,255)
276. C

277. C PBIBI IBITIAL OISTBIBOTIOBS (TEBP, FLOEBCE, PBOPS, ETC.)
276. C

279. 255 FOBBAT ('I IBITIAL IBBPEBATOBB DZSIBIBOTIOB')
280. BBITB (6,256)
281. 256 FOBBAT ('OBEGIOB BATBBIAL • HBSH POIBT (I) OIST. PBOB ORIGIB
282. *(B) TEBP. (OEG C)', 183,'IBITIAL HEAT GBB. (»/H««3) •)
283. DZST-0.0
284. BOB-1

285. 00 260 Z-1.B
286. XP-X (Z) -273. 16000
287. BBZTB (6,445) RGB, BAT (BOB) ,1,DIST,TP,P(I)
286. IF (DABS (I (BBBG)-DIST) .LB. 1.0D-6) GOTO 260
289. IF (DABS(Z(BGB)-DZST) .LE. I.0D-6) BBZTB (6,450)
290. ZF (DABS (Z(BGB)-DIST) .LB. 1.0D-6) RGB-BGB* 1
291. DIST-DIST*DELZ (BGB)
292. 260 COBTIBOB

293. IF (BGBPB .EQ. 0) GO TO 280
294. BBITE (6,265)
295. 265 FOBBAT ('1 FLOEBCE OISTBIBOTIOB')
296. BBITB (6,270)
297. 270 FOBBAT (• BESH POIBT',T15,'FLOEBCE (B/CH**2) •)
298. BBITE (6,275) (I,FL(I) ,I-1,B)
299. 275 FOBBAT (16,13,115,1P012.5)
300. C

301. C CHBCE FOB TBABSIBBT OB STEADY STATE PBOBLEH

302. C
303. 280 IP (IT .BB. 0) GO TO 475
304. C

305. C
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306. C •**•••••*•*••*•**•*••**•••******•********************************
307. C ••••***•***••••••**••*••••*••***••••*•*»*•*•**•*»****************
308. C
309. C
310. C STEADY STATE SOLOTIOB
311. C

312. C
313. C CALCULATE THBRHAL COHDOCTIVITIES XT EACH BBSB IBTBBVAL
314. C
315. DO 282 1-1,B
316. IIB(I)-(Xa)»I{I*l))/2.0
317. 282 COBTIBOB
318. 285 CALL COBDOC (I.E.DELI, naT,HGBFH,I6EOH.BH,Z,FL,ZP3,F,DIk.IPHE.
319. • COBD,BBEG,PEBPLG,B,TIB)
320. C
321. C CALCULATE BEAT IBABSFBB COEPPICIEBT OB OOTBRBOST BOOBDABI
322. C
323. 290 BB-EBB*SIGBA*(T(B)**2«TIflr*«2)*(T(B)«IIBF)
324. HT-HR+HC
325. 294 FOBBAT (MOOTHRBOST BOOBOABI BEAT TBABSFBB COSFPICIBBT: •)
326. 295 FORBAT ('0',T5,'EBBISIfllt: ',D13.6)
327. 300 FOBBAT (X5,'BADZAXIOB BXC (B/B««2 K): '.IPD13.6)
328. 305 FOBBAT (T5,'COBVBCTIOB BTC (B/B*«2 E) : '.1PD13.6)
329. 310 FORBAT (15,'TOTAL BTC (B/B*»2 E) : ',1PD13.6)
330. C
331. C
332. 315 IP (IGEOB .BQ. 2) GO TO 340
333. C
334. C SLAB GEOBBTBI

335. C
336. C SET OP FIBST ABO LAST BOBS OF COEPPICIEBT BATBIX
337. DEL-DELI (1)
338. A(1,1)«-(E(l))
339. k(l,2)-K(1)
340. B(1) — ((P(l)*DBL»«2)/2.0)
341. A(B,B-1)-K(B-1)
342. A (B,B) — (BT«DSLI(BBBG) *K (B-1) )
343. B (B) — ( (P (fl) *DELI (BBEG) ••2) /2. 9*BT«DELI (BBBG) «TIBF)
344. C SET OP BEHAXBDBB OP BATBIZ
345. BGB-1
346. DZST-DBLI(I)
347. DO 335 1-2,BL
348. IF (DABS (Z(BGB)-DIST) .LE. 1.0B-6) GO TO 320
349. 4(I,I-1)-K(I-1)
350. k(Z,Z) — (K(Z-I|*K(I))
351. A(I,I*1)-«(I)
352. B(I» —(P(I)»DEL*«2)
353. GO TO 330
354. C BBGIOB IBTEBPACE
355. 320 RGB-RGB*1
356. DEL-DELI (BGB)
357. IF (PEBFLG (BGB) .EQ. 2) GC TO 325
358. A(I,I-I)-E(I-I)»DEL/(DELI(BGB-1)»DBL)
359. A (I, I) — (E (I) »DBLI (BGB- I) *K (I- I) *DEL)/(DELI (BGB- I) *DEL)
360. A(1,1* 1) -E (I) *DBLI (BGB-1)/ (DELI (BGB- 1) aDBL)
361. B(I)—(P(I)*DELI(BGB-1)*DEL)/2.00
362. GO TO 330
363. C VOID BBGIOB

364. 325 E12*(1.0)/((I.O/EI(BGB))«(1.0/E2(HGB))-I.0)
365. BBI2 (BGB)-SIGHA*EI2* (T(I)•»2*I (I» I) **2) • (T(I)*T (I* I))
366. A(I,I-1)-E(I-1)
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367. A(Z,I)>-(HB12(BGB)«DBLZ(BGB-1)*K(Z-1))
368. k(I,I+1)«BB12(RGB)*DBLZ(BG8-l)
369. B (I) — (P (I) -DELI (BGB-1) **2) /2. 0
370. DIST-DZST+DEL
371. Z-I*1
372: BGB-RGB*1
373. DEL-DELI(BGB)
374. A(I,I-1)-BBI2(BGB-t)«DEL
375. AO.I)—(BR12(RGB-l)aoBL*K(i))
376. A(I,I*1)-K(I)
377. B(I)—(P(I) •DEL—2)/2.0
378. 330 DIST-DIST*DBL
379. 335 COBTIBOB
380. GO XO 365
381. C
382. C CYLIBDBICAL GBOBBTRI
383. C
384. C SBX OP PZaSX ABD LAST BOBS OP COBPPZCZBBX BATBZZ
383. 340 DEL-DELI(1)
386. A (1,1)—E(1)
367. k(l,2)-B(1)
380. B(1)—(P(1)»DBL*«2/4.00)
309. A(B,B-1)-K(B-1)a(i(iSEG)-DELI (BBEG)/2.0)/DELI (BBBG)
390. k (B,B) — ( ( (Z (BBBG)-DELI (BBBG) /2.0) *K (B- 1)/DELI (BBBG) ) ♦
391. • I(BEEG)aRT)
392. B (8)— ( (P(B) »(Z (BBBG) -DBLZ(BBBG) /4.0) -DELI (BBBG) ) /2.0a
393. • Z (BBBG) *»*TXBP)
394. C SBX OP BBBAIBDEB OP BkTBIZ
395. BOB-1
396. DIST-DBLI (1)
397. DO 360 1-2,BI
398. IP (OkBS (Z (BGB)-DIST) .J.Z. 1.0B-6) GO XO 345
399. k(Z,Z-1)-((OZSX-DBL/2.0)«R(Z-1))/DBL
400. k (1,1) — ( (DIST*DBL/2.0) *K (I) /DEL* (DISI-DBL/2. 0) *K (I-1) /DBL)
401. k(I,I*1)-((DIST*DBL/2.0)«E(Z))/DBL
402. B (Z) — (f (Z) *DIST*DBl)
403. GO XO 355
404. c asaxoa IBTBBPACE

405. 343 BGB-RGB*1
406. DEL-DELI (BGB)
407. IP (PBBFLG(BGB) .BQ. 2) GO TO 350
406. k(Z>X~1)MOIST-DELI (RGB-1)/2.0)*E(Z-1)/DSLZ (BGB-1)
409. A(1,1) — ((DIST*DEL/2.0)*K(I)/DEL*(DIST-DSLI(BCB-1)/2.0) a
410. • K(I-I)/DELI(BCB-I))
411. A(I,I*1)-(DIST*DBL/2.0)»K(I)/DBL
412. B (I) — (P (I) /2.0) • (DISX* (DELI (BGB-1 )♦ DEL) *0. 25* (D8l**2-
413. • DBLI (BGB- I) **2) )
414. GO XO 355
413. C VOID BBGIOB
416. 350 E12-(1.0)/((1.0/B1(RGB))*(DIST/(DIST*DBL)|-((1.0/E2(BGB))-1.0))
417. E21-(DISX/(DZSX*DBL))«B12
418. BB12 (BGB)-SIGBA*EI2* (X(I) ••2*T (I* I) **2) • (X (I) *T (I* I))
419. BB21 (BGB) -SIGBA-I21- (T(I) *«2*X (I* 1) «*2) • (T (I) *T(I*1))
420. A(I,Z-1)-E(Z-1)*(DISX-DELI(BGB-1)/2.0)/DBLI (BGB-1)
421. A (1,1) — ( ((DIST-DBLI (BGB-1) /2.0) *K (I-1) /DBLI(BGB-1) ) *
422. • DIST*BB12(RGB))
423. A(I,I*1)-DIST*HH12(BGB)
424. B (I) — (P(I) *DBLI (BGB-1) a (DIST-DBLI (BGB- l)/4.0) )/2.0
423. DIST-DI3T*DBL
426. 1-1*1
427. B6B-B6B*1
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428. DEL-DBLI (BGB)
429. A(I.I-U"DIST»HB2I (BOB-I)
430. A (1,1) — ( ((DIST*DBL/2.0) «E (I) /DEL) ♦DIST«HB2 1 (BGB-1))
431. A(I,I*1)-K(I)*(DISX*DBL/2.0)/DBL
432. B (I) — (P (I) *DEL* (DIST*DEL/4.0) ) /2. 0
433. 355 DIST-DIST*DEL
434. 360 COBTIBOB

435. C
436. C SET OP TRIDIAGOHAL BAIHIZ ABO TBABSFBB PI TBBHS FBOH B
437. C
438. 365 H-BL+HO*1
439. DO 375 J-l.B
440. PI(J)-B(J)
441. Z1-BkZ0(1,J-B0)
442. I2-BIB0(B,J*BL)
443. DO 370 1-11,12
444. K1-I-J*B
445. ABD(E1,J)-A(I,J)
446. 370 COBTIBOB
447. 375 COBTIBOB

448. C
449. C SOLVB HATRII EQOATIOBS BY BLZHZBAIIOB OSIBG DGBFA ABD DGBSL
450. C
451. CALL 0GBPk(kB0,4,B,BL,H0,XPVT,IBP0)
452. CALL DGBSL (ABD,4,a,aL,H0,IPTT,B,0)
453. DO 380 I-1.H
454. C SAVB TBB PREVIOUS TEBPBBATOBB DISTRIBOTIOH ZB ABBAZ TL
455. TL(X)-KZ)
456. C TBABSFBB SOLOTIOB PBOB ABBAY B TO ABBAY T
457. 1(1)-8(I)
458. 380 COBTIBOB

459. C
460. C CHBCE FOB COBVBBGBBCB

461. C
462. C CALCOLATE TBB BBAT BESZDOAL AT EkCB BODE ABD TAB AVEBAGE BBLAXZVE
463. C TEHFBBAXOBX DIPFBBBBCB BBTBEBB TBE PBBVIOOS ABD PBBSBBI IIBBAXIOBS.
464. C
465. B(l)-(k(1,l)*T(l))*(A(l,2)*I(2))-PI(1)
466. B(B)-(A(B,B-l)»X(B-1||*(k(B,B)*X(B))-P1(B)
467. SOB-DABS (T(1) -II (1) )/I (1) *DABS (T(B) -II(B))/X(B)
468. DO 385 1-2,BL
469. B (I) -(A(1,1-1) «T(I-1) )♦(A(1,1) »X(I) )♦ (A(I,I* 1) *X(X«1)) -P1(I)
470. 30B-S0B»DA8S(T(Z)-XL(I))/T(Z)
471. 385 COBTIBOB

472. BTD-(1.0/DPLOAT(B))*SOB
473. C CHECK COBVBBGBBCB
474. IP (BID .Gt. CTD) GO TO 400
475. GO TO 430
476. C
477. C PBIBI COBVBBGBBCB IBPOBHAXIOB
478. C
479. 400 IF (ICOOBT .BQ. I) BBITB (6,405)
480. 405 FOR BAT(M ZTEAATIOB HAZ. HT BBS. BODB TEBP (DEC C) ',152,
481. * 'AVG. BEL. T8HP. DIFF.')
462. HAX-DABS (8(1))
483. BODE-1
484. IHP-X(I) -273. 16000
485. DO 410 1-2,8
486. IF (DABS (E(I)) .LI. HAZ) GO TO 410
467. BAZ-DABS (B (Z))
488. BODB-Z
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88'. THP-T(I)-273.16000
490. 410 COBTIBOB
89*« BRITB (6,415) ICOOBT,HAX,BOOE,THP,RTD
492. 415 FOBBAT (X9.I2.XI5, 1PDI3.6.T29.I3.I36, IPD13.6,T52, 1PD13.6)
*93. IP (ICOOBT .GE. IBAX) GO XO 420
494. ICO0BX-ICO0BX* 1
495. C

496. C IP BOT COBVBBGED, CALCOLAIE A BBB TEBPEBAIOBB DISTBIBOTIOH
•97. GO XO 285
•96. C

499. 420 BBITB (6,425)
500. 425 POBBAX (• IXBBATIOBS OB TBBBBAL PBOPBBTIBS EZCBEDBD')
501. C

502. C PBZBT OOTBBBOST BOOBOABY BTC
503. C

504. 430 BBITB (6,294)
505. BBITE (6,295) EBB
506. BBITB (6,300) BB
507. BBITE (6,305) BC
508. BBIXB (6,310) BI
509. C

510. C PBIBX TBBPERkTOBE DZSIBZBOTZOB
511. C

512. BBIXB (6.435)
513. 43S POBBkX ('1 TEBPBBATORE OISTBIBOTIOB')
514. BBITB (6,440)
515. 440 FOBBAT ('OBBGIOB BATBBIAL • BBSH POIBT (I) DIST. FBOB OBIGIB
516. «(H) TEHP. (DEG C) •)
517. DIST-0.0
518. BGB-1
519. DO 455 1-1,B
520. TP-KD-273.16000
521. BBITB(6,44S) RGB,BAT (RGB) ,I,DIST,TP
522. 445 FOBBAT (14,12,112,12,126,13,T42, 1PD13.7,163 ,1PD14.7,T83,
523. a 1PDI4.7)
524. IF (DABS(Z(BBBG)-DIST) .LE. 1.0B-6) GO TO 455
525. IP (DABS (I (BGB) -DIST) .LE. I.OB-6) BBITB (6,450)
526. 450 FOBBAT (• •)
527. IF (DABS(Z(BGB)-DZST) .LB. 1.0B-6) RGB-RGB* 1
528. DISX-DISX*DELZ(BGB)
529. 455 COBXZBOB
530. C

531. C EBD OF STEADY STATE PBOBLBH
532. GO TO 800
533. C
534. C

535. C ****«**********»»»*»»*m»********0**»m**»*****m*»*m0»»*»*»»m***»m*
536. C •••••—•••••••••••••••••••••••••^••••••**«9»mm0^»**m*m***m***»»
537. C
538. C

539. C TBABSIBBT SOLOTIOB
540. C

541. C IBITIALIZE ARBAYS COBTAIBIBG lEflPEBATORES AT VABIOOS ITEBATIOB LEVELS,
542. C IBBPBBAIOBB AT BHICB TO CALCULATE PBOPEBZIES, ABD IBBADIATIOB TEBPS.
543. C
544. 475 DO 500 I-I.B
545. XL(I)-X(I)
546. ILP(I)-T(Z)
547. TBEBP(Z)-X(I)
548. TIB(I)-(I(I)*T(I*l))/2.0
549. 500 COBTIBOB
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550. DT-TtOX/(DFLOAT(BTIBE))
551. IBDIT-0
552. C
553. C BBGZB TIBB STBP
554. C
555. DO 670 J-1.BTIBE
556. TIB-DT-DFLOAT(J)
557. ZBDZT-IEDII*1
558. C SAVE THE COBVEBGEO TSBPEBATOBE OISTBIBOTIOB PBOB PBBVIOOS TIHE STBP
559. C IB ABBAY TIL.
560. DO 502 I-I,B
561. IP (J -BQ. 1) TIL (I) -I (I)
562. IP (J .BE. 1) TXL(I)-TI(I)
563. 502 COBTIBOB
564. C
565. C OPDATB BEAT GBBBBATIOB OISTBIBOTIOB AT IIBB STEP 3
566. C
567. 501 DO SOS I-1.B
568. GEB(I)-P(I)«ABALFB(DFLOAT(J)«DT,DCI)
569. 505 COBXZBOB
570. C
571. C IBITIAL IU IBBIB (BXI) ABD OSXBB (BPI) IIBBATIOB COOBTBBS
572. C
573. BPI-0
574. C TBE ORES IIBBATIOB LOOPS BACE TO LIBB 509
575. 509 BXI-0
576. C THE IBBBB ITEBATIOB LOOPS BACE TO LIBB 510
577. 510 DEL-DELI (I)
578. C
579. C OPDATB THBBHAL PBOPBBTZBS
580. C
561. C CALCULATE BOOBOABI BBAT TBABSFBB COBFFICIEBT
582. BB-Bfla*SI6Bk* (TBEBP(B) ••2«TIBF**2)•(TBBBP(B) *TIBF)
583. Ht-BR*HC
584. C OPDATB BTC FOB VOID BEGIOBS
585. L-Hfl(l)
586. DO 514 BGB-2.BBBG
587. L-L*BB(HGB)-I
588. IP (PBBPLG(BGB) .BE. 2) GO TO 514
589. B12-(1.0)/((1.0/E1(80B))*(Z(BGB-1)/Z(BOB))*((
590. • l.0/B2(BGB|)-1.O))
591. IP (IGBOB .BQ. 2) GO TO 512
592. C SLAB
593. E21-E12
594. 60 TO 513
595. C CYLZBOEB
596. 512 B21-(Z(BGB-I)/Z(BGB))*BI2
597. 513 BB12 (BGB) -SIGBA*B12* (TBBBP(L) •*2*TBBBP(L-1) ••2)»(TBEBP(L) ♦

598. • TBBBP (L-1))
599. BB2 1(BGE) -SZGBA-B21•(TBBBP (L) **2*TBEBP(L- I) *»2) • (TBBBP (L) ♦

600. * TBBBP (I-1))
601. 514 COBTIBOB
602. C OPDATB COBDOCTIVITI, DBBSZTY, ABD SPECIFIC BEAT
603. 515 CALL COBDOC(TBBBP,E.DELI, HAT,BGBPH,IGBOB, BB,Z,PL,BPS,F,DZA,
60*. • IPBK,COBD,BBEG,PBBPLG,B,Iia)
605. CALL PBOP (TBEBP,8,BPB.DELI.IPBB,HAT,H,Z,BBBG,ZGBOH)
606. CALL PBOP (TBEBP,CP,CPPB,DBLZ,ZPBC,aAT,B,Z,BBBG,IGEOB)
607. C
608. C SOLVB BQOATIOBS FOB TEBPEBAIOBB OISTBIBOTIOB
609. C
610. C OBIGIB



611. C

612. C

613. c

614. 519

615. C

616.
617.

618.

619. C

620. 520

621.

622. C

623. 530
624.

62S.

626.
627. C

620. C II

629. c

630. c

631.

632.

633.
634.

633. c

636. c

637. c

638.

639. c

640.
641.

642.
643.
644. c

643. S3S

646.
647.

640.

(49. c

(SO. 540
(31.

(32.
653.

654. c

655.
656.

657.
636.

659. c

660. 545
661.

662.

663. c

664. 550

663.

666.
667.

660.
669.

670.

671. c
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COBPFICIEBTS

ZP (ZGBOB .80. 2) GO XO 520
EBCTABGOLAR CEOBETBI

31-1.0

S2-(DEL**2)/2.0
GO XO 530

CYLIBDBICkL GBOBBXBZ
S 1-2.0

S2-(DBL**2)/2.0
BQQkXZOBS

D(1)-TB«S1«((1)«B(1)*CF(1)*S2/DI
B(l)-S2*R (1) «CP( I) -TTL( I)/DT«GXB (I) -32* (I.0-TB) • (SI*E (I) •

• (XXL (2)-XXL (I)))
XX(l)-(l.0-S|*XL(t)*B*(l.0/D(l))«(H(1)*TH*(S1*K(l)*TL(2)))

IBTEBBAL BOOBS

BGB-1
DIST-DBLI (I)
DO 360 1-2, BI

ZP (DkBS(Z (BGB)-DIST) .LB. 1.0B-6) GO XO 540
BBGIOB IBTEBBAL BOOB

COEPFICIBBTS

IP (IGBOB .BQ. 2) GO XO 533
BBCTABGOLAB CBOBBTBY

k1(I)-1.0
k2(Z)« 1.0
k3-OEL**2
GO TO 550

CTLIBDBZCAL GECBETBY

AI (I)> (2.0»DIST-DBL) /DEL
k2 (I) > (2. 0»DI3T*DBL)/DBL
k3-2.0*DIST*DBL
60 TO 550

BATBBIAL IBTEBPACB

BGB-BGB* I

DBL-DBXZ (BGB)
ZP (PEBFLG(BGB) .BQ. 2) GO XO 552
ZP (IGEOB .BQ. 2) GO TO 545

BECTkEGOLkB GEOHBTBI
A1 (Z)-DBL/(DBLI (BGB-1) *DttH
k2 (I)-DBLI(BGB-1)/(DELI(BGB-1) *DEL)
B3-OXU (BOB- I) -DEL/2. 0
GO TO 550

CYLIIBDBZCAL OBOBETBI

k 1 (Z) - (2. O-DIST-DBLI (BGB-1) ) /DBLI (BGB-1)
k2 (Z) - (2. 0-DIST*DBL) /DEL
A3- (DBLI (BGB-1) *DEL) a (CIST* (DEL-DELI (BGB-1) )/4.0)

EQOATIOBS
0 (Z)-XH« (AI(I)*E(1-1) *A2 (I)*K(I))*A3»R (I)aCP(I)/DT
B(I)-A3-H (I) acP (I) *TtL (I) /DT+GEB (I)-A3*(1. 0-TB)• (A1(I) •

* B (I-1)• (TIL (1-1)-TT1(Z))*A2 (I)*K(I) * (TIL (Z* I) -TXL(Z) ))
XX(Z)«(1.0-B)*TL(Z)*Ba(1.0/D(Z))*(B(Z)*TB«(A1(Z)*K(I-l)*

• XT(I-I)*A2(I)*E(I)*XL(I*I)))
DIST-0I3T*DBL

GO TO 560
VOID BB6Z0B
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672. C LEFT BABD POIBT
673. C SLAB

674. 552 IP (IGEOB .BQ. 2) GO TO 553
675. A1(I)-1.0
676. A2 (I)-DELI (BGB-1)
677. A3-DELI(BGB-1)-«2
678. GO TO 554

679. C CYUBDBB
680. 553 A I (I) -(DIST-DBLI(BOB- 1)/2.0)/DBLI (BGB-1)
681. A2(I)-DISI
682. A3-DBLI (BGB-1) • (DISX-OELI (BGB-1) /4.0)
683. C BQOATIOBS
684. 554 D(I)-2.0*TB-(A1(I)*E(I-1)*A2(I)*HB12(BGB))*A3*B(I)*CP(I)/DT
685. H(I) -A3*B (I) -CP (X) *TTL (I) /DT*GBB (I)-A3+2.0- (I.0-TH) a
686. • (AI(Z)*K(Z-1)*(TTL(Z-I)-TTL(I))*A2(I)*HB12(BGB)*
687. • (TXL(Z*1)-IIL(I)))
688. TT(I)-(1.0-B)*TL(Z)*B*(1.0/D(Z))*(B(Z)*2.0*IB*
689. • (AI(I)*K(I-t)*TT(I-1)*A2(I)*BBI2(BGB)*TL(I+1)))
690. DIST-DIST*DBL
691. C BIGHT BABD POIBT

692. 1-1*1
693. BGB-BGB* I
694. DEL-DELI (BGB)
695. IF (IGBOB .BQ. 2) GO TO 555
696. C SLAB

697. A 1(1)-DBL
698. k2(I)-1.0
699. A3-0EL**2

700. GO TC 556

701. C CILIBDBB
702. 555 A 1(1)-DIST
703. A2(Z)-(DZST*DEL/2.0)/DBL
704. A3-DBL*(DISI*DEL/4.0)
705. C BQOATIOBS
706. 556 D(Z)-2.0*T8*(A2(I)*K(I)*A1(I)*flB21(BGB-1))*A3*B(I)*CF(I)/DT
707. H(I) -A3*B (I) *CP(I) *TTL(I) /DT+GEB (I)-.3*2.0- (1.0-TH) a
708. • (A2(I)*E(I)*(XTL(I*I)-TTL(I))*AI(I)*BB2I(BGB-I)*
709. • (TIL (I-1)-III (I) ))
710. TX(I)-(1.0-fl)*TL(I)*B*(1.0/D(I))*(B(Z)«2.0*XB*
711. • (A2(I)*E(I)*TL(I*l)*AI(I)*HB2t(BOB-l)«TT(I-l)))
712. DIST-DIST+DBL
713. 560 COBXZBOB
714. C
715. C BOUBDABI

716. C
717. C COEFFICIEBTS
718. ZP (IGBOB .BQ. 2) 60 TO 570
719. C RBCTABGOLAB GBOBBTBY

720. B1-1.0
721. B2-DBLI (BBBG)
722. B3-(DBLI (BBBG) **2)
723. GO TO 580

724. C CILIBDBICAX GBOBBTBY
725. 570 B t-(Z(BBBG)-DELI(BBEG)/2.0)/DBLI (BBBG)
726. B2-X(BB80)
727. B3-DBLI (BBEG) • (I (BBEG) -DBLZ(BBEG)/4. 0)
728. C BQOAXZOBS
729. 580 0(B)-2.0*XB*(B1*R(B-1)*B2*BT)»B3«B(B)*CP(B)/DZ
730. H(B)»B3*B(B)»CP(B) •TTL(B)/DT*GEB (B)-B3*2.0« (1.0-TH) *
731. • (B1«R(B-I)*(TTL(B-1)-TTL(B))*B2*IIT«(TZBP-TXL(B)))
732. IX(B) - (1.0-B) *TL (B) *B* (1.0/D (B)) • (H (B)*TH»(2.0*B1*E (B-1)
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733. • *TX(B-1)*B2*2.0*HT*IIBF))
734. BTI-BTI+1
735. C

736. C CHECK FOB COBVBBGSBCE OB ITBBAIZORS AT THIS PBOPEBTT STEP
737. C
738. C CALCULATE HEAT BBSIDOAL AT BACH BODE
739. B(1)-fl(t)*TH*S1«K(1)*TI(2)-D(l)*XX(1)
740. B (B) -H (B) *TB*(2. 0*B1*K (B-1) *TI (B-1) *B2*2. 0«HT*TIBF) -D (H)*TT (B)
741. BGB-1
742. DIST-DBLI (1)
743. DEL-DELI (1)
744. DO 590 1-2,BL
745. IF (DABS (Z (BGB)-DZSI) .GT. I.OD-6) GO TO 585
746. RGB-BOB* t
747. DEL-DELI(BGB)
746. ZF (PBBFLG(BGB) .BB. 2) GO TO 585
749. B(Z)-H(Z)*2.0«TB*(A1(I)*K(I-1)*TT(I-1)*A2(I)*HB12(BGB)*
750. * TT(I*1))-D(I)*TT(I)
751. DIST»DIST*DEL
752. 1-1*1
753. RGB-RGB* I
754. DBL-DELI (BGB)
755. B(Z)-H(Z)*2.0*TH*(A2(Z)*K(Z)*TT(Z*I)*AI (I) aRB2l (BGB-1)
756. • •XX(I-1))-D(Z)«XX(Z)
757. DZSX-DZSI*DBL
758. GO XO 590
759. 585 E(Z)-H(Z)*TH-(A1(Z)*K(I-1)*TT(I-1)*A2(I)*K(I)*XX(I*1))
760. • -D (I) -TT (I)
761. DISI-DIST*DEL
762. 590 COBTIBOB
763. DO 600 1-1, B
764. COBX(I)-DABS (B(I)/B (I))
765. 600 COBTIBOB

766. C

767. C PIBD HAIIHOB BEAT BXSIDOAL ABD PRIST COBVBBGSBCE IBFO
768. C

769. IF (((Bfl .BE. 0) .OB. (BTI .BB. 1)) .OB. (IEDIT .BE. BEDIT))
770. * 60 TO 592
771. BBITB (6,591)
772. 591 FOBBAT (• ITIBE(SEC) ',TI5,'IBBBB ITBB COOBT' ,135,
773. * 'BAI. BOBH. BESID.',160,*BODB',T70,'TEBP (DBG C)',T85,
774. * 'PBOP. ITBB COOBT',I110.'BOBB OF BOOB TEBP DIFF')
775. 592 HAX-COBI(I)
776. BODB-1
777. THP-TT(l)-273.1600
778. DO 593 1-2,B
779. IP (COST (I) .LT. BAZ) GO TO S93
780. BAZ-COBT (Z)
781. BODB-I

782. THP-TT(I)-27 3.1600
783. 593 COHTZBOB
784. IF (IEDIT .HE. BEDIT) GO TO 595
785. BBITB (6,594) TIB,BTI,HAZ,BODE,THP
786. 594 FOBBAT (• ',P12. 3,120,14,T35. 1PD13.6,«0,I«.T70. 1P013.6)
787. 595 IF (BAZ .IE. CC1) GO TO 610
788. 602 IF (BTI .GE. ITHAZ) GO TO 608
789. DO 605 I-1.B
790. TL(I)-TT(I)
791. 605 COBTZBOB
792. C

793. C IF ACT COBVBBGED, ITERATE OB THIS PROPERTY STEP AGAIB
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794. C

795. GO TO 510

796. C
797. C IIBIBG ITEBATIOBS EZCBEDBD

798. 608 BBITE (6,609) BPI, BTI
799. 609 FOBBAT (• IIBIBG ITEBATIOBS IZCZEDBD OB PROP IIBBATIOB ',13,' -
800. * ',13,' IIBIBG ITEBATIOBS PBBPOBBED')
801. C
802. C CHECK COBVBBGBBCB OB PROPERTIES

803. C

804. 610 BPI-BPI*1
805. S0B»DABS(TT(1)-TLF(1))/TT(1)
806. DO 620 1-2,8
807. S0a«S0B*DABS (TI (I)-TLB(I))/XT (I)
808. 620 COBTIBOB
809. COBP«(1.0/DFLOAT(B))*SOB
810. IP (IEDIT .BE. BEDIT) GO TO 622
811. BBITB (6,621) TIB.BPI.COBP
812. 621 FOBBAT (' •,F12.3,188,14,1110, 1P012. 6)
813. 622 ZF (COBP .LB. CC2) GO TO 640
814. IF (API .68. ZPHAZ) GO TO 635
815. C
816. C CALCULATE TEflPBBAtOBSS AI BHICB TO FZHD BEB THBHHAl PBOPEBIZES
817. C

818. DO 625 1-1,B
819. IP (J .BQ.1) THBHP(I)-(1.0-TB)*I(I)*TB-TT(I)
820. IP (J .BB. 1) TBBHP(I)«(1.0-TB)*TTL(I)*TB*TT(I)
821. 623 TLP(I)-XT(I)
622. IF (J .BQ. 1) TL(I)-T(I)
823. IP (J .GI. 1) TL(I)-TTL(I)
824. 625 COBTIBOB

825. C
826. C GO BACK TO TIBE ITEBATIOBS OB TIBE STBP J

827. C

628. GO TO 509
829. C PROPERTY ZIBBATIOBS EZCBEDBD

830. 635 BBITB (6,638) J,BPI
831. 638 FOBBAT (• PBOPEBTT ITEBATIOBS EXCEEDED OB TIHE STBP ',13.
832. • • - ',13,' ITEBATIOBS')
833. C
834. C COBVEBGEO OB PROPERTIES - IBCBEBEBT TIBB STBP
835. C
836. 640 DO 655 1-1,B
837. IL(I)-TT(I)
838. TLP(I)-TL(I)
639. TBEBPU)-TL(I)
840. 655 COBTIBOB

841. C

842. C CHECK FOR EDITS

843. C
844. IF (J .BQ. BTIHE) GO TO 657
845. IF (IEDIT .BE. BEDIT) GO TO 670
846. 657 BBITB (6,503) TIH
847. 503 FORBAT ('1IBTEBBAL BEAT GEBBRAIIOR DISTRIBOTIOR - TIBE « ',F12.3
848. • ,' SECOBDS')
849. BBITE (6,504)
850. 504 FOR HAT (• BESB POIBT',T15,'HEAI GEH. (B/B**3)')
851. BEITE (6,506) (I,GBB (I) ,1-1.B)
852. 506 FOBBAT (I6,I3,T 15,IPD17. 10)
853. C PBIBI PBOPBBTY DISTBIBOTIOBS, ETC.
854. BBITE (6,294)
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855. BBIXB (6,295) EBB
856. BBIXB (6.300) BB
857. BBIXB (6,305) BC
858. BBIXB (6,310) BX
859. BBIXB (6,516) TIB
8(0. 516 FOBflkX ('0PROPEBTT OISIBZBOIZOBS - TIHE - ' ,F12.3,'SBCOBDS')
861. BBZTB (6,317)
8(2. 517 POBBkX ('OBBSB POIBT',T15,'COBDOCTIVITI (B/B K) ',140,
063. * 'DBBSIXI (K6/R«*3) ',160, 'SP. BBkT (J/KG K) •)
8«- "BZIB (6.518) (I,K(Z),B(Z|,CP(Z),Z-1,B)
(65. SIS PORBkt (T6,I3,TI5, IPDI2.5,1*0, IPD12.S,T60, 1PD12.5)
866. BBIXB (6,660) XIB
667. 660 POBBkX ('1 IBBfEBklOBB DISXBIBOXIOB kT TIBE - '.FI2.3.' SBCOBDS')
068. BBIXB (6,662) Bfl
869. 662 POBBkX (• B08BEB OP PBOPBBXY ITEBATIOBS - ',13)
870. C
871. C PBIBX COBVEBGEO TEBFEBATORE DZSXBZBOXZOB
872. C
873. BBITB (6,MO)
87*. DZST-0.0
873. BGB-1
876. 00 663 I-I.B
877. TP-TT(Z)-273.16000
870. BBITB(6,««S) BGB,BAT (BOB) ,I,DIST,TP
879. IP (DkSS(Z(BBBG)-DIST) .It. I.OD-6) GO TO 665
880. IP (DkBS(Z(RGB)-DIST) .LB. I.OD-6) BBZTB (6,*S0)
001. ZP (DABS(Z(BGB)-OZSX) .It. I.OD-6) BGB-BGB* I
882. DIST-OIST«DELI(BGB)
883. 665 COBXiaOB
884. IBOIX-0
885. 670 COBTIBOB
086. 800 STOP
887. BBO
888. C
689. &*****—********——*•**••••*••+*•••****••—•*+**•—•**••••+•**•
890. C

891. SOBBOOTIES IBXBPG (I,L.Z, B,DELI.I,BBEG,PEBFLG,IGEOB)
092. C
093. C
094. C XBZS SOBBOOtZBB ZBXBBPOLkXBS k XkBOLkB POBCTZOB FOB BEAT GEBBBkXZOB
893. C ZB EkCB BBGIOB XO FZBD VALUES AX EACH BESH POZBT I. TBE AVEBAGE BEAT
096. C GBBBBkXZOB ZS CkLCTjLkltD ZB BkCB ZBIBBVkL: XT IS VOLOBB AVERAGED AT
097. C BATBBIAL BB6I0B IBTBRFACE3
898. C

899. BBAL-8 T (20.20, 2) ,1 (200) ,Z(20) ,DELI(20) ,DIST,GB,GL,DISII
900. IBXBSBB BGB.PBBFLG (20),B,BBBG,IFLAG.IPLAG2.L (20),IGEOB
901. BGB-1
902. DIST-0.0
903. ZPUG2—1
90*. DO 100 1-1,B
905. ZP (Z .BQ. I) I FLAG-1
906. J2-KBGB)
907. DO 20 J-I.J2
908. IP (((Y(BGB,J,1)-DIST) .Lt. I.OD-6) .ABD. ((DZST-Y(B6B,J*I, 1)
909. • ) .LB. I.OD-6)) 60 TO 25
910. 20 COBXZBOB
911. 25 E(Z)-(((Y(RGR,J*I,2)-Y(R6B,J,2))*(DIST-T(RGB,J,1)))/
912. • (Z(BGB,J*1,1)-Y(B6B,J. 1)))*Y(BGB,J,2)
913. C CBBCK FOB ADJOSTBBBT 10 0BZ6IB OB BI6BX BOOBDABI OF VOID BBGIOB
914. IP (Z .BQ. ZPLAG*1) 1(1-1)-0.75*Z (Z-1)*0.25*S(Z)
915. C CBBCK FOB ADJOSTBBBT TO IHTEBPACB
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916. IP (I .BE. IFLAG2*1) GO TO 30
917. GB-0.75*Z(I-1)*0.2S*Z(I)
918. ZP (ZGEOB .BQ. 1) Z(1-1) -(DELI(BGB-1) •OL*DBlZ (BGB) «GB)/
919. * (DELI (BGB-1) *DBLI (BGB) )
920. IF (IGEOB .EQ. 2) Z (1-1) - (DELI(RGB-I) *(*.O-DISTI-DELI (B6B- 1) )
921. * «6L*DELI(S6fl)«(4.0*DZStI*DBLI(BGB))*GB)/
922. * ((DBLI(B6B)*DBLI(B6a-l))*(4.0*DISII*DELI(B6B)-DELI(BGB-l)))
923. C CBBCK FCB BOOBDABT

924. 30 ZF (DABS(DIST-Z (BBBG)) .GT. I.OD-6) 80 TO 35
925. Z(B)-0.7S«Z(B)*0.25«Z(B-1)
926. 60 TO 100
927. C CBBCE FOB IBTEBFACE

928. 35 IP (DABS (DIST-Z (BGB)) .GT. I.OD-6) GO TO 95
929. C BB6Z0B IBTEBFACE
930. RGB-RGB* 1
931. C CBBCK BBBIBBB VOZD OB BOT
932. ZF (PEBFLG(RGB) .BB. 2) GO TO 40
933. Z(I)-0.7S*Z(I)*0.25*Z(I-1)
934. IFlkG-Z*1
935. DIST-DIST*DELI (RGB)
936. BGB-EGB*1
937. GO XO 100
938. C BOBBkL IBT8BFACS
939. 40 CL-0.75*Z (I) ♦0.25*2(1-1)
940. ZPLkG2-Z
941. DISTI-DI3T

942. I-I-1
943. GO XO 100
944. 95 DIST-DI3T+DELI (BGB)
945. tOO COBTIBOB
946. BEXOBB

947. BBD
948. C
949. C ****»*»****m9m»***0***»»**»****»*»»***9«*»»»*****»m»*****»**»*«*

950. C
951. SOB BOOTIES IBTEBP (t.L.Z.B.DELI.Z.BBBG)
952. C
953. C

954. C TBZS SOBBOOTZBB ZBTBBPOLAIBS A TABOLAB POBCIIOB FOB IBZXZAL
955. C TEBPBBATUBB OB PLOBBCB XO FZAD VAL8E3 AX BACB BSSB POZBX Z.
956. C
957. REAL-8 I (20, 20,2) ,I (200) ,I (20) ,DELI (20) .DIST,OB,GL
958. IBTEGBB B6B,B,EBEG,IPLAG2,L(20)
959. RGB-1
960. DISI-0.0

961. ZPIAG2-0
962. DO 100 Z-1.B
963. J2-L(B6B)
964. DO 20 J-1,J2
965. IP (((Y(R6B,J,1)-DZST) .LB. I.OD-6) .ABD. (DZST .LB.
966. • Y(B6B,J*1,1))) GO TO 25
967. 20 COBTZBOB
968. 25 Z(Z)-(((Y(B6B,J*1.2)-Y(BGB.J,2))*(0ISI-Y(BGB,J,1)))/
969. • (Y(BGB,J*1,1)-Y(BGB,J,1)))*Y(BGB,J,2)
970. C CBBCK FOB ADJOSXBEBX TO IBTBEPACB
971. IF (I .BB. IPLAG2) GO TO 30
972. GB-B (I)
973. 3 (I) - (DBLI (BGB-1) -GL* DELI (BGB) *GB)/ (DBLI (BGB-1) *DBLI (BGB) )
974. C CBBCK FCB BOOBDABT

975. 30 IF (DABS (DIST-Z (BBEG)) .LE. 1.00-6) GOTO 100
976. C CHECK FOB ZBTBBPACE
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977. IP (DABS(DISX-X(BGB)) .GT. I.OB-6) GO TO 95
978., C BBGIOB XBTSfPACE
979. B$B-1i&fl*f
S4t», GL«Z(X)
98*. IPLA62-I
S82. I-I-1
383. 60 TO ISO
984. 95 BXST-BSSS*DBLI(SGSj
9S5. ISO CSKTISOS
*Bi. aitOBB
9*7- •*»(>

Safe • C

•H#„ C *»®*««•*»»»♦*♦•««•»««»»♦♦*»«s*»«♦***«»«••»•••••«••a*******«»*a«*

3«KK C

«'• SWBOOTIBB PROP (»,P,PPB,0ELI,IPB,Hkt,H,Z,BBBa,IG«OH)
952, C

99J. C THIS .-iOBBODTZBE ZBtSBPOLATSS A TkBOLkR POBCTIOB OF DEBSITY OB SPECIFIC
994. C BEAT fS. tESPBBATOIB POS EACH 8BGIQB TO OBTAIM VALUES AT EACH BZSB
995. C POIBT. fitSBS OB BATBBIAL IBTSBPACSS ABE VOLORE AVEBAGBD.
916. C

'«?, *A*t«6 T(200},P(200),P?B(20,2,20),D8LI(20),I(20),DIST,PLA5T
«*. JariafiS* If* (22) ,aAt (20) ,««*,*» .STOP, FLAG, IGBOB
999. BGB* I

1000. FLAfr»S
1001. DX3T-0.0
1002. 133 DO 155 1-1,8
1003. JTOP«IP8(8tt(BGB))-1
100S« DO 190 J" 1..JT0?
'<">*- » (<T(Z> .SB. PFB(HAT(RG») . 1,J») .ABD. (T(I) .LE. PFB(8AT(
1606. * RGB), S,J*t))) GOTO 145
sea?. no ccbtibqb

JOSS, 1*3 9 Hi * i ((PFB (HAT (RGB) ,2, J* 1)-PFB (BAT (RGB) , 2, J)) ♦ {T (I) -
'009. * PFB(HAT(RGB),1,J)))/(PFB(BAT(BGB),1,J*1)-PFB(HAT(8GB),
803d. * l,J)))*FF«(HAT{SGB),2,J)
10 11. C CBECS FOB KEGIOH IBTSSFACB - PROPE8TI8S BBSI BE VOLOHE AVEBAGED
S012. IF (FLAG .BE. 1) GO 70 149
1313. IF (IGBOB .80. 1) P(I) - (DELI (BGB- !) apLASZ*DBLI (EGB) «P(I))/
«9»4. * (DEL1(BGB-1)*SBLI(PGB))
10*5. IP (IGEOB .BQ. 25 P(I) " (DELI (BGa- 1) * (4.0«DIST-DELX(aGB- t) 5«
1014. • PL*ST*DBLlSHaB)*(».0*DI5T*»BLI(BGB))*P(I))/
*9»?- * ( (DBLI (BGB-1) *DELI (8SB)) * (».0aDIST*DELI (RGB) -DBLI (RGB-1)) j
1018. FLAS-0

1019. 1*9 IP (DABS(DIST-X (BBEG)) .LE. I.OD-6) SO TO 15S
»Q2G« IF (DABS (DISX-Z (BOB)) .ST. I.OD-6) GO TO 153
1021. IF (RAT (BOB* 1) .it. 0) GO TO SSC
1022. PLAST-Paj
SC23. SGB-86B*S
»C24. »l»««-s

1025. I-I-l
102ft. GO to 155
1027. C V0I3 BB610B

1028. ISO aiST-DIST*DELI(BGB*1)
1-529, a6R«B0S+2
1030. GO TO !55
103?. !"S3 OIST»0IST*SetI!RGII)
1032. *SS COBTIBRE
1033. BBTORB
1034. SBD

1015. C

1036. C ****»»«•*»•**•*******«**9*»*»**«***»»**»**•*••**»»•***•«-»**•«•»*

1037. C
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1038. SOBROOTIHE COBDOC (T,K,DELI,HAT,HGEPH,IGEOH,HH,X,FL,EPS.P,D,IPBK.
1039. * COBD,»RBG,PEBPLG„S.TIB)

1040. C
1041. C SHIS S08EO0TIBE IS OSED TO CALCOLAIE THE THERMAL COHDOCTIVITT OF
1012. C EACH HESH IBTEBVAL (BETBESH EACH POIBT). IF THE HATEBIAL IB A REGIOH
1043. C IS GRAPHITE, THIS ROOTIRE CALLS THE APPROPRIATE SOBBOOTIHB TO
1044. C CALCOLATE GRAPHITE COHDOCTIVITT. IF A REGIOH IS A PEBBLE BED REGIOH,
1045. C THE HOBTIBE TO CALCOLATE BFFECIIVE. THESHAL COBDUCIIVITT IS CALLED.
1046. C IF THE HATEBIAL IS BOT GRAPHITE, A TABOLAB F03CTIOH OF COHDOCTIVITT
1047. C VS TESPEEATOBE IS IBTEEP0L1TED TO FIBD THE COBDOCTIVITT OF EACH
1048. C IBTERVAL IB THAT REGIOB.

1049. C
1050. R5AL*8 r<2 00),K(200),D8LI(20),I(20|,FL(200),BPS.F,D,COHD{2 0,2,20)
1051. * ,DIST,SIGHA,TAVG.PBI.TIR (200)
1052. IBTEGBR HAT(20).HGRPH,IGSOH.BH(20),IPSK (20),HREG,RGB,PEBFLG (20)
1053. * .JTCP.B
1054. SIGHA-5.669D-8
1055. BGB-1
1056. DISI-DELI(t)
1057. 135 DO 155 1-2.B
1058. C CHECK PCS SBAPHITE
1059. IF (HAT (RGB) .BE. HGRPH) GO TO 139
1060. I2-I*BB(SGB)-2
1061. DO 138 L-I.I2
1062. TAVG-(T(L-1) *T(L) )/2.0
1063. PHI-(FL(L-1)*FL(L) )/2.0
1064. CALL GRPHTE (T AVG.TIH (L-1) ,PHI ,K (L-1) )
1065. K(L-1)-100.00*K(L-1)
1066. 138 COBTIBOE
1067. DIST-KHGB)
1068. C CHECK FOR PEBBLE BED
1069. IF (PEBFLG(RGH) .EQ. 1) CALL PEBBLE (K.T.SIGHA, EPS, F, D, I ,
1070. * I*HH(RGB)-2)
1071. IF (HAT (RGB) .EQ. HGRPH) I-I*HH (RGB)-2
1072. IF (BAT (RGB) .EQ. HGBPH) GOTO 150
1073. 139 IF (PEBFLG(RGB) .Eg. 2) K(1-1)-0.00
1074. IF (PEBFLG (BGB) .EQ. 2) GO TO 150
1075. TAVG«(T(I-l)*T(I))/2.0
1076. JTOP-IPBK(HAT(BGB))-l
1077. DO 140 J-l,JTOP
1078. IF ((TAVG .GE. COBD (HAT (RGB) , 1, J)) .ABD. (TAVG .LE.
1079. * CO»D(HAT{RGH> , l,J*l|) ) GO TO 145
1080. 140 COBTIHUE
108 1. 145 ((!-!)-(( (COBD (HAT (RGB) , 2,J* 1) -COHD (HAT(RGB) , 2, J) ) * (TiVG-COBD
1062. * (HAT (RGB), 1, J) ) )/(COHD (HAT (BGB) , l,J* 1)-CCHD (HAT (RGB) , 1, J) ) )♦
1083. *CCBD(HAT(RGH),2,J)
1084. 150 IF (DABS(DIST-X (HBE3)) . LE. 1.0D-6) GOTO 155
1085. IF (DABS(DIST-X (RGB)) .LE. 1.0D-6) UGB-BGH* I
1086. DIST«DIST*DELI(RGN)
1087. 155 COBTIBOE
1088. RBTOBH

1089. EBD

1090. C
1091. c»*******•*••»**♦»•*********•*»*»***»*»************••*-*»*••»*»»»••

'092! C
1093. SOBROOTIBB GBPHTE (T.TIR.PSI.COHIB) GRACOO
1094. C
1095. C THIS SOBROBTISB CALCOLATED THE THERMAL COBDOCTIVITT OF GRAPHITE AS
1096. C A FUBCTIOB OF FLOEBCE, TEHPERATORE, ABD IBBADIATIOB TERPEBATOBE.
1097. C
1098. SEAL'S T,TIB,PSI,COSIB,DELT,DELSAB,iTABAR,CO0HfALPHA,RATIO,



1099.

1100.
1101.

1102.
1103.
1104.

1105.

1106.

1107.

1108.
1109.

13 10.

1111.
1112.
1113.
1114.

1115.

1116.

1117.

1118.

1119.
1120.

1121.
1122.
1123.
1124.

1125.
1126.
1127.

1128.

1129.

1130.

1131.

1132.

1133.

1134.

1135.

1136.

1137.

1138.

1139.

1140.
1 Ul.

1142.

1143.

1144.

1145.
1146.

1147.

1148.
1149.

1150.

1151.

1152.
1153.
1154.

1155.
1156.
1157.

1158.
1159.
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* COafXB JPTIfi BKT&

COBBOB'/ TCDT / TDA?j13),OBLTA(13),ATA(13),CH(13)
COHHOH /TKIB /COB(13)

C

DO 100 1-2,12
IF (T.LT.TSAT(I)) GO TO 110

100 COBTIBOE
1-13

110 COBTIBOE
J-I-l

DELI- (T-TDAT (I) )/(TDAT (J) -TDAT (I) )
DELBAB- (DELT* (DELTA (J) -DELTA (I) ) *DELT A (I) ) /DELTA (2)
ifABAE- (DBLT* (ATA (J) -ATA (I) ) *ATA(I) J/ATA (2)
COOB- {DELT* (COB (J) -COB (I) ) *COB (I) ) /COB (2)
IF (T.EQ.IIB) GO TO 140
DO 120 1-2,12
IF (TIR.LI.TDAT(I)) GO TO 130

120 COBTIBOE
I-13

130 COUTISOS
J-I-1

DELT-(TIB -TDAT(I))/(TDAT(J)-TDAT (I))
140 C»(D8LT*(CH(J)-C8(I))*CH(I))

ALPHA-1.055-.00057 *TIB
IF (ALPHA.LT.O) ALPHA-0
H-(1.-8.«5E-e*T-(420.*1.65*T))*ALPHA
BETA- I. 116-.000269-TIB
IF (BETA.LT.O) BETA-0
T-BETA*(PSI*1.E-21)
IF (T.GT.IOO) T*10O.
IF (Y.GT..0OI) T-l.-EZP(-Y)
FTIB-8.8*H*T

HATIO- 1./ ( I. *riIB*CO0A* (C-DBLBAB* (l.-C) -ATABA8) )
COBIB«RATIO*CO0B*COB(2)
IF (COBIB.LT. (0.1*COB(2))) COBIS-(0. 1*COR (2) )
BETOBB

EBD

C
C**•*•••**•*•*•***aa•••••**••***•*•**•••••*•****•a*******************

C

SOBRODTIBB PEBBLE (LF, T,SIGBA,EPS,F,D,11,12)

C THIS SOBBOOTIBE CALCOLATES THE EFFECTIVE THEBHAL COBDOCTIVITT IB A
C PEBBLE BED OSIBG THE HODIFIED ZEHHEE-SCHLOEBDEB HODEL.
C

BEAL»8 LP(200) ,T(200) .B.SIGHA,EPS,F.D.LAH,TAVG
B»1.25»(((1-P)/»)••( 10.0/9.0))
DO 100 I-11,12

TAVG- (T (1-1) *T(I))/2.0
LAH-LF (I- 1) / (4. 0»SIGHA»TAVG*«3*D)
LP (1-1) • (4. 0*SIGHA*TAVG**3*D) * ((I. 0-DSQRT (1 .0-F) ) *F* (DSQET (

* 1.0-F) • (B* 1. 0) / ((2. 0/EPS-1. 0) *E)) - (1.0/ (1. 0* 1.0/
* ((2.0/BPS-1.0J-LAH))))

100 COBTIBOE

BETOBB

EBD

•a***************************************************************

POBCTIOB AHALFM (I,CO)

GRAC0030

GBAC0040

GBAC00S0

GBAC0060

GRAC0070

GRAC0080

GRAC0090

GRAC0100

GRACOIIO

GRAC0120

GRAC0130

GRACO 140
GRAC0150

GBAC0160

GBAC9170
GRACO180

GRACO 190

GBAC0200
GEAC0210

GRAC0220

GRAC0230

GBAC0240

GBAC0250
GSAC0260
GBAC0270

GBAC0280
GBAC0290
GRACO310

GBAC0 320

GRAC0330

GRACO340

GRAC0350
GRACO360

GBAC038O

GBAC0520
GRAC053O
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