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FOREWORD 

The Division of Electric Energy Systems (EES) of the United States 
Department o f  Energy ( D O E )  has formulated a program for the research and 
development of technologies and systems for the assessment, operation, 
and control of electric power systems when subjected t o  electromagnetic 
pulse (EMP).  The DOE/EES EMP program p l a n  i s  documented in a DOE report 
entitled, Program Plan for Research and Development of Technologies and 
Systems for Electric Power Systems Under the Influence of 
Electromagnetic Pulses, DOE/NBB-003, May, 1983. The research documented 
in this Oak Ridge National Laboratory ( O R N L )  report was conducted under 
Program Plan Elements E l ,  "EMP Surge Characterization and Effects" and 
E2, "EMP Assessment Methodol ogy Devel opment and Testing . I' 

The information presented in this volume i s  an Executive Summary of 
the Phase I e f for t  t o  explore the interaction between electromagnetic 
pulse (EMP) and civilian electric ut i l i ty  systems. The results o f  this 
work will be used in subsequent phases of the research program t o  
simulate such interaction, assess the possible consequences, and explore 
relevant mitigation techniques. 

All EMP environmental da ta  have been obtained from public domain 
documents and unclassified source materials. Such information i s  
presented herein for i l l  ustrative purposes only and does not  represent 
actual weapon characteristics or maximum threat environments. 

T h i s  document i s  Volume 1 of  a four-volume series t h a t  describes an 
EMP assessment methodology for c iv i l i an  electric power systems. 
Volume 1 ( this document) i s  an Executive Summary; Volume 2 discusses 
high-altitude EMP (HEMP); Volume 3 discusses magnetohydrodynamic EMP 
(MHD-EMP) ; and Volume 4 discusses nuclear surface burst source region 
EMP (SREMP). 

V 
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ABSTRACT 

The high-altitude detonation of a nu 1 ear devi over the 
continental United States can expose electric utility power systems to 
intense, transient electromagnetic pulses (EMP). In addition to the 
initial transient fields designated as early-time, high-altitude EMP and 
intermediate-time, high-altitude EMP, electromagnetic signals are also 
produced at times from seconds to hundreds of seconds after the burst. 
This signal has been designated as Magnetohydrodynamic-EMP (MHD-EMP) . 

Nuclear detonations at or near the earth's surface can also produce 
transient EMP. This electromagnetic phenomena has been designated as 
nuclear surface burst, source region EMP (SREMP). 

This volume presents an executive summary of the preliminary 
research effort to: (1) investigate the nature and coupling of EMP 
environments to electric power systems, (2) define the construction of 
approximate system response models , and (3) document the development of 
a methodology to assess equipment and system vulnerability. 

The research to date does not include an attempt to quantify power 
system performance in EMP environments. This effort has been to define 
the analytical methods and techniques necessary to conduct such 
assessments at a later time. 

*LuTech , Incorporated , Lafayette, CA 
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1. INTRODUCTION 

. 

A s ing le ,  h i g h - a l t i t u d e  detonat ion of a nuc lear  dev ice over  t h e  
c o n t i n e n t a l  Uni ted States can expose l a r g e  geographic areas t o  t r a n s i e n t  
electromagnet ic f i e l d s  known as electromagnet ic pulse (EMP). The 
i n i t i a l  e lectromagnet ic f i e l d s  produced by t h i s  event have been de f ined 

as h i g h - a l t i t u d e  electromagnet ic pu lse (HEMP). Later- t ime, 
low-frequency f i e l d s ,  produced by t h e  same detonat ion,  have been de f ined 
as magnetohydrodynamic electromagnet ic pulse (MHD-EMP) . Nuclear 
detonat ions,  a t  o r  near t h e  e a r t h ' s  surface, can a l s o  produce t r a n s i e n t  
EMP f i e l d s .  This  electromagnet ic phenomena has been def ined as source 
reg ion  electromagnet ic pulse (SREMP). 

The D i v i s i o n  o f  E l e c t r i c  Energy Systems (EES) o f  t h e  Uni ted States 
Department o f  Energy (DOE) has developed a Program Plan [ l ]  t o  

i n v e s t i g a t e  p o t e n t i a l  v u l n e r a b i l i t y  of  c i v i l i a n  e l e c t r i c  power systems 
t o  Nuclear EMP events. Th is  u n c l a s s i f i e d  research e f f o r t  i s  being 
conducted under t h e  techn ica l  leadersh ip  o f  t h e  Oak Ridge Nat ional  
Laboratory (ORNL). 

Oak Ridge Nat ional  Laboratory has implemented t h e  DOE Program Plan 
as a sequent ia l  s e r i e s  o f  t h r e e  research phases. The Phase I research 
concentrates on t h e  development o f  a p p l i c a b l e  power system models and 
assessment methodologies necessary t o  inves,tigate power system 
performance under Nuclear EMP condi t ions.  Phase I 1  employs the  models 
and methodologies of Phase I t o  perform p r e l i m i n a r y  system assessments 
f o r  se lected nucl  ear  weapon scenarios. Phase I I1  encompasses d e t a i  1 ed 
system assessments and t h e  e x p l o r a t i o n  of poss ib le  hardening approaches, 
where necessary, t o  m i t i g a t e  adverse power system performance due t o  
Nuclear EMP. 

A four-volume r e p o r t  documents t h e  ORNL Phase I research conducted 

by Westinghouse Advanced Systems Technology and i t s  associated sub- 

cont rac tors .  The Westinghouse Phase I research team organ iza t ion  i s  
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shown i n  Figure 1. The o rgan iza t i on  was cons t ruc ted  t o  complement the  

Westinghouse power system c a p a b i l i t y  w i t h  t h e  EMP exper t i se  o f  LuTech, 
Inc.  E l e c t r i c  u t i l i t y  perspec t ive  was provided by the  Arizona Pub l i c  
Serv ice Company and t h e  Southern C a l i f o r n i a  Edison Company. 

The Phase I study approach i s  shown i n  Figure 2. For each type o f  

nuclear detonat ion,  t h e  i n i t i a l  research focused on t h e  development of 
u n c l a s s i f i e d  EMP environmental desc r ip t i ons  app l i cab le  t o  t h e  assessment 
o f  e l e c t r i c  u t i l i t y  systems. EMP i n t e r a c t i o n  modes w i t h  power systems 
were i nves t i ga ted  t o  develop t h e  necessary system models. An assessment 
methodology was then developed t o  assess poss ib le  EMP/system i n t e r a c t i o n  
and the  range o f  system response(s). An experimental program was 
s p e c i f i e d  t o  support re f inement  o f  bo th  models and methodology. The 
f i n a l  task  was t h e  d e t a i l e d  development o f  t h e  Phase I 1  techn ica l  scope. 

The Westinghouse Phase I research program was conducted under 
guide1 ines provided by t h e  Oak Ridge Nat ional  Laboratory. These 
gu ide l ines ,  discussed i n  d e t a i l  i n  t h e  app l i cab le  r e p o r t  volume(s), a re  
summarized as fo l l ows :  

The Phase I research was conducted as an u n c l a s s i f i e d  
program. A l l  data p e r t a i n i n g  t o  nuc lear  weapon e f f e c t s  
was obta ined f rom u n c l a s s i f i e d  sources. Such in fo rma t ion  
should - not  be i n t e r p r e t e d  t o  represent ac tua l  nuclear 
weapon c h a r a c t e r i s t i c s  o r  maximum EMP t h r e a t  
environments. 

The EMP t r a n s i e n t  f i e l d s  of i n t e r e s t  a re  those produced 
by t h e  high-a1 t i t u d e  and/or surface nuc lear  
de tonat ion(s ) .  The phenomena known as "Nuclear 
Lightning,"  assoc iated w i t h  nuc lear  surface detonat ions,  
was i n t e n t i o n a l l y  excluded from t h e  Westinghouse scope o f  
work. 

Power system i n t e r a c t i o n  models were devel oped f o r  EMP 
frequencies ranging f r o m  mid-frequencies on t h e  order  o f  
10 MHz t o  frequencies l e s s  than 60 Hz. 

. 
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0 The methodology was cons t ruc ted  so t h a t  major subsystems, 
such as generat ion p lan ts ,  cou ld  be separately assessed 
and t h e  r e s u l t s  used i n  an assessment o f  t he  t o t a l  
system. 

This Executive Summary presents an overview o f  the  Phase I research 
documented i n  successive volumes o f  t h i s  repo r t .  A discussion i s  

presented o f  t h e  approach t o  in tegra ted ,  mu1 t i - b u r s t  nuclear EMP events. 
Th is  document inc ludes  a summary o f  t he  research conclusions and 
recommendations reached du r ing  Phase I o f  t h e  program. 

. 
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2 .  HIGH-ALTITUDE DETONATION NUCLEAR EMP ENVIRONMENTS 

When a nuc lear  weapon i s  detonated a t  a l t i t u d e s  grea ter  than 40 
k i lometers,  weapon ef fects  i n t e r a c t  w i t h  t h e  e a r t h ' s  upper atmosphere and 
geomagnetic f i e l d  t o  produce t r a n s i e n t  electromagnet ic f i e l d s  (EMP). For 

these heights  of  detonat ion,  EMP i s  t h e  s i g n i f i c a n t  weapon e f f e c t  
experienced by t h e  e l e c t r i c  power system. I n  t ime-order o f  appearance, 
components of t h e  t o t a l  EMP s igna l  have been designated: 1) ear ly - t ime 
HEMP, 2 )  in termediate- t ime HEMP, and magnetohydrodynamic EMP (MHD-EMP). 

Any methodology developed t o  i n v e s t i g a t e  the  i n t e r a c t i o n  o f  

high-a1 t i t u d e  nuc lear  EMP and e l e c t r i c  power systems must incorpora te  
appropr ia te,  e lectromagnet ic d e s c r i p t i o n s  as t h e  t h r e a t  s p e c i f i c a t i o n ( s ) .  
Such s p e c i f i c a t i o n s  necessar i l y  inc lude an apprec ia t ion  o f  t h e  physics 
associated w i t h  EMP product ion and t h e  phys ica l  and f u n c t i o n a l  p r o p e r t i e s  
o f  t h e  system under i n v e s t i g a t i o n .  

For e a r l y - t i m e  and in termediate- t ime HEMP, de f ined as i n c i d e n t  
e l e c t r i c  f i e l d s  a t  t h e  e a r t h ' s  surface, complete s p e c i f i c a t i o n  requ i res  
knowledge o f  t h e  f o l l o w i n g :  

0 Area o f  i l l u m i n a t i o n  
0 F i e l d  peak magnitude 
0 F i e l d  time-domain waveshape 
0 F i e l d  angle o f  incidence 
0 F i e l d  p o l a r i z a t i o n  

The e l e c t r i c  f i e l d  magnitude, waveshape, angle o f  incidence, and 
p o l a r i z a t i o n  a r e  n o t  constant throughout t h e  area o f  i l l u m i n a t i o n .  
Instead, they vary  as funct ions o f  t h e  o r i e n t a t i o n  o f  any l o c a l  
observat ion p o i n t  w i t h  respect t o  t h e  o r i g i n  o f  detonat ion.  

Previous i n v e s t i g a t i o n s  of s p a t i a l  l y  small  systems [2,3] have 
adopted a "worst-case" HEMP t h r e a t  s p e c i f i c a t i o n .  The i n c i d e n t  e l e c t r i c  
f i e l d  waveform i s  expressed as a bounded double exponent ia l  o f  t h e  form: 

E ( t )  = Eo(e-"t-e - 8 t )  
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Where : 
4 = 5.25 x 10 V/m EO 

6 a = 4.0 x 10 sec'l' 

f3 = 4.76 x 10 8 sec -1 

The waveform of Equation (1) is assumed to be at an angle of 
incidence, and polarization which provides maximum excitation to the 
system under examination. Such a "worst-case" specification, although 
physically unrealizable, does serve to place an upper bound on HEMP 
interaction with a spatially small system. 

The civilian power system of generation, transmission and 
distribution is - not a spatially small system within the total area o f  
HEMP illumination. For system level analysis, the use of a spatially 
invariant HEMP threat specification can seriously overestimate HEMP 
interaction and system response. For example, numeric calculations of 
open-circuit voltage(s) at the end of electrically long lines using the 
"worst-case" threat can overestimate the voltage peak magnitude by an 
order of magnitude. 

The Phase I research strongly suggests that, for system level 
electric power system assessments, at least the early-time HEMP threat 
specification should retain the spatial variation of the signal in order 
to more accurately investigate the range of possible system response(s). 
An approximate technique to estimate the Eo, in terms of Equation ( l ) ,  as 
well as the local angle of incidence and polarization, is discussed in 
detail in Volume 2 o f  this report series. 

A more recent approach to HEMP threat specification is to separate 
the total HEMP signal into an early-time HEMP signal and an 
intermediate-time HEMP signal. The early-time HEMP incident electric 
field specification retains the time-domain waveform of Equation (1). In 
the case of intermediate-time HEMP, little unclassified data is available 
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to develop as complete a definition. Intermediate-time HEMP incident 
electric field(s) have been described as follows: 

0 Average peak magnitude of 100 V/m 
1 5 0 Frequency spectra from 10 to 10 Hz 

0 Signal duration from 1 ysec to 1 second 

In the absence of additional information, an unclassified definition 
for the intermediate-time HEMP incident electric field has been chosen 
as: 

E(t) = El e Y t 

Where : 
El = 100 V/m 

3 y = I O  sec-l 

The complete specification assumes that the spatial area of 
illumination, angle(s) of incidence and polarization(s) are the same as 
specified for early-time HEMP. 

At elapsed times of seconds to hundreds of seconds after the weapon 
detonation, the power system is excited by very low frequency, 
magnetohydrodynamic EMP. Power system interaction to MHD-EMP is an 
important issue due to the existence of long transmission lines which are 
grounded at each end. MHD-EMP electric field specification requires 
know1 edge of: 

0 Area of illumination 
0 Field peak magnitude 
0 Field waveshape 
0 Field orientation 
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The above parameters a l s o  vary s p a t i a l l y  w i t h i n  t h e  t o t a l  area o f  
i l l u m i n a t i o n .  As discussed i n  Volume 3 o f  t h i s  r e p o r t  ser ies ,  an MHD-EMP 
e l e c t r i c  f i e l d  s p e c i f i c a t i o n  i s  developed as f o l l o w s :  

The term E 2 ( t )  i s  t h e  s p a t i a l  dependence o f  t h e  e l e c t r i c  f i e l d  peak 
magnitude. The term 6(x,y) r e f l e c t s  t h e  s p a t i a l  dependence o f  e l e c t r i c  
f i e l d  d i r e c t i o n .  The term f (t) represents a normalized , s p a t i a l l y  
i n v a r i a n t  , t ime domain waveform. 

The MHD-EMP e l e c t r i c  f i e l d  c a l c u l a t e d  by Equation (3)  i s  t h e  t o t a l  
f i e l d .  Th is  i s  i n  c o n t r a s t  t o  Equations (1) and ( 2 )  where t h e  E ( t )  term 
i s  o n l y  the  i n c i d e n t  HEMP e l e c t r i c  f i e l d .  The peak magnitude o f  t h e  
MHD-EMP e l e c t r i c  f i e l d  may be on t h e  order  o f  10 V/km depending on e a r t h  
conduct i v i  t y  . 

A complete d e f i n i t i o n  o f  t h e  EMP produced by a s i n g l e  h i g h - a l t i t u d e  
detonat ion requ i res  both HEMP and MHD-EMP s p e c i f i c a t i o n s .  The 
u n c l a s s i f i e d  1 i t e r a t u r e  does n o t  con ta in  u n i f i e d  environmental 
descr ip t ions  f o r  m u l t i p l e ,  h i g h - a l t i t u d e  nuc lear  detonat ions,  The 
authors suggest t h a t  t h e  f o l l o w i n g  approximations may be acceptable f o r  
such scenarios : 

0 For simultaneous detonat ions ( t ime-separat ion grea ter  than 
a few microseconds b u t  l e s s  than one second), where t h e  
areas o f  d i r e c t  i l l u m i n a t i o n  do n o t  overlap, t h e  t o t a l  
s p e c i f i c a t i o n  i s  t h e  independent s p e c i f i c a t i o n  f o r  each 
detonat ion.  

0 For simultaneous detonat ions where t h e  HEMP areas o f  
d i r e c t  i l l u m i n a t i o n  do i n t e r s e c t ,  t h e  a p p l i c a b l e  t o t a l  
s p e c i f i c a t i o n  o f  t h e  i n c i d e n t  e l e c t r i c  f i e l d  i s  t h e  
t ime-superposi t ion o f  t h e  i n d i v i d u a l  i n c i d e n t  f i e l d s .  

0 For detonat ions time-spaced grea ter  than one second, t h e  
HEMP s ignal  of t h e  second detonat ion i s  considered t o  be a 
f a s t  t r a n s i e n t  s igna l  occur r ing  w i t h i n  the  MHD-EMP 
environment of t h e  f i r s t  detonat ion.  

0 For detonat ions time-spaced grea ter  than 300 seconds, each 
detonat ion i s  t r e a t e d  as an independent, separate event. 
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3. SURFACE DETONATION NUCLEAR EMP ENVIRONMENTS 

When a nuc lear  weapon i s  detonated a t  o r  near t h e  sur face of 
t h e  ear th ,  in tense t r a n s i e n t  electromagnet ic f i e l d s  a r e  produced i n  
a s p a t i a l l y  l o c a l  area surrounding t h e  b u r s t  o r i g i n .  Th is  area i s  
known as the  source (depos i t ion)  region. A t  d is tances beyond t h e  
source reg ion  s p a t i a l  boundary, a t r a n s i e n t  r a d i a t e d  electromagnet ic 
f i e l d  i s  a l s o  created. The phenomena a r e  designated as Source 
Region EMP (SREMP). 

As presented i n  Volume 4 o f  t h e  r e p o r t  ser ies ,  elements of t h e  
e l e c t r i c  power system p h y s i c a l l y  near t h e  b u r s t  o r i g i n  w i l l  experience 
t h e  f u l l  range o f  weapon e f f e c t s  i n  a d d i t i o n  t o  SREMP e x c i t a t i o n .  
Non-EMP e f f e c t s  inc lude:  1 ) c r a t e r i z a t i o n  and e jec ted  m a t e r i a l  , 
2)  f i r e b a l l ,  and 3 )  peak-overpressure shock waves i n  a i r .  F igure 3 
dep ic ts  t h e  s p a t i a l  e x t e n t  o f  these se lected weapon e f f e c t s  w i t h  respect  
t o  t h e  s p a t i a l  e x t e n t  of  t h e  EMP source r e g i o n  f o r  a nominal one-Megaton 
sur face nuc lear  detonat ion.  

C i v i l  i a n  e l e c t r i c  power systems, as p r e s e n t l y  cons t i tu ted ,  have 
n o t  been i n t e n t i o n a l l y  designed t o  wi thstand t h e  weapon e f f e c t s  o f  
sur face nuc lear  detonat ions.  The Phase I research s t r o n g l y  suggests 
t h a t ,  f o r  d is tances o u t  t o  t h e  3.5 p s i  peak-overpressure contour (Fig.3), 
t h e  power system w i l l  be damaged t o  a l e v e l  where it can no longer  
perform i t s  intended funct ion(s) .  For weapon y i e l d s  g rea ter  than 
100-k i lo tons,  a v a i l a b l e  data suggests t h a t  t h e  3.5-psi 
pea k-overpressure s p a t i a l  boundary w i  11 exceed t h e  EMP source reg ion  
s p a t i a l  boundary. Based on t h e  concept of  "balanced s u r v i v a b i l i t y ' '  o f  a 

system t o  nuc lear  weapon e f fec ts ,  i t  i s  n o t  c o n s t r u c t i v e  t o  assess SREMP 
e f f e c t s  on t h e  power system loca ted  deep w i t h i n  t h e  nuc lear  source 

reg ion.  System response t o  SREMP t h r e a t  environments may be s i g n i f i c a n t  
beyond the  d is tance o f  t h e  i n i t i a l ,  non-EMP d i r e c t  damage. 

The Phase I research, presented i n  Volume 4 o f  t h i s  r e p o r t  ser ies,  
suggest t h a t  a reasonable l o c a t i o n  t o  begin t h e  d e f i n i t i o n  o f  t h e  SREMP 
environment, f o r  c i v i l i a n  power system assessment, i s  a t  t h e  source 
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reg ion  s p a t i a l  boundary. The SREMP environmental d e f i n i t i o n  focuses on 

t h e  f o l l o w i n g  phenomena: 

0 Trans ient  e l e c t r i c a l  surges induced on power l i n e s  and 
cables p h y s i c a l l y  t r a v e r s i n g  t h e  source reg ion  boundary. 
These e l e c t r i c a l  surges a r e  conducted away from the  source 
reg ion  on l i n e s  and-cables t o  t h e  remaining power system 
before t h e  l i n e  o r  cable i s  p h y s i c a l l y  destroyed by o t h e r  
weapon ef fects  . 

0 The SREMP t r a n s i e n t  electromagnet ic f i e l d s  e x i s t i n g  f o r  
some d is tance beyond t h e  source reg ion.  

Unclass i f ied i n v e s t i g a t i o n  o f  e l e c t r i c a l  surges, formed w i t h i n  t h e  
source reg ion  and conducted away t o  t h e  system v i a  power l i n e s  and 
cables, may be f a c i  1 i t a t e d  by t h e  adopt ion o f  "canonical I' surge waveforms 
de f ined a t  t h e  source r e g i o n  boundary. Such a s p e c i f i c a t i o n  may take t h e  
form of t h e  time-domain waveform f o r  t h e  s h o r t - c i r c u i t  cur ren t .  An 
example o f  such surge waveforms f o r  an overhead l i n e  and an underground 
cable a re  shown i n  F igure 4. The source r e g i o n  conducted surge may then 
be modeled by a Norton equ iva len t  source and appropr ia te source impedance 
loca ted  a t  t h e  source r e g i o n  boundary. An i l l u s t r a t i o n  o f  t h i s  approach 
i s  shown i n  F igure 5. The Norton source approach f o r  a f f e c t e d  power 
l i n e s  and cables a l lows f o r  system assessment i n  t h e  absence o f  d e t a i l e d  
c a l c u l a t i o n s  o f  EMP f i e l d  i n t e r a c t i o n  w i t h i n  t h e  source region. 

The phys ica l  asymmetry o f  t h e  nuc lear  surface detonat ion source 
region, due t o  t h e  a i r -ground i n t e r f a c e ,  produces ne t  t r a n s i e n t  SREMP 
f i e l d s  o u t s i d e  t h e  source reg ion.  These f i e l d s  propagate i n  r a d i a l  
d i r e c t i o n s  away from t h e  source reg ion.  Again, a r a t i o n a l  l o c a t i o n  t o  
d e f i n e  t h i s  aspect o f  t h e  SREMP t h r e a t  i s  a t  t h e  source reg ion  s p a t i a l  
boundary. The time-domain waveform f o r  t h i s  r a d i a t e d  SREMP e l e c t r i c  
f i e l d  i s  shown i n  F igure 6. The e l e c t r i c  f i e l d  p o l a r i z a t i o n  i s  taken t o  
be v e r t i c a l .  E l e c t r i c  f i e l d  s t rength  a t t e n u a t i o n  w i t h  inc reas ing  

d is tance from t h e  source reg ion  i s  conserva t ive ly  approximated as a 

f u n c t i o n  o f  distance-' .  



12 

The above discussion is concerned with the appropriate SREMP threat 
specification for a single nuclear surface detonation. For 
investigations which include multiple surface detonations, the authors 
suggest that the following approximations may be acceptable: 

0 For simultaneous surface detonations where the respective 
source regions do not physically intersect, the total 
SREMP threat specification may be taken as independent 
source regions and superimposed radiated fields. 

0 For simultaneous surface detonations, spaced such that the 
source regions do physically intersect, the two individual 
detonations can be replaced with a single weapon 
detonation of combined equivalent yield. 

0 Time-spaced surface detonations at the same or physically 
separate locations can be treated as independent events. 

For scenarios that include joint high-altitude plus surface 
detonations, the authors suggest that the following approximation may be 
acceptable: 

0 For simultaneous high-a1 titude plus surface detonations, 
the joint EMP threat specification consists of any SREMP 
conducted surges combined with the high-altitude radiated 
HEMP and MHD-EMP specification. 

0 In the case of time-separated joint detonations, each 
detonation is treated as an independent event. 

It is important to stress that the above EMP threat specifications 
have been developed to support unclassified assessment o f  civilian 
electric power systems. All assumptions and approximations should not be 
construed as applicable to any other type o f  system. 
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from the origin o f  a one-Megaton surface nuclear detona- 
tion [5]. 
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4. HIGH-ALTITUDE DETONATION NUCLEAR EMP METHODOLOGY 

Methodology is a system of principles, practices, and procedures 
applied to a set of knowledge to achieve a specified objective. The 
power system (or utility) network) is that group of equipment which, 
taken together, generates, transmits, and del ivers electrical energy to 
customer load areas. Included are the communication and operational ' 

control necessary for this process. 

This section presents a summary of the methodology developed to 
assess the effects of high-altitude nuclear EMP on civilian electric 
power systems. The total methodology incorporates assessment techniques 
for: 1) early-time HEMP, 2) intermediate-time HEMP, and 3) MHD-EMP 
threat environments. Since there are significant differences in the 
parameters of HEMP transient environments when compared to MHD-EMP 
transient envi ronments, the relevant methodologies have been developed as 
separate modules. The linkage between the modules is the ability to 
characterize the power system "state" at an elapsed time subsequent to 
HEMP interaction but prior to MHD-EMP interaction. Thus, the output 
"state" of the HEMP assessment becomes the power system "state" set of 
initial conditions for MHD-EMP assessment. 

The HEMP module of the total assessment methodology begins with a 
specification of the HEMP threat environment and the power system to be 
evaluated. The utility network is delineated into power delivery and 
communication systems. Examples of subsystems in the two systems 
include: 1 )  power generation stations, 2) generation, transmission, 
subtransmission and distribution substations, 3) 1 ines between 
substations, 4) distribution networks, and 5) operations centers. The 
equipment within each subsystem can be further grouped according to the 
function they perform. Examples of such functional groups include: 
1)  the power delivery group, 2) the control group, 3) the protection 
group, 4) the instrumentation group, and 5) the communication group. It 
should be noted that all functional groups may or may not exist within 
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each subsystem, Each functional group is considered to consist of sets 
of circuits and devices. A circuit is a conductor or system of 
conductors in which an electrical current is intended to flow [6]. A 
device is an assembly of components to serve a specific purpose [6]. The 
device or circuit is the smallest entity considered by the methodology. 
An illustration of this system division is shown in Figure 7. 

A key assumption embedded within the methodology is that for the 
initial period of time when HEMP interacts with the system, each 
functional group can be assessed separately and independently of all 
other functional groups. This parallel development is shown in Figure 8. 

The probable response( s) o f  individual circuits or devices are 
incorporated in appl icable "fault trees" to ascertain functional group 
and/or subsystem-level response. The complete system response is 
developed via conventional power system study techniques including load 
flow and stability studies. 

A primary objective of the system-level analysis is to define the 
power system "state" at an elapsed time of seconds after the detonation. 
This state definition may be dynamic in the sense that the system may 
still be responding to the HEMP excitation at this time. This "state" 
definition serves as the system initial conditions for the MHD-EMP 
assessment module. 

The MHD-EMP assessment methodology has been adapted from power 
system analysis techniques developed to explore the interaction o f  
geomagnetic storms and electric power systems. The Phase I research, as 
discussed in Volume 3 of this report series, supports the validity of 
t hi s approach. 

An overview of the MHD-EMP assessment methodology is shown in 
Figure 9. The methodology focuses on the transient electromagnetic 
environment/power system interaction modes known to exist during 
geomagnetic storms. The initial system response o f  interest is the quasi 
direct-current(s) flowing in the system due to MHD-EMP excitation. The 
quasi-dc f l o w  is considered to be simultaneous with normal 60 Hz current 
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f low.  The j o i n t ,  quasi-dc, and ac e x c i t a t i o n  o f  e lectromagnet ic 
equipment, such as a f f e c t e d  power and instrument t ransformers,  may be t h e  
mechanism f o r  equipment damage, upset , and/or system s t a b i  1 i ty concerns. 

The h i g h - a l t i t u d e  nuc lear  EMP assessment methodology requ i res  a 
s i g n i f i c a n t  l e v e l  of d i g i t a l  code development as p a r t  o f  the  Phase I1  
scope o f  work. It i s  n o t  intended t h a t  t h e  t o t a l  methodology should o r  
can be accomplished as a s ing le,  u n i f i e d  s imu la t ion  code. The 

methodology incorporates spec i f i c  code modules as ana lys is  t o o l s  t o  be 

used by knowledgeable power systems engineers. The d i g i t a l  codes used i n  
t h e  methodology can be d i v i d e d  i n t o  t h r e e  categor ies:  

0 EMP Environment Codes 
0 EMP I n t e r a c t i o n  Codes 
0 System Response Codes 

The EMP environment codes serve t o  t r a n s l a t e  a given h i g h - a l t i t u d e  
nuc lear  detonat ion,  a t  a given l o c a t i o n ,  t o  t h e  s p a t i a l l y  l o c a l  EMP 
envi  ronments experienced by t h e  power system. Environmental code 
development i s  requ i red  f o r  both HEMP and MHD-EMP. The EMP i n t e r a c t i o n  
codes t r a n s l a t e  t h e  l o c a l  e lectromagnet ic environment i n t o  t h e  
corresponding se t  (s) o f  t r a n s i e n t  stresses. HEMP coding requ i res  a 
s i g n i f i c a n t  development e f f o r t .  MHD-EMP codes can be adapted from 
e x i s t i n g  codes developed t o  study geomagnetic storm/power system 
i n t e r a c t i o n .  The requ i red  power system response(s) can be drawn from 
e x i s t i n g  " f a u l t  t r e e "  r i s k  assessment codes and from convent ional  power 
system ana lys is  codes. 

The a n t i c i p a t e d  Phase 11 experimental program, discussed i n  
Volumes 2 and 3 o f  t h i s  r e p o r t  ser ies,  focuses on equipment and 
dev ice- level  t e s t s  t o  determine and/or v a l i d a t e :  1 ) device t r a n s f e r  
func t ions ,  2 )  inherent  s t rength  o f  se lected devices t o  wi thstand EMP 
induced surges, and 3 )  selected equipment performance under EMP 
cond i t i ons . 

Where possible,  t h e  h i g h - a l t i t u d e  EMP assessment methodology has 
been l n t e n t i o n a l l y  developed t o  b u i l d  upon e x i s t i n g  power system 
assessment techniques convolved w i t h  experience gained from m i l i t a r y  EMP 
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assessments. It is anticipated that the methodology may be refined 
and/or modified as the result of the Phase II research. 
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5. SURFACE DETONATION NUCLEAR EMP METHODOLOGY 

This section presents a summary of a structured process t o  assess 
the effects of surface nuclear SREMP on civilian power systems. The 
nature of the surface detonation i s  such t h a t ,  i f  EMP did not exist, the 
civilian power system may s t i l l  be severely affected by the remaining 
weapon effects. The methodology summarized herein i s  focused t o  
investigate the additional risk due t o  electromagnetic pulse associated 
with the detonation. A complete assessment of a l l  effects of the surface 
nuclear detonation on the civilian power system is beyond the scope of 
this EMP research program. 

The methodology acknowledges three distinct, transient 
environments produced by the nuclear surface detonation. In terms of 
spat ia l  coverage, the smallest of these environments is the source 
region. The threats for evaluation are transient electrical surges 
formed on lines exiting this region. These surges propagate away from 
the boundary i n t o  the grid prior t o  physical damage t o  the line. The 
system responses of interest include: 1 ) direct and/or consequential 
damage t o  equipment and faci l i t ies  beyond the extent of non-EMP physical 
damage, and 2 )  system instability due t o  system protective reaction t o  
such surges. 

The second environment, a l so  spa t i a l ly  local i n  area,  is the area o f  

i n i t i a l ,  non-EMP direct damage. The methodology incorporates this threat 
by acknowledging: 1 ) the time-progressive physical destruction o f  the 
power system in this area, 2 )  the relevant loss of generation and/or 
load,  and 3) system protective reaction t o  isolate this damaged portion 
o f  the g r i d  from the rest o f  the system. 

The third transient environment, of greatest spatial coverage, i s  
system illumination by the SREMP radiated (free) fields beyond the source 
region. The questions and concerns associated w i t h  this phenomena are 
similar t o  those associated with HEMP investigation. 
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Prel iminary analysis of the above environments strongly suggests 
that the order of consideration proceed as follows: 

0 Investigation of the SREMP radiated (free) field 
interaction with the system outside the source region. 

(I Evaluation of the consequences of surge propagation on 
1 ines intersecting the source region boundary. 

0 Incorporation of non-EMP physical damage in time-sequence 
of events . 

An overview of this assessment progression is shown as Figure 10. 
Recursive load flow/stabil ity simulations are necessary to investigate 
the magnitude and extent of system disturbance. 

The initial conditions for power system assessment include the 
f ol 1 owi ng data : 

0 Surface nuclear detonation environmental threat 
pa ramet er s . 

0 Power system initial conditions; the state of the system 

0 

at the time of detonation. 

The geographic origin of the detonation. 

Unlike high-altitude detonations, where EMP can illuminate vast 
areas, EMP environments for surface detonations are relatively local in 
extent. It is important to note that a spatial shift of a few kilometers 
in the origin of the surface weapon detonation may result in 
significantly different power system assessment results for otherwise 
identical scenarios. 

The SREMP radiated field assessment methodology is qualitatively 
similar to that summarized for high-altitude HEMP. Electrical surges on 
lines, due to SREMP radiated field excitation, have similar time-domain 
waveforms to those induced by 1 ightning. Unlike early-time HEMP excita- 
tion, the surge peak magnitude, expressed in terms of an open-circuit 
voltage at a location of interest, may not be maximum for increasing 
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i nc reas ing  lengths o f  l i n e .  Th is  d i f f e r e n c e  i s  due, i n  p a r t ,  t o  t h e  
a t t e n u a t i o n  as a func t ion  o f  inc reas ing  d is tance from t h e  o r i g i n  o f  the  
SREMP i n c i d e n t  e l e c t r i c  f i e l d  magnitude. 

As discussed i n  Volume 4 o f  t h i s  r e p o r t  ser ies,  t h e  canonical  surge 
waveform, ascr ibed t o  t h e  source reg ion  surge, has a r i s e  t ime o f  
hundreds o f  microseconds and a decay t ime o f  several m i l l i seconds.  Th is  

waveshape i s  q u i t e  s i m i l a r  t o  t h a t  de f ined f o r  power system swi tch ing  
impulse [7]. Thus, e x i s t i n g  power system swi tch ing  surge ana lys is  can be 
adapted t o  develop poss ib le  system responses. An overview o f  t h i s  
methodology i s  shown i n  F igure 11. 

Given t h a t  t h e  time-domain waveshape o f  t h e  SREMP surge i s  s i m i l a r  

t o  t h a t  de f ined f o r  swi tch ing impulse, t h e  prospect ive c r e s t  and energy 
contained i n  t h e  SREMP surge f a r  exceed anyth ing experienced by the  
system i n  normal operat ion.  The methodology addresses: 1 )  t h e  p r o f i l e  
o f  SREMP surge t r a n s i e n t  overvo l tage a long t h e  l i n e ,  2) operat ion,  and 
p o t e n t i a l  damage o f  surge a r r e s t e r s ,  3)  poss ib le  damage t o  power 
t ransmiss ion and d i s t r i b u t i o n  equipment , and 4) penet ra t ion  o f  t h e  SREMP 
surge i n t o  t h e  network. 

A t  t h e  conclus ion o f  t h e  source r e g i o n  surge analys is ,  t h e  elapsed 
rea l - t ime i n t o  t h e  scenar io i s  several  m i l l i seconds.  The methodology now 
incorporates se lected non-EMP phys ica l  damage t o  t h e  system. Such damage 
cannot be taken t o  occur a l l  a t  t h e  same elapsed t ime. Above ground 

l i n e s  and f a c i l i t i e s ,  loca ted  a t  t h e  3.5 p s i  contour, may n o t  experience 
d i r e c t  damage f o r  elapsed t imes of seconds a f t e r  t h e  detonat ion.  An 
overview of t h i s  p o r t i o n  o f  t h e  complete methodology i s  shown i n  
F igure 12. 

The non-EMP damage may be d i v i d e d  i n t o  a minimum o f  two 

areas: 1) an inner  area defined by t h e  f i r e b a l l  radius,  and 2)  an ou ter  
area de f ined by t h e  3.5 p s i  peak-overpressure contour. If t h e  system 

remains s t a b l e  a f t e r  t h e  f i r e b a l l  damage i s  added, t h e  peak-overpressure 
damage i s  inc luded and t h e  s t a b i l i t y  a n a l y s i s  continued. A concluding 
assessment i s  done f o r  system s ta te .  
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ASSESSMENT( S) FOR LINES 

AND F A C I L I T I E S  

POWER SYSTEM STATE 
ASSESSMENTS 

- STABILITY - LOAD FLOW 

SREMP THREAT ASSESSMENT 
EVALUATION 

F i g .  10. O v e r v i e w  of  SREMP a s s e s s m e n t  m e t h o d o l o g y  
f o r  c i v i l i a n  e l e c t r i c  u t i l i t y  s y s t e m s .  
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I I IDENTIFY LINES FOR 
1 SREMP SURGE ASSESSMENT 

I MODEL STATE I OF L INE(S)  

I I CALCULATE OVERVOLTAGE 
ALONG L I N E  

COMPARE VOLTAGE TO 
SWITCHING CRITICAL 
FLASH-OVER VALUE 

I MODIFY MODEL TO I INCLUDE FLASHOVER 

CHARACTERIZE SURGE 
AT STATION ENTRY 

ASSESS ARRESTER 
PERFORMANCE AND 

EQUIPMENT DAMAGE 

CHARACTERIZE SURGE ON 
LINES OUT OF STATION 

Fig. 1 1 .  
assessment methodology. 

Overview o f  source region surge 
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I DETERMINE SYSTEM STATE I AFTER SREMP ASSESSMENT 

INCLUDE PROMPT 

P 
Y PERFORM 

STABILITY STUDY 

COMPUTE NEW 
LOAD FLOW 

6 
I NCLUDE ADD I T 1  ONAL -4 NON-EMP DAMAGE 

6 
DETERMI NE SYSTEM STATE I AT END OF ASSESSMENT 

F ig .  12. Overview o f  system s t a b i l i t y  
assessment methodology. 
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6. PHASE I1 RESEARCH 

A Phase I t a s k  was t h e  development o f  Phase I 1  - research 
recommendations. The p r i n c i p a l  o b j e c t i v e s  o f  t h e  Phase I1 work are:  
v a l i d a t i o n  o f  t h e  models and methodology developed i n  Phase I ,  and a 
p r e l i m i n a r y  assessment o f  power system performance under EMP cond i t ions  

f o r  se lected weapon scenarios. ' 

The areas se lected f o r  f u r t h e r  research c o n s i s t  o f  t h e  f o l l o w i n g :  

1. 

2. 

3.  

4. 

5. 

6. 

Develop Scenario d e f i n i t i o n s  f o r  Power System/EMP 
S imula t ion  and Assessment. I n  t h i s  task,  a s e t  o f  
"reasonable," worst-case weapon scenarios w i l l  be 
s p e c i f i e d  t o  support methodology v a l i d a t i o n  and 
p r e l i m i n a r y  assessment. It i s  planned t h a t  t h e  scenarios 
w i l l  i nc lude both h i g h - a l t i t u d e  and sur face nuc lear  
detonat ions.  

Develop E l e c t r i c  U t i l i t y  Power System Data Base. Se lec t  
s p e c i f i c  e l e c t r i c  u t i l i t i e s  f o r  assessment. The necessary 
data bases w i l l  be developed f o r  these systems. 

Develop D i g i t a l  Computer Codes f o r  EMP Power System 

necessarv t o  Derform t h e  assessment w i l l  be w r i t t e n .  It 
; 
i s  inte6ded t h a t  e x i s t i n g  bodies o f  code w i l l  be used 
where app l icab le .  

Perform Pre l im inary  Parametric Studies on EMP I n t e r a c t i o n  
w i t h  Power Systems. f i e  t a s k  o b j e c t i v e  i s  t o  develop a 
s e t  of EMP t e s t  surges t o  be used i n  t h e  experimental 
program. The task  w i l l  i nc lude an i n v e s t i g a t i o n  o f  t h e  
f e a s i b i l i t y  o.f s p e c i f y i n g  a standard EMP t e s t  surge(s) f o r  
equipment c e r t i f i c a t i o n .  

Exper imenta l ly  Determine Component Response. I n  t h i s  
task,  a s e t  o f  experiments w i l l  be performed t o  determine 
t h e  response o f  se lected power system equipment t o  EMP 
f i e l d s  and surges. The r e s u l t s  o f  t h e  experiments w i l l  be 
i ncorpo r a t  ed i n t o  t h e  a ssessment met hodol ogy . 
Perform I n t e r a c t i o n  Studies on EMP I n t e r a c t i o n  w i t h  t h e  
Power System Grid. Th e r e s u l t s  o f  Tasks 1 t o  5, and the  
methodology developed under t h e  Phase I research, w i l l  be 
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7.  

8. 

8 9. 

10. 

11. 

12. 

The 
months. 

used t o  perform a s imu la t ion  study o f  EMP coupl ing w i t h  
se lected power systems. 

Assess the E f f e c t s  o f  EMP Induced Transients on 
Transmission and D i s t r i b u t i o n  Systems. I n  t h i s  task,  a 
p r e l  i m i  nary assessment w i  11 be performed on selected T&D 
sys tems . 
Assess the  E f f e c t s  o f  EMP on Power System Control  and 
Communication. I n  t h i s  task, a p re l im ina ry  assessment 
w i l l  be performed t o  i nves t i ga te  the  performance o f  
se lected power system operat ional  con t ro l  and communi - 
c a t i o n  func t i ons  under EMP cond i t ions .  

Assess the  E f f e c t s  o f  EMP on Generation. I n  t h i s  task, a 
p re l im ina ry  assessment w i l l  b e performed t o  assess the  
performance o f  se 1 ec ted  e l  e c t  ri c power generat ion s t a t  i ons 
under EMP cond i t ions .  This  task  w i l l  a l so  inc lude a 
review o f  t h e  Uni ted States Nuclear Regulatory Commission 
Report NUREG/CR-3069 [2] conclusions regard ing 'nuclear 
power p l a n t  safe-shutdown under EMP cond i t ions .  

P re l  i m i  nary Power System Assessment. Based on the  preced- 
i n g  Tasks and the  Phase I research, a p re l im ina ry  
assessment w i l l  be accomplished as t o  the  o v e r a l l  p e r f o r -  
mance o f  se lected e l e c t r i c  u t i l i t y  systems under EMP 
cond i t ions  o f  i n t e r e s t .  

Def ine Phase I11 Research A c t i v i t i e s .  Near the  end o f  the  
Phase I 1  work, a techn ica l  d e f i n i t i o n  o f  Phase I11 
research a c t i v i t i e s  w i  1 1 be devel oped. 

A l l  work performed under t h e  Phase I1 research 
m 1 1  be documented i n  a se r ies  o f  i n d i v i d u a l  Task 
Reports and a F ina l  Report. 

Phase I1 tasks w i l l  be accomplished i n  24 consecutive calendar 
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7 .  CONCLUSIONS AND RECOMMENDATIONS 

This sec t i on  presents a summary o f  t h e  Phase I research conclus ions 
and recommendations documented i n  Volume 2, Volume 3, and Volume 4 of 
t h i s  r e p o r t  ser ies .  

I n  the  areas o f  h i g h - a l t i t u d e  nuc lear  HEMP environmental d e f i n i -  
t i o n s ,  methodology development and systems ana lys i s  , t h e  f o l l o w i n g  
conclusions are  presented : 

For e l e c t r i c  u t i l i t y  system assessment, t h e  environmental 
d e s c r i p t i o n  o f  ear ly - t ime HEMP should r e t a i n  t h e  s p a t i a l  
v a r i a t i o n  o f  t h e  i n c i d e n t  HEMP e l e c t r i c  f i e l d  i n  l i e u  o f  a 
s p a t i a l l y  i n v a r i a n t  "worst case" d e f i n i t i o n .  

The e x i s t i n g ,  u n c l a s s i f i e d  data f o r  in termediate- t ime HEMP 
i n c i d e n t  e l e c t r i c  f i e l d ( s )  a r e  no t  s u f f i c i e n t  t o  develop a 
system-1 eve1 environmental d e s c r i p t i o n  t o  t h e  same d e t a i  1 
as ea r l y - t ime  HEMP. The d e s c r i p t i o n  discussed i n  
Sect ion 2 o f  t h i s  volume represents an i n i t i a l  e f f o r t  by 
the  authors t o  inc lude in termediate- t ime HEMP w i t h i n  t h e  
methodology. 

For power system assessment, HEMP e x c i t a t i o n  o f  e lec -  
t r i c a l  l y  long 1 ines can be accomplished by t ransmiss ion 
1 i n e  techniques. 

The na ture  and t ime-dura t ion  o f  i n i t i a l  power system 
e x c i t a t i o n  by ea r l y - t ime  HEMP i s  such t h a t  major sub- 
systems can be i n i t i a l l y  assessed as a p a r a l l e l  set  o f  
tasks.  The concept o f  " c r i t i c a l  1 i n e  l eng th  ,I' combined 
w i t h  power system t ime constants, supports t h i s  con- 
c l  usion. 

A major unce r ta in t y ,  i n  t h e  assessment o f  power system 
components and equipments, i s  t he  absence o f  e x i s t i n g  
"s t rength"  data bases requ i red  f o r  d i r e c t  comparison t o  
HEMP s t ress .  

The use o f  f a u l t - t r e e  assessment techniques provides a 
s t ruc tu red  methodology t o  exp lo re  t h e  i n t e r a c t i o n  o f  power 
system f u n c t i o n a l  groups, devices and c i r c u i t s .  S p e c i f i c  
f a u l t - t r e e  development requ i res  the i n t e r a c t i v e  
p a r t i c i p a t i o n  o f  knowledgeable power system engineers. 
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0 Significant digi ta l  code development will be required, i n  
the Phase I1 research, t o  incorporate the HEMP coupling 
techniques and environmental parameters presented i n  
Volume 2 of this report ser ies .  Ex i s t ing  power system 
analysis codes for:  1 )  short-circuit  studies,  2 )  load 
flow studies,  and 3 )  s t ab i l i t y  studies can be direct ly  
incorporated i n  the methodology. 

In the areas of high-altitude nuclear MHD-EMP environmental 
def ini t ion,  methodology development and systems analysis,  the following 
conclusions a re  presented: 

0 For power system analysis,  the MHD-EMP environment can be 
defined as a spatial  and time dependent, surface 
tangential, t ransient  e l ec t r i c  f i e ld .  

0 Previously developed MHD-EMP environmental formats are  not 
in a format that  can be direct ly  used i n  power system 
analysis. An approach fo r  a suitable environmental 
definit ion i s  presented in Volume 3 of th i s  report ser ies .  

0 The nature o f  MHD-EMP power system excitation exhibits 
suff ic ient  similari ty t o  geomagnetic storm electromagnetic 
environments that  a parallel  assessment methodology can be 
defined . 

0 The i n i t i a l  power system response of in te res t  are the 
t ime-varyi ng induced direct  currents flowing 
simultaneously with 60 Hz currents. 

For surface nuclear SREMP environmental def ini t ions,  methodology 
development and systems analysis, the following conclusions are  
pres en t ed : 

0 . The SREMP t ransient ,  electromagnetic environments, created 
by a surface nuclear detonation, are  i n  a d d i t i o n  t o  the 
i n i t i a l ,  non-EMP weapon effects.  Based on the concept of  
I'bal anced survi va bi 1 i ty  , 'I the t o t a l  envi ronmental 
definit ion must include selected non-EMP weapon effects .  
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0 For c i v i l i a n  power system assessment, a r a t i o n a l  s p a t i a l  
l o c a t i o n  t o  d e f i n e  t h e  sur face nuc lear  SREMP environment 
i s  a t  t h e  source r e g i o n  boundary, The t r a n s i e n t  source 
r e g i o n  surge, conducted o u t  o f  t h e  source r e g i o n  v i a  power 
l i n e s  and cables p h y s i c a l l y  i n t e r s e c t i n g  t h e  source r e g i o n  
boundary and t h e  time-domain waveform o f  t h e  SREMP 
rad ia ted  e l e c t r i c  f i e l d  a t  t h e  source reg ion  boundary a r e  
t h e  EMP t h r e a t  environments o f  i n t e r e s t .  

0 For power l i n e s  and cables, j o i n t l y  exposed t o  e l e c t r i c a l  
surges formed w i t h i n  t h e  source r e g i o n  and e x c i t e d  by the  
r a d i a t e d  f i e l d  beyond t h e  region, t h e  source r e g i o n  surge 
may domi nant system response. 

The Phase I i n v e s t i g a t i o n  o f  nuc lear  EMP i n t e r a c t i o n  w i t h  c i v i l i a n  
e l e c t r i c  power systems has revealed several  areas o f  a d d i t i o n a l  research 
necessary t o  b e t t e r  1 i m i  t assessment uncer ta in ty .  Such recomnendations 
a r e  beyond t h e  a n t i c i p a t e d  scope o f  work f o r  Phase I1 research. 

The recommendations f o r  a d d i t i o n a l  research are:  

0 D e t a i l e d  development o f  an u n c l a s s i f i e d  HEMP environmental 
d e f i n i t i o n ,  i n c o r p o r a t i n g  both ear ly - t ime and i n t e r -  
mediate-t ime HEMP s ignals ,  a p p l i c a b l e  t o  c i v i  1 i a n  power 
system assessment. 

0 A d d i t i o n a l  i n v e s t i g a t i o n s  are  necessary t o  determine t h e  
e f f e c t s  of corona on ear ly - t ime HEMP i n t e r a c t i o n  w i t h  
overhead 1 ines.  These i n v e s t i g a t i o n s  should i n c l u d e  
experimental v a l i d a t i o n  o f  a n a l y t i c a l  models. 

0 S p e c i f i c a t i o n  and implementation o f  a t e s t  program t o  
i l l u m i n a t e  power system f a c i l i t i e s  w i t h  f r e e - f i e l d  HEMP 
s imulators .  
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