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This report provides a brief survey of possible noninductive
current drive mechanisms for tokamaks. It was originally prepared as
part of the lecture notes for fusion courses taught at The University
of Tennessee by the author. The primary application of driving
currents noninductively is the possible continuous (steady-state)
operation of a tokamak reactor through the indefinite sustainment of
the poloidal magnetic field. Thus, the amount of power required to
maintain the current is of crucial importance. In these notes the
discussions are restricted to those schemes that are studied the most
(experimentally andfor theoretically) and to those that are likely to
be reactor contenders. Various current drive mechanisms may be grouped
into four classes: (1) injection of energetic particle beams;
(2) launching of rf waves; (3) hybrid schemes, which are combinations
of various rf schemes (rf plus beams, rf andfor beam plus ohmic
heating, etc.); and (4) other schemes, some of which are specific to
reactor plasma conditions requiring the presence of alpha particle or
intense synchrotron radiation. Particle injection schemes include
current drive by neutral beams and relativistic electron beams. The rf
schemes include current drive by the lower hybrid (LH) waves, the
electron waves, the waves in the ion cyclotron range of frequencies,
etc. Only a fTew of these approaches, however, have been tested
experimentally, with the broadest data base available for LH waves.
Included in this report are (1) efficiency criteria for current drive,
(2) current drive by neutral beam injection, (3) LH current drive,
(4) electron cyclotron current drive, (5) current drive by ion
cyclotron waves —minority species heating, and (6) current drive by
other schemes (such as hybrids and low frequency waves).






INTRODUCTION

Present tokamaks depend on inductive processes for the maintenance
of the plasma current, which is necessary for plasma confinement.
Because bthe flux-swing capability of ohmic heating (OH) coils is
limited, tokamaks must operate in a2 pulsed mode. Therefore, tokamak
reactors must go through 2 periodic startup, burn, and shutdown cycle,
lasting on the crder of minutes. This cycling of the burn introduces
many engineering problems associated with the thermal cycling of the
first wall, the pulsing of the poloidal magnetic circuit, ete.

The reactor potential of the tokamak could be considerably
improved if a method of driving the current continuously rather than

inductively could be developed and demonstrated.  Continuous
(steady-state) operation of tokamaks would provide a number of
important  engineering simplifications. Naturally, steady-state

operation eliminates the need for thermal storage to prevent pulsing
from the power output to the electrical grid. Continuous operation
would also produce steady power output without cyclic thermal excursion
of any portion of the reactor; thermal cycling of the first wall is a
particularly serious problem that must be avoided if the structural
integrity of the wall is to be maintained over long periods.
Noninductive steady-state operation greatly reduces the engineering
required for the OH coil and its related circuit (switching gear).
However, ohmic drive may be required in a reactor during the startup
phase, even if current drive is successful. Further, pulsed magnebic
fields will be greatly reduced; this eases the design constraints on
the use of superconductors, which are sensitive to time-dependent
fields.

In 1970 Ohkawa proposed neutral injection as a possible method of
driving a steady-state current in a reactor [1]. In 1978 Fisch
suggested confining a tokamsk plasma with rf-driven currents, in
particular, current generation with lower hybrid (LH) waves [2]. Since
then, there has been a rapid expansion in both theoretical and
experimental research into rf-driven schemes. Some of these schemes
are listed in Table 0.1. 1In Table 0.1 various current drive schemes
are grouped into four classes: (1) injection of energetic particle
beams; (2) launching of rf waves; (3) hybrid schemes, which are
combinations of various rf schemes, rf plus beams, rf and/or beam plus
ohmic heating, etc.; and (4) other schemes, some of which are specific
to reactor plasmas. Particle injection schemes include current drive



Tsble 0.1. Xoninductive current drive schemess

RF-driven schemes

Siow waves:® (wfk,} <K vy [small (w/k)]*

Compressional Alfvén wave (CAW)
Shear Alfvén wave (SAW)

Ion cyclotron range of frequencies (ICRF) —minority
heating

Fast waves: (w/k") > v, [large (m/k")]a
Lower hybrid (LH)
Fast magnetosonic (FM) wave

Flectron cyclotron resonance heating (ECRH)

Particle injection —- driven schemes

Neutra! injection of single~ and multiple-charged ions
Relativistic electron beams (REB)

Hybrid schemes

ICRF and neutral injection
ICRH of the fusion product a
Cyclic operation (ohmic plus any other scheme)

Other schemes

Phased injection of pellets
Anisotropic reflection of synchrotron radiation
Selective loss of o’s

2In this table classification of slow or fast waves is with respect to
comparison of the wave phase velocity m/k“ to vg.



by neutral beams [1,3-13] and relativistic electron beams [14-15]. The
rf schemes may be broadly classified into two categories: slow {or
low-speed) waves (m/k“ <K vg), whose paralle! phase velocities are much
smaller than the electron thermal velocity, and fast (or high-speed)
waves (w/k, >> v.), whose phase velocities exceed the electron thermal
velocity. Examples in the latter category include current drive by the
LH waves [2,9,16-40] and the electron cyclotron waves [9,18,41-53];
those in the former category include minority species heating at the
ion cyclotron range of frequencies [9,54-56]. Among the other
approaches, some them are specific to reactor plasma conditions,
requiring the presence of alpha particles or intense synchrotron
radiation [9,57-61]. In these notes we do nobt atbempt to cover bthe
complete list but restrict the discussions to those schemes that are
studied most (experimentally andfor theoretically) and those that are
likely to be reactor contenders. For further information and for
details not covered here see refs. [1-88].

To drive a current, one species of charged particles needs to be
given a net velocity relative to the other. 1In general, any wave (or
beam) with net momentum can generabte a current by transferring its
momentum via the appropriate damping mechanisms to the charged
particles in the plasma. To the extent that current drive, and not
heating, is the main interest, it is desirable to minimize the power
dissipation necessary to drive the current. For a given amount of
energy, current drive is most efficient if the momentum is transferred
to the electrons rather than the Jjons. Although the momentum
dissipation rate is the same for ijons and electrons, the ratio of
current to momentum is greater for electrons as compared to ions by an
ion-electron mass ratio, (m;/m,). The current can be either carried by
the whole electron distribution, by a small number of superthermsl
electrons, or through the outflow of electrons from the magnebic axis
(enhanced radial electron diffusion).

In general, to generate a current asymmetry must be introduced
into the toroidal geomery so that one toroidal direction is favored
over the other. This is an ingredient in almost all of the theories of
current drive by beams or waves. As listed in Table 0.1, several
distinct current drive mechanisms have been studied. Only a few of
these approaches, however, have been tested experimentally with the
broadest data base available for |H waves. As an illustration,
Fig. 0.1 shows schematically the energy-momentum transfer picture in
rf current drive. Basically, an external rf source couples a
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unidirectional wave to the plasma, which directs the power flow in one
of the directions paralle! to the magnetic axis. The waves traveling
in the toroidal direction have net parallel momentum. The momentum
from these waves can be dissipated by electron Landau or transit-time
damping and/or by collisional damping, thereby transferring momentum to
the electrons. This net toroidal momentum causes the electrons to
drive toroidally, creating an electric current. The momentum is
absorbed by electrons travelling with the wave parallel phase velocity
(v = Vp = w/ky). The current, in this example (Fig. 0.1), is mainly
carried by these resonant (w = k;v,), high-velocity tail electrons
because, being collisionless, they retain momentum longer than bulk
electrons.  {This is an example of a current being carried by
superthermal electrons.) As these electrons move they lose momentum to
the ions, so that s steady-state current is eventually achieved. As we
will see, however, it is not necessary for waves to have net parallel
momentum content to drive a current efficiently [41].

For current drive schemes to be practical for reactor
applications, the current must be sustained at levels high enough for
confinement while the power cost (and recirculating power fraction) is
kept at 2 low level compared to the fusion power output. Before
discussing the details of current drive schemes, we will derive 2
simple efficiency criterion for current drive (Sect. 1). This
efficiency factor (namely, the power necessary to generate a given
current) is a useful figure of merit in comparing various current
generation techniques.

The organization of the remainder of this report is as
follows: (1) current drive by neutral beam injection (Sect. 2); (2) LH
current,  drive (Sect. 3); (3) electron cyclotron current drive
(Sect. 4); (4) current drive by ion cyclotron waves-minority species
heating (Sect. 5); and (5) current drive by other schemes (Sect. 8),
which briefly covers various hybrid schemes and the use of low
frequency waves. For each of the major driver options, we briefly
review the basic mechanisms of current generation and discuss the tools
used in the study. By and large, simple analytical derivations and
estimates are used to point out the basic scaling relationships. If
available, the discussion of experimental results is also included.

Because it is not the purpose of these notes to recommend one
current drive scheme over another, and because these notes were
prepared primarily for class lectures, no comparative assessment of
driver options are included.







1. CURRENT DRIVE EFFICIENCY FACTOR

An ultimate measure of the efficiency of current drive by any
scheme (rf, particle injection, etc.) is the ratio of excited current
density to absorbed power density, J/P. In general, it is desirable to
have as large a J/P as possible.

1.1. Simple Efficiency Calculation [8,10]

In its simplest form, we will calculate the ratio of current
density generated to power density dissipated. As mentioned, to drive
a current one species of charged particles density n (electrons or

ions) needs to be given a net velocity relative to the other. Denoting

this relative velocity as V., , the current density is given by

J = el (a/m?) . (1-1)
The force on these particles due to Coulomb collisions is
F=muwV. , (1-2)

where m is the mass of the particle carrying the current and v is the
collision frequency. The power required to maintain the current is
therefore

P=F *V. = manl%e, (W/m3) . (1-3)

We introduce the following normalizations to the current and power
(i.e., we normalize both to their therma! values):

J= Jfnev, , (1-4a)




P - P/menv%uo , (1-4b)
where J = |J| Ve = (kTe/me)i/? is the electron thermal velocity aod

4 3
U, = woo In Af2mav

pe e
/ (1-)

A 2.2 3
= ne” dn Af2megmyyy -

With these normalizations we can now write the efficiency facton as

~ 1018 (T e)% , (1-6)
njp

where J and P are normalized dimensionless quantities [Egs. (1-42) and
(1-46)1, Zn A~ 20 is used, and the units are mks with temperature T,

in keloelectron volts. The normalized ratio J/ﬁ hides most of the
physics of current drive (rf, beams, etc.) and is a function of the
characteristic velocity of the driver normalized to the electron
thermal velocity. We can see this characteristic by considering

Fgs. (1-4a) and (1-4b) and form the normalized ratio

A
J_Melp Ve

pom V (-0

rel

(Note that if the current is carried by the electrons m = mg.)

The normalized efficiency factor given by Eq. (1-7) can be written
entirely as a function of Uo =Vpe/ve (v/v, is also a function of
Uy = Ve /ve): Pt

Hithout gutt|ng IﬂtO any specifics of a given driver option, we
can obtain the general characteristics of J/P which is sketched in

Fig. 1.1. The main point to note here is that the efficiency of
current drive is high at both low values of V_ . /ve = U,, where it
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Fig. 1.1. Normalized efficiency factor j//P\ vs Vo /Ve = Uy (Ve
is the velocity of electrons that carry the current and v, is the
electron thermal velocity) (ref. [8]).
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scales as vg/V.g) = 1/U,, and at high values of V.. /vy, where it

scales as (Vrel/ve)2 = Ug. This is because in the limit of low
U, = Vo1 /ve the current is carried mainly by the whole electron
dastr:butzon and v /v is independent of V.. {/ve, where V. ., is the
velocity of the electrons that carry the current. In the limit of high
Uy, vo/v scales as U where the current is carried by superthermal
electrons. Thus, it IS best to drive currents either in the high-
velocity electron tail using, for example, fast waves (w/k, >> vg) or
in the low-velocity electrons using very slow waves (w/k, << Vo) -

This simple expression for the efficiency factor, as poanted out
earlier, hides most of the physics and, generally, cannot be used
directly to find a current generated from the injected power. It
should be noted, moreover, that both J and P are very sensitive
functions of V.o /ve [Eqs. (1-1) and (1-3)] that vanish when the figure
of merit becomes infinite.

Dne of the most-used methods in deriving the efficiency factor is
the Fokker-Planck equation, which we will discuss briefly in the next
section.

In terms of total current Itot (= Jﬂaz, where a is the plasma
radius) and required power Py (= PQﬂQaQRo, where R, is the major
radius), Eq. (1-8) can be rewritten as

T A T A
Ztob o gy 1018 e _Jn x 1017 .20 \ e J
Ptot X R A Lo X 10 R R 5
. 0.015 {20 Ve \102°\ )
"R, (ln A X n )ﬁ (A/H) (1-8)

(mks, keV units).

1.2. Derivation of Efficiency Factor Using the Fokker-Planck Equation
[2,4,8-9,16-18,45-46,67-70]

The general form of the electron Fokker-Planck equation is given

af
—-a——‘{;——_ Cel(fe’ fl) + Cee(fe’ fe) + L(fe) » (1—9)



1

where C denotes the Fokker-Planck collision operator and L denotes the
current drive operator. The subscripts in C refer to electron-ion
[first term on the right side of Eq. (1-9)] and electron-electron [the
second term on the right side of Eq. (1-9)] collisions.

The current drive operator L for rf schemes is different from that
for injected beams. For the rf schemes, the operator L is derived
using quasi-linear theory, whereas for the injection drive schemes, L
is the beam-background plasma collision operator.

In this section, we do not derive these operators; we present
instead a few examples for rf current drive schemes. Basically, L(f,)
represents the velocity space diffusion caused by the wave. In
general [75],

a -
L(fe) = e = *D - Te s (1-10)

9 8
o oy

where I'o = - D ¢ QZBV fo is the flux of electrons (in velocity space)

induced by rf and D is the quasi-linear diffusion tensor resulting from
wave-particle interaction (such as Landau damping).
The diffusion term for the electron Landau damping case is given

by

0 ) Bfe
L(fe) :-5;;-{06<?-— v”)%ﬂi] , (1-11)

i

where v, is the velocity parallel to the magnetic field, the & function
expresses the resonance condition, and D is a constant and proportional
to the wave amplitude square, D~ Eﬁ. Note that the quasi-linear
diffusion tensor in Eq. (1-10) has been reduced to only the vz, term,
because the current drive mechanism (in this example) utilizes only the
resonance at w/k,, the parallel phase velocity.

For cyclotron heating (ion cyclotron or electron cyclotron),

1.3 -0 ofe
Hfe) = v oy [Dvla( ko v">a"1]

o) of
~ o 2 - £l e

5 |DvZS T s (1-12)
ov) { L ( ky ”)avi}
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where 0 (Qg or ;) is the cyclotron frequency (Q = eB/m), v, is the
perpendicular velocity, and, again, D is a constant and proportional to
the wave amplitude square, D ~ |£*]2 or D ~ |E7|2 with E* the left-hand
component of the wave field (i.e., the component of the E field that
rotates in the same sense as ions) and E” the right-hand component of
the wave field (i.e., the component of the E field that rotates in the
same sense as electrons). Equation (1-12) is for fundamental cyclotron
heating.
The current density is given by

J = f ev,fe v (1-13)
and the power dissipated is

1
P = [5mevLfe) &, (1-14)

3 2 92 2
where d°v » vy dvl dv” and v° = v + v5.

Equation (1-9) is a two-dimensional (2-D) nonlinear integro-
differential equation in velocity variables vy and vy In general,
this equation has to be solved numerically, except in limiting cases
where it can be reduced to a set of one-dimensional (1-D) equations in
v. The resulting equations can then be solved analytically
(approximately) or numerically (full 1-D), which are considerably
simpler than full 2-D equations. Numerical solutions (1-D or 2-D) will
not be discussed here; however, we may refer to those results whenever
needed (see references),

A compendium of J/P values (the efficiency factor) calculated for
several of the current drive schemes listed in Table 0.1 is displayed
in Fig. 1.2 as a function of U,. Here, U, is a function of phase
velocity for waves, that is,

O

w/k
il
UO - Ve - V”/Ve '

and, for particle injection schemes at velocity Vy, it takes the form
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Fig. 1.2. Normalized efficiency factor vs U,, where U, = w/k"ve
[or Uy = (w ~ £3) [k ve, with Q the cyclotron frequency] for waves and
Uy = Vp/ve for particle injection at velocity Vy. The abbreviations
are as follows (refs. [8,10]):

OHMIC: Self-explanatory

CAW: Compressional Alfvén wave
LH: Lower hybrid

FM: Fast magnetosomic wave

REB: Relativistic electron beams

ECRH:  Electron cyclotron resonance heating
ICRH:  Ton cyclotron minority heating
Ion beams: Neutral injection.
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UO = Vb/\le .

Note that for some of the wave schemes U, is the Doppler-shifted phase
velocity, that is,

w — &)
v = ¥ /V ,
° kyve e

=01, 2,

where {1 is the cyclotron frequency and £ is the harmonic number.

We see from Fig. 1.2 that in the limit of low velocities (U, << 1)
rf schemes (i.e., compressional and shear Alfvén waves) have a
comparable efficiency to ohmic current drive except ion cyclotron
minority heating. In the limit of high velocities (Uy>> 1)
efficiencies for rf schemes differ by only a factor of 2. Neutral
injection and ion cyclotron waves have a somewhat lower efficiency than
the other schemes. The reduction in efficiency of the neutbral
injection scheme at low injection velocities (U, << 1) is due to the
slowing down of the injected fast ions on the background thermal ions,
where the efficiency curve drops off as Ug.

The results displayed in Fig. 1.2 do not include relativistic
effects, which become important at high velocities. At wultra-
relativistic energies where Vo ™ C, J/P no longer scales as Ug;
instead, it becomes nearly independent of U, [43].

Another effect not accounted for in Fig. 1.2 is the trapping of
electrons in the toroidal field gradient. The results shown in
Fig. 1.2 are for a very large aspect ratio (¢ = 0, where € = r/R, is
the inverse aspect ratio). For finite aspect ratio, the electrons
trapped in the toroidal magnetic field [fraction of trapped particles
~ (2€)17?] can significantly reduce the current drive efficiency by
(a) reducing the number of  current-carrying electrons  and
(b) increasing the frictional drag on the passing electrons (toroidally
circulating, current-carrying electrons) through collisions with the
trapped electrons. This reduction of current could be particularly
significant at low phase velocity (i.e., small U)) due to the fact that
only small increases in perpendicular velocity are required to move
electrons from the untrapped (passing) to the trapped region of
velocity space. At high phase velocity (large U,), the wave interacts
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mainly with passing particles and so the reduction in current could be
modest.

1.3 Reactor Applications

The primary application of driving currents noninductively is the
possible continuous operation of a tokamak reactor through the
indefinite sustaining of the poloidal magnetic field. In this context,
the amount of power required to maintain the current is of crucial
importance.  Minimizing this power dissipation (minimizing the
recirculating power fraction) relies on the excitation of the most
favorable waves or particle injection schemes, some of which were
discussed in the previous section and are listed in Table 0.1 (see also
Fig. 1.2).

Supplying the current necessary to achieve steady-state operation
implies that the poloidal magnetic field B, is completely sustained by
the noninductively driven current J. By Ampére’s law, the current

density J determines the magnetic field Bp’ that is,

By  Hoda/2 (1-15)

where a is the plasma radius. The necessary poloidal magnetic field is
related to plasma density and temperature through a parameter ﬁ
(poloidal beta) defined by

nk(Te + T;)  dunkT

By = n -
p Bf)/z}"o B% ’ (1 16)

where we assumed, for convenience only, T, 2T, =T. For plasma
equilibrium and stability, B, < A, where A = R /a is the aspect ratio
with R, being the major radius of the torus. Combining Egs. (1-15) and
(1-18), we can write

_a [ Y7
(5 011
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If the operation is achievable at Bp = A, we have

KT 12 T 12
J=a [FELY o~ 5 x 00 [ (A/m?) (1-18)
Ho3R, aR,

(mks units, T in keV). The normalized J (j), which we make more
frequent use of than the dimensional J, can now be written as

R n \L2 e \1/2 1.2
J = J/nev, 4 (" ) = 4 ( e 0) (1 )
0

2B 0/ (gt \ne? ) o

1

ne

=4—Cc (1-19)
awpe(ﬁp) 172

where ¢ is the speed of light (c? = 1/e ) and Wpe is the electron
plasma frequency. For ﬁp = A =R,/a, we have

Jmt =t 91 x 107 (naR,)M2 . (1-20)
wpe(aRo)

It is sometimes convenient to express density in units of 10%° a~® and
temperature in units of 10 keV. Normalizing density and temperature to
102° m=3 and 10 keV, respectively, that is,

HQO = n/1020 N T].O = T/]_O R

we can rewrite Egs. (1-18) and (1-20) as
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12
sifn_ YT\ 1 2
TR (BN AN

e
12

nopT10\t 72
n 1.497 (—Q—Q-lﬂ) MA/n? (1-21a)
aR,
~ 20 1.2
T ~9.1x 104K1°—)-1-—]
n JaRy
= 2.1 x 1073 (nggaR,) 72 . (1-21b)

Note that Eq. (1-21) is for ﬁp = A. For general cases, Egs. (1-17) and
(1-19), similar normalizations can easily be introduced.

A parameter of crucial importance is the recirculating power in a
reactor, defined as

1_Fop
O Prys

i

€ (1-22)

where Py is the power density required for current drive and Peys i8
the fusion power density. For a D-T plasma

2
n (GV)DT
Prus == Erus  (H/n®) | (1-23)

where Eg o = 17.8 MeV and <ovdpy is fusion reaction rate parameter

[Kov>py 1022 m3s? at T=10kev]. In terms of normalized
quantities

P/J 10-22
e~ 18 , (1-24)
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where ﬁ/j is as given by Eq. (1-8).
For 8? = A

A A i D0
e~ 18 P/) 1077 1 (1-25)
(aRynogT10) 72 [<O¥2DT

In the range of interest to fusion power
Coopp ¥ T2 8K T< 25 keV .

Toroidal plasma beta By is an important reactor design parameter, since

the fusion power scales as ﬁ% (Pfus_N ﬁ%Bé(av>DT/T2, where B, is the
toroidal magnetic field strength). In terms of torcidal beta.

B, =— 1T~ g 2010 (1-96)

we can also express the recirculating power fraction as

ﬁ/j I 10—-22 1
(2”ByByB) 1 [<O¥7DT

e ™ 16.1

.
ﬁ/j [ 10~22 1
[BLB,Ras(a)] |<9¥7DT]

- 16.1 , (1-27)

where qg is the safety factor,

(a) = 2o
go(a) = 7%= .
s 7R, 8,

We should note here that the recirculating power fraction defined
by Eg. (1-22) does not include any power conversion efficiencies [i.e.,
conversion efficiency from thermal to electric power (v, ~ 35%), from



19

electric to beam or rf power (n.q ~ 30-80%), etc.]. Thus, the actual
recirculating power fraction for the overall reactor system is larger
(by 2 factor of & to 10, depending on the efficiencies) than that
calculated here.
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2. CURRENT DRIVE BY NEUTRAL BEAM INJECTION [1,3-13]

The possibility of maintaining a steady-state current in a plasma
by the injection of fast ions was first proposed by Ohkawa [1], and
experiments on the Culham Levitron [3] and on DITE [7] have confirmed
the existence of this current. The simple physical picture of current
drive by beams is as follows. The hot ions injected as neutrals are
first ionized by the background plasma. They then circulate around the
torus, while they slow down on the background plasma, and form a series
of stacked, fast jon current loops, thus forming a substantial current.
These fast ions, however, push on the background electrons (i.e., this
directed flow of the fast ions tends to drag the electrons with it),
causing electrons to form a current that is in the opposite direction
to the fast ion current. The tendency of fast ions dragging the
background electrons is opposed by the electron collisions with the
background ions. In some circumstances, this collisionally driven
electron current (called the felectron return current® or "back
electron current™) can completely cancel the fast ion current. This is
true, for example, in the classical description of tokamak, where the
orbits of trapped electrons are not considered, the return electron
current exactly cancels the ion current if the fast ion charge number
is equal to the effective plasma charge number (i.e., Zy = Zops).

If the background plasma contains impurities, such that Zeff > Zf,
the frictional force opposing the electron streaming will be increased,
with the result that the beam current is not completely compensated for
by the electron current. 1In a toroidal geometry, the trapped elecrons
will, similarly, add to the frictional force on the streaming
electrons, again leading to a lack of complete compensation of the beam
current. When the trapped electron effects are included, even if
Zf = Zeff' there can be a significant current.

In general, the injected ions increase the toroidal momentum of
the background plasma. This can result in large toroidal plasma flows,
especially if there is only one beam whose direction of injection is
parallel to the magnetic axis. To keep the total plasma momentum
unchanged, beams with opposing directions (one beam parallel and one
antiparallel to the magnetic axis) can be injected. This is the scheme
proposed by Ohkawa. In this scheme, to avoid increasing the toroidal
momentum of the plasma, counter streaming ion beams are injected; a
low-energy, high-current beam is injected in the opposite direction to
the high-energy beam.
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2.1. BSimple Calculation of Beam-Driven Current [1,10]

Z2.1.1 Fast Jon Current

When fast ions are injected into 2 toroidally confined plasma, the
current Ipe,, injected parallel to the magnetic field is multiplied
many times by the overlapping of successive ion transits around the
torus. The circulating fast ion current 1. satisfies the equation

dle/db = Tpean/Teire = L¢/7¢ (2-1)

. . . . . . -1 1 |
where 7T.;.. is the circulation time and 7¢ is given by 15" = Tpg + Tgy

inwhich Tpo is the fast ion slowing-down time on background electrons
by Coufomb collisions and 7., is the charge-exchange time.

In steady state the fast ion current is [from Eq. (2-1)] just the
product of the injected beam current and the number of transits a fast
ion makes before thermalization:

Tp =1 f
f = “beam Teire
= Tpean (V476)/2R; - (2-2)
Here Vs is the fast ion velocity (Teipe = 2Ry/ve) . In most

applications T, >> 7o, in which we can neglect the charge exchange;
Lhus, Ty N Tpg-

The product VeTpg has to be calculated using a Fokker-Planck
equation for the fast jons if an accurate value is required (see
refs. [4,76-79]).

The slowing-down time, which depends on both the fast ion velocity
Ve and the electron thermal velocity vg, is given by

va:
RE me/menelr b (Ve/ve)

(2-3)
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where
I'pe = Zie* In Ajane2n? | (2-4)
Yx) = q’("L;xf"m : (2-5a)
with
(x :~5%—Jz eVdy = ert(x) (2-5b)

the error function. If the energy of beam ions is chosen such that

Ebeam > Echit ,

the beam slows down mainly on electrons and loses its directed momentum
(and energy) chiefly to electrons. The critical energy E...4 is given

by

A (2-6)

n.2%z 1273
37 i1
Ecrit = 14.8Te {Af ? J ,

i
e
where Ay and A; are the atomic weights of the fast beam ion and
background plasma ion(s), respectively. This is the energy at which
the ion beams heat the plasma electrons and ions at equal rates. When
Epeam € Ecrit, Slowing down is mainly on background ions. In the two

extreme limits of Ebeam > Egpjy and Ebeam K Egpiy, the fast ion
current If scales as

4, 2
Ie ~ ApVi/neZs

and
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2
e ~ ApVeTe 2 /0ol ~ ApVpva/ngZt

respectively.

Accurabe determination of the fast ion current requires the use of
the Fokker-Planck equation from which the fast ion distribution
function fbeam is obtained, and the circulating fast ion current
density is calculated from

1

‘Jf nf < V"f > EZf

i 3
eZp | v fheam &V - (2-7)

I

Kinetic treatments of both the current carried by the fast ions and the
reverse current carried by the electrons are given in refs. [4-6,79].

2.1.2 Electron Return Current

The momentum gained by the electrons as the fast ions slow down is
lost by Coulomb collisions with the plasma ions. These in turn slow
down by collisions or escape from the confinement system. Thus, both
the plasma electrons and ions gain a net drift in the direction of fast
ions, and, for simplicity, we assume that they can be represented as
Maxwellian distributions shifted by mean velocity Vv, and V;,
respectively. The total circulating current in the plasma can be
obtained from the force balance equation for the electrons,

Nee ¢ = MMF — 7o - = nam: AW AL 0, (2-8)

where the notations are obvious: the subscripts f, e, and i represent
fast ions, electrons, and plasma ions, respectively; n is the density;
m is the mass; and V is the velocity (average). In Eq. (2-8) the first
term on the right side is asscciated with the momentum gained by the
electrons (mean velocity Ve) from the fast ions and the second term
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represents the momenbum lost by the electrons to the background ions.
The time for momentum transfer between plasma ions and electrons is ;.

After a few collision times, a net total current density is now
given by

J = e(anfo + 0L - neve) . (2—9)

For most tokamak conditions vV, >> ¥;. Noting that nf/ne < 1 and using
Eq. (2-8) to eliminate V,, Eq. (2-9) can be put in the form

n_MmetT. :
J = eanfo ( - —‘—e‘f"‘!"“) . (2~10)

nim; 2§ Tis

For the ordering v; <K Vg <K v, the slowing-down times are
approximately

Ti/t1s ® (/o)) B/
and Eq. (2-10) simplifies to

J o= enpZeVe(l - Zf/Zeff) , (2-11)
where Zogp = niZ?/ne. In‘terms of fast ion current

J = Jf(l - Zf/Zeff) (2—123)

oz
I=1; (1-77) (2-12b)

or
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This is the usual expression for current drive by fast ions with I
given by Eq. (2-2). Thus, we see that if the fast ion charge Z; is
equal to the plasma charge number Z.pe there is no current. (Note that
for a single ion species Zypp = Z;.)

Equation (2-12) is valid only in the limit vy >> Ve If vy~ Vg,
the electron Fokker-Planck equation has to be solved (in this case the
assumption of the shifted Maxwellian distribution function does not
hold).

2.1.3 Trapped Electron Correction [5,6]

Electron trapping in the toroidal field gradient can significantly
reduce the back electron current (a) through reducing the number of
current—carrying electrons and (b) by increasing the frictional drag on
the current—carrying electrons. A Fokker-Planck treatment of the
effect on the current of this electron trapping has been developed
[5,6] and the expression for the net current is given by

z
J= Jf§1 - Ze:f [1- G(zeff,e)]g (2-13a)
or
z
I-= If21 - Ze:f 1 - G(zeff,e)]g , (2-13b)

where the trapped electron correction G(Z.p¢,€) depends on the inverse
aspect ratio € = r/Ry and on Z.es. For a large aspect ratio tokamak,

with calculations correct to order €72, G{Zgps.€) is given by
G(Zgpp.€) ™ 1.48 €A (Zps) (2-14a)

where A(Z.ps) is a numerical coefficient, tabulated in Table 2.1 for
several values of Zgep. With the aid of Table 2.1, we can approximate
G as

G(Zgpp.€) © 1.46 €172 (} +-9¢§§> (2-14b)
Zeft
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(approximation is in error by < 2% for 1< Z,pe < 8). Combining
Egs. (2-13) and (2-14), we have

Z
T=1,|1- s 1.8 72 L[ L 0.68) (2-15)
f [ Zots Zott ( Zeft
beam electron trapped electron
current  return
current

The extra term in Eq. (2-13) [or Eq. (2-15)] from the trapped electrons
can give rise to quite a significant current, even when Zp = Z pe.

Table 2.1 Variabtion of coefficient A(Zps) with Z pe [6]

Zost 1 2 3 4 5 6

A(Zopp) 1.68 1.36 1.24 1.18 1.15 1.12

In general, calculations to order €!”2 can over-estimate the

trapped electron contribution to net current in a finite aspect ratio
tokamak. The finite aspect ratio calculation of G(Zeff,e) can be
approx imated by [5,13]
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G(Zgpp.€) » 146V 2A(Zeps) - €B(Zopy)
~ 1.46 172 +%~6§ ~elo.2 +—;-—5—5~ ‘ (2-16)
eff eff

G is sometimes referred to as the neoclassical electron term or
electron trapping correction.

To see the effect of ¢, Ze, and Zeff on the current, we define a
current factor [13]

1 1 1
F(Zf, Zeff’ 6) :7;[—;:—2;“-— Zeff [1 - G(Zeff’e)] , (2-—17)

which is shown in Fig. 2.1. When Zp = 1, the current is carried mainly
by the fast ions, and the electron current reduces the beam-driven
current. This reduction can be minimized by using Z.pe > 1 and by
taking advantage of the neoclassical electron term (trapped electron
term) away from the magnetic axis. (Note that this term is
proportional to €2 or €, €= r/Ry, and it can have a significant
contribution for r # 0.)

When Zg >> Z.pp, the current is mainly carried by the electrons
and is directed opposite the fast ion current. (If the original
direction of the current is to be maintained, counterinjection of the
beam is required.) In this case, the trapped electron correction
reduces the total driven current, and the value of |F| is maximized
near the magnetic axis where G(Zgpg.€) is small.

The dependence of F(Zf, Lots €) on Zp is simply additive;
therefore, in Fig. 2.1, F is shown for different Z,p¢ and Zy by using 2
seb of shifted vertical axes. Note from Fig. 2.1 and Eq. (2-17) that
when Zf/Zeff ~ 1-2, the magnitude of F (and, thus, the driven
current I) is low due to cancellation of terms.

We should note here that, at present, there is uncertainty over
the existence of the trapped particle effects (neoclassical correction)
since there is as yet no experimental verification of these in
tokamaks. At the moment it would be unwise to rely on this effect in
any reactor design. In its absence, the classical results, that is,
G =0 (see the € = 0 axis of Fig. 2.1), should be used in any reactor
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Fig.2.1. Current factor F(Zf, LZott, €) for selected values of
fast jon charge Z; and effective plasma charge Z pp. The vertical axes
are labeled with the fast ion (beam) species (ref. [13]).
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projections. The removal of the trapped electron correction lowers |F|
for deuterium (Z¢ = 1) and raises IF| for impurity (Zp >> 1) beanms.

2.1.4 Current Drive Efficiency

The efficiency factor J/P can be determined by using Eq. (2-13)
and dividing by the power. Using the similar normalization factors
introduced in Sect. 1.1, Fig. 2.2 displays the normalized efficiency
factor as a function of dimensionless injection energy E /T, (where
E, = injection energy) for three different injected ion beams
[deuterium (D), helium (He), and oxygen (0)] into a D-T plasma. It can
be seen from Fig. 2.2 that there is an optimum injection energy around
EofMTe ~ 30-50.  For example, with Te ~ 15 keV the optimum injection
energy for deuterium ion beams is around 1.5 MeV, which requires the
use of negative ion beam technology (). The overal!l efficiency factor
(ratio of the beam-driven current to required beam power) at this
optimum energy is (see Fig. 2.2)

I Te {102\ 1 Z
~ 0.9 1 - (AM) . (9-18)
Pheam 4n A ( > RoZt ( Loty /

e

For a plasma with ng ¥ 1020 s, Tg ™ 15 keV, Ro® 6 m, and Zoep ™ 2,
I/P ~ 0.06 A/M for a deuterium beam. To drive a current of 8 to 10 WA,
a power level of order 150 MY is required. Taking into account the
electrical power to beam power conversion efficiency, this could lead
to a substantial recirculating power fraction in a reactor. The
efficiency factor for D beams into D-T plasma can be substantially
improved when electron trapping is taken into account.

The power required to drive the current can be reduced by
operating at low density; however, this presents a conflict with the
need for high density to maximize the fusion power.

2.2. Experiments [3,7]

The first experiment to show the existence of the beam-driven
current was the Culham Levitron [3]. The Levitron experiment,
established the scaling of current with electron temperature for fast
ion velocities comparable to the electron thermal velocity. The driven
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Fig. 2.2. Normalized efficiency factor j/ﬁ vs normalized
injection energy Epoan/AtTe = Eo/AtTe (where Ej = beam energy,
Te = electron temperature, and Af = atomic mass number of fast ion).
Three different injection schemes are shown: oxygen into D-T, helium
into D-T, and deuterium into D-T with Z,ep = 2. Shown on the right
scale is dimensional quantity (IRO/Pbeam)(En.A/Te)(ne/lozo) (in mks and

keV units) (ref. [10]).
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current was small; about 1 A of current was driven with about 10 kW of
injected beam power. This was a consequence of fow electron
temperature (~5 eV) and large charge-exchange losses of fast ions.
Thus, *demonstration" of temperature scaling was only over a narrow
range of a few electron volts.

A more ambitious experiment was later carried out on the DITE
(Culham) tokamak [7]. In the DITE experiment, 40% of the plasma
current was estimated to be beam driven (about 30 kA out of a total of
80 kA) by the 1-MW beam. The scaling of current with density was
observed.

Note thab the magnitude of the beam-driven current depends upon
the circulating fast ion current, T « Tp. The fast ion current exceeds
the equivalent injected current Ip... by the stacking factor
S = Verp/2nR,, as given by Eq. (2-2). For v, > Ve, the slowing-down

time Tes varies as Tz/Q/ne. Thus, for low Ne and high Te, S is the
greatest. Une should be cautioned, however, that at low ne the plasma
neutral density could be larger (especially in small devices) and an
appreciable fraction of the fast ions could be lost by charge exchange,
which we have neglected in our calculations.

No tokamak experiment has yet succeeded in driving its full
current by beams and no measurements have yet been made of the effect

of electron trapping.
2.3. Future Applications [10-13]

2.3.1 Near-Term Potential

For the present large experiments such as the Tokamak Fusion Test
Reactor (TFTR) and the Joint European Torus (JET), it might be possible
to drive significant currents by the envisaged injection schemes for
these experiments. For exemple, in TFTR with 10 MM of neutral
injection (two 5-MW beam lines with 90-keV H°), X0.5 MA of .  peqt

could be driven in a plasma of ng, ~ 3 X 101? w3 and Te ™ 2-3 keV.

Two highly desirable characteristics of any current drive
experiment would be that all the current be driven by the noninductive
driver and that there be sufficient time for the current distribution
to relax to equilibrium. In operational terms this means that the loop
voltage should be reduced to zero (or a slightly negative value) while
the total plasma current is held constant and that the loop voltage
should remain nonpositive for a current relaxation time.
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In TFTR the beam pulse length will probably not be greater than
~1 s (especially in early operations although it could conceivably be
extended to 3 to B s in later years), which may not be long enough for
the current distribution to relax to equilibrium, that is, to produce a
constant toroidal electric field.

In JET at a density ng, ™ 0.5 X 10%° n™2, electron temperature of
To ™5 keV, and Zgpp @ 2, injecting 24 MW of 180-keV deuterium beam
into D-T could produce a current of ~2 MA, which can be obtained
directly using the results of Fig. 2.2.

2.3.2 Reactor Projections

The neutral beam current drive could be effective enough for use
in steady-state tokamak power reactors provided high-efficiency, high-
energy (~1 MeV/amu; i.e., ~2 MeV for deuterium) neutral beams were
developed to achieve acceptable recirculated power.

A possible optimization scenario for a steady-state reactor driven
by beams is discussed in ref. [13]. The essential problem is to
optimize the plasma (n, T, £, etc.) and neutral beam (I/P, Epoqn, Zg.
etc.) simultaneously. It is clear from the current drive efficiency
expression (J/P or I/P) that low density and high temperature minimize
the power required to drive the current that both compete with the
fusion power requirements.

In ref. [13], the cost per unit of electrical power was minimized
subject to constraints on plasma B, plasma power balance requirements,
fusion power, beam power, driver efficiency, etc. (One can also choose
Q = Prusion/Pbeam P identify the measure of performance and to
optimize it, in which case cost may or may not be optimum since a large
part of the cost of a reactor is independent of the fusion power.) The
resulting opbimized cost is shown in Fig. 2.3 as a function of average
temperature T,, = (To + T;)/2 and B for conventional, pulsed tokamak
reactors and beam-driven steady-state reactors. For 8 = 6.7%, the
optimum beam energy Epo.m R 1 MeV with Pp.. ™ 100 MW, which represents
about 15 to 20% recirculating electrical power (engineering Q¢ ~ 5-8)
even at B0} electric-to-beam power conversion efficiency. A steady-
state beam-driven reactor scheme is conceivable only if high-efficiency
(n > 80%) negative ion beams are available.

The main problem with steady-state operation is that it takes a
large amount of driven power if the plasma density is high. However,
if the plasma density is lowered, then the fusion power and the net
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Fig. 2.3. Contours of constant cost per unit power (in arbitrary
units) for an INTOR-sized tokamak reactor as a function of beta and
average temperature T,, for (a) pulsed and (b) beam—driven steady-state
operation. For each choice of 8 and T,,, T, is varied to minimize the
cost in (a) and T, and Ey .. are varied to minimize the cost in (b).
Electrical power to beam power conversion efficiency is assumed to be

ny, ~ 80% in (b) (ref. [13]).
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electrical power output drops, and the plant becomes economically
unattractive. A possible solution to this problem is cyclic current
drive in which plasma parameters, such as density, are modulated to
optimize for current drive during the current driving phase and for
power production during the high-density burn/power—producing ("coast")
phase. This is more attractive than a conventional, normal-pulsed
cycle because plasma current is roughly constant and the poloidal field
changes less than in the pulsed cycle. Thus, the cyclic part of the
out-of-plane forces on the magnets and the fatigue limit are smaller
and less severe.

One possible form of cyclic current drive is a combination of
noninductive and conventional inductive current drive. This method
uses the external transformer to drive current during the high-density
(power production) phase to the limit of the OH flux swing; then, while
the ohmic heating coil currents sre reset to their initial values,
beams are used to sustain the current in the low-density drive phase.

Another possibility is the "internal transformer® scheme. The
primary current of an internal transformer is the noninductively [11]
(beam) driven current inside the plasma. When the fast Jon
distribution is thermalized and the driven current vanishes after the
drive phase is ended, the change in this primary current induces an
electric field in the plasma that maintains the tota! plasma current.
As the electric field resistively diffuses away during the power
production (coast) phase, the plasma current decreases until intense
noninductive current drive restores the current to its initial value,
and the cycle begins again. Because the internal transformer method
allows the current to rise during the drive phase and to partially
decay during the coast phase, a smal! modulation of current has to be
tolerated.

Figure 2.4 compares the relative costs of various current drive
options. In the cyclic mode the time-averaged power consumption is
lower, and for the internal transformer scheme the beam power
requirement is about half that required for the steady-state mode.
With cyclic current drive, neutral beams of more modest energy would be
adequate. The major disadvantage of cyclic current drive is that it
only alleviates the severe cyclic stress problems but does not
eliminate them as steady-state current drive does.
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3. LOWER HYBRID CURRENT DRIVE [2,9,16-40,86-69,71-74]

The use of rf waves near the lower hybrid (LH) frequency to drive
steady-state electron currents in tokamaks was proposed by Fisch [2],
and experiments carried out on many tokamaks (see Table 3.1) have
observed the LH rf-driven currents, with or without ohmic heating (OH)
electric fields.

The LH waves are usually excited by an array of phased waveguides
capable of producing a wave spectrum which is broad in Kk,
(=k = B/B]). If the phasing of each guide is w/2 relative to its
neighbor, a traveling wave is launched that carries momenbtum in the
toroidal direction. The LH waves with net parallel momentum transfer
momentum to the high-velocity tail of the electron velocity
distribution (i.e., to those electrons traveling with the wave parallel
phase velocity w/k,) via Landau damping rather than the particles
within the bulk of the distribution. The current is mainly carried by
these high-velocity tail electrons (which are resonant with the wave
phase velocity w ™ k”v”)--superthermal electrons — because they retain

momentum longer than bulk thermal electrons.  (Note that the
dissipation rate of electron momentum by electron-ion collisions varies
as U~ v & T2

The LH wave exists for
&P KRB,

where 0, and Q; represent the gyrofrequency (cyclotron frequency) of
the electrons and ions, respectively. For plasmas of interest,
2 ~ 2. _ 2 :

Wpi 2 % and Wpe ™ Qg (where wpj = nje /mje0 is the plasma frequency
for the jth species), the LH frequency wjy is on the order of the ion
plasma frequency wy; = (me/mi)I/pre and is given by

wﬁH = w%i/(l + w%e/ﬂé) . (3-1)

If a current is to be excited (rather than heating), the wave frequency
should be far from the LH resonance, typically w2 2 w . For tokamaks
of interest (present or future), w = 0.5-5.0 GHz.



Table 3.1.

Parameters of lower hybrid experiments

a R Broax f Py, max I, max Otg Bax
(cm) (em) (T) (GHz) (kW) (kA) (s) n (102 em™%)  wk/0d
Steady state
Alcator C 17 64 iC 4.6 600 200 0.2 ~2 >10 >(.1
{1000}
PLT 45 132 3.2 0.8 600 420 0.3-4 ~2 0.7 0.07
Transient
FT 20 83 8 2.45 250 0.1 ~2 5 0.08—0.3
Wega 15 72 2.3 0.8 50 40 0.02 2,3, 7 i, 1.3, 1.8 0.2—0.3
T-7 35 122 1.9 0.9 250 0.05 2.5 1.1 0.3
JFT-2 25 90 1.5 0.75 150 35 0.075  2.5,5.5 0.6 0.3
Versator 13 41 1.5 0.8 150 40 0.02 8 0.6 0.3
WT-2 9 40 1.3 0.92 100 5 0.02
20 27 34 41 49 62 73 82 93 107

[Refs: 9, 19-28, 31, 3540, 62]
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As can be seen from Table 3.1, which we discuss later, several
tokamak experiments have demonstrated that the toroidal current can be
maintained for extended durations by LH waves alone and, in most cases,
with high efficiency. As a result, LH current drive was believed to be
one of the promising candidates for achieving a steady-state reactor
condition for a tokamak. However, at the present, there is no means
that appears to be undeniably desirable. With the exception of
Alcator-C (and possibly Hega), most LH current drive experiments
observe an upper, critical density limit above which the current drive
ceases (or diminishes more rapidly than the theoretical scaling
I« 1/n,). Similar to the case proposed for neutral beams, cyelic
current drive approaches can be adopted to improve the reactor current
drive efficiency with LH waves. The wave penetration problem is one of
the main causes of inefficiency of LH current drive at reactor
densities f{and temperatures). Here the critical parameter is the
parallel wave index m, = ck,/w. In order to resonate with very
energetic electrons (high-velocity tail electrons), low-n, waves are
necessary (n, = ck,/w = c/vp” ~ cfvy, where v, is the parallel phase
velocity of the wave). Llow-n, LH waves (the slow wave) can only
penetrate to a given plasma density, at which point they undergo mode
conversion to "fast waves,® which will carry the rf energy back towards
the plasma surface.

Dne of the puzzling aspects of the LH current drive experiments is
the observation of far more current than expected. That is, the
current. carried by a high energy electron tail (T, ~ 50-200 keV in
present experiments) contains more particles than predicted. This tail
builds up slowly from an initially Maxwellian plasma, which has no
preexisting tail before the rf is turned on. This is the so-called
problem of spectral gap that revolves around identifying the underlying
mechanism for driving electrons from the bulk distribution into the
tail. Later in this section, we discuss some of the explanations
(theoretical not experimental) offered to explain the process.

In this section we briefly examine the nature of LH waves
(propagation, accessibility, choice of frequency, etc.), discuss the
quasi-linear theory for current generation, and summarize some of the
experimental results. The effectiveness of LH-driven current for
reactor applications is discussed in many of the references given, and
is not considered here in great length.
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3.1. Propagation of LH Wave and Choice of rf Frequency

The frequency range of lower hybrid is intermediate between the

electron and ion gyrofrequencies (Q% K w? K Qi). As 2 result, wave-
induced motions of the electrons are described by the guiding-center
theory, in which electrons move freely parallel to the magnetic field
B, (toroidal field, in the case of a tokamak) and undergo a combination
of the E XB, drift {vp =E X B,/B2) and the polarization drift
Voo = ~-—(QeBO)"1cE/dt] perpendicular to B, where E is the LH wave
electric field. The ions respond to E as if unmagnetized since the
wave frequency is much greater than the ion cyclotron (gyro) frequency
W » 7).

The details of wave propagation and dispersion relation for the
lower hybrid range of frequencies are discussed elsewhere. Basically,
in the cold plasma approximation, the dispersion relation for waves
above the LH frequency has two distinct branches: the "fast" wave
branch (i.e., large w/k;) and the "slow" wave branch (i.e., small
m/ki). Both waves have potential for heating and current drive
applications. Here, we are interested in current drive. It is the
slow wave branch of the dispersion relation that we usually associate
with the LH wave. This is an electrostatic wave (as w -~ wy) in that
the wave vector k¥ is parallel to E (k I E), and there is no associated
rf magnetic field.

The slow waves have the large E, components needed for effective
current drive in single-pass absorption. Fast waves, on the other
hand, have relatively small E, components, so it is likely that (in the
event that they are used for current drive) multipass propagation and
absorption will be needed for effective current drive. Experiments on
present—day tokamaks (see Table 3.1) and future considerations are
basically on "slow waves" (also known as LH waves).

3.1.1 Dispersion Relabion

The wave propagation is described by a dispersion relation, which
we review here briefly. Consider a plasma with a uniform magnetic
field in the 2z direction B, =B&, (the toroidal direction in a
tokamak) with unperturbed electric field E, =0 and unperturbed
electron and ion fluid velocities Vo  =V;, =0. The perturbed
electric field E, magnetic field B, and current density J are then
described by the Maxwell equations:



oE
VXB = Bofo 3r * Bot (3-22)
aB
Vv XE = -3 - (3-2b)

Assuming that the wave fields vary as exp[itk *r - wt)], Egs. (3-2a)
and (3-2b) yield the wave equation

-k x k XE) :‘—”—Z—E+iwp.dl . (3-3)
c

In the limit of cold plasma, the perturbed current density J can be
expressed as J = ne(V; -V.), where V, and V; are the perturbed fluid
velocities of electrons and ions, respectively, determined from two
fluid momentum equations (for T, =T; = 0):

N
mej{,e_: -efE +V, XB,) ,
(3-4)

ol
mi‘a‘g—: e(E +Vi XBO) .

Assuming that V., V; also vary as exp[ifk *r - wt)], we then use
Egs. (3-3) and (3-4) to obtain

2
kX (k XE) +*-€ *E =0, (3-5a)
¢

where € is the cold plasma dielectric tensor
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€1 *162 0

¥ = 162 € 0 |. (3-5b)
0 0 €3
L i

The components of & are given by

;  wy; +1 ions
- i . .
EQ‘ZGJ w2 -2 I ’ (3-6)
J

-1 electrons

tH
_m
!

fous
I
.

63”

where | = e,i and 9; is the sign of the charge.

We rewrite Eq. (3-5) in matrix form as

r 9 1
2 .
€~ My -1&9 ML Ey
ieo € -1 0 Ey =0, (3-7)
V4
| ML 0 €3~ M E, |

where k = k8, + k@, = k@&, + kg, B =Bg,) is used and n is the
refractive index
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e L R

=kjefw, my=kyefo,

==
—
!

1

kl k sin 6 ; k" =k cos 6,

with © being the angle between k and B,.

For a nontrivial solution to exist, the determinant of the matrix
[Eq. (8-7)] must wvanish. This condition gives the cold plasma
dispersion relation:

ani - bni +¢=0, (3-8)
where

a=e,

b= (e +eg)eq - nﬁ) - e% , (3-9)

(e
i

eglley - n7)% - €] .
Two solutions to Eq. (3-8) are
n; = [bx (b? - 4ac)17?]/2a . (3-10)

For a lower hybrid range of frequencies (i.e., in the limit of
Q% > W > Q%), the elements of the dielectric tensor can be
approx imated as
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€p =g ¥1+ w%e/Q% - w%i/mz ,
€9 ¥ who/lle (3-11)
€g =€, 21 - w%e/m2 - w%i/wQ ) R w%e/w2 .
The magnitude of terms are such that
legl > €, &,

which typically yields to b,c > 0.

The two branches of Eq. (3-8) [given by Eq. (3-10)] correspond to
"slow" and "fast" waves. The slow wave branch (i.e., small m/kl or
large n;) corresponds to the plus sign in Eq. (3-10),

ni ("slow") = [b + (b° - 4ac)1/2}/23 ;

and the fast wave branch (i.e., large w/k; or small q;) corresponds to
the minus sign in Eq. (3-10),

ni(”fast") = [b - (b2 - 4ac)1’2]/22 .

We now note a few important features of the dispersion relation of
LH waves. (1) There is a cutoff (ﬂi +0) at ¢ = 0. For a slow wave

this cutoff is at eg3 =0, W = w%e, giving a cutoff density
ng(cutoff) ~ 1.24 x 101 [f (GHz)]%, where f = w/21 is in gigahertz.
This density is so low that the slow wave can tunnel through the
evanescent layer. (2) The slow wave branch has a resonance (cold

plasma resonance) for a =¢; =0 (i.e., ni + o), thus defining the LH
frequency w? = [w%i/(l + u%e/ﬂi)] = wa. Hence, it is this slow wave

branch of the dispersion relation that is typically associated with the
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LH waves. (3) The slow and fast wave branches coalesce (mode
conversion) when b2 — #ac = 0. The value of the parallel index of
refraction q = k”c/m is critical in determining the properties of LH

waves, which we will discuss in the next subsection.

Consider a slow wave launched at the edge of the plasma, which
propagates well inside the plasma where densities are much greater than
those corresponding to the cutoff densities [ng > ng{cutoff)]. Then,
the LH waves are nearly electrostatic (n » 1 >> k) ) inside the
plasma. In this case the dispersion relatlon %3—8) reduces to

e + egny = 0 (3-12a)
or

e1k? = - egk) (3-12b)

which can be rearranged as

2 w2 fﬁifﬁ;; 2 fj_mi
W N Wiy 1+k2 wz. N Wiy 1+k27n—’ s (3—-13)
L Ypi T

where m; /m, is the ion to electron mass ratio. (If the plasma consists
of multiple ion species, an effective ion mass can be used as an
approximation for m;.)

Equation (3-12) indicates that LH waves propagate along a
localized ray called 2 "resonance cone® with the cone angle © with
respect to the (static) magnetic field given by

tan? = k2/k esfeq (3-14a)
P4 2
W W
| +-——9§£——7; : (3-14b)
1+ wpeﬁae

Equation (8-13) describes propagation of waves at frequencies w
greater than wyy, a parameter that, in general, increases towards the
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plasma center. For the case in which LH energy at a given k|,
irradiates a plasma slab with density varying in the direction
perpendicular to B,, k, of the waves within the plasma remains
constant. This is approximately the case for tokamak geometry.
Equation (3-13) then demonstrates a resonance ky o (n » @), as the
density increases to the point where w = w;y (as mentioned earlier).
For current drive purposes, we choose w to be greater than the maximum
LH frequency (W nay) Within the plasma so that accessibility of the
[H wave to the plasma center is guaranteed (for sufficiently large k,
or n“), but a resonance (which causes heating not current drive) is
avoided.

Figure 3.1 shows the group velocity (ray) trajectories, readily
obtained from the relation

v, = il (3-15)

2 2
dw Y T YIH
Bk, a wk), ’ (3-162)
2 2
B B [V (OLH
B T (3-16b)

Note that the ray (group velocity) trajectories as determined by

Bufdk, "
auwfok, ~ T WL

depend only on wave number through k,/k, but from Eq. (3-13) [or
Eq. (3-14)] depend only on plasma parameters. Hence, the entire
spectrum of k;(n,) waves excited by the antenna (waveguides) will
propagate toroidally within the same rf energy channel, or "resonance
cone.

Ihe phase velocity is given by

wk
v = T =

0= k (3-17)

=~|e
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Fig. 3.1. Lower hybrid energy channel as viewed from the top of
the torus (ref. [34]).
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where kX =k/k = (k ke, + (k,/k)g,. He note the group velocity is

perpendicular to the wave phase ve!ocnty (v *Vp © 0, ork Vg = 0).
To describe wave propagation at the LH layer properly, we must

consider warm plasma effects. The appropriate dispersion relation in

this case is given by [80]
- dni + 3ni - bni +¢c=0, (3-18)

where a, b, and c¢ are given by Eq. (3-9) and d contains the finite-
temperature effects, given by

2 2 2
W ¥ W W

-3-RL-L, %L EAN (3-19)
w2 Q%

Here v, = (kTi/mi)V'2 is the ion thermal velocity, ¢ is speed of light,

and pg = voflly is the electron Larmor radius [vg = (kTe/me)l/Q,
electron thermal velocity].

The nl term represents a new thermal wave branch [called the ion
plasma wave or hot ion wave, which does not exist in a cold plasma
approximation —Eq. (3-8)]. In a hot plasma, as the waves propagate
toward the resonance layer and m,(i.e., k;) increases, thermal effects

~dﬂ term) become important. For ni >> 1 (electrostatic limit),
%3w18) reduces to

- dni + ani -b=0 (3-202)
or (approximating the coefficients a and b for this limit)

(c/w)?d Kk} + €1k + egkl = 0 . (3-20b)
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Note from Eq. (3-20) that the fast wave branch (which is an
electromagnetic wave) has been eliminated.
Two solutions to Eq. (3-20) are

2 12
a t - 4bd
ﬂi = (2 2 ) (3-212)
or
- €y + (€2 - feq?d)l??

The minus sign in Eq. (3-21) corresponds to a slow wave and for small
thermal effects (i.e., for 4bd << 3% or 4€3ﬂﬁd K e%), we obtain

M ¥ bfa ™ - egntfe; (3-222)

which is the cold plasma LH wave [see Eq. (3-120)]. The plus sign
gives the hot jon plasma wave:

1 N e/d = eq/d (3-22b)

(again a% >> 4bd is used). Using Egs. (3-9) and (3-19), we obtain a
simplified dispersion relation:

2.2
2o 1y 1le (3-23)
=~ YiH b4 4 TI 926021 :

W

The two branches of Eq. (3-20) will coalesce [i.e., the conversion
of the cold, LH wave into the ion plasma wave will occur at a2 = 4bd
(eﬁ = 4e%nﬁd)]. Note that the parallel refractive index my will
determine the spatial location of this ion mode conversion.

For current drive, the wave frequency w and the parallel
refractive index n, must satisfy certain criterion. We discuss them in
the following section.
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3.1.2 Choice of 7 and w

There are limitations on the possibility of using LH waves for
current drive. One of the critical parameters is the parallel
refractive index 7.

Low-n, waves are necessary to couple energy and momentum to high-
energy bail electrons:

y = kyefw = efvg ® /vy,

where v, = m/kI is the parallel wave phase velocity and v, is the
parallel velocity of the high-energy tail electrons. As we can see
from the simple physical arguments given in Sect. 1, the effectiveness
of current generation varies rapidly with the phase velocity of the rf
wave (J/P ~ v2 ~ 1/m2). As indicated earlier, the LH current drive
. P I . , .

scheme is based on the resonant interaction (i.e., vy, =w/k ~v).
For such waves the current density can be approximated as [Eq. €1~1)T

J ¥ onpev. = noev, ™ nnevy (A/n2) (3-24a)

where n. is the density of the resonant (high-energy tail) electrons.
The power absorbed by the rescnant electrons and removed by collision
is given by [Egq. (1-2)]

P = menrvﬁur L me”r“%”r W/m) (3-24b)

where v is the collision frequency of the resonant electrons with the
bulk plasma electrons of density n

~ A 3w oh 2 2
Vi ¥ Vge = e In AfAxnv ® ne” In Afdnegmiy

3
p -

Therefore,
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2 2
J/P N 4ﬂeo vp _ 4me0me /2
e fn A wpe ne® fa A p
_ 4ﬂ€ome c2
ne fn A n”
197 (?02°> 1197 1 1 (
S e B 3-24c)
Ih Ay n ﬂi In A nag ﬂﬁ

By volume averaging we find the figure of merit. In practical units
the current drive efficiency is

ﬁ?ORO (m) I (MA) Ny a1 1
P (MH TAn A2y

(3-95)

where Tgg is the average bulk electron density in units of 10%° n73,
This is a rough estimate but is close to that obtained from more
detailed calculations (which we will discuss later), and it reflects
the genera! characteristics of current drive effectiveness of LH waves.
It is apparent from Eq. (3-25) that small m, is required to generate
current effectively. However, the minimum 7m; 2llowed in the plasma is
limited by the accessibility criterion of the LH wave. There is also
an upper bound on 7,. Let us now examine these limits.

The lower bound n ni, comes from the requirement of wave
accessibility; that is, the slow wave must satisfy certain
accessibility conditions in order not to be converted into the outward
propagating fast wave.  Suppose that the wave frequency is
substantially greater than the maximum LH frequency (w> WY max)
within the plasma so that the wave accessibility to the plasma center
is assured (for sufficiently large n”) and the wave-ion interactions
are minimized; that is,

w = 2%f > “LH,max s

1.2

WH,max = b“%i/(l + w%efﬂg)]max :
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Then, only waves with sufficiently large m, can penetrate to a given
plasma density. This limit is approximated by

o = N 2 241./2
N 2 T,min = My,erit ™ (wpe/ﬂe) + (14 w%e/ﬂi - wpg/m )

(3-26)

= (upe/D) + 1+ m%e/ﬂé)(l ST 0 )

which is obtained from b% - 4ac = 0. Figure 3.2 shows the wave
propagation characteristics for three different values of m . Shown in
Fig. 3.2 are ni vs density for given values of Ny from Eq. éS«lB).

Equation (3-26) is the lower bound on M, that represents the
accessibility condition for a LH (slow) wave.

As the LH wave travels into the hot plasma center, it may suffer
mode conversion into heavily-damped, hot-ion waves if m, is large
enough. (In this case rf energy and momentum is deposited on the ions
near the mode conversion point.) The density at which the lower hybrid
and hot plasma wave branches coalesce is denoted by Ny~ in Fig. 3.2.
This process (mode conversion into hot-ion wave) may be favorable for
the purpose of heating because it effectively transfers wave energy to
the ions, but it is clearly unfavorable for current drive. Mode
conversion occurs when the rf perpendicular wavelength A, = 2n/k,
becomes comparable to the ion gyroradius p; and the wave absorption is
via ion Landau demping (w~ kyv;). From Fq. (3-23) this can always
occur for w < wy pay- For wd WY max» conversion to thermal modes

can be avoided if m is less than upper bound, critical value M, max -
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,crit
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Fig. 3.2. 'ni vs density N{~v ‘*’%e) for fixed m, from Eq. (3-18).
Ng and N denote densities correspoding to the slow and fast wave
cutoffs. Nyy and Nyg are the densities corresponding to the mode
conversion  points (b2 - 4ac = 0). Nyc denotes the density
corresponding to the thermal mode conversion point a® - 4bd = 0 (or
e%ﬁ%%nﬁd). (At a given density Ny, erit is calculated from

b2 - 4ac = 0.) (ref. [80]).
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Equation (3-27) is obtained from a® — 4bd = 0 (i.e., 1 = 463n“d) the
condition that two branches of Eq. (3-20) (i.e., slow wave and hot ion
wave branches) will coalesce.

Satisfying Egs. (3-26) and (3-27) simultaneously imposes a minimum
value on the frequency of the rf (LH) wave (i.e., w>w,;,). For

typiﬁal parameters of interest (n ~ 102° w™>, B~ 5 T, and T ~ 15 keY),
M LOLB uy gy

An additional consideration in choosing the rf frequency is the
necessity to avoid decay of the LH wave via various types of parametric
instabilities which would transfer (demp) energy to the ions.
Paramebric instabilities (which we will not discuss here) would also
distort the LH wave spectrum. Such a parametric decay of the LH waves
has to be avoided for current generation purposes. Generally, these
processes are avoided if w > 2wy oy

Expressions given by Eqs (8-26) and (3-27) are approximations to
b2 — 4ac = 0 and a’ - 4bd = 0, respechively. Considering the full
expressions, the various regions for wave-plasma interaction described
above are dep'cted in Fig. 3.3. We see in Fig. 3.3 that m ;i
decreases with increasing magnetlc field B whereas M, max decreases
with higher To. For higher B, n, ... increases (not” shown in the
figure), thus opening the accessibility window. The effect of density
on 1, can also be deduced from Fig. 3.3. For a given magnet:c field B,
the lines shown in Fig. 3.3 are essentially for constant w e/Q2 « n/B?.
Thus, for a given wave frequency m/uLH, Ny, min increases whlle M1, max
decreases with density, resulting in a narrower accessibility window.
These characteristics can easily be seen from Eqs. (3-26) and (3-27).
Since the electron Llandau damping is responsible for current

(3-27)

ﬁ'lin
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Fig. 3.3. Regions of wave plasma interaction in the parameter
space of lower hybrid wave. The solid lines are ny .., for T = 14 keV
and B=7.5T, 5T7. The dashed lines are my p,y Tor B = 7 57T and

T =20, 14 ke¥. In all cases 0y = 10%° 3, [The lines shown

represent constant w e/ﬂz = (me/eq )(ne/BQ) =10.278 n20/B where nog
is in units of 10%° ””3. Thus, my nip lines are for mpe/ﬂ2 = 0.183 and

0.41, corresponding to B = 7.5 and 5 T, respectively. = .., lines are
for pe/ﬂ2 = 0.183 (or ngq/B” » 0.0178).] (ref. [33]).
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generation, one chooses the operating rf frequency to be in that region.
Some specific numbers are given in Table 3.2 for hydrogen (H*) and
dueterium (D) plasmas. The density and temperature profiles (and
central values of n and T) will significantly influence the wave
propagation and the accessibility regime shown in Fig. 3.3. If one is
not careful, current may be generabed near the surface with a2 profile
that may or may not be consistent with MHD equilibrium. Thus,
depending on profiles, an additional constraint is imposed on M, ..,
from the desire that only negligible current be generated outside some
specified radius.

3.2. Curent Geperation and Power Abscrptiom

The LH current drive, as mentioned earlier, is based on the
damping of high-phase-velocity rf traveling waves. The damping of the
waves causes the wave momentum to be given to the (resonant) electrons
traveling with the wave psrallel phase velocity, resulting in
distortion of the electron distribution and formation of a velocity
space plateau on the electron distribution function in the region of
resonant particles (see Fig. 3.4). Because the wave travels in only
one direction (unidirectional wave), the asymmetric electron
distribution thus created results in a net current in the direction of
the wave’s phase velocity. Since these current-carrying electrons
(high-energy tail electrons) are mostly traveling at several times the
bulk electron thermal velocity, they collide relatively infrequently
(i.e., collisionless) and thus retain their current (momentum) for an
appreciable time.

The analysis of momentum and energy deposition on the electrons,
and their subsequent transfer to the background ions and electrons, is
carried out in terms of a Boltzmann equation for the electron velocity
distribution. This equation balances the rf-induced quasi-linear
diffusion of the electrons against the electron-electron and
electron-ion collisional effects, as described by a Fokker-Planck
collision operator [Eq. (1-9)]. In this section we describe the
calculations and obtain the expressions for current density generated,
power density dissipated, and the efficiency factor.
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Table 3.2. Lower hybrid frequency at various densities and magnetic
fields and corresponding limits on q, due to mode conversions

(To ™ T: 15 keV; wfw = 2.5 are used)
e i LH, max

Wy /2w
P! a b
ne B W/ H /DY fgHY) fu(0*)  mi,min mir,max
(10%°n2) (T (GHz) (GHz)  (GHz)

4 0.32 1.48 1,29 0.91 1.62 7.05

0.5 8 0.14 1.8 0.98 1.35 8.26
8 0.08 1.05 1.42 1.0 1.94 8.82

4 0.64 2.1 1.64  1.18 1.97 5.61

1.0 6 0.29 1.85 1.3 1.58 7.94
8 0.16 1.48 1.94 1.4 1.39 8.12

4 1.98 2.97 1.97  1.39 2.52 4.38

2.0 8 0.57 2.38  1.68 1.9 5.85
8 0.32 2.1 2.58  1.83 1.62 7.05

“Calculated from Eq. (3-28) for w/wy = 2.5.
bCalculated from Eq. (8.27) for wjiwy = 2.5.
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Fig. 3.4. Electron velocity distribution, Fg(v,) = | o ().
The dotted line is the initial Maxwellian distribution {no rf). The
solid line shows the distorted distribution formed by the spectrum of

IH waves. A velocity space plateau is enlarged to illustrate the
process. Region of resonant particles is vy < v Cvo; Avy =vg ~ vy
(resonance is defined as Voi = w/k” = v where Yo is parallel wave

phase velocity) (ref. [33]).
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3.2.1 Electron Distribution Function

We start from the Fokker-Planck equation, Eq. (1-9). The
interaction between the plasma electrons and rf wave produces a time
development of the electron distribution function, f. @, t) =
felvy, vy, ), which can be represented symbolically as [18]

at, pf, £,
Bt - (%?)» * %)mﬂ ’ (3-28)

where the first term on the right side is due to the waves (velocity
space diffusion caused by the wave) and the second term is due to
Coulomb collisions (which describes both parallel and perpendicular
velocity scattering). In general, there should be a third term on the
right side of Eq. (3-28) that describes the effects of the inductive
field, (3f,/0t); quct—E> @ berm that is important when rf-driven
current replaces only part of the ohmic current. In the steady state,
for a pure rf current-driven case, there is no dc electric field.

The LH waves are electrostatic and Landau damped by electrons
resonant with the wave (w/k;, = vy). In the event that the waves are
uncorrelated, diffusion of the electrons in parallel velocity space
results [i.e., only the v, component of the wave diffusion tensor D
is nonzero in Eq. (1-10)]:

f
Ze\ __0_ 2 ~
(aat >w oy i) o) fe - e

where D, is the rf quasi-linear diffusion coefficient due to Landau
damping, given by

2 |
Dy (v)) z‘gf'éi;) 7f’wu(ku)|k" = ufv, ' (3-30)

Here, W, is the (one-sided) spectral energy density (power spectrum) of
the wave, normalized so that
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€ [
2 __© 2 _ -
- E",,ms = <Ep? = fo dk, W, (k) (3-31)

where E,.e = <Ep> is the (time-averaged) rms of the applied wave
electric field. It is this quasi-linear diffusion that tends to
Tlatten the distribution. The collisions, on the other hand, tend to
restore it to a Maxwellian (Fig. 3.4).

The term (8f,/0t) ., in Eq. (3-28) is the Fokker-Planck collision
operator, which has the following general form:

f 5 o
Pfe) L | .8 B\ 1_9 826 .
Cjt )coll - I19’1 [ vy (fe Bva) T CINT (fe avaavﬁ)] , (3-82)

where summation over o and B are implied and

452
» :eZl In A ,
2 4'|regmi

with j = background particles (e,i). In Eq. (3-32) f, is the (test-—
particle) electron distribution (i.e., the distribution of the
electrons that carry the current), and H and G are Rosenbluth
potentials, which are integrals over the background (field) particle
distribution:

H()~~—f|vmv| j:%‘ifﬁ%dﬁj , (3-332)
) :ff(vj) v —vjl davj ) (3-33b)

where M = mem‘i/(me + mj) and j = background particles. Note that in
Eq. (3-32) surmation over all background particles | should be taken.
When computing (8f./0t)., |, it is generally assumed that the
background distributions of both ions and electrons are nondrifting,
nonevolving Maxwellian distributions. Under this assumption Eq. (3-32)
is linearized, and self-collisions among the non-Maxwellian components
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of the electron distribution are neglected. (In some specific cases,
however, self-collisions (electron-electron) were taken into account
using the full Fokker-Planck collision operator, see for example
ref. [18.]) In the limit where test particle (ta|l electron) velocity
is much greater than the thermal velocity v >> v, = (kT /mg )12 and the
backgound particle velocity v; is less than or on order of the thermal
velocity, Eq. (3-32) is linearized about a Maxwellian and substantially
simplified. As a consequence of linearization and the associated
assumptions just discussed, Eq. (3-28) becomes

—e _ 0 L2208 g ¢y 2
Bt au“ by au” Te v @ e L -l e
1.8 {138 -
+ o2 O (; 3 fo + fe) , (3-34)

where velocities are normalized to v, = (kTe/me)l/Q, time is normalized

to ugl, and € is the pitch angle variable:

U=vive, Uj=v,fve. y?

H

2
Ui + Uﬁ ’

ne* In AjoneZndyd

_ 4 3
T=VUb, Yy =4n Awpe/anve

Wal’
1

U U =vy/v=rcosb,
D(U,) = Dy(v,)/(viy,) = wave diffusion amplitude.

In Eq. (3-34) symmetry is assumed in the azimuthal direction, with U
representing the normalized velocity magnitude in spherical coordinates
and © the polar angle with respect to magnetic field. The first term
on the right side of Eq. (3-34) is the quasi-linear rf diffusion
term: in (U, £€) coordinates the B/av” operator is expressed as
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B _ .8 (1-£8)3
U, ~ - au U ag

The second term represents pitch angle scattering off ions (with charge
Z;) and electrons. The last term represents energy scattering off
electrons.

Equation (3-34) is a 2-D Fokker-Planck equation for the electrons,
which can be solved numerically or analytically (under various
assumptions and expansions). To gain some insight, we will assume (as
is usually done) that the wave amplitude is sufficiently small so that
electron distribution f, is perturbed only sightly. Since the
quasi-|inear diffusion via the Landay damping causes electron velocity
diffusion only paralle! to the magnetic field, it is reasonable to
assume that the electron velocity distribution remains approximately
Maxwellian in the perpendicular direction. Under this assumption
Eq. (3-34) is integrated over velocities perpendicular to the magnetic
field, resulting in a 1-D quasi-linear equation for an electron
distribution function:

8. .8 0
a7 FelUp) = a, D(Uy) U, Fe(Uy)

i +2
i 8 [1 © 1
+ —= + Fo(U) . (3-35)
2 Y, (;ﬁ ou,, Uﬁ) eMll

Here, F, is the reduced electron velocity distribution
Felvy) = [ dv ()

and f, varies as exp(—vi/?v%) with Vi (the assumption of f, being
Maxwellian in the perpendicular direction).

We are primarily interested in the steady-state solutions to
Eq. (3-35). Solving Eq. (3-35) for the steady-state distribution, we
obtain

U

Fa(Uy) = C exp|- ” T
Uy 1+ 280U, /(2 + 2) | (3-26)
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where C is constant, determined from normalization of the distribution
[+ o
ion, F = n,.
function f eUydU, = ng

He see from Eq. (3-36) that in the absence of rf waves (D = 0) the
distribution function is Maxwellian, that is,

Fe(Up =¢€ exp(—Uﬁ/Q) =C exp(wﬁ/Qvfé) .

The situation of interest for rf heating and especially for current
generation is when D(v”) is very large in a finite velocity interval,
for example, vy < v, <vg (or Uy <U; <Ug in terms of normalized
velocity), and vanishes elsewhere. We see from Eq (3-38) that the 1-D
solution for the distribution function F (v“) is flat if D is large.
This is the mechanism of Landau dampung in the region of resonant
particles, vy < v, <vo (Fig. 8.4), that is,

+ Av /2 Vou = wiky . (3-37)

Vpii

where Av, ~ (eb/m, )12 with & being the potential field amplitude of
the wave E = -Vb.

We now return to Eq. (3-30) and try to estimate the diffusion
coefficient Dy, which depends on the wave spectrum. In general, the
wave spectrum may be of arbitrary shape. Here we will assume a flat
wave spectrum in the region of resonance (v = Voi = w/ky,):

Wo k2 < k" = m/v“ ¢ kl
Wy lky) = (3-382)
0 otherwise

or (k1 = w/vy, ko = w/vo)

V1 < V = VP" v
W, (v,) = (3-38b)

0 otherwise
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That is, the spectral energy density is centered at k, = m/v“,
corresponding to phase velocity v, =v over a narrow width
Ak, = kg - ko (Av = vg - vq) of parallel wave numbers (of parallel
velocities). Using Egs. (3-838) and (3-31), we can then approximate
Eg. (3-30) sas

2 <E>?
e il T
g e vy <y, < v
me Ak vy A
Dyl¥,) = (3-39a)
0 otherwise

or, in terms of normalized quantities,

Do/Uy  Up < Uy < Uy
D(U,) = Du(v,)/(vau,) = , (3-39b)
0 otherwise

where U; = vi/vg[= (vp" - Av”/Q)/ve], Ug = vo/ve, Uy = vy /ve. and

2 2
e €0 on'e, <E> | (3.40)
© m% Aku uovz ne? In A Aku

Using Eq. (3-38) in Eq. (3-38), the steady-state solution of Eq. (3-35)
is given by

e
-Uﬁ/?
Ce U" < Ul

272 (1 +DUR\/D
ce U1/ <~—-9——1—) ° Up <U, SUg ,  (3-41)

Fe(U)) = ﬁ 1+ D3
B2)/2 1+ DUB\/Dy 120
oo U3-11)/ <_£_1> ° U/ Uy > Vg
n o112
1 + D U5

.
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where 50 = QDO/(Zi + 2) and the constant C, as mentioned before, is
determined by conservation of particles

Mg = f Fe(Uy) vy

If the number density of electrons in the quasi-linear resonance region
is small compared to ng, then C is approximately the usual Maxwellian
value, C = ”e/(Q“)l/?Ve'

Equation (3-41) is the solution of Eq. (3-28) in the high-velocity
limit and considering only one dimension (parallel velocity).
Two-dimensional modeling of the problem is also possible, in which case
analytic solutions in limiting cases and numerical sclutions by
considering the full Fokker—Planck equation can be found in the
references given. In order to appreciate the structure of the solution
of Eq. (3-28) [which is given by Eq. (8-41) in the 1-D limit considered
here], we choose a representative case characterized by the following
parameters [18]:

L = 1,
vy = 3 Ve (Ul =8,
Vg = o Vg (U2 =5) ,

1.2 . Uy
Dy =% ¥alo (D =1/2 ; DO:A:JL).

Figure 3.5 shows the steady-state solution obtained numerically by
solving the 2-D Fokker-Planck equation [18]. In the resonant region
(v <y < vo), the electrons are approximately plateaued. A
significant flattening in the perpendicular direction is also evident
in Fig. 3.5, which the 1-D mode! does not account for (since 2
Maxwel | ian perpendicular distribution is assumed in a 1-D model).
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Fig. 3.5. OSteady-state distribution function f, for Z; =1,
D=1/2, Uy =3, and Up = 5. (a) Contours of constant fe(U“, u).
[Note that for a Maxwellian distribution contours of fo would be
circles.] Notice the deformation of contours near the region of
resonance (U; < U, <Ug).  (b) The surface f. (U, U). This s
truncated at f (maximum)/50 in order to show the plateau clearly. In
the resonant region plateau in the parallel direction is clearly
apparent.  There is significant flattening in the perpendicular
direction, also (ref. [16]).
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By integrating the distribution function shown in Fig. 3.5 over
the perpendicular velocity space [f fo dr, = Fo(v,)], we obtain the
parallel distribution function Fe(U“) as shown in Fig. 3.6, which
clearly exhibits the current—carrying plateau. Note that Fo(U, > Up)
drops off more slowly than a Maxwellian distribution with the original
temperature would [see analytic solution given by Eq. (3-41) for
U, > Ug].  Also note that Fo(Uy > Ug) greatly exceeds the original
Maxwellian distribution, a feature that can also be seen from

Eq. (3-41).

3.2.2 Current Density

The current density generated can now be obtained from Eq. (3-41)
by integrating over velocity space:

_ 2
=€ fd"u viFelvy) = -evg fduu UyFelUy)

LS.
{

(1 + D3) 1/,

(20, - 1)

f

enevefO(U1)§~1 + [(1 + BQU%) 1-1/20,

- . 1-1/2D 1 + D U2\1/9D
- (1 + DY) / 0] + (~—-—-—_9—-1-) / Dog . (3-42)
1+ D5

where £,(U7) = (21) 7 Zexp(-7/2). MHhen Dy >> 1 (D U3 » 1) Eq. (3-42)

reduces to

e
}

exp(—U?L/Q) % ~ U%)

-
~ en v, . (Uy) (5] = en.v
1 2 ) g€ (2,“,)1/’2 2

€e0

ey exp(~v21/2v%) /v% ~ v% (3.43)
ee (21()1"‘2 \ 2\%

5 -4
v 6.72 X 10%n99Ti0% o (U7) Ci—@——) :



68

ORNL—-DWG 84-~3012 FED

04
03 |
LLQ)
0.2 ]
0.1 _
0
~5.0 . _ . . 10.0
0.04
| l [ [
|- RESONANT
0.03 REGION —»] 7
“ 002 -\ _
Felr — @)
3 INITIAL
001 — N Felm=0) MaAxwELLIAN
(b) \'z
2 3 a4 5 6 7
U”=v”/ve

Fig. 3.6. The parallel distribution functicn Fe(U“) for the case
shown in Fig. 3.5. In (b) the vertical scale has been magnified
tenfold over that in (a). Initial Maxwellian distribution F (7 + 0) is
shown with dashed lines in (b). The current—carrying plateau is
clearly seen in (b). Notice that for U, > Uy (U, > 5) Fg drops off
more slowly than a Maxwellian distribution with the original
temperature would. These features can also be seen from Eq. (3-41)
(ref. [18]).
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Normalized current density is simply

7= Jfengv, =

exp(~v%/2v26) /v% - v%)

(9m)172 \ QV%

2 2
- to) (5. (@1

We can rewrite Egs. (3-43) and (3-44) in terms of the parallel
refractive index q (= ck”/w) as

12 2 2
) eng(kTo/m.) /mec )exp[-(mec )_L] (._1_._,___1_)
(2n)172 \QTe 27, 2\

n
= 2.166 x 10710 —& exp(— 2—5—5;5~X~1; - 42-> (A/n?) (3-45)
Te Teni /g M

n
» 6.85 x 10 %p( .MX_L-L) (h/)
10 Tioni/\y w1

and

2 2
A 1 /’"ec) [(’"ec) 1}(1 1)
Jd = expl- Py | e (3-48)
(2m) 172 \QTe 2T, ,ﬁ ,,];23 n"{
101.93 255 51 1
0 ol Y1)
e Teni /\ng 01

10.9 95.6 1
¥ TS e p(— ~—-——2—X“12* ~ “‘;) , (3-47)
10 Tioni /N M1
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. = (kTe/ﬁl )1/2
with Mg ¢? ~ 511 keV. (A!I are in mks units, Te is in ke¥, and as
before, ngy = ne/lo , Tip = To/10 keV.)

As mentioned ear!cer and as f£q. (3-41) and Fig. 3.8 show, the
electron distribution function at U, > Ug (v“ > vg or q < o) greatly
exceeds the original Maxwellian distribution. Thus, current is carried
not only by resonant electrons with vy < v, < vy but also by tail
electrons with vy > vg. Figure 3.7 shows the fraction of total current
carried by resonant electrons under the plateau. For the example
considered in Figs. 3.5 to 3.6, more Lhan 90% of the current generated
by rf waves is carried by the resonant electrons in the plateau, that
is, a case for Ul = 3, U2 = b. For a high-temperature, reactor-|ike
plasma, ({e.g., Ty @ 10-15 keV), 3 < U, <5 corresponds to v, fc™
0.4-0.8 (or LM 1.25-2.5), in which the resonant electrons may become
relativistic. For this case, relativisbtic effects will be more
important for tail electrons with v, > vg (> vy), which are not
included here (some discussion of thls will be given later). For
moderate values of Up ™2, Up ™20, we see from Fig. 3.7 that more
than half of the current generated by rf waves will be carried by the
Tast bail electrons.

w'—lepa % — C2k2/w2 = 2/’;1?1, 'ﬂ% et CQlQ/(U = CQ/VQ, and v

3.2.3 Power Dissipation

In the steady state, the power dissipated by the waves in the
resonant electrons is balanced by the power dissipated in the other
particles (bulk electrons and ions) via collisional slowing down of
these fast, resonant electrons. Thus, the power density dissipated by

the rf wave for maintenance of the quasi-linear distortion of F, is
given by
(1 o [fe
Pog = { v 5 M (%t)N (3-482)
J
(6.1 20 D
—_ 3 o 2 —_ j.._.__ n
".J d®v 5 Y v, o Dy (vy) o folv) (3-48b)

9 1,2 D
= mvevotjqd U 5 U BU D(U ) - au f (U)
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Fig. 3.7. Fraction of rf-generated current carried by resonant
electrons (Uq < U, < Ug) is shown as a function of U; for various Ug/Uq
(= nyfmg) for LH waves (ref. [33]).
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U

2

) fa)

= - mvequ . dU”U”D(U“) —BU” Fe(U”) , (3-48c)
1

where we used integration by parts in obtaining the last step (other
notations are as introduced before). Using Eq. (8-41) in (3-48¢) and
considering the limit where DUﬁ > 1 (or DOU% » 1), Eq. (3-48c) can be
approximated as

? + ZI 5 2
T 5 nemevevofo(Ul) In 'Uif
(2 * Zi) ”eme"QéUo (__UQ /2) l (UQ>
= exp n (=
2/ (on)'” ! Uy

[Z; + 2 exp(—v3/2v2) Vo
anemev%uo \ '2 ) (2n)1 2 £ In v (N/ma) ,  (3-49)

1

Prf

t

where o is a correction factor obtained by numerically solving the 2-D
Fokker-Planck equation with a quasi-linear term. 1In general, o = o(Z;)
is a sensitive function of Z; [16]. For Z; = 1, a ™ 0.4.

Normalized power density is simply

<
|
”EiFE
N4
MO
e
")
=
R
s
<D
ko
-l
—~
L
s N
.
N
<
N
s
s
s |
P
3
N

7 + 2 %
. ' ox _2@) I E} (3-50)
(2@1"2( 2 ) p( Ten3 M2
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In practical units, Eq. (3-49) can be rewritten 2s

Prf

i
R
TR
N _+

At
N——"

2et In A exp(-v3/2v2) p fvo
n
Q'Wngle/Q (kTg) 172 (9g)172 \V 1

12

.+ 9\ n? In A ~v279¢2
1.11 x 10731 o (Z’ ; ne £n A exp(-vi/2ve) In M)
¢ LR !

j2

2
30 e [0 A 2 1.2 Vo 3
1.82 x 10789 o s (20 >exp(~vl/2ve) Zn '’ (W/m°)

2
o g 90 {4n A 2 /5.2 v
~ 4,19 X 107 a Y (20 >exp(“’1/2"e) In (—\‘-2~> (H/ms)
1

12
s
<
Tt
(o]
=

o ("” A)f (Uy) Zn (ﬁ) (W/n?)
T 62 20 o'Vl Ul '

where Z; = 1 is assumed; npg and Typ are in units of 10%° w2® and

10 keV, respectively; and o ™ 0.4 is the numerical correction factor.
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3.2.4 Efficiency Factor

A crucial parameter by which the practicality of a current drive
scheme may be assessed is J/P, the amount of current generated per
power dissipated. This is the measure of the efficiency of a current
drive scheme (see Sect. 2.1.4). From Egs. (3-43) and (3-49) we have
the following expression for J/P:

J/P - A 0.—1 e (V% B V%)
rf ZI + 2 31) ln (VQ/V]_)

2m, v

e €0
_ (207 ) g [(V"é - ) (3-51a)
\Zi +2 nge’ fn A 41 (vo/v1)
(v - v])
~273x1o3/“ 20 ) 1 . 351b
\ , Xln Afng £n (vofvy) ( )

For Zi =1, a = 0.4, and in terms of refractive index we have

~1
20 V1 {1 1Y, ™

JJP.s ™ 4.08 x 10%2° (———~>—~ (——~—-——~Xln —)
InAfng 'q22 ,‘,]21 N9

—2 -2
_ 4.08 {20\ "2 - M (3-52)

Expression (3-51) [or (3-52)] shows us that J/P.¢ is independent of T,
is inversely proportional to ng,, and varies rather rapidly with the
phase velocity of the rf wave. TIn terms of normalized quantities,

3 - (2o \ W5 -UD/2 (50t 0B - D) /v :
i \z, In (UgfUy) " \Zi +2) A0 (vg/vy) (3-53a)

) W, (3-53b)
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where we defined

2
W2y = <(~V~1L)>
i v
€
U1+U2 AUQ
1+0 L .
) U;

Here AU, =Ug - Uy = Avy/v,. For a narrow spectrum <U2> R U21 For
a 0.4 and Z; = 1, we have

2 2
-1_ UQ - U]_ B AU" Ul + UQ

(3-54)

(U§ - 7)/2
fzg—zag7aij~ . (8-55)

A

5 n 2 n
P = 17> ~ 1.7

In terms of the amount of current generated, we have from
Eq. (3-51) [or (3-52)]

NggRo(m) T(MA) ~78 (2 o} 1 (ﬂ§2 - niz)
Py (M) TG 240 A dn (/)

26 1 20 1
w2 1 g3 , (3-56)
in A <,nﬁ> (lﬂ A) <‘ﬂu>

where we defined

(3-57)
> R Te \ 2y
=l = 2] W = () O
(c/ve)

It is apparent from these expressions that small 7, is required to
generate current effectively. Figure 3.8 plots J/P for various
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Fig. 3.8. Effectiveness of current drive by LH waves as a3
function of parallel refractive index of LH waves.
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n1(= ¢/vy) and no(= c/vg). As we discussed in Sect. 3.1.2, the minimum
Ny (ﬂg) allowed in the plasma is limited by the accessibility criterion
of the LH wave (among other constraints).

For resonant electrons (vy < v < v9), we choose m, such that

mg <y <My

with

M9 2 M, min » M1 < My, max -

where my oo and my n., are given by Eqs. (3-26) and (3-27),
respectively. To obtain reasonable efficiencies (Fig. 3.8) a fairly
narrow spectral width would be required, that is,

byfay = (g - mgd/my 2 0.2

3.3. Experiments [19-28,31,35-40]

By far the most experimentally used method of driving currents in
tokamaks has been the use of LH waves. These include the following
tokamaks: Princeton Llarge Torus (PLT) at Princeton [19-21,97,38],
Alcator-C at Massachusetts Institute of Technology (MIT) [22,26,31,36],
Frascati Tokamak (FT) in Frascati [28,37], Wega at Grenoble [23,30],
T-7 at Kurchatov [40], JFT-2 at JAERI [35], Versator II at MIT [26,36],
WT-2 [25,39], and several others. A summary of the parameters of these
experiments is given in Table 3.1. 0One of the principal achievements
has been the maintenance of the current with rf power alone for
extended durations in Alcator-C and PLT (listed as "steady-state" in
Table 3.1, where "steady state™ refers to the fact that both the
magnitude and profile of the current do not change, that is, no
redistribution of current). In both of these experiments the OH
current has been terminated, and the plasma current produced by rf has
been kept constant (flat top) for periods longer than the L/R time
(where L is the total inductance of the plasma and R is the plasma
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resistance), a necessary condition for eliminating transient currents
and unambiguously demonstrating rf current drive. This is shown in
Fig. 3.9 for the longest pulse generated in PLT. 1In the following we
discuss some of the results observed from these experiments: (1)
demonstration of current drive, (2) current drive efficiency, (3)
density limit, (4) spectral gap, (5) current ramp up, ebe.

2.3.1 Demonstraticon of Current Drive

In 2 toroida! system the current fiow can be strongly influenced
by electric fields induced by changes in the poloidal magnetic Tield.
Demonstration of rf current drive can be decided by examining the power
flow relationship [20]:

2R + S (L12/2) = T, (Mgudlgn/dt + MydT,/dt) + Pop (3-58)

where 1 is the plasma current; R is the plasma resistance;

p

L = uRo[4n (8R,/a) — 2 + £:/2] is the total inductance of the plasma;
a and R, are the minor and major radii; w,R,#;/2 is the internal
inductance; Mgy and M, are the mutusl inductances between the plasma
current and the OH primary and vertical (equilibrium) field coils,
respectively; and P is the rf power driving the current. To
demonstrate rf, current drive conditions have been produced in the
experiments such that the Isz and P p terms of Lq. (3-58) are the only
dominant ones:

~ T2
Prp = I°R,

A typical current drive shot in the PLT tokamak with and without rf
power is shown in Fig. 3.10. Here the waveguides are phased 90°
(A = x/2), and 130 kW of rf power (f = 0.8 GHz) is applied for 2
period of up to 1 s after the primary ohmic current is terminated. The
plasma current was mainbtained at 240 kA during the rf pulse. The
average density is initially A 7 x 10'% en™ (to suppress runaways);
then, it is maintained flat at 7~ 3.5 % 10'% cen™>. A long-pulse
current drive on PLT is shown in Fig. 3.9 in which a plasma current of
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Fig. 3.9. Long-pulse current drive on PLT. The plasma is formed
by the OH system, which was turned off at the current peak. Lower
hybrid power P.¢ = 70 kM, By = 2.3 T, and g @ 8 x 10'® m=® (refs. [19,
20, 271).
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165 kA was maintained for ~3.5 s. Although results shown in Figs. 3.9
and 3.10 were obtained at relatively low densities, similar results
were obtained on the Alcator-C tokamak at higher densities
(i~ 3x 10" en™®), as shown in Fig. 3.11.

3.3.2 Current Drive Efficiency

As we have seen, the current drive efficiency may be written in
the following form:

Ro (m) nogl (MA) (90 7
5 = 0.015 {7+ Tlo—l,;, (3-59)

where 3/6 is the normalized current drive efficiency for LH waves,
given in Sect. 3.2.4 [see Egs. (3-51)-(3-56)],

o> je>

_ o0t 29~ 2
= (Zi N 2) <Uu> v 1.7 <UH>

or

J_ (2t \[c¥ 1 ,8.2 1
B2 e/ > To <>

with ¥ 0.4 and Z, ® 1 and (U P and <nﬁ> given by Egs. (3-54) and
(3-57), respectwely For (H waves JJP is expected to vary from 10 to
60 (with smaller values may be resulting in ‘the reactor regimes). As
we have seen, in order to have as large J/P as possible, a wave
spectrum should be rich with high values of the phase velocity (i.e.,
low values of m, m, = ck/w = c/v vp ¥ v,). This is possible only

iT w e/ﬂ2 K1 so that low va!ues of m, are accessible [see
Eq. (3-—‘26)] In most present experiments w e/{fz v 0.1 (see Table 3.1),

whereas in a reactor we expect u? /92 > 0.5. Shown in Fig. 3.12 is the
current drive efficiency [Eq. (3~59)] vs Tg in various LH current drive
tokamak experiments listed in Table 3.1. He see from Fig. 3.12 that in
most experiments to date J/P"’ 30-50 (except in JFT-2, where high
values of m, result in lower efficiencies). For example, for
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Alcator-C, ngpl (MA) Ry (m)/P (MW) ~0.08 T, (keV) 2t By =8T. At
B, = 10 T, this efficiency is of order 0.12 T,. Power and density
dependence of the efficiency are shown in Figs. 3.13(a) and (b) for
Alcator-C, 8, = 10 T.

3.3.3 Densibty Limit

In most of the experiments a critical density limit was observed.
Above this critical density, current drive effects disappear (i.e.,
current drive ceases or diminishes more repidly than the 1/n scaling,
Fig. 3.13). The exception is Alcator-C (and possibly Wega), where
IfP ~ 1/n, (Fig. 3.18) up to the highest density (7 ~ 10'* en™®) used.
At present Alcator-C is believed to be power !imited.

The critical density in any given experiment appears bto be
relatively insensitive to variations in plasma parameters; however, a
well—defined correlation is apparent from Fig. 3.14 between the density
limit and frequency of the rf source (n .;4 ™ 2).  Thus, one of the
speculations is that the observed critical density has its origin in
the choice of the wave frequency (f = 800 MHz in PLT whereas
f = 4.6 GHz in Alcator—C). It is, however, fair to note that the
mechanism responsible for the "ecritical density® limit is not well
understood at the present, although a number of possibfe explanations
have been proposed. Some of them are related to propagation effects.
For examaple, in PLT, ray-tracing calculations indicate reduced
accessibility of the waves to the plasma center at higher densities
with low values of %, which are responsible for the high-enerqgy tail.
PLT has a relatively small aspect ratio (A = R, /a = 3) as compared to
Alcator-C (R, /a = 4), and calculations indicate that the critical
density is dependent on aspect ratio and that rapid decrease in current
drive efficiency is much more pronounced at lower aspect ratios [38].

Also associated with lack of accessibility, results from both PLT
and Alcator-C show a decrease in current-drive efficiency with a
decrease in magnetic field (Fig. 3.15). These results, however, differ
somewhat from those obtained in FT where the density cutoff is found to
be insensitive to magnetic field [37].

Other possible explanations are related to the onset of parametric
decay instabilities [JFT-2, Ref. 35], to the onset of a strong
interaction of LH waves with the ions (which involve absorption of part
of the rf power by the ions rather than the fast electrons), to the
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occurrence of ponderomotive etfects at large m; (i.e., at high
density), ete.

3.3.4 Bpectral Gap

As discussed previously, the observed current drive efficiency
(Fig. 3.12) in many experiments (especially in Alcator-C and PLT) has a
value nggIR /PTo ~ 0.1, which is in reasonable agreement with the
theoretical predictions. 1In these experiments, X-ray measurements
indicate that the current is carried by a high-energy electron tail
(with energies up to 200 keV for T, ~ 1 keV) produced by the rf power
(Fig. 3.18). Measurements also indicate that the fast electron
component constitutes about a few percent of the total electrons.
However, at a plasma temperature of T, S 1 keV, energies around 30 to
200 keV should produce 2 negligibly small value of the electron
distribution function in the plateau region ,(30 keV) + fo(0)exp(-30).
With this value, the current predicted from quasi-linear theory
[Eq. (3-43)] is many orders of magnitude smaller than experimental
observation.

One of the principal questions that arises in these experiments
has to do with the explanation of the mechanism by which the high-
energy (superthermal) electrons are generated by high-phase-velocity
(low-n,) waves in a relatively cold plasma with no preexisting tail
before the rf is turned on. Specifically, how is the gap (the
so-cal led "spectral gap") bridged between the electron thermal velocity
ve and vy, the low velocity end of the applied wave spectrum (where
vi = ¢/my, mg < my < my, see Fig. 3.4)7 A number of theorstical models
have been proposed to explain the mechanism that would bridge the gap
between the wave phase velocity v, = w/k" = c/'qi > Svg and v,.

One possibility is the toroidal upshift in the k; (or m,) spectrum
due to reflection of waves around the torus. The large 7, waves can
then interact with bulk efectrons and 2 significant quasi-linear
plateau extending over a wide energy range could be formed [69]. This
enhanced tail of electron distribution function extending almost from
ve to vo (upper end of wave spectrum, ¢/ny;,) can account reasonably
well for the magnitude of the current generated. However, the results
are somewhat sensitive to the allowed number of bouncing of the waves
around the torus [69]. Another possibility of broadening and
upshifting of the m -spectrum is claimed to be associated with the
ponderomotive effects [81].
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Another possibility is the anomalous Doppler interaction [73, 74].
Basically, the electron distribution function sustained by LH waves in
current drive experiments exhibits an anisotropy T, > T, for the tail
population. This anisobropy drives an instability via anomalous
Doppler resonance w + {, = kyv,. This is a Parail and Pogutse [82]
type "fan® instability [74], which is a magnetized plasma osci!lation
with w = wpok,/k. This instability then transfers momentum from high-
phase-velocity LH waves to lower—phase-velocity plasma waves and
increases the perpendicular tail temperature by wave pitch angle
scatbering. Both of these contribute to a large energetic electron
population, leading to significant current sustainment.

At present, experiments have yet to provide any insight into this
question. There are some measurements of instabilities. In all the
transient experiments (Table 3.1), both microwave radiation and X-ray
measurements show relaxation oscillations (instabilities). This
insbability converts electron parallel momentum into perpendicular
momentum. As a result, this instability is thought to be that of the
Parail and Pogutse mode, which is driven by T, > T, anisotropy. In
WT-2 and Versator this instability was shown to quench by application
of electron cyclotron resonance heating (ECRH). Note that ECRH
increases the perpendicular energy and thus reduces the disparity
between T, and T,. During steady-state (flat top) operation of PLT and
Alcator-C, however, no such oscillations were observed.
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4. ELECTRON CYCLOTRON CURRENT DRIVE [9,18,41-53,84]

Electron cyclotron current drive relies on creating an asymmetric
plasma resistivity rather than on transfering momentum to the electrons
(as in the Landau damping scheme). This mechanism is proposed by Fisch
and Boozer [41].

Despite their low momentum content, electron cyclotron waves could
drive currents with similar efficiencies to other noninductive schemes
(see Fig. 1.2). To create an asymmetric resistivity, it is necessary
to alter the plasma collisionality in such a way that electrons moving
in one direction (e.g., to the left) collide more frequently with the
ions than electrons moving in the opposite direction (e.g., to the
right). As a result, a net electric current would be produced with
ions moving to one direction (to the left) and electrons, on average,
moving in the opposite direction (to the right). The means of
accomplishing this is to preferentially heat the electrons that are
moving in one direction along the magnetic field lines (i.e., in this
example, those electrons moving to the right), so that being hotter
they collide less. An electron cyclotron wave is an obvious candidate
for this selective heating, which can be achieved by tuning the wave
frequency w such that the Doppler shift due to the electron velocity
along the magnetic field (v,) synchronizes the wave frequency and the
electron cyclotron frequency (f},) or one of its harmonics. Thus, for
nonrelativistic electrons, the resonance condition is

w—lﬂ - kv, =0

e i H

or

w - me = k“\l” , (4-1)
where £ is the harmonic number. Resonance is achieved for all
perpendicular velocities provided the parallel velocity v, satisfies
Eq. (4-1). We see from Eq. (4-1) that the electron cyclotron wave
couples only to electrons with one sign of v, on one side of the
resonance. That is, electrons moving parallel {antiparallel) with the
wave will be in resonance if the wave frequency w is greater (less)
than #,. 1In the inhomogeneous field of a tokamak, the frequency
difference (w - #),) changes sign across the resonance layer so that
the current flows in opposite directions on opposite sides of the




92

resonance. For a weakly damped wave these opposing currents are about
of equal amplitude, which results in no net current flow. Thus, this
immediately shows that for this method to be successful strong wave
damping is required such that the wave is extinguished before it passes
through the resonance. This requirement is modified when relativistic
corrections to the resonance condition [Eq. (4-1)] are included.

As the electrons become relativistic the electron cyclotron
frequency develops a velocity dependence due to the relativistic mass
increase:

(o (relativistic) = eB/myy = 0,(1 - 2 j2)17? (4-2)

where myYy is the relativistic electron mass, n is the relativistic
factor = (1 - v2/c?)712, and o is the nonrelativistic cyclotron
(gyroj).frgquency 2, :5584?0, with electron rest mass mg. In a weakly
relativistic plasma (v°/c® <K 1), the resonance condition [Eq. (4-1)]
is changed to

w = kyvy - (1 “‘;‘VQ/CQ) =0. (4-3)

It is clear from Eq. (4-3) that a change in sign of (w - #l,) across
the resonance layer no longer simply produces a change in sign of vy
Thus, in a tokamak the currents on opposite sides of the cyclotron
resonance layer have different amplitudes and do not cancel each other
in the case of weak damping (absorption).

The progress on current drive by asymmetric ECRH has been largely
in the theoretical calculations although two experiments have been
carried out on the Culham Levitron and TOSCA (a small| tokamak) devices.
Both of these devices demonstrated the existence of ECRH-driven
currents through asymmetric resistivity, which we will briefly discuss
later.

The resonance surface is accessible to electron cyclotron waves
provided the plasma is underdense, that is, w > wy, = (ni/meeo)l/Q.
These waves can be injected into the plasma through small waveguide
apertures. In this respect, wave launching structures are
advantageously simple compared to other rf schemes in which
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accessibility to the plasma requires launching a wave spectrum with
proper parallel wave number, thus necessitating design of the launching
structure. The main problem in generating current by ECRH is the power
requirement, both in terms of the magnitude of the recirculated power
in a tokamak reactor and the costs of the microwave equipment at these
frequencies (f > 100 GHz in a reactor). Efficient continuous wave (cw)
gyrotrons for this range of frequencies are yet to be developed.
Assuming that Lhese sources can be developed, minimal power dissipation
requires the absorption of the wave by only the fastest electrons,
which are the most collisionless and hence retain their directed
current longest. In this respect, the ECRH scheme is similar to the
technique of current generation by LH waves (though electron eyclotron
waves do not have a high parallel momentum content).

In this section we give a brief description of the ECRH current
drive mechanism based on single-particle treatment (heuristic
derivation) and then discuss the various approaches used to calculate
the driven current and power absorbed. The effect of trapped electrons
and the role of relativistic correction to the resonance condition will
also be considered. We will summarize some of the experimental results
and discuss the effectiveness of ECRH current drive for reactor
applications.

Before considering any of these, some general observations are in
order. First, once again, the aims of current drive are different from
those of bulk heating since currents are most effectively generated by
coupling of the wave to superthermal electrons and detaching them from
the bulk electrons. Second, the collisions between the electrons and
ions are responsible for the current generation, whereas
electron-electron collisions will tend to remove the asymmetry. Third,
electron cyclotron waves increase the perpendicular energy of the
resonant electrons (i.e., increase the perpendicular energy of those
electrons moving in the same direction as the wave via Doppler-shifted
cyclotron damping). This means that resonant electrons continue in
resonance (Eq. (4-1)] while increasing their perpendicular energy.

4.1. Basic Mechanism of Current Generation [41]

Here we follow the analysis of Fisch and Boozer [41], called the
Fisch-Boozer mechanism, that is based on a single-particle approach.
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Consider the displacement in velocity space of a small number, OF,
of electrons from region 1 to region 2 (see Fig. 4.1) due to rf
heating. That is, assume that the rf power will heat a particle with
energy ¥y and collision frequency vy to a higher energy Wo and lower
collision frequency v9. The energy required to do this is

Because electrons in different regions of velocity space scatber at
different rates (i.e., vy # vg), » current is generated. The current
density (in the direction parallel to the magnetic field) generated is
given by

ju(t) = eﬁf[vl’“exp(~ vib) - v2>“exp(m VQt)] . (4-5)

The time average of j(t) over an interval At that is long compared to
1fuq ad vy (i.e., At D> 1/ug; 1/wg) is

0 5
J EJ‘O J“(t)dt Me "A"E“ (Vl,il/u]. - V2,||/U2) . (4'—6)
The dissipated rf power over this time interval can be approximated as

. M

. 5¢
Pep =50 ™ (g~ Hp) - (4-7)

From Egs. (4-68) and (4-7) we find the expression for current drive
efficiency:

Gl - veylve
e Wy -Ho

/P (4-82)
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In the [limit vy »vo, the locations 1 and 2 are separated
infinitesimally (in the velocity space), and J/P. s reduces to

8 - Vv(v“/u)
8 - VM

Py e e (4-8b)

limvl *VQ

where 8 is the unit vector in the direction of velocity displacement
and ¥V, is the del operator in velocity space.

Without any detailed discussion of the collision processes,
several results can be obtained from Eq. (4-8). Assuming that the
collision frequency varies as

where v is the velocity of the resonant electrons, the form of J/P can
be immediately obtained. For example, for LH waves (discussed in
Sect. 3), velocity displacement is in the parallel direction 8 =v, /v,

(or 8 | 8,, whereB = Boéz); we have

0 9_
IfPrp = By, ("”/V)/L&’” W

1 (2, 2v872 2 2y1/2
« "“I (vi + v + 3y (v + ¥y . (4-9)

For resonant electrons, the effective current drive regime (with LH
waves) is vﬁ » v2. In this limit the term arising from the energy
input [second term in Eq. (4-9)] is three times larger than the term
arising from the momentum input [first term in Eq. (4-9)]. This
implies that for successful current drive it is not necessary for waves
to have net (large) momentum content. The wave with low momentum
content, such as electron cyclotron waves, can in principle have
similar current drive efficiencies to |H waves, which carry much more

momentum.  For electron cyclotron waves, 8 is parallel to v, and
JfPps « a/avl(v“u"l)/aw/avl, which results in
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IfPpp & 3u, (V3 + V)2 (4-10)

Comparison of Egs. (4-9) (for LH waves) and (4-10) (for ECRH) in the
limit w2 >> v] indicates that J/P.p for ECRH would be about
three-fourths of the value for lower hybrid.

We will now determine the collision frequency v to be used in
Eq. (4-8). 1In the high-velocity limit v » Vo, the Fokker-Planck
equation  contains  two collisional  scattering rates  (see

Sect. 3.2.1): 2 slowing-down rate
Vg = U/ 23 (4-11)

and a momentum destruction rate

2+Z‘
Vp = o =(2+Z)vg , (4-12)

o = wﬁe In Af2mnv3, Ve = (kTe/me)ljn, and Z; is the
ion charge state. Consider a test electron (i.e., 2 resonant electron
with speed v >> v.) that slows down energetically. In Ref. [41]
diffusion in energy is ignored, but the slowing down in energy causes
both collision rates (vg and v,) to vary. The slowing-down equation is
given by

where U = v/v,, v,

dufdt = v U . (4-13)
The current carried by the electron is

ju(t‘) = j"(t = 0) EXP[ Jg - Vm(t') dt] . (4*143)

With the use of Egqs. (4-12) and (4-13), Eq. (4-14a) becomes
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p® =y = Qu/ue = 92 7 4, (4-140)

where U(t = 0) = U, is the initial normalized electron velocity. Note
that the background electrons, as wel!l as the ions, conbribute to Lhe
current destruction.

Using Eq. (4-13), we write the time-integrated current as

s 3
) J”(t = 0) 24

UQ 5+Zi,

(4-15)

where we have used Eq. (4-12). It follows that the correct v to be
used in Egs. (4-5)-(4-8) is given by

= (4-16)

Using Eq. (4-16) in Eq. (4-8b) and normalizing velocities to v,

current J to -env,, and dissipated power to m iU, we can write the

e 'e’o’
normalized efficiency factor as

3
j/ﬁ ) ~dfenvg :§ . VV(U”U ) 4

F’Pf/menv%uo g - VV(UQ) 5+ Z;

(4-17)

where Uy = v, /vg.

The range of application of Eq. (4-17) is limited to situations
where the location in velocity space of electrons that absorb energy
from a wave is known, which is obtained from the resonance condition
[Eq. (4-1)]. Note that the resonance condition (w - kv = #,, or
w - M, = kyv,) for LH waves is / =0 whereas for electron cyclotron
waves it is # = %1 for fundamental resonance (£ = 32 for second

harmonic). The precise perpendicular velocity of the electrons is
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immaterial to Eq. (4-17), unless it becomes comparable to the parallel
velocity.

Electron cyclotron waves induce velocity space diffusion primarily
in the perpendicular direction, so that the perpendicular flattening of
the electron distribution should be expected to be more pronounced than
when excited by LH waves.

Accessibility constraints of the electron cyclotron waves,
especially in high-beta plasmas, is somewhat less stringent than for LH
waves. For the current to be generated in a single direction, it is
necessary that all the power be absorbed before the cyclotron layer.
Thus, launching from the high-field side may be necessary to control
the absorption.

In the next section we discuss the experiments that rely on the
Fisch-Boozer mechanism for producing a current by electron cyclotron
waves and then introduce the results from detailed treatments of the
nonrelativistic and relativistic theories.

4.2. Experiments [47,48,52]

Two experiments have been carried out on the Culham Levitron [47]
and TOSCA [48] experiments to verify the theory of ECRH driven current
produced by the Fisch-Boozer mechanism.

Experiments on the superconducting Levitron have established the
existence of such a current, although only in a low-temperature,
low-density plasma (3 eV < T, < 18 &V; 10 em™ < ng < 3 x 10" en™®)
where a 10-GHz microwave source of approximately 120 W was used.
Current reversal on either side of the cyclotron resonance was also
demonstrated. Figures 4.2(a) and 4.2(b) show the amplitude of the
rf-driven current as a function of microwave power (indicating the
overall efficiency of net current drive) and nI/P vs T, respectively.
As can be seen from Fig. 4.2(a) the efficiency of current drive is
about 0.03 A/M.

On TOSCA (a2 small air-cored tokamak with Ry =30 cm, 2 < 8.5 cm,
and no conducting shell), ECRH experiments at the second harmonic have
been performed where a 28-GHz gyrotron with up to 85 kW was used. The
current drive efficiency is claimed to be as high as 0.02 AM. A
variation of 1 kA in plasma current is observed as the resonance is
moved across the plasma. The driven current was at a maximum when the
resonance layer was on the high-field side (inside the geometric axis).
A sharp falloff in current drive efficiency was observed as the
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resonance was moved outside the geometric axis (low-field side), where
trapped electrons were present, suggesting that trapped electrons
significantly reduce any driven current. This is shown in Fig. 4.3
where the resonance position was varied by changing the value of the
toroidal field.

4.3. Propagation and Wave Absorption of Electrom Cyclotron Waves

The electron cyclotron waves are electromagnetic waves. The
electromagnetic waves, when propagating perpendicular to the confining
magnetic field (k L B)), can be divided into two linear polarizations:
the ordinary (E 1 Bg) and the extraordinary (E L B.), where E is the
wave electric field and B, is the static confining field (i.e.,
toroidal magnetic field in tokamak). These waves are labeled 0- and
X-waves, respectively. The effective propagation of each mode is
obtained only if the electron density remains below a certain plasma
cutoff value. The dispersion relation and resonance and cutoff
conditions for these waves can easily be obtained from Eq. (3-7) [or
Eq. (3-8)]. Note that when propagation is along the magnetic field
@ 1 B,), there exist right— and left-hand circularly polarized waves,
denoted as R- and L-waves, respectively.

4.3.1 Dispersion Relation and Polarization

In the frequency range of interest (i.e., w>> {);), we approximate
components of the dielectric tensor [Eq. (3-6)] as follows:

12

€

1 - u%e/(w2 -2,
- (Q{:’,/w)m:?,e/(m2 - @) . (4-18)

e

€2
eg ™1 - wf)e/w2 .

With these substitutions, the cold plasma dispersion relation
[Eq. (3-8)] yields two polarizations of electromagnetic waves that
satisfy

K2 2 Q(m%e W) (1 - m%e/u?)

LI 201 - Wfo/i?) ~ (@GP)sinP0 + A@EAP)

. (4-19)



102

ORNL-DWG 84C-3132 FED
I I T | | 1 I

r {cm)

Fig. 4.3. Plasma current in TOSCA driven by ECRH as a function of
resonance position. The current drive efficiency is about 0.01 A/M of
injected power in this case (refs. [48, 52]).
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where © is the angle betweenk and B, and
A= [sin*6 + 4(w2/028)(1 - w%e/w2)c0529]1/2 : (4-20)

Equation (4-19) is for the general case of oblique propagation.
For the special case of @ = %/2 k 1B, k = k), we have the ordinary
(+ sign) and extraordinary (- sign) modes: that is, for the O-wave

22 2

2 _ .2 - —pe
N =9 =€q or =1~ , (4-21)
Lo 2 7

and for the X-wave

v o= = (€] - €h) /e (4-22)
or

2.2 2

k!c :1~‘*’pe (mQ-w%e) .

w? W [w? - (m?)e + Q%)]

For the special case of © =0 (k 1 By, k = k), we have the right
(+ sign) and left (- sign) circularly polarized waves; that is, for
the R-wave

K2c? Wl ful?
2 _ .2 _ il -1 _ pel = "
1= =€ +ey or 7 =1 - 0 (4-23)
and for the |-wave
k2"c2 ‘*‘29 W’
1]2 = '{]ﬁ = 6,1 - 62 or =1- e/ (4‘”24)

o2 1+Qe/m ’
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Equation (3-7) relates the phases and magnitudes of the electric
field of the waves. From the y-component of Eq. (3-7), we write

LS T (4-25)

If iEx/Ey =+ 1 the electric field is right—hand circularly polarized

and if iE,/E, =~ 1 it is left-hand circularly polarized, corresponding
to the sense in which electrons and ions gyrate about the magnetic
field, respectively. For € = 0 (i.e., for waves propagating along the
magnetic field), the electric field has circular polarization for
R(iExny =1) and L(EEX/E.y = - 1) waves. For © ==x/2, the

electromagnetic waves are plane polarized (O-wave, Ex =E, =0, E" #0)
and elliptically polarized (X-wave). For other angles (oblique
propagation), both O- and X-waves have elliptical polarization.

4.3.2 Accessibility

From the cold plasma dispersion relation for the O-wave
[Eq. (4-21)], we see that the wave propagation is possible only if

w%e < W

(i.e., K2>0). As u o approaches w the propagation of this mode is
cut off (i.e, ki + 0). Since the wave becomes evanescent if wae > W
(i.e., k, is opurely imaginary so that the wave is damped
exponentially), the accessibility to w = ), exists only for densities
such that Woe < &g; namely,
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Ng < Noytort = 1.24 X 10'8[F (CHz)]?  (m72)
(4-26)

=9.7x 082B M2 (»3) ,

where f = w/2n is the wave frequency and £ is the harmonic number. For
the ordinary mode, in the special case of k“ = 0, there is no resonance
(i.e., k; » @) condition. However, direct wave absorption at w =Q,
occurs due to Tinite temperature effects (which must be calculated from
the Vlasov equation) and due to Doppler broadening at the cyclotron
resonance layer. When the resonance condition Eq. (4-1) is satisfied,
cyclotron damping by electrons takes place with the resonance zone
(absorption zone) being accessible from both the high- and low-field
sides of the tokamak.

For purely perpendicular propagation the dispersion relation for
the X-wave is given by Eq. (4-22), which can be rearranged as

kic2 ) W? - wﬁ)(w2 - mf) ’
PR - (R, + )]

(4-27)
The X-mode will propagate (ki > 0) provided either

0> ug = @f2) + (@ + 4e)' 22

or

w Cwwyy,

where w = - (0./2) + (Q% + 4m%e)1/2/2 and wyy = (w%e + Q%)l’ﬁ, known
as the upper hybrid (UM) frequency. The wave is resonant (k; » @) as
w > wyy (known as UH resonance) and it is cut off (k; » 0) as w = wp
and w = w_ (known as the right- and left-hand cutoff frequencies,

respectively). Just as in the case of the U-mode, X-mode absorption at
w = A, is due to Doppler broadening (and relativistic effects).
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The X-mode can mode convert at the UH layer, w=uwyy =
(w2e + Q%)I/Q into electron Bernstein waves, which are absorbed through
electron Landau damping. Bernstein waves are electrostatic waves,
which propagate perpendicular to the magnetic field near w ™ /.

In the presence of a finite k, it is possible for a wave of one
polarization (e.g., the O-mode) to convert to a wave of the other
polarization. This occurs if a surface is encountered on which
discriminant A [Eq. (4-20)] vanishes. As a result of this effect it is
possible to launch an O-mode from the low-field side, which
subsequently mode-converts to an X-wave and then transfers its energy
to the Bernstein waves via UH mode conversion.

For the purpose of current drive (not for bulk heating), Bernstein
waves appear to be the most efficient because they are strongly damped
as the cyclotron resonance layer is approached, especially the strength
of the damping at very high temperatures. The efficiency of current
drive [Eq. (4-17)] is very sensitive to the Doppler-shifted resonance
velocity [(w - 02)/k,]. The larger is this velocity, the larger is the
efficiency.

4.4. Nonrelativistic Calculations [18,45-46,50]

4.4.1 Rescnance Condition

The cyclotron interaction is a resonant diffusion in velocity
space, and heating occurs when Eq. (4-1) is satisfied:

‘*’“me“ku"nzo'

known as the resonance condition. A distinction should be made between
electron cyclotron heating (ECH) in a uniform magnetic field and that
in a toroidal geometry, where the magnetic field varies as 1/R (here, R
is the major radius R =R, + r cos O; see Fig. 4.4 for the coordinate
system). In a uniform magnetic field (considered in Sect. 4.1), only
electrons with v, =V, where Vo= (w - &) /k, is 2 constant, can
resonate with the wave. In a toroidal geometry V, is no longer a
constant because {1, = (,(r) varies on a flux surface. As a result,
more particles can take part in wave-particle interaction. Figure 4.5
illustrates the difference in the resonance region in velocity space
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Fig. 4.4. (a) Toroidal coordinate system, and (b) variation of
magnetic field as a function of radius (top) and along a field line
(bottom) .
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Fig. 4.5. Resonance region in velocity space (shaded area) for
(a) uniform magnetic field and (b) toroidal magnetic field, where
Onin = eByin/me [see Fig. 4.4(b)] and r = ry is the turning point. In
both figures 4 = +1 (fundamental resonance) is considered.
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for a uniform magnetic field and a toroidal field. The reference plane
for Fig. 4.5(b) is at the bottom of the magnetic well, corresponding to
B = By, in Fig. 4.4(b). An important point to note is that both large
and small v, particles will participate in the heating. Since slower
electrons are less efficient to heat for generating currents, it
becomes critical that the electron cyclotron wave damps completely
before v, becomes too small.

4.4.2 Fokker-Planck Equation

The effect of ECRH is to increase primarily the perpendicular
velocity of the resonant electrons. Considering the wave-particle
interaction as a djffusive process, only the v v, compnent of the wave
diffusion tensor D [Eq. (1-10)] is nonzero for electron cyclotron
waves. The electron Fokker-Planck equation, in a symbolic form, is
given by Eq. (3-28), where the wave contribution is now given by

f of
el _1 8 In,2¢-1 Ot
(Bat, )w =3B [Dvl 8w ~ Mg — kyvy) v, | ° (4-28)

where D is the quasi-|inear wave diffusion coefficient due to cyclotron
damping and the & function expresses the resonance condition. For the
X-mode D is independent of velocity space variables and is given by

D= 11(—2—> |E-|2 , (4-29)

e

where E7 = E, - iE, is the right-hand circularly polarized component of
the E field in” the plane perpendicular to the magnetic field
B, =B, k = k@, + k@ ). Hithout distinguishing between the 0- or

oz’ i~z
X—modes
2
R IE‘+ME * . (4-30)
e Qe it

Implied in the use of Eqs. (4-28) through (4-30) is the assumption of
monochromatic wave spectrum. In practice there is a spread in wave
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numbers that can simply be introduced in Eq. (4-28) as an integral over
the k, spectrum, as is done for LH waves (see Sect. 3.2.1).
Considering only the X-mode and 7 = +1,

£ 1 3 2 |12 w - £ of
(%) = (a2 }Ekj Vi (“T“g "ﬂ)?ﬁ" ' (4-81)
w o YLV g Ky I gt

To simplify the calculations, the wave amplitude is usually assumed to
be small, and, as such, it produces a small perturbation of the
electron distribution function

fe - fo * fl ’

where f, is the unperturbed Maxwellian distribution and f; is the
perturbation of the electron distribution function away from the
Maxwellian. As a result, the Fokker—Planck equation can be |inearized,
giving in steady state

1.8 ofo\ . Py
v, Oy, (Dwvi 3t ) ¥ ()at, >coH =0 (4-32)

where (8 1/0t) o)) = Ceelf
and

or T1) + Coi(fy, T,) is the collision term

1 -G
Dy = Dk”6< K "u)

2
. (m> e T, (4-23)

e =Ky

with Ak, the finite (but small) k, spectrum within the resonance
region.

Equation (4-32) can be solved analytically and/or numerically to
obtain fq, which will not be given here (see references), from which
the driven current
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J=-e [ 1 & (4-34a)

and absorbed {or dissipated) rf power

f
1 2 e 3
Prf = f_Q_ mev %)w d°y (4—34b)

can be obtained. It turns out that a simple analytic theory (based on
a single-particle approach and discussed in Sect. 4.1 [41]) and the
expression for the efficiency factor given by Eq. (4-17) give a very
accurate approximation to a full Fokker-Planck code, Such a comparison
is shown in Fig. 4.6, where normalized efficiency J/P is plotted as a
function of <U2>, and the average is computed with a Maxwellian
weighting; that is,

Uy 0
U“fo(U”)dU"

J
/YN U
<Uﬁ>‘<(ve)>‘ Uz (4-35)

fUl folUy)dy,

is the normalized parallel velocity of the resonant electrons. For the
results shown in Fig. 4.6, the diffusion coefficient D, is assumed to
be small and localized in velocity space:

D Ul < U” < U2 and Ul <1

0 otherwise

As can be seen from Fig. 4.6, there is excellent agreement between the
numerical results (circles) and the analytical predictions (I|nes) for
the selected parameter range AU‘ =Ug-U;=1andD =D /v Vg = = 1073
(normalized D). As a comparison, results for the LH case are also
shown that indicate the efficiency ratio of 4/3 in favor of lower
hybrid, as predicted by Eq. (4-17).
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Fig. 4.6. j/ﬁ for small D, as a function of <Uﬁ>, where
Dy/Vavo = 107° and AU, = Uy — Uy = 1. The waves exist only for
U =v/vg <1. Open circles denote cyclotron damping and closed
circles landau damping. Lines show the theoretical predictions of
Eq. (4-17), that is, 8 =v /v, for cyclotron damping (ECRH) and

& =v /v, for Landau damping (LH) (ref. [45]).
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4.4.3 Projections of Efficiency Factor

The efficiency factor is given by Eq. (4-17):

8o 7, (UL o
Be v (U2/2) 3+ L

3
P

For electron cyclotron waves 8 = v /v,

2 W 6 _2__ 8 0
"5z s Vi tsig Yo

(4-36)

o) je>

where we assume Uy, U and U, = U, = (w ~0)/kyv, is the Doppler-
shifted resonance velocity normalized to v For Z; =1,
J/P =<2 ~ V2 is plotted in Fig. 4.6.

Ciearly the efficiency is very sensitive to Uj, which is
determined not so much by the paralle! wave number spectrum launched
but by how strongly a particular mode is damped at a given U,. As
previously discussed, the farther away the cyclotron resonance layer a
mode is completely absorbed, the larger are U, and the efficiency. The
first step in the calculation is to find out if the waves can deposit
their energy in the central plasma region. This is necessary to obtain
reasonable current profiles. These calculations are carried out by
tracing a set of rays that emit from the waveguide through the plasma
and calculating the power deposition along each ray trajectory. 1In
general, a single-pass absorption is desirable in the inhomogeneous
field of a tokamak in order to eliminate the cancelling effects of
currents on opposite sides of the resonance. In a Maxwellian plasma at
high-temperature conditions when single-pass absorption is achieved, it
is possible to achieve

e-

U.2 15 for 0- and X-waves ,

3.0 for Bernstein waves .

2V
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In terms of practical units, £q. (4-36) gives

A~ 2 2
L _Te%e J 1 _ CoMeVe 1 8 U2
Protal menvzuo PR, 3 saRo®+ 4 ©

T
. 10 6 2
~ 0.3 gt B0 K5+ Z; Uy (AMM) . (4-37)

Assuming Uy ~ 3, Z; ™ 1, and Zn A ™ 18, the efficiency becomes

L (MA) o o 15 10 (4-38)

where Tqy is in units of 10 keV and ngy is in units of 102 0. Thus,
for a reactor with parameters Ro @ dbm, nt 16°° m2, and Ta ™ 20 keV,
I/P~0.06 NA/MH. To drive a current of 8 to 10 MA, power level on the
order of 150 MY is required.

Consideration of trapped electron effects would reduce the current
drive efficiency (as much as a factor of 2 to 3 depending on the
location where the power is deposited). Nonlinear effects, on the
other hand, can enhance J/P (I/P).

4.4.4 Trapped Electron Effects [18,46]

The effect of electrons trapped in the torcidal magnetic field on
the current drive efficiency has been considered in refs. [18] and
[46]. The neoclassical trapped particle effect and the anisotropic
resistivity tend to oppose each other. The degree of cancellation
depends on where the microwave power is being deposited.

Results from s Fokker-Planck code are shown in Fig. 4.7, where the
current drive efficiency is plotted as a function of inverse aspect
ratio € = r/R,. Figure 4.7 clearly shows the cancellation of the two
effects, leading to a reduction of J/P and eventualiy to a reversal of
the current for larger r/R,. There is only a minimal reduction in the
current drive efficiency if the power is deposited near the center of
the plasma (r ~ 0). To expand this point, Fig. 4.8 shows the variation
of the ECRH-driven current density profile with a minor radius. It can
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Fig. 4.7. ECH-driven current density per unit power as a function
of € = r/R, with electron-ion collisions only (solid line) and with
electron-ion  and  electron-electron  collisions  (dashed  |ine)
(refs. [48, 71]).
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(n and T profiles are assumed to be parabolic) (ref. [46]).
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be seen that trapped electron effects produce only a small (~10%)
reduction in the ECRH-induced current when the power is deposited
(i.e., the current is centered) near the magnetic axis [Fig. 4.8(a)].
On the other hand, when the power is deposited away from the magnetic
axis (i.e., when the current is flowing away from the center), 2
significant modification of the current profile occurs and the current
drive efficiency is reduced to about one-third the value it has when
trapped electrons are ignored [Fig. 4.8(b)]. This effect is claimed to
be observed on TOSCA (see Fig. 4.3).

4.5. Relativistic Calculations [43,49,51,53,]

4.5.1 Resonance Condition

The electron cyclotron resonance condition for mildly relativistic
electrons is given by Eq. (4-3):

w - kv = My (1-v¥/2%) =0

or

vi + vﬁ
W — k”v” - !Qe l -———21=0,
2¢?

where v2Jc? <« 1 and 1, = eB/my, the nonrelativistic cyelotron
frequency. In terms of normalized velocity space coordinates, v“/ve
and VL/Ve' the resonance condition is a semicircle,

_LLQ + _vlL___l_Q :}_:__.4.!@_8_ (4_39)
Ve Ve 25 452 ’

with a radius of (1 - 4UOS)1/2/23 centered on the v /v, = 0 axis at
Valve = %/?S,.wherg U = (- &) /kyve and S = ﬂﬂeve/Qk”c2. In the
nonrelativistic limit +the resonance becomes the straight [line
v /ve = Uy, if the magnetic field is uniform, corresponding to

Fig. 4.5(a).
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Several resonance curves for positive values of S are shown in
Fig. 4.9 for Uy, =1 and Uy = -1. For S>>0, positive values of U,
correspond to absorption on the low-field side of the electron
cyclotron resonance in a tokamak. In this case the mass increase (due
to relativistic effects) serves to increase the difference between the
wave frequency w and the cyclotron frequency Q, (or #l,), leading to
resonant values of v, that are always positive and greater than the
nonrelativistic value. For S > (1/4U.), the frequency difference
cannot, be recovered by the Doppler shift for any vaiue of v; thus, a
cuboff in wave absorption occurs. At  the cutoff v"/ve = QUQ,
v g = 0.

On the high-Tield side of the electron cyclotron rescnance the
cyclotron frequency exceeds the wave frequency (&, > w) for
nonrelativistic efectrons, and the resonance condition is satisfied by
negative values of vy For energetic electrons, on the other hand, the
mass increase can cause bhe cyclobron frequency to fall below the wave
frequency (#y/y < w, where 7 is the relativistic factor), giving rise
to positive values of v, at resonance, as shown in Fig. 4.9(b). Thus,
on the high-field side, electrons moving both parallel and antiparallel
to the wave can absorb power.

For pure perpendicular propagation (k“ = 0), all directionality
disappeers (as expected) and the wave is absorbed by isoenergetic
electrons (VL =¥y = v). The resonance curve is a semicircle
V2 = QCz(iﬂe - w) [, centered at v, =v = 0.

Further insights into the effects of finite temperature, Kk,
spectrum (or My = ck“/w), spatial variation of magnetic field, etc., on
the resonance condition may be obtained by solving Eq. (4-3) and
writing it in a slightly different form than that given by Fq. (4-39)
near the resonance layer:

2 12
¥ v 24
i 2 A 9)
=y 2 MG - - e , (4-40)
e My ( I e me>
where Ay =w -~ &l,.  [In terms of the variables of Eq. (4-39),

20, /8, = (UO/S)(V%/CQ).] The magnetic  field varies as 1/R
(B = BR,/R), and within the region of +the electron cyclotron
resonance, we assume a linear Tield profile with
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Fig. 4.9. Electron cyclotron resonance contours in velocity space
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Doppler-shifted  resonance  velocity  normalized to v, and
S = Eﬂeve/Qk“cz. S =0 is the nonrelativistic limit. Note the cutoff
for U, = 1 as S reaches the value 0.25 (the cutoff condition is given
by S=1/4Uy). (a) Values of Uy > 0 correspond to absorption on the
low-field side of the resonance, and (b) values of Uy < 0 correspond to
absorption on the high-field side of the resonance (ref. [49]).
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w - Kl

7 € (4-41)

X
e Ry ”
where x is the distance measured from the resconance. Note that the
low-field side of the rescnance corresponds to x > 0 and the high-field
side corresponds to x < 0. The dependence of v, on m,, v,, and A,/H,
(or x/Ry) is shown in Fig. 4.10. Plotted as 2 function of A /M., the
resonant values of v, for fixed v, lie on a parabola, as illustrated in
Figs. 4.10(a) and (b) for 7, = 0.1 =2nd 0.2, respectively. The
nonrelativistic limit corresponds to a line that is tangential to the
v = 0 parabola at the origin (resonance location), independent of v,.
It is clear from Fig. 4.10 that even at nonrelativistic temperatures
(Te ~ 1-10 keV) relativistic corrections to the resonance condition are
important, in that the resonant values of v, are no longer
antisymmetric about the resonance.

We see from Eq. (4-40) that there are no resonant particles if
xRy (A8 > n2/2 This condition determines a point on the low-
fieid side for whlch there is neither power absorption nor current
drive.

4.6.2 Strong Relativistic Limit (v ~ ¢) [43]

In the absence of relativistic corrections, the current drive
efficiency J/P increases without bound as Pﬁ, the square of the
boroidal momentum. [In the nonrelabivistic limit P“ =mv, and
Eq. (4-38) scales as J/P ~ P2 ] However, as the velocity of the
resonant electrons (i.e., the currﬂnt carriers) approach the speed of
fight, the previous sbatemeﬁt becomes invalid and the inclusion of
relativistic dynamics to the Fisch-Boozer single-particle model shows a
bound on the limits of current drive efficiency [43].

In the strongly relativistic limit, Fig. 4.11 exhibits the results
of ref. [43] both for lower hybrid and ECRH. Note that the
normalization constants for current and the dissipated power are
somewhat different than those used earlier. In Fig. 4.11, J is
normalized to -enc (not —env,) and P is normalized to \)nmoc2 {not
Vhm vn) where v = vo(ve/c)3 and M, is the rest mass of electrons. In
term> of conventional normaluzatlons used earlier,

IR s O (2D,
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of the resonant electrons. However, there is a bound to the efficiency
due to relativistic dynamics (solid lines) in the limit v ~e¢

(ref. [43]).
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where (3/3)0 is the numerical factor to be taken from Fig. 4.11. 1In
terms of practical units

Lo 1.6 ) . (4-42)
Protal  NooRo Zn A <;)&

Equation (4-42) applies explicitly to the strongly relativistic regime,
where the electron velocity v ~ ¢. However, as seen in the previous
section, the relativistic effects are important even when Ve K c.

4.5.3 Weak Relativistic Limit (v2/c2 << 1)

For mildly relativistic electrons (v2/c? << 1), one might neglect
the relativistic dynamics of fast particles and consider only the
relativistic correction to the resonance condition arising from the
velocity dependence of the electron cyclotron frequency. These
calculations are given in refs. [49,53]. To calculate the effect of
electron cyclotron waves on the particle distribution, the linearized,
steady-state Fokker-Planck equation is used. The wave contribution is
of the form given by Eq. (4-28) with the relativistic correction
included only in the cyclotron frequency in the &-function, which
expresses the resonance condition. Here, we present a few results to
i llustrate the effects of the relativistic resonance condition on the
driven current.

In Fig. 4.12 we show representative current profiies obtained from
nonrelativistic and relativistic theories for a tokamak with
Te=1keV, Ry =1.2 mwith a wave frequency f = 80 GHz, and a density
such that wze/w2 = 0.75. Figure 4.12 represents the wave incident from
the low-field side of the resonance in the 0-mode with an angle of
incidence such that n, = 0.1. From this figure we see the effect of
the sharp cutoff on the low-field side. We also note that according to
the nonrelativistic theory the current density changes sign at the
origin, whereas in the relativistic case the current does not reverse
in going through the origin (with the origin refering to the resonance
location where x = 0). This nonreversal of current is much more
pronounced for small values of v,, where relativistic effects are very
important. This is because for small m, (i.e., small k) the Doppler
shift component in the resonance condition plays only a minor role
compared to the mass increase.



124

ORNL-DWG 84C-3140 FED

2 T T T T
RELATIVISTIC
1| — —— = NONRELATIVISTIC
= “TN
= 0
c 7/
= /
> ] 0-MODE
s -1 | ~—— -
= I DIRECTION
= / OF
LA N | PROPAGATION
3
\
HIGH-FIELD
o | HieH L \_/ LOW-FIELD SIDE |
-4 | | | |
-2 -1 0 1 2 3

Fig. 4.12. Current profile for O-mode incident from the low-field
side for relativistic (solid line) and nonrelativistic (dashed |ine)
resonance conditions for # = 1. Representative tokamak parameters are
T=1keV, Ry =1.2m, with f =60 GHz, u@e/w2 = 0.75, and Ny = 0.1.
Here x is the distance measured from the resonance (x > 0 corresponds
to low-field side and x < 0 corresponds to the high-field side). A
negative current density is in the opposite direction to the k, vector
of the wave. (Based on similar figures from refs. [50, 53]).
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When the wave is incident from the high-field side (in which case
the resonance is accessible by either 0~ or X-mode), absorption may
occur {and thus the current drive may start) far from the cyclotron
resonance. Note from Fig. 4.10 that the resonant velocities get
smaller as the resonance is approached and absorption and current drive
can begin as soon as there are a sufficient number of resonant

electrons to produce a significant effect. If the plasma is
sufficiently hot, strong absorption could be possible well before the
wave reaches the cyclotron resonance. Such an example is illustrated

in Fig. 4.13, which shows the current profile produced by the O-mode
(incident from the high-field side). Representative parameters are
Te=5keV, Ry=5m, f=150 GHz, who/w’ = 0.75, and n, = 0.1. The
current profile for the X-mode, incident from the high-field side, is
very similar.

4.8, Comments

The basic mechanism of current drive by electron cyclotron waves
is well established theoretically (Sect. 4.1), and there is some
experimental evidence that such currents exist (Sect. 4.2). However,
more detailed experiments (particularly in large, hot, and dense
plasmas) are necessary before a definitive conclusion can be reached
about the viability of ECRH current drive for practical applications.

On the theoretical side, nonrelativistic and relativistic
treatments are wused. The «calculations in the first category
(Sect. 4.4) are more elaborate where the full Fokker-Planck model has
been solved including the effects of trapped electrons and toroidal
geometry. However, in most calculations the wave amplitude is assumed
to be small so that the electron distribution function is perturbed
only slightly. Also assumed in these calculations is a constant
quasi-linear wave diffusion coefficient (independent of velocity space
variables). The only nonlinear calculation (not discussed here) is
given in ref. [45], where the diffusion coefficient is taken large
enough to perturb the electron distribution significantly. The
calculations, however, use the nonrelativistic resonance condition and
neglect the trapped particle effects.

Relativistic effects are important for description of energetic
electrons in reactor-like plasmas. Relativistic corrections to the
resonance condition change the whole picture of ECRH current drive even
at modest temperatures (few kiloelectron volts) for small K
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Fig. 4.13. Current profile for 0O-mode incident from the high-
field side for a plasma with T =5 keY, Ro =5m, f = 150 GHz,
m%e/w2 = 0.75, and = 0.1. Current starts to be driven at 1 m from
resonance and falls to zero at about 30 cm before the resonance is
reached, because the wave has been completely absorbed by then (not

because current cannot be driven nearer the resonance). (Based on a
similar figure from ref. [53]).
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(Sect. 4.5). It is not, however, clear whether this correction will
improve or reduce the reactor potential of ECRH current drive.
Nonlinear calculations including all significant effects have yet to be

carried out.






5. CURRENT DRIVE BY ION CYCLOTRON WAVES —
MINORITY SPECIES HEATING [54-57,80,70,84]

Another scheme to drive the toroidal current is the use of rf
waves in the ion cyclotron range of frequencies (ICRF). The ICRF
scheme differs fundamentally from LH and ECRH schemes (discussed in
Sects. 3 and 4, respectively) in that waves interact with ions rather
than with electrons. As in the case of ECRH, these waves do not have
net toroidal momentum.

The possibility of using ICRF waves to drive currents in a plasma
was first proposed by Fisch [54] as an extension of the Fisch-Boozer
mechanism [41] discussed in Sect. 4.1. In this scheme, the interaction
of a traveling wave with minority ions of & particular parallel
velocity [such that they are Doppler-shifted into resonance with the
wave (w — #0;)/k,, where Q; is the ion cyclotron frequency] leads to an
increase in their perpendicular {(and hence total) velocity. The
resulting reduction in collisionality with the bulk plasma ions sets up
a relative drift between the two ion species [i.e., between majority
(bulk) and minority ions]. Collisions between the bulk and minority
ions and the plasma electrons generate an electron drift. As a result,
a net current is produced. Thus, ICRF current drive may be considered
a combination of the Fisch-Boozer mechanism (discussed in Sect. 4) and
Ohkawa’s method of driving current by neutral beams (discussed in
Sect,. 2). It is similar to neutral beam current drive in that it
requires a relative drift between the bulk ions and the minority ions.
This relative drift is achieved by the Fisch-Boozer mechanism, that is,
by asymmetrically heating minority ions (see Fig. 4.1).

The main disadvantage of this scheme is that a traveling ICRF wave
is required if a net drift between the ion species is to be generated.
In principle, this may be achieved by the use of an array of phase-
shifted antennaze, although production of such waves has not yet been
attempted experimentally. As such, no experimenta! measurements of
current drive by ICRF waves have been recorded to date. However, the
theory has been pursued vigorously.

It is also possible to use the ICRF wave not only to stand alone
for current drive but also to enhance the current driven by beams. In
this hybrid scheme, the neutral beam injection mainly supplies toroidal
momentum and is sustained by ICRF wave heating [84].

If power is viable, one of the advantages of the ICRF minority
heating scheme might be the fact that there are several parameters
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expression for the net current density, including the electron trapping
contribution, is then given by

Z 7
Jog |18 2 a0 (5-19)
M Zets Zeps oMt

where A(Zeff) is a function of Zeff’ tabulated in Table 2.1. For

Zopp = 1, A(1) @ 1.68. The electrons in the trapped region participate
in dragging the ions but do not contribute to current. The fraction of
them is proportional to €'”? (e = r/Ry, the inverse aspect ratio).
Depending on the choice of minority species, the trapped electron
effect, which is the last term in Eq. (5-19), can qualitatively change
the generated current.

The amount of minority current J, generated can be appreciably
altered by the consideration of the trapped ions. Depending on the
minority-majority species mix (D-H, D-He2, etc.), the trapped ions can
decrease the minority current appreciably [55]. Usually, the effect of
trapped electrons on total current J is much more pronounced than the
effect of trapped ions on minority current Jy [55].

Before calculating an efficiency factor, a few observations can be
made from Eq. (5-18) [or (5-19)]. For the ICRF scheme of current
generation to be useful, 3 number of criteria must be satisfied.

We Tirst examine the criteria to be satisfied by the charge states
of the minority and majority species. If toroidal effects are
neglected, from Eq. (5-18) we note the condition

21 (1 = 2y fZges) # 0 (5-20)

for current generation. Satisfying this condition implies that Z, # 0
2y # Zeps (™ Z;).

For ICRF waves to be employed for current generation via minority
species heating a second condition must be imposed:

Qp 7 {; (5-21)

or
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(type of minority species, minority concentration, and the k| spectrum)
that can be adjusted and controlled for optimized experimental
conditions {(and optimum efficiency).

In this section we give a brief description of the ICRF current
drive mechanism by minority species heating and identify the wave
regime and plasma parameters for which this scheme operates optimally
in reactor applications. We shall also discuss the wave penetration
and power deposition characteristics and modifications to the current
generated by trapped particles and majority-minority species mix.

5.1. Basic ¥echaniem of ICRF Current Gensraticn by Minority Species
Heating [b4]

The operation of the ICRF scheme may be thought of as a two-sbtep
process. The first step is the inducement of a relative (toroidal)
drift velocity between the bulk (majority) ions and the minority ions.
The second step is the response of the electrons to the ion
distribution. The electrons can drift even when the total ion current
vanishes.

The relative drift can be accomplished by selective heating of
minority ions in one direction of parallel velocity space (see
Fig. 4.1). Consider, for example, a single-test minority-species ion
that moves to the right, which is the direction parallel to the
magnetic field. The collision frequency between the test (minority)
ion and the background majority ions, which exert a drag force, is
sensitive to the test (minority) in energy. By preferential heating of
this test ion from energy ¥y (and collision frequency vy) to a higher
energy Wo (and lower collision frequency uo), the drag force on the
test ions can be reduced, and as a result the relative drift can be
produced. The energy increase need not occur as a result of increase
in any specific velocity component. The increase in energy can be
accomplished through the damping of a traveling plasma wave that is in
resonance with these minority ions. Such a wave is the ion cyclotron
wave 3t a Trequency near the minority—ion cyclotron frequency. These
waves are fast waves or magnetosonic waves and, in principle, would be
launched unidirectionally in the toroidal direction in a tokamak.

We first calculate the amount of power necessary to establish a
given minority species ion drift.
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65.1.1 Power Dissipation

Consider the displacement in velocity space of a small number, &f,
of minority ions from region 1 to region 2 due to rf heating, as
illustrated in Fig. 4.1. Let us assume that momentum in the direction
of interest is lost from the minority ions at a rate vy and vy in
locations 1 and 2, respectively. These rates include collisions with
the background majority ions and with electrons. For small minority
ion concentrations, self-collisions may be neglected.

Here we follow the analysis of Sect. 4.1. Basically, the amount
of energy required to displace the minority ions from location 1 to
location 2 is given by Eq. (4-4), that is,

M = (Hy - Hy)8F , (5-1a)

Hl 9 = mhvl 2/2 (5'123)

where vy o is the velocity at location 1,2 and my is the mass of
minority-species ions.

The change in parallel momentum in the minority species induced by
this displacement (i.e., by this preferential heating) is given
approximately by

Apy ™ mhﬁf[VQ'“exp(— vot) - vl,"exp(~ ult)] , (5-2)

where energy scattering is neglected.

Note that at t = 0, the instant in which the displacement occurs,
there is no change in parallel momentum unless vg # 1 y- That is,
unless there is an impulse given to the minority ions in the parallel
direction, there initially can be no flow in that direction. At t -» o,
however, even if 10 # vQ I all directed momentum has relaxed through
col lisions with other specxes so that there can be no relative drift of
the minority ion species with respect to the majority ions.

Consider the case vy \ = vg ;. In view of the above, Ap, vanishes
at both t =0 and t -, At finite times, however, there will be 2
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finite Apy if vy # vgp. Implied here is an asymmetric drag on the
minority ion species. By continuously supplying energy, the resulting
drift can be continuously maintained.

The time average of the parallel momentum over an interval At that
is long compared to the momentum destruction times 1fvy and 1/ug is

At &f
=1 n MO (Yo, M1
Ph = At fO db Bpy ™ g (uQ vy > ' (5-8)

The dissipated power over this time interval is
Pop ™ M/AL = (Mg - W{)BF /AL . (5-4)

Combining Egs. (5-3) and (5-4) we find the ratio of minority species
momentum to power dissipated:

Ph . (“'2,"/“2 - “’1,11/"1) .

= (5-5)
P~ (Mg - ¥y)
In the Iimit‘vl + Vg
B =¥, (v,/v
Pho_ vy /v) (5-6)

Pee 1 g ey

where B is the unit vector in the direction of velocity displacement,

¥, is the velocity space del operator, and H = mhvz/ﬁ.

65.1.2 Current Density

The current arises from the motion of electrons reacting to the
relative drift between the two ion species. We see from Eq. (5-8) that
there is a drift of the minority species if

g« 7,(v/v) #0,
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which occurs in two ways; that is, either

B eV,v, #0 (5-72)
or

B VLD, (5-7b)

When Eq. (5-7a) holds, net momentum is imparted from an external
source directly to the minority species as the ions are pushed to
higher v,. To keep the plasma from rotating, it is necessary that an
equal amount of momentum, but in the opposite direction, be imparted to
the majority species, also from an external source. If the minority
species is fast enough to collide mainly with the electrons, an
electric current is driven and can be maintained efficiently. The
process just described is similar in concept and efficiency to driving
currents by neutral beams (see Sect. 2).

When Eq. (5~7b) holds, but not Eq. (5-7a), a minority ion species
drift develops even though no net momentum is injected. This is
similar to the Fisch-Boozer mechanism, which is considered for
electrons in Sect. 4. There is, however, one constraint here in that
the minority ions should not collide either too frequently or too
infrequently with the electrons as compared to the frequency of
collisions with the majority ions.

To calculate the amount of current generated, we assume that the
effective collision frequency is

V=V

e T Vi (5“8)

where v, and v; are the rates of momentum loss (from minority species
ions) to electrons and to majority ions, respectively. The regime of
interest is

v; K v Kvg, (5-9)
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where v; = (kTi/m;)ljg, Vo = (kTe/me)l/Q, and v is the velocity of the
minority ions. Here, the first inequality (v; << v) ensures that
Eq. (5-7b) is satisfied. The second inequality (v < vg) arises in
practical situations simply because mg <Cm;. In this limit [i.e.,
Eq. (5-9)], neglecting energy scattering, momentum loss rates are those
of slowing-down rates; thus, we have

2 3 i 172
S LA

where v, = nee4 in A/?we2m2v3 The first term in square brackets is

the ion contribution (gigw?ng down of the test minority ions on
background majority ions in the limit v; << v), and the second term is
due to the electrons. Since the ions are much slower than the
electrons, v, is insensitive to the test ion (minority ion) velocity,

as we see from Eq. (5-10). Basically, we have

D

Vg = C (5-11a)
vi = Ci(ve/)? = (T M3 (mp/2ng)2 72, (5-11b)

where W = mhv2/2 is the minority species energy and Cg, and C; are
constants, which are given by Eq. (5-10):



2 1.2 2
_Vo Zh f2\ 7" fre m
Co = 5 3 = m 1+ m s (5-11¢)

2
Vo o Mo Mh

[Note that once again the subscripts e, i, and h correspond to
electrons, majority fions, and minority ions, respectively.] 1In
Egs. (5-10) and (5-11), it is assumed that ng & n;Z; > npZp -

Using Eqs. (5-10) and (5-11) in Eq. (5-8), we obtain

P T e, v 0)]

Prt "8 o9 M
o [a 1
= =8 ¢V v, +v8 ¥V [+
8 - VVH -U vl IF V(u)}
m ] 3v,u; B * Y W
e £ T B = (5-19)
g cv M|V il

For a purely perpendicular heating (8 =v,/v|), the first term in the
square bracket of Eq. (5-12) is zero [i.e., 8 * 9 v, =0, which means
Eq. (5-7a) does not hold, but Eq. (5-7b) does hold], and we have

Ph_3 Yy
Prf =79 th” (V XVH) . (5*13)

It is obvious from £q. (5-18) that pj vanishes when v; + 0 and v; » .
The largest and, hence, more favorable pp/P.. will be attained when
vj N v v vf2.

We now calculate the amount of current generated per power
dissipated. The calculations are similar to those given in
Sect. 2.1.2. Assume that the minority ion species drifts at a speed
vhy Parallel to the magnetic field whereas the majority ion species
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drifts at a speed v;. The electron parallel drift speed v, can be
obbtained from the force balance equation [Eq. (2-8)]; that is, in the
steady state V, must obey

€
dve Vh" - ?e Vi - VP
NeMg =0 =0 = nymp + nam; -
e'e 4t h™h The A
= npipvhe(Vpy — Vo) + nimjuie (7 - V) (5-14a)
o Ze (vpy - Vo) *+ 0B (V- V) (5-14b)

where in bhe last step we have used the ordering V; <K v <K ¥
[Eq. (5-9)]. The first term in Eg. (5-14) is associated with the
momentum gained by the electrons from the minority species ions and the
second term represents the momentum lost by the electrons to the
background majority ions. For the ordering of velocities,

Vhe/Vie ® (mi/mp) (/%)

that is, the electrons collide with the minority ions (Zﬁ/mh)/(Z?/mi)
times more often than with the majority ions.

In the case of no net parallel momentum injected into the minority
species, the plasma will have no net parallel momentum so that the
drifts must satisfy

pMpYpy * MMV + neMe¥e = 0 . (5-15)

Note that in the case where there is an injected net parallel momentum
[Eq. (5-15)] conservation of total momentum can be considered to apply
in the center-of-mass frame instead of the rest frame. This
transformation does not affect the current as long as the charge
neutrality is obeyed, that is,



137
Mg = nIZl + nhZh . (5—15)
The current density is given by

J = e(Zhnhvh" + Z'nlvl - neVe) . (5-17)

Using Eqs. (5-14)-(5-18) in Eq. (5-17) and taking the limit mg/m; - 0,
we obbain

I, my 4 Z;
- enhvhuzh[l —‘Z;;;“w;ﬂ“ig; - 2 (5-182)

enpvhyZn(l = Zp/Zepp)  enpvpyZy(l - Z4/Z;)

—
|

e

It

W - Z4/Z4) (5-18b)

where Z.ee = 2 an%/ne = (028 + npZ}) g and Uy = enpvp,Zy is the

minority species (ion) current. In writing Eq. (5-18b) we assume a
practical regime, where

Ne o niZi > nhZh

and niZ% > nhZ%, which leads to Z,ee @ Z;. In Eq. (5-18), the first
term is clearly due to minority—driven current. The rest of Eq. (5-18)
is the sum of the majority ion and electron currents. [Note the
similarity of Eqs. (2-11) and (5-18).] 1In Eq. (5-18) trapped electrons
(i.e., toroidal effects) are not included.

As mentioned previously, there are certain similarities between
the neutral beam method of driving current and the ICRF minority
heating scheme; both rely on the generation of a minority current.
Thus, the techniques used to calculate electron trapping effects on
current can be directly applied [see Egs. (2-18)-(2-18)]. The
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Zh/mh # Zi/mi .

This is the requirement that the ion species cyclotron frequencies be
disparate. This is necessary for the ICRF wave to distinguish between
the two ion species so bthat energy can be transferred selectively to
the minority species. In most cases Eq. (5-21) should be satisfied for
the first few harmonics (i.e., Q, # &; 7 =1, 2) to avoid heating of
the majority ions, especially at the second harmonic (¢ = 2), where
wave absorption can be appreciable.

When toroidal effects are included a significant current can be
generated even when Z = Z,pp; thus, a condition given by Eq. (5-20) is
relaxed.

5.1.3 Efficiency Factor

The amount of current generated by power dissipated, J/P, can now
be obtained by making use of Eqs. (5-13) and (5-18) [or (5-19) if
toroidal effects need to be considered]:

I d P o Znt - Zp/Zere) (3 v
Pre — Ph P NEMhYh) 2 Ty
3 %y \ Vi
=2 ey 7 (15— (5-22)
2 ( Zeff) V2

We note that Eq. (5-22) applies only when the parallel momentum
injected into the minority species from the external source is
negligible. That is, Eq. (5-22) is valid only for perpendicular
heating. If there exists a net parallel momenbum input to the minority
species, we must retain both terms in £q. (5-12). [Note that the first
term in Eq. (5-12) was set equal to zero for perpendicular
heating.] Inclusion of toroidal effects modifies the term in the
parentheses in Eq. (5-22), similar to Eq. (5-19).
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I n terms of normalized quantities we may rewrite Eq. (5-22) as

TP = (= engvefugnengva) ™ = J/P
_§_me("eVL . { Zy ) 1XUOU')
2 W h \Zeps V2

P WATATATR WY A P o) N (5-23)
mp A v2 Lot Vi (1+Ue/ni)2

where in the last step we used W = mhv2/2 and v = v

which were defined previously.
We now calculate the maximum attainable .J/P:

SIEE) n- ! 5-24)
<§>max -7 (mh) % (Zeff 1) [F( M nax - (

where we define

g = [eufre ! . 5-25a
FO) (v2 Xui) 1+ Ve/”i)Q ( )

For thermal particles assuming T, ® T, ~ T, we define thermal velocity

far the minority species as vyp, = (kT/mh)l’Q. Normalizing velocities
to Vth,

e B U3

Me \Vo Uy
. iy Ci c (5-25c¢)

+vi, both of

e
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m o 2
= (';'—:XZ—O) F(U) , (5-25¢)

where C, and C, are constants defined in Eq. (5-11), Uy = v /v
U= v/vip,

) g ) b :
‘= Ci ("‘h) 3 (’“ 1 +mp/m) (5-262)

and
FU) = U2/(1 + KU®)? . (5-26b)

In writing Eq. (5-25d) we assume U, ® U, which is a reasonable
approximation for resonant ions (v, > vy;).
The quantity F(U) [Eq. (5—26b5] is a maximum when

U=U,= (1/%)7?, (5-27a)
2/3
[F()]ay = FUY) =3 (;j;)

9 173
=3 é—) B2+ my/m)?73 (mpfmg) (5-27b)

From Eq. (5-11d) we have
Vo/C; = (2/2%21)(mh/me)2(1 + mh/mi)“1 . (5-28)

Combining Eqgs. (5-25) through (5-28) in Eq. (5-24), we obtain the
following simple form for the maximum J/P:
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A 3 )173
AR 1)1”(_1____ ,_L> (mn/me) (5-29)
Pimax 2273 3 Lot Zh) (1 + my,/m; 173

= a7 YR (2 - 25 ) (/) R (5-30)

where ¥ is the reduced jon mass,

mi+mh

Under mo t optimun conditions, for 2 dueterium plasma with, for
example a He* minority species, J/P ~ 25, In this case Uy~ 7 (i.e.,
vy 7 ovep). In general J/P is not a very peaked function of U; thus,
the minority species ions over a range of 3< U <8 (3K VI/V h<8)
would allow reasonable current drive efficiencies.

As indicated before, the effect of trapped electrons can
qualitatively change the generated current and the current drive
efficiency. lo consider this effect, Eq. (5-23) should be modified by
using Eq. (5-19) [instead of Eq. (5-18)].

b.1.4 Bimple Reactor Application

Here we assume that the restrictions on the minority charge state
and disparate cyclotron frequency requirements [i.e., Fgs. (5-20) and
(5-21)] are met and that the ICRF wave is capable of depositing its
energy fully to the minority species. To be practical for reactor
application, dissipated power should be minimal. Thus, we further
assume that 2!l the required current can be generated at near the
max imum efficiency [Eq. (5-29)].

Consider a steady-state tokamak reactor with the poloidal magnetic
field sustained by a toroidal current generated by means of minority
species heating. If maximum eff|0|ency (J/P max = 20 is attained in a
reactor and operation at = Ry/a is achievable, then the
recirculating power fraction [Eq, (1—25)] is

P+ (TCRH
e :iffp(«v-—) = 0.72(aRgnogT10) 7% (10722 fovypy) -
fus i
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For a reactor with parameters n ~ 1020 m“a, T~ 15 keV, a ~ 1.5 m, and
Ro~6m, we find e ~7.5§ (without any efficiency considerations).
Note that € ~ 4% at T =20 ke¥ and € ~ 24% at 10 keV. Whereas 4%
recirculating fusion power (which translates into roughly 20% of
electrical power, assuming 2 thermal conversion efficiency of 0.35 and
electric-to-rf conversion efficiency of ~ 0.8) could be acceptable,
€~ 24% is definitely not practical. For these reactor parameters,
I/P ~ 0.1 MA/MW (i.e., about 10 MW of power is necessary to maintain
each 1 MA of current). It is important to note that these are highly
idealized (optimistic) numbers; they are given here only to provide a
rough feeling.

It is important also to see whether there are enough resonant
minority ions to generate the current required. To answer this
quantitatively, we use Eq. (1-21b), that is, the normalized current
required to operate a tokamak at ﬁp = R/a:

J=2.1%x10%(nggR2) 2 2 7 x 107 .

To obtain this current we need a minority species drift large enough
such that

"hVh y 7 X 107*
2
"eve Zh/Zeff

or, in terms of total current,

"hVhy _ T X 10~*
"eVe  Z(Zght - Z7)

where Eq. (5-18) is used. As a crude approximation, if we assume that
the minority current is of the same order of magnitude as the current
of resonant ions [i.e.,

nhvh“ N nf,U”vth s

where n. is the density of resonant minority ions, U, = Vu/Vth is the
normalized parallel velocity of resonant ions, and vip = (T/mh)1’? is
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the thermal velocity of minority ions], the requirement can be written
as

M, 7x 107 (l“_h_>1/2_1_
"e Zh(Z 2 Zh ) U“

For example, for He® minority species (Z, ~ 2, my ~ 3 mproton) with
Zops ™ 1
eff ’

n
-~ 2.6 x 1072/U, .
e

For representative values of U, ~ 3-5, n./ng ~ 5-8 X 1073,
Taking Uy < U, < Uy to be the resonance region and since U, >> 1,
we have U, ~ U(= V)Vth) thus,

Ug

Ug
n. o nhf fo(U) U = nhf 4m? £, (V) dU .
U1 U1

Assuming that the distribution function flattens in the resonant region
of velocity space [i.e., f (U) 8 £ (Uy) for U > Uy], we have roughly

0 3 3
e h 2 N U1/2 Vo - U7
S 0(ul)f 4nU? dU = (ﬂ) e 7 )

where f (Uq) = (27) 3 exp(- U2 1/2). The dependence of n. on Uy is so
strong that any slight variation of U; can change the answer
drastically and on the positive side, thus, any slight adjustment to U;
can give the required minority current. For example, in the range of
3<ULS5, n.fng ®0.3(ny/n.) and only a few percent of minority
concentration (np/ne X 3%) can satisfy the requirement. However, for
4 < U< 7 the necessary minority concentration increases an order of
magnitude (np/n, ~ 30%) to produce the required minority current, which
is not a practical case for a reactor. It is thus important to
determine (and select) resonance conditions and wave k| spectrum
properly. [Note that the resonant velocity is v, = (w - {y)/k, and
Ul = (Vn/vth)m;n is the minimum normalized velocity of the resonant
ions.
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5.2. Wave Propagation and Absorption

Wave propagation in the ion cyclotron range of frequencies can be
accurately represented by the cold plasma approximation. Plasma
kinetic effects, however, enter into the mode conversion and
collisionless absorption.

In 2 single-ion-species plasma the dispersion relation for ICRF
waves exhibits two modes: the fjon cyclotron (slow) wave and the
magnetosonic (fast) wave. The presence of two or more ion species in 2
plasma introduces a new mode, called the ion-ion hybrid wave. This
allows strong interaction of the fast wave with the ions near the
location of the ion-ion hybrid resonance, which occurs when

. ' mlnl +m2n2
{}Zii - QIIQIQ m2n1 + m1n2 ’

where m. and n; are the mass and density of ion species j(= 1, 2).
This resonance {ies intermediate between the cyclotron frequencies of
‘the two jon species and approaches the cyclotron frequency of the most
dilute (minority) species.

5.2.1‘ Dispersion Relation

Considering the ion cyclotron range of frequencies, W’ ~ 92 1K Qi,
%e’ we approximabte the components of the dielectric tensor [Eq (3-8)]

for a multiple ifon species plasma as fol lows:

(ﬂ2 (x]2 ﬂz

ey 1T —Bl Z_eJ__._._Jw
1 R A

T A
€9 = Z 2 2 2’ (5-31)

bR e A

(02e

€3Q1~“%“Q—h%e/w2
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Here | refers to the jon species (for example, majority and minority
ions). Note that |e3| » ﬁall, IEQI, so that E, = E, 2 0. That is,
the high conductivity of the plssma shorts out the parallel electric
field. With E, ~ 0, the dispersion relation [obtained from Eq. (8-7)]
is

€y -m)ey - -n7) ~eb =0, (5-323)
which can be rearranged as

ma(ey - n0) - (- (&1 - eg)][nf - (€] +€9)] = 0

to yield

KA-K) - B-K)C-KE) =0, (5-32b)

where A = (wz/cQ)el, B = (wz/c2)(el -€), and C= (wz/c2)(e1 + €9).
Note that A = (B + C)/2.

In 2 tokamak, wave propagation proceeds at almost constant
ky (2 n/R, ¥ constant, where n is the toroidal mode number). In
Eq. (5-32b) the surface where

2 _
A~k =0
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defines the ion-ion hybrid resonance (k2 + ®). This also represents s
mode conversion surface. The vanishing of B - kf =0 and C - kﬁ =0
leads to cutoffs (kl + 0). The fast-wave cutoff C - kﬁ =0 is not
affected by the resonsnces. However, cutoff for the ion cyclotron
(slow) wave B - kﬁ = { ocecurs near the resonance. For a tokamak cross
section, representative dispersion surfaces for the case of a2 light
minority Tn e hesvy background majority species are shown in Fig. o.1.

In the presence of minority species, the polarization of the wave
electric field for magnetosonic fast waves is significantly altered
with [E*| # 0 (where E* = E, + iE, is the left~hand component of the
wave that rotates in the same senst as ions).

5.2.2 Absorption

A characteristic feature of fast weves in the ion cyclotron range
of frequencies of a multi-ion-species plasma is the localization of the
wave demping mechanism around the hybrid resonance layer (shaded area
in Fig. 5.1). Most of the wave power is absorbed around the thin
vertical layer, where A - k2 = 0 (resonance) and 8 - kﬁ =0 (cutoff)
oceur (see Fig. 5.1). The tAickness of hybrid layer is Ax = xp - xp.

When the concentration of the minority species is low, rf power is
absorbed mainly by the minority ions, producing an energetic minority
distribution. When the minority concentration is above a certain
threshold (determined by T, m, ebe.), the fast wave can mode-convert
into an electrostatic ion Bernstein wave, which can then tend to heat
the electrons through electron Landau damping.

In order to calculate the left~hand component of the wave electric
field properly, we need to consider the complete warm plasma dispersion
relation. Figure 5.2 is a plot of the left-hand component |E*| of the
fast wave, showing the strong peaking of |EY| around a thin hybrid
resonance layer. Results shown are for a D (deuterium) plasma with H*
minority  with the following plasma  parameters: T = 4 keV,
np{background) = 1020 w2, np(minority) = 5 X 1018 n-3 (np/np = 5%),
BO:QT, andRQ:Qm.

The distance of the hybrid layer from the cyclotron resonance of
the minority ions is proportional to the minority concentration and the
major radius of the torus. Because the cyclotron resonance heating is



148

ORNL-DWG 84 -3142 FED

(high field side) (low field side)
—CUTOFF ¢
- 7 ] -
MODE AX ‘ X
¢ CONVERSION w=8 (minority) = &,
Fig. 5.1. Mode conversion surfaces and cutoffs for a |light

minority species in a heavy background majority species plasma.
Curve A is the mode conversion resonance (A - kﬁ = 0) whereas curve B
is the associated cutoff (B - kﬁ = 0). Curve C is the fast wave cutoff
C - kﬁ =0. w=0, is the minority species ion cyclotron resonance
layer. MWave power is absorbed around shaded area, hybrid layer
Ax = xp ~ xg.
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Fig. 5.2. Fraction of left-hand component of total power as a
function of radius for D-H plasma (D-majority, H-minority). Plasma
axis is at x = 0 (x > 0 is the low-field side). Plasma parameters are
given in text. Note that |E*| peaks around hybrid resonance layer and

in the high field side (x < 0). Bernstein waves are also strongly
absorbed (ref. [55]).
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governed by the resonance condition v, = (w - Qp)/k, («here
l, = eZyB /my is the minority species cyclotron frequency), varying the
k, spectrum and minority concentration will vary the velocity space
region of resonantly heated ions. To drive a current, asymmetrical
heating of superthermal minority ions is required. This can be
realized by creating an energetic tail of minority ions.

e note that both the localization of |E*| and the asymmetry of K,
spectrum are necessary to achieve asymmetric heating of minority ions.

5.2.3 Ik:” Spectrum [55]

A traveling ICRF wave is required if a net drift between the ion
species is to be generated. The calculation in ref. [B5] indicates
that this can be achieved by the use of an array of phase-shifted
antennae. Assuming that (1) the wave propagation proceeds at almost
constant k“, (2) the weak shear does not change the spectrum launched
from the edge of the plasma, and (3) the poloidal variation of the wave
field is weak (long antennae), a slab model for antenna coupling can be
used bto determine the plasma paramebers that are necessary to produce
an asymmetric k, spectrum required for asymmetric heating. [Note that
approximation of almost constant k, does not remain uniformly valid,
especially in regions where mode conversion plays a role and the
perpendicular wave number (k) becomes very large.] In this mode, the
antennae are treated as current filaments infinite in the y (i.e.,
poloidal) direction. The density gradient is taken to be in the
x direction, and toroidal magnetic field is in the z-direction,
B =Bg, (Fig. 5.3).

For the fast wave the wave equation [Eq. (3-5)] is solved, and the
ky, spectrum for four antennae phased at ¢ = w/2 is shown in Fig. 5.4
for two different thicknesses of the low-density edge plasma region in
front of the antennae. The asymmetry of the k; spectrum depends
sensitively on the thickness of the low-density region with a thicker
low-density region producing = more asymmetric spectrum. (This is
because at sufficiently high k,, the low-density region becomes
evanescent, thus suppressing the peaks of the spectrum at higher
k“.) These results indicate that it is easier to launch a traveling
fast wave in larger tokamaks.
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Fig. 5.3. Configuration of antennae-plasma coupling model (edge
plasma 0 < x < xp, bulk plasma x > xq) for fast wave coupling.
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6.2.4 Resonance Condition

As mentioned earlier, cyclotron resonance heating occurs when the
resonance condition is satisfied:

w - ﬂﬂh -k | = 0.

v

The thickness of the hybrid layer Ax = x4 - xg (Fig. 5.1), where most
of the wave power is absorbed, depends on k. Within the main peak of
a spectrum (such as that given by Fig. 5.4}, we can approximate the
wave spectrum as flattopped within some upper (kq) and lower (ko) limit
of the main peak (kg < ky < ki). With this assumption, Ax can be
regarded as constant. The minimum (vq) and maximum (vo) parallel
velocities of the resonant ions can then be approximated (for £ = 1) as

w - Qp(xg) w - O (xp)
e ——hA7A (5-33)

that is, the velocity space resonance region is vy < v, < vy.
5.3. Results From the Quasi-Linear Fokker-Planck Theory [65]
The quasi-linear Fokker-Planck equation of the form given by

Eq. (3-28) is solved numerically for minority ions in the presence of a
weak rf field in ref. [65]. For fundamental cyclotron heating, the

quasi--!inear operator for the minority ions is
252 ;
@ib) g IE*|2v 8 (o ~Qh)afh . (5-34)
Ot Jy Vi Oy |anfk, R URRTAT

A spread in the k, spectrum can simply be introduced in Eq. (5-34) =s
an integral (or summation) over the k, spectrum. Within the hybrid
resonance layer, |E*| is localized (Fig. 5.2) and thus can be taken as
a consbant in velocity space.

Knowing the distribution function fh, the minority current Jh and
the power absorbed by the minority P.e can be calculated. To
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Fig. 5.4. ky-spectrum of rf power excited by four antennae 90°
out of phase: ({a) thickness of Ilow-density region = 15 em; (b)
thickness of low density region = 10 cm (ref. [55]).
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calculate the total current response of bulk plasma majority ions and
electrons need to be estimated. Calculation of the response of the
majority ions requires knowledge of the external momentum source.
Assuming that the parallel momentum of ICRF is zero (or negligible),
the following are possible: (1) there is a momentun source on the
majority ions (e.g., neutral beam) such that the total ion momentum

remains zero (i.e., min;¥; = -mpnyvp,), and (2) the majority ion

velocity remains zero (i.e., v; =0). In the first case the majority
ion current is obtained from conservation of total momentum
[Eq. (5-15)], and in the second case there is no majority ion current.
The electron current is calculated from an electron Fokker-Planck
equation in which the electron drag on the energetic minority ions
results in a relative electron drift and thus an electron (return)

current. The botal current for a single majority ion is

‘J:Jh+Ji+‘je

_ z Z:m
h 12 [Th i h A -
Jh [1 -7 + 1.46¢ <Za A Z "’;)A(Z’)] ; (5-35)

i

for more than one majority ion species, one can replace Z; with Z,ee.
Note that this is the same equation given by Eq. (5-19) with A =1
corresponding to case 1 (i.e., total ion momentum being zero) and A = 0
corresponding to case 2 (i.e., v, = 0); that is, Vi o= —Amhnhvh“/mini,

As discussed in Sect. 5.1.2, Eq. (5-35) shows that the current
profile generated and its direction depend strongly on the composition
of the minority-majority species (Z,/7.). The efficiency of the total
current generated is given by

I 1
Piot 2T RePps

which is shown in Fig. 5.5 for D-He®. For this case, the current
generated is peaked near the plasma axis (e = r/R, =0). The current
driven in a D-H plasma (H is the minority species) is shown in
Fig. 5.8, where the profile can be seen to be quite flat except near
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Fig. 5.5. Efficiencg of total current generation vs inverse
aspect ratio for a D-He” plasma. Plasma parameters are Tp = 4 keV,

np = 1020 53, NHed = 5 X 1018 n3, Ro =2 m, w/2m = 20 MHz, vy = 2 vp,
and A = 1 (ref. [55]).
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(ref. [55]).
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the axis. This is because in the D-He® case 1 - Z;/Z; and the last
term in Eq. (5-35) are opposite in sign and can cancel each other for
increasing €, whereas for the D-H case only the last term (trapped
electrons) contribute.

5.4. Comments

The basic mechanism of current generation by ICRF minority species
heating relies on the Fisch-Boozer mechanism by asymmetrically heating
the minority ion species to create a relative drift (between minority
ions and background majority ions and electrons) and on the mechanism
of neutral beam current drive that requires this relative drift between
the species. When considered separately, both of these techniques are
well established. However, a combination of both has not yet been
demonstrated experimentally.

In general, calculations based on single-particle treatment and
quasi-linear Fokker-Planck analysis are in reasonable agreement.
Fokker-Planck calculations are for the weak rf limit, which assumes
isotropic distribution (not valid for an enhanced tail from a strong
asymmebric rf). No study is yet available for a strong rf case.

There are some practical limits, some of which were discussed
previously. For example, calculations assume that the wave power is
absorbed exclusively by the resonant minority species within the narrow
hybrid resonance layer (Fig. 5.2). Also, only ions in the most
favorable region of velocity space are assumed to be resonant
[Egs. (5-24)-(5-29)]. 1In order to avoid power absorption by majority
species ions, the wave phase velocity must satisfy certain constraints.
To obtain high efficiencies, the velocity of resonant (minority) ions
should lie in the range of, for example, vy~ (3’5)Vth5 that is,

w -
k

i n (3—*5) Vth .

On the other hand, for the resonance condition to avoid heating a
substantial number of majority ions, one requires

w -0
k

i>5\fi.
i
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For minority (not majority) heating to occur at the first harmonic
(2 = 1), we combine these two requirements to obtain a condition on the

parallel wave phase velocity (u/k,); that is, for v, ~3 vy, and

TN [5(m,/m)2 — 300 /0) ]

Ky (1 -9,/) Yth -

A similar condition may be obtained when (p < Q;,. For example, for
D-He® plasma (m; = 2, my =3, Z, = 2), w/k, > 16vyy for v, ~ 3vgp and
wik, > 138vey for vy ~ Byp.

Competing with the cyclotron damping of the wave by minority ions
is the Landau damping of the wave by electrons (Sect. 5.2.2). This may
become the case when the required minority concentration is high
enough, in which case the fast wave can mode-convert into a Bernstein
wave. As can be seen from Fig. 5.2, even though the cyclotron damping
dominates near resonance (hybrid layer), electron damping dominates off
resonance.

There are also constraints on the majority-minority species mix
[see discussion following Eq. (5-21)]. For example, for the D-H case
considered in Fig. 5.6, the fundamental harmonic of H coincides with
the second harmonic of D. At high temperatures, the second harmonic
absorption of D can be appreciable.

Probably the best candidate for a D-T reactor is the He® minority
ions. However, the He® fundamental resonance coincides with the second

harmonic of tritium, and some inefficiency in current drive will result
due to direct tritium heating (similar to the D-H case).
One undesirable feature of ICRF minority current drive will come

from the fact that at fixed beta (toroidal beta) any injection of
minority ions will dilute the D-T fuel density. This will result in an
undesirable reduction in reactor power output. The presence of several
ion species (three, four, or five) will result in substantial parasitic

heating losses, and in a reactor this may severely limit the efficiency
of current drive via minority heating.

Although the ICRF minority heating scheme might not be highly
desirable as a reactor candidate for current drive, ICRF waves could be
used to enhance the beam driven current efficiency or to accelerate
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alpha particles (asymmetrically) to generate a current. These options
will be discussed with the other hybrid schemes.
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6. BRIEF DISCUSSION OF OTHER CURRENT DRIVE SCHEMES

In previous sections we discussed the possibility of maintaining a
steady-state current based on more developed schemes such as neutral
beam injection, lower hybrid waves, electron cyclotron waves, and ion
cyclobron waves. In this section we briefly comment on some of the
other schemes listed in Table 0.1.

6.1. ICRF Enhancement of Beam-Driven Currents [57,70,84]

A current drive scheme based on the use of ICRF waves to enhance
the efficiency of the beam-driven current was proposed by Okano
et al. [67,84]. This scheme uses ICRF to increase the perpendicular
energy of fast beam ions in order to reduce their collisions with
background thermal ions, thereby increasing their thermalization time.
The mechanism is illustrated in Fig. 6.1, where the slowing down
trajectory of the beam ions is shown schematically in velocity space.
Without ICRF, the beam ions slow down due to Coulomb collisions along a
trajectory, (1) shown in Fig. 8.1. With ICRF, on the other hand, the
slowing-down trajectory is deformed due to perpendicular acceleration
of fast beam ions by the ICRF wave, as illustrated by a trajectory, (2)
in Fig. 8.1. This deformation causes the extension of the beam-ion
lifetime; thus, in equilibrium, the density of and the current carried
by the fast ions are enhanced [see Eq. (2.2)]. A 2-D Fokker-Planck
treatment of the interaction between an ICRF wave and fast ions arising
from neutral beam injection is discussed in detail in ref. [70]. The
results indicate that the current carried by the injected fast jons is
increased by the wave interaction in most circumstances. The optimum
current drive efficiency, with the application of ICRF, is found to be
about twice the optimum efficiency of generation of the straightforward
beam-driven current discussed in Sect. 2.  For pure beam-driven
currents, the peak efficiency occurs for an injected beam energy around
Eg ~ (30-B0)AsT, (see Fig. 2.2). The results of ref. [70] indicate
that applying ICRF can reduce the optimum beam energy by up to a factor
of 4. For example, with T, ~ 15 keV the optimum injection energy for a
deuterium beam (Ar = 2) is around 1 to 1.5 MeV for the straightforward
beam—driven current scheme, whereas it is around 250 to 400 keV for the
wave—enhanced beam-driven scheme. This is certainly important to the
overall efficiency of the driver. In practice, the overall efficiency
of the rf scheme might be expected to be even more improved because the
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Fig. 6.1. Slowing-down trajectory of fast beam ions with and
without ICRF (ref. [57]).
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efficiency of generating the rf should almost certainly exceed that of
high-energy neutral beams. Against this advantage, the complications
inherent in the simultaneous use of two different heating systems
should be offset.

6.2. Current Drive by o Particles-rf Wave Interaction [57,59-81]

It is possible to use the high-energy o particles produced by
fusion reactors to sustain a steady-state current in a tokamak plasma.
The idea is to use rf power to prohibit the a particles from slowing
down isotropically and to push the o particles in a preferential
direction and thus form an a—particle beam. This o-particle beam will
then transfer the momentum to electrons and sustain a current. In a
reactor, a particles are born isotropically in velocity space and slow
down via Coulomb collisions with the background plasma particles. The
a-particle distribution function, in ideal circumstances, remsins
isotropic during the slowing down, and there is no net current.
However, to generate a current, the a-particle distribution has to be
made asymmetric by means of rf power, particle loss, ete.

6.2.1 Asymmetric Heating of o Particles with ICRF [57,60]

A mechanism similar to that discussed in Sect. 6.1 can alsc be
used with fusion products {a particles). The scheme proposed by Okano
et al. [57,60] uses ICRF waves to clamp the energy of o particles
produced in the resonant region in velocity space. The ICRF waves have
no toroidal momentum (see Sect. 5) and accelerate a particles only in
the perpendicular direction (i.e., increase v,) with respect to the
toroidal field. However, this acceleration is effective in clamping
the particle momentum in the parallel direction. If the ICRF wave
traveling unidirectionally along the toroidal field is launched to the
tokamak plasma, the resonant region in velocity space becomes
asymmetric, and it produces an asymmetric velocity distribution of
o particles (Fig. 6.2). As a result, the average drift of o particles
is established and the net toroidal current is induced. This mechanism
is essentially identical to the basic mechanism of ICRF current
generation by minority species heating (Sect. 5). The present scheme
using a-particles is specific to reactor plasma conditions. As such,
it does not favor low-density, Ilow-temperature startup operations
because of the insufficient amount of resonant a particles.
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Fig. 6.2. (=) Isotropic source of a particles at birth and their
slowing-down trajectory (no ICRF) and (b) asymmetric velocity
distribution of o particles due to ICRF waves.



165

In steady state, the total current J induced by the drift of
a particles is described fairly well with Eq. (5-18)

o enaloﬁa(l -~ Za/zeff)

[
|

f

Ja(l - Za/zeff) ’ (6-1)

where v, is the a-particle drift speed and J, = en,/Z,v, is the
o-particle current. In this expression, neoclassical electron orbit
effects are not baken into account. As in the case of minority current
{(Sect. 5) or beam current (Sect. 2), there is a net current in the
plasma if Z, # Zg¢¢. A

The current drive efficiency (J/P) is no better than the case of
minority heating. When one applies this scheme to fusion reactors, the
first difficulty arises from the equality of the ion cyclotron
resonance frequency between o particles and deuterons (I =GQ,),
because both have the same charge-to-mass ratio. To avoid majority
cyclotron damping, the resonant condition [vy = (w - Q)/k,] and rf
frequency w must be chosen carefully. Usually o particles have very
high energy (up to 3.5 MeV in a D-T plasma) compared to background
majority deuterons (T; ~ 10-20 keV). If the minimum resonant velocity
Vimin = (@ -G pay)/k, is selected such that Yimin 2> ¥p» there will
be no (or very few) deuterons to resonate in the resonant region, but
most o particles can resonant. Here, {ly .., is the maximum deuteron
cyclotron frequency within the plasma. Thus, a favorable resonant
condition can be obbained by choosing a wave frequency such that
W - k"VD >> QD,maX'

6.2.2 Asymmetric Heating of o Particles with Traveling Magnetosonmic
(Fast) Waves [59,61]

In principle a state of induced anisotropy (namely, asymmetric
o particle distribution) can be created by interaction of a particles
with the fast traveling (magnetosonic) waves. 1In general, the fast
wave is an electromagnetic mode in which the wave electric field is
primarily perpendicular to the dc (static) magnetic field; because of
this property, it can propagate in a plasma over a wide frequency range
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from below the ion cyclotron frequency ; all the way up to the
electron cyclotron frequency (.. When w < Q., it is called the
compressional Alfvén wave. MWhen (I <w < wy, it has the names
magnetosonic wave, high-frequency Alfvén wave, etc. When w > wy, it
is generally named the Whistler wave. The magnetosonic wave (w > Q;)
seems particularly interesting for producing an asymmetric a-particle
distribution. The phase velocity of such waves is of the order of
Alfvén speed vy

2 2 V4 2
Vi = Bofuomm; = L fup;

which, in a reactor—|ike plasma, is roughly the same as the speed of
a-particles (vp = w/k, ~ vg ™ vy).

For the purpose of current drive the interest is in converting
wave momentum to that of a particles. Thus, it is convenient to have
the wave parallel phase speed be of the order of a-particle speed
(vpll ~ v,) to maximize the collisionless wave damping, and, at the same
time, to have a frequency w not too close to the ion cyclotron
frequency to avoid cyclotron damping on the background ijons. The
choice of w~ 5], appears most suitable, in that Landau damping and
bransit time magnetic pumping (TTMP) can now selectively interact with
a particles generate an asymmetric distribution, thereby a circulating
a particle (minority) beam.

The force exerted on o particles in the direction of static

magnetic field B, is

dvﬂ,” P alé )
Mo gy = 9En ~ HaDBy/0z

= 2eE, - w08, /0z , (6-2)

where p = maygi/QBo is the magnetic moment; E, and By are the parallel
wave electric and magnetic fields, respectively; and the z direction is
taken to be parallel to B,. For lLandau damping, the interaction of E"
with o particfes whose parallel velocities are equal to the wave phase
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velocity leads to transfer to momentum and energy. The quasi-linear
diffusion coefficient due to Landau damping is given by Eq. (3-39)

Ame? <E, >?
—_—l V1<V"<V2

DL (vy) = oY ik (6-3)

0 otherwise

for a narrow spectrum of wave within the resonance region
¥ vy = Vo Cvg. For transit time damping, it is the pUVB” term
that transfers momentum to the particles. By strict analogy to the
Landau damping case, substituting the magnetic acceleration term for
the electric acceleration term, we can form a2 quasi-linear diffusion

coefficient of the form of Eq. (8-3) as

2.2 0 \2
mﬁaku<8u>
2 Vi < Y < Vo
k
Drpwp(vy) = § "' (6-4)
0 otherwise

The main difference between D| and Dyyyp is that Drryp exhibits strong
dependence on v, (Dypyp ™ T v&;). The parallel wave electric field
is related to the wave magnetic field by the relation

E,ov -t (6-5)

Using Eq. (6-5) in Eq. (6-2), we have

d 3B
m, —o - _ ¢ (4\:2 + v2 )—-—”— . (8-6)
e

T A WACT I
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Note that landau damping and magnetic pumping forces are in phase and
additive, with the primary contribution coming from the TTMP.

In the frequency range considered (w> 50;), one expects the
magnebosonic waves to interact also with electrons through Landau
damping and TTMP [64]. It is interesting to note that landau damping
and TTMP forces are always out of phase for electrons and there is an
exact cancellation of these forces when vi = QV% [64].

The efficiency of this current drive scheme is calculated in
refs. [569,61]. The results show that the efficiency of o-driven
current can be a factor of 3 to 4 larger than that obtained from direct
magnetosonic wave interaction with electrons [84]. Also, with
Lot < Zy, the total current due to a particles [J = J (1 - Zgp4/Z,)]
is in the same direction as the electron current generated due to the
direct interaction of the waves with the electrons; thus, the currents
are additive. The results obtained in refs. [69,61] have not taken
into account the neoclassical electron orbit effects (i.e., the effect
of magnetically trapped electrons). If these effects exist, the scheme
could be susceptible to a large reduction in efficiency. On the other
hand, there may be effects such as the bootstrap current, which could
be helpful.

6.3. Current Drive by Synchrotron Radiation [58,85]

This is one of the unconventional means of current drive, in that
it requires no external current-driving scheme (beams andfor rf
sources), but it requires very high temperature reactor plasma
conditions. The idea is that at high temperatures a reactor plasma
generates a significant amount of rf power as synchrotron radiation.
This is particularty true for D-D and D-He® reactors, where most or all
of the energy is in the charged particles, and an appreciable fraction
of the charged particle power comes out in the form of synchrotron
radiation. For example, in a 1000-M4 reactor, radiation powers in the
tens-to-hundreds if megawatts range may be involved. These powers are
comparable to those being considered for other current drive schemes.
At high electron temperatures (T, ~ 30-50 keV), most of the emission is
in the higher harmonics of the cyclotron frequency, implying that the
radiation is not only strongly emitted by the plasma but is also
strongly absorbed. At these high radiation frequencies, the radiation
is strongly reflected by the walls or the walls can be made highly
reflecting to it. This means that the radiation forms an ideal medium
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for interaction of the plasma with the walls. Because the walls and
the plasma are not in thermal equilibrium, the exchange in momentum
between the plasma electrons and the wall provides the possibility of
driving a current.

Figure 6.3 illustrates one method for driving such a current where
an anisotropic wall configuration is used to cause the synchrotron
radiation to rotate preferentially around the device in one direction.
The method uses fins on the tokamak wa!l that are absorbing (A) on one
side and reflecting (R) on the other. The reflected radiation passes
through the plasma and a fraction is absorbed. As radiation repeatedly
reflects from the walls, its direction of propagation rotates until it
is propagating in one direction. As it does so, it repeatedly passes
through the plasma and pushes the electrons. This gives the current.
The magnitude of the current is proportional to Tz and apparently
becomes sufficient for a reactor at T, ~ b0 keV. A simple theoretical
treatment based on a momentum-balance calculation is given in
refs. [58,85]. The expression for driven current is given as follows
(in mks units with T, in kiloelectron volts):

T
I—'\-'3X1014(183/2/e

2
eC

)5/2 T'Oe'/?Bf!/z(l N Rw)1/2 (6 7)

12 ?
ZopsNe

where R, is the wall reflectivity and a ™ 5-10 is a numerical factor
that takes into account the fact that the more energetic electrons
radiate and absorb the synchrotron radiation most strongly and collide
with ions less frequently so that they carry more current. In other
words, the electrons carrying most of the current have an energy
greater than the average electron energy 37./2 and have a lower
effective resistivity.

We see that the current is a very strong function of Ty (v T3);
thus synchrotron current drive works best at high temperatures. Tt
also works best at high magnetic fields. These are the conditions that
would be found in D-D and D—He3 advanced fuel tokamak reactors, so this
method of current drive should work best there.

As an example, consider a D-D or D—He3 plasma at T, 2 50 keV,
ne®1x10% n3, a~15m B=10T, and a wall reflectivity
Ry = 0.9. This plasma has a beta of 4% (if T, ~T,) and Eq. (8-7)
predicts a2 current of
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(6)

Fig. 8.3. (2) A simple configuration (fins) for achieving current
drive by synchrotron radiation. Absorping (A) and reflecting (R)
surfaces are shown with solid and dotted lines, respectively. (b) A
more efficient fish-scale wall configuration (ref. [85]).
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I~6x10° a/Zg4e

for Zeff ~2anda™b, I~ 15 MA.

The problem of controlling the current is important. This could
probably be achieved by ports in the wall that could be opened or
closed to control the level of synchrotron radiation in the device.
The problem of maintenance of the appropriate reflectivity of the first
wall may also be important in light of wall erosion due to sputtering
and plasma disruption.

6.4. Current Drive with Low-Frequency Waves

Here we are primarily interested in current generation with low-
frequency fast waves. These are (1) magnetosonic waves (w > {;), the
fast wave branch of ion cyclotron waves, and (2) compressional Alfvén
wave (w << 1; i), the fast wave branch of Alfvén waves. As illustrated
in Fig. 1.2, there are two wave regimes that are attractive for
obtaining a large current drive efflcuency factor (J/P) low— and
high-parallel-phase-velocity waves, i.e. w/k K vy and w/k" > Ve,
respectively. Current drive with the LH wave is an example of
high-phase-velocity waves (Sect. 3). Because of the lower frequencies,
magnetosonic waves and compressional Alfvén waves (CAW) are generally
low—phase-speed waves. It is, however, possible to generate a
high-phase-velocity magnetosonic wave as well.

As compared to high-phase-velocity waves, low-phase-velocity waves
have a high momentum content per unit energy, which makes them
attractive for a current drive. This is because the momentum in a wave
is proportional to its wave number k, whereas the energy carried by the
wave is proportional to its frequency w, so that waves with low w/k"
have a high paralle! momentum content. When the energy of such waves
is absorbed by electrons, the momentum absorbed is proportionately
higher. The current is carried by slower (thermal) electrons, which
are relatively collisional as compared to superthermal (tail) electrons
that carry the current where high w/k, waves (such as LH waves) are
employed.

The frequency regime of interest spans from a few megahertz
(Alfvén waves) to a few hundred megahertz (magnetosonic waves). At
these frequencies large amounts of cw power are readily avaifable at
high efficencies and in high-power units. On the other hand, at the
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towest frequencies, the required coupling structures become large, and
the necessity to use coils, loops, or other interna! antennas to excite
lower frequency waves may pose technological problems in a fusion

environment.

& 4.1 Dispersion Relaticn

The dispersion relation (valid for w << Q) that characterizes

these waves is given by Eq. (5-32):

K -1 -~ B-K)EC-K) =0,

where
AEQ—Q‘GIZ"@E‘ QQ]
? vﬁﬂzi~w2’
5 2 Q.
BE.,(*)_ﬁ(e —6):&]"‘ ......... ...',...,__,
c? 1 2 vﬁ Qi - W
v 2 0.
=Y (e +ep) =l
c VA Qi + 4

Here € and €9 are the components of dielectric tensor,
Eq. (5-31), and vy is the Alfvén speed

vﬁ = czﬁ%/w%i = Bg/uonmi .
Equation (6-8) can be rearranged to read [86]

A~ N2
W = (kﬁ + ki)v% [:--—JL—] ,
A(L - NP

or, equivalently,

(6-8)

(6-9)

given by

(6-10)

(6-11a)
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AL - N2)
N+ N = [—(:——ZL] (6-11b)
A - N"
where we define
K'vﬁA* i (6-12a)
=T—=pAz—, a
2 in_wz
k2y2 c\2 v2 %
o - “u¥A _ [FptN YA _ oA
NH - h)2 - C(w 62 ~Tl“(<:2), (6—-1Qb)
kZy2 V3
2 - 1A 2 [YA
Nl: m? _'r]l ((:2). (6-120)

The quantities N, and N, are called the Alfvén refractive indices.
Note that when w << f};, A=+ 1, the factor in square brackets in
Eq. (6-11) approaches 1 and the fast wave dispersion relation becomes
W = k2v% = (ki + kﬁ)vﬁ. It may be seen from Egs. (6-11) and (6-12)
that

M =1 when NZ=0 (6-13a)
and that (for the fast-wave branch)

N2 = Q. /(Q; + w) when N

2
2 - 2-0. (6-13b)

The fast wave branch of Eq. (6-11) is sketched in Fig. 6.4 for rf
frequencies below (w < Q;) and above (w>Q;) the ion cyclotron
frequency.

The Alfvén indices of the fast wave, for w > Qi and w < Qi' remain
of order unity within the propagating region (Fig. 8.4). This implies
that propagation is possible only in sufficiently large and dense
plasmas. In a torcidal geometry k, and k, can be approximated as [886]



174

ORNL-DWG 84-3807 FED
i.2 I 1 I | T

1.0

0.8

0.4 |-

0.2

0
0 0.2 0.4 0.6 0.8 1.0 1.2

NII

Fig. 6.4. Dispersion curves for fast waves at m/ﬂi =0.5, 1.b,
3.5, and w Q. N = 'q”(vAc) and N, =0 (vp/c) are Alfvén wave
refractive indexes. For w<<Q; (CAW) dispersion relation s

Ni + N2" ~ 1 for WP = (kﬁ + ki)vi]
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k; ~m/fa,
(6-14)
ky ¥ N/R,

where N is the toroidal mode number, which is an integer. From
Egs. (6-11) and (6-14), for fast wave propagation we require

2 o+ 2 2 4 ’
I i UN W ~17 i fW
(a> +( ) X——Ro> < (TA) <1.93 x 10717n, y (Qi) ., (6-15)

where Z; and A; are the ion charge and relative atomic weight,
respectively.

6.4.2 Quasi-Linear Wave Diffusion Coefficisnt [64]

The acceleration of electrons due to the E, and EH field
components of traveling waves is given by Eq. (6-2):

dv) a'é'"
Mg g5 = = ek, - hg, (8-18)

where p = mevi/QBo. If only E; is nonzero, the waves are Landau damped
by electrons resonant with the wave (v, =w/k,), and the diffusion
coefficient is given by Eq. (3-839). If E in Eq. (6-16) vanishes, the
traveling magnetic field accelerates the electrons. The wave damping
is now due to TTMP and the diffusion coefficient is given by Eq. (6-4).
In general, however, E, and B, are both present and related to each
other by Eq. (6-5). Using Eq. (6-5) in Eq. (6-18), the force equation
for electrons becomes

dv BE
IL__e 2 _ 2y 20 _
e T = 3 (2vg - v}) 57 (6-17)

The Landau damping and TIMP forces are always out of phase for
electrons, with TTMP dominating for large v,. This is in contrast to
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the force equation for the ions (see Sect. 6.2.2). By analogy with the
Landau damping and TTMP, the diffusion coefficient can be formed easily
with mere substitution. The following expression summarizes the three
cases

DL’ DTTMP" DA Vl < V" < VQ
Drf(vn) = , (6*18}
0 otherwise
where
2 - 2
e <E,>
Dy (v,) = = (6-192)
AN 2 Ak
MgV y =%y

is the diffusion coefficient for Landay 92mping,

W K<B > wkiv] (B

Dyryp(vy) = =
R VR LT
)
¥
1 (1) D, (v,) (6-19b)
4 \Ve f
/!

is the diffusion coefficient for TTMP, and

21200 32
e _kl<Bll> (2v€ ) v2)2

2 2 1
memev ”Ak”

Dplvy) =

2
LT (22 - v?)? —I

by Ak, &2

2\2
:%:( N‘V;) D (v,) (6-19¢)
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is the diffusion coefficient corresponding to the case when both
damping mechanisms (Landau damping and TTMP) are present. (D is
referred to as the Alf vén wave diffusion coefficient in ref. [84].)

6.4.3 Current Drive Efficiency [64]

The current drive efficiency for low-frequency waves is derived in
ref. [64] for various wave types, assuming that D.p is as given by
Eq. (6-18). In the limit of small wave amplitudes (low D.¢ limit) and
for a narrow spectrum of wave parallel phase velocities, an approxlmate
expression for J/P in the low-phase-velocity limit (w/k, << vg) is
given by

2 2
N?’Lﬁ>§ G (6-20)

where U1 and UQ are the dimensionless velocities, representing the
slowest (U; = vi/v,) and fastest (Uy = vo/v,) parallel phase velocities
in the spectrum (vq < Yy < vQ); Gy is a constant that depends only on
the wave type; and <U,> is an average resonant U, defined as

3 - 1 - (vq/vo)?
_2 M-y o fi 1/%9 i
W =2 (32 - U%) -2 \ve) [1 : (HW] . (6-21

The constant Gy is determined numerically to fit the results obtained
by a numerical solution of the 2-D Fokker-Planck equation. For
Zops = 1, they are approximately given by [64]

CA R Crryp W 13, (6-222)

N8, (6-22b)

where CL, CTTMP' and CA denote the cases of Landau damping, magnetic
pumping (TTMP), and Alfvén waves (the combination of the previous two),
respectively. The coefficients Oy obtained from more accurate
calculations [87] are listed in Table 6.1.
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Table 6.1. The coefficients Gy for the
three types of current drive by low-
frequency wavs [87]

Lot L Criwp Ca
1 7.59 16.98 16.18
9 3.78 10.34 10. 14
5 1.50 5.10 5.90
10 0.75 9.84 2.96

The ratio J/P has been determined numerically for a wide range of
parameters in ref. [64]. Figure 6.5 shows J/P as a function of the
weighted average parallel velocity <U,>, defined by £q. (8-21), for
various types of waves in the small Dpf limit. Rough semianalytic fits
to the data shown in Fig. 6.5 indicate

Cy 2
<Um§“+ 1.4 <UDT + yy (6-23)

'o>k—>

where yy is a constant: yp ™ yyyyp © 5 and y| ™ 2.

Once again, two favorable wave phase velocity regimes are apparent
from Fig. 6.5 [or Eq. (6-23)]. For high-phase-velocity waves
(J/P ~ KU >2) a similar behavior is seen, for example, for LH waves
[Eq. (8- 55)] For low-phase-velocity waves, J/P ~ 1/<U>. It would,
therefore, be preferable to have either very fast waves (i.e.,
U> >> 1) or very slow waves (i.e., Up> K 1). Obviously, there are
limits on how fast or how slow the wave phase velocity could be. For
example, in hot plasmas (i.e., T, ~ 10-20 keV, a temperature
representative of reactor plasmas), the wave accessibility represents a
limit on the fastest phase velocity, which at <U,> ~ 4-5 is nearly the
speed of light. For low-phase-velocity waves, <U,> ~ 0.1-0.2 would
probably be the limit to avoid ion Landau damping. The damping of the
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Fig. 8.5. If s Ug> for three wave types in the low-D.s
limit: Llandau damping (open circles), magnetic pumping (x’s), and
Alfvén waves (closed circles). The solid curves ar rough semianalytic
fits to the data. The wupper curve (TTMP and Alfvén) obeys
JJP 2 13/<U> + 1.4KU>% + 5 and the lower curve (Landau damping) obeys

j/ﬁ N 8/U> + 1-4<Ua>2 +2. In all cases a narrow spectrum is
assumed: Av, = (v - ¥1) = 0.2 ve(8U, = 0.2). (ref. [84]).
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wave on the ions will be nearly absent if v, (=w/k) is large enough
(i.e., several times the jon therma! velocity vi). We define this
rabtio as

a=wf(kvi) 2 6. (6-24)

In terms of wave refractive indices (n, =uw/ck, = v /c), we
rewrite current drive efficiency in the low-phase-velocity limit
[Eq. (8-20)] as

A 2 —2
gw:_a%_“_@,(‘_'zw__:_m)
Pozme g -

3, Tove {1 - ('ﬂg/ﬂl)j

~

1 - (ng/np)®
Ve To 172 o
= Cw *-E“ <ﬂa> fos q4 ”B‘E <‘7]a> s (6—25)
where 1y = ¢/vy, m9 = c/vg, and

1
1

}

(6-26)

|

(ﬂg/ﬂl)Q} _ (c/ve)

<ny? E~§"n? [ 3 <UD
- (/1) a

We discuss some of the low-frequency-wave drivers in the following
three subsections.

6.4.4 _Compressicpmal Alfvén Wave (CAW) [64,88]

As mentioned previously, the CAW is the fast wave branch of the
Alfvén waves and exists as cavity eigenmode at relatively [ow
frequencies (w << Qi)' ranging from several hundreds of kilohertz to a
few tens of megahertz. These waves have the dispersion relation [see
Eq. (8-11) and the discussions following thereafter)
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W= (18 + k3], (6-27)

with the desirable characteristic of low-phase velocity, w/kyv, << 1.
To avoid ion Landau damping, we require @ = w/(k;v;) 2 8. To avoid ion
cyclotron damping at higher harmonics, the frequency should be chosen
such that w<Q;/2. In terms of o, the dispersion relation
[Eq. (8-27)] takes the convenient form

K = K2 (B /4 - 1) (6-28)

or

/ W ) 2 ( ki '
oz - 1+-L4) >, (6-29)
i) g2 kﬁ>

where P is the average toroidal beta given by Eq. (1-26)
By = 2uon(Te + T;) /B3 » Au,nT/62].

According to Egqs. (6-20) or Eq. (6-25), current drive efficiency
is maximized by exciting the slowest phase velocities (smallest
Uy = vy fve = m/k”ve. or largest m, = cfv, = ck,/w), subject to
Eq. (6-29). Thus, it is advantageous to have o values not much greater

than 6. However, note that even for the lowest order perpendicular
mode k; N w/a and k; = N/R,

a = 26772 1+ (aR JaN)2]1 2, (6-30)

which indicates that o (in turn w/k“) does not decrease significantly
unless N (toroidal mode number) is very large. By decreasing N the
phase velocity increases, which yields higher J/P. Because of the
necessity of a large number of coils (or a complex antenna design) to
excite a high N mode, there is, however, a practical upper limit on N;
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N~ 10-20. From Egq. (8-30) we see that the minimum o is a = 2&{1/2,
which is optimum (i.e., a = 6) for 8, ~ 10%.

As an example, consider a reactor plasma with Te ¥ 1. ™15 keV,
Ny ™ ~ 1020 m“3, a™1.2m Ry2®bm, By=4T, and an average mass of
2.5 for D-T particles. Taking N =20, we find w/k,v; ~ 8.6,
f = w2r = 4.156 MHz, and A = Qﬂ/k = 1.57 m. For the parameters
given, P, = 7.5% and the uon cyclotron frequency (Q/2m) is 30 MHz for
deuterlum (20 MHz for tritium). Because w < Qy/2, ion cyclotron
dampin3 is negligible. Knowing w and ky, U, = v"/v = w/k” e 2 0.13
and v, ~ 48. For a narrow wave spectrum, Ugp> 2 Uy @ 0.13. Hith these
numbers the current drive efficiency J/ﬁ ™ 100 In terms of practical
units (i.e., the total wave power required to sustain the total plasma
current [see Eq. (1-8)]), we have

Ltot ,, 0.015 102 J
Peot  Ro hA i 5

~ 0.5 AMM . (6-31)

These crude estimates indicate favorable current drive
efficiencies. For similar reactor parameters, the optimal current
drlve efficiency, for example, for LH waves would be around
J/P ~ 20-30, requiring a factor of 3 to 4 as much power as the CAW to
generate the same current. The attractiveness of CAW (or the low-
frequency wave regime, in general) should be viewed very cautiously,
however, because the scheme could be susceptible to a large reduction
in efficiency due to electron trapping effects, if these exist. As
pointed out previously, the expressions given for the efficiency factor
do not consider the neoclassical effects of trapped electrons. The
neoclassical effects are not too important in the case of LH waves.
This is because the current is carried by superthermal resonant tail
electrons (U“ >> 1), which are nearly all circulating. The current
carried by thermal background electrons is negligible, so that trapped
electron effects do not matter. In the low-frequency regime, where the
wave phase velocity is low, the wave is resonant with trapped
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electrons (U” << 1), which carry no current. It is unclear how large
a2 toroidal current can really be generated. Several arguments are
given in ref. [84] to justify the fact that the resonant electrons are
trapped presents no problem.

6.4.5 Low-Phase-Velocity Magnetosonic Wave [64,66]

Here, the frequency regime of interest is w > fl; with w/k Ve << 1.
To avoid ion Landau damping it is required that o = w/(kv ) 2 Ton
cyclotron damping is negligible, provided w/f); 2 5. Under these
assumptions, magnetosonic wave (fast wave branch of the ICRF waves)
damping is mainly due to TTMP, and Eq. (8-20) applies

Io10s /ve) [1 - (vl/vzf*’]
ﬁ \VQ 1- (Vl/VQ)B

nove [1 - (no/n1)?]
- 19.5 , 6-32
( ¢ ) [1 - (ng/np)®) e

where vo/ve << 1 (or mg >> ¢/vy). As an application we consider plasma
parameters chosen for the previous example in Sect. 6.4.4. We select
f = w/2r = 160 MHz, such that w/Qp = 5 (wfy > 6). As in the case of
CAW, maximization of v, maximizes J/P From the dispersion relation
[Eq. (8-11)] and Fig. 6.4, we see that the largest m, (N,) occurs near
the cutoff [Eq. (6-13b)] N, = n /c = /(Q + dﬂ = 1/6 For an
effective ion mass of 2.5, VA)C = 1.84 X 102 and N 22, The
corresponding wave number is k, = 70 m 1 (or Ay = 2nfk, 9 em), which
gives a toroidal mode number N = k R, = 250. Although at frequencies
above 100 MHz the use of ridged or dielectric waveguide antennas may be
possible, it will be difficult to design a traveling fast wave antenns
with such a short A, (~ 9 cm). The very large mode number makes it
almost impossible to excite a single mode with unique characteristics.
The problem with multimode excitation is that the modes interfere
constructively near the antenna (as they are driven by the same local
antenna fields) but destructively elsewhere [86]. The near fields,
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thus produced, may cause anomalously large damping at the plasma edge
thus creating hollow current density profiles.

Returning to the efficiency factor, assuming a narrow wave
spectrum (i.e., narrow range of phase velocities with no/ny ~ 0.8-0.9),
we approximate Eq. (6-32) as

~ 14 mg(vefe) ® 0.6 noTh? .

e

With ny = Mg ¥ 22 and T, = 15 keV, we find j/ﬁ ~ 50, which s
competitive with other drivers (somewhat less attractive than CAW, but
better than LH). In practical units it gives Ty +/Piop ™ 0.25 AM.
Again, because of the choice of phase velocities w/(k“ve) K1, the
majority of the resonant electrons are magnetically trapped. The
neoclassical effects discussed previously could substantially influence
the favorable efficiencies predicted here.

6.4.6 High-Phase-Velocity Magnetosonic Wave [71,88]

It is also possible to broadcast magnetoscnic waves (w > ;) at
high phase velocities w/(kvg) > 1. In this case, the long A, make it
appropriate to use waveguide couplers. Because of the high phase
velocities (w/k ve ~ 3-4), the neoclassical effects should not play a
significant role. The advantages and various applications of these
waves as a current driver are discussed in refs. [71,88].

The high-phase-velocity magnetosonic waves are also damped with
TIMP. Because the electron TTMP absorption process is weak at high
phase velocities (v,/vy > 1), the other damping mechanisms (i.e., ion
cyclotron harmonic damping) may compete with the weak electron damping,

tending to reduce the current drive efficiency. It is, however,
possible to avoid cyclotron harmonic damping in a D-T reactor if the

frequency is chosen to satisfy Ay o, <w <& . These
inequalities can be satisfied if the plasma aspect ratio exceeds
Ro/a ~ 5 [71]. Thus, this scheme favors large aspect ratio tokamaks.
By direct nature of the damping mechanism (TTMP), this scheme works
best in the dense, high-beta, high-T, plasmas (a regime where LH
current drive encounters its greatest difficulties). Current drive
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efficiencies achievable with this scheme are somewhat better than those
of LH waves (see Fig. 1.2).
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