e o

e eg

R
3 445, 0056279 0
DHENL/TH-2008

Evgluation of Fels
Detshase Products for the YA2AR

ORNL/TM-9696
Dist. Category U(C-20g

Fusion Energy Division

EVALUATION OF RELATIONAL DATABASE
PRODUCTS FOR THE VAX

K. L. Kannan

Computing and Telecommunications Division

Date Published - November 1985

NOTICE: This decument contains informsation of a preliminary nature. It is
subject to revision or correction and therefore does not represent a finalreport.

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY

A [

3 445k 005L279 O

The following are trademarks of Digital Equipment Corporation:
ACMS

CDD

DATATRIEVE

DEC

DECaet

rpr

Rdb/ELNM

Rdh/VMS

TDNS

VAX

VAX Information Architecture
VMS

The following are trademarks of Software House:
System 1032
“System 1022

The following are trademarks of Relational Technology Inc.:
INGRES

EQUEL

QUEL

CONTENTS

ACKNOWLEDGMENTS« « « o« « « o+« « v . .oy
ABSTRACT o v e e e e e e e s X
1. INTRODUCTION
2. PRODUCT DESCRIPTION
3. METHOD .
4. OPERATING ENVIRONMENT
5 PHASE 1
5.1. DATABASE DESIGN
5.2. DATABASE DEFINITION ANDSTORAGE 1o
521 INGRES « « . o o« .«10
LN 1 |+ O § |
523, 81032o o e e 0w e s s

0 G0 o~ Lt L0

5.2.4 Performanceand Size15

53. OPERATIONS« . .« W1
S PHASEIL« .« . .« 43
6.1 DATABASEDESIGN + « « v v v v e v oo 48
6.2. DATABASE DEFINITION AND STORAGE 44
6.5. OPERATIONS« + + v v v e e e e e ... 48
6.2.1. Selection and Projection -

632 Joins . 53

6.3.3. Maintenance Operations .. . v« < . . . b5

7. GENERAL OBSERVATIONS AND COMPARISON OF FEATURES 5

ACKNOWLEDGMENTS

With the increasing mumber of VAX processors and the proliferation of available products for
these machines, there is a great need for software evaluation. An active area of product development
mirroring consumer interest and need is database management. Database management systems
based on the relational data model are of particular interest because of their ease of use and simplicity
in database design. Even in this relatively new field there are a mumber of alternaiive products.

The Fusion Energy Division of Oak Ridge National Laboratory {(ORNL) encouraged and sup-
ported this evaluation of relational database products. It very generously made the necessary ma-
chine resources available as well as supported the investigation and the writing of this report.

Software was provided at little or no cost by the vendors: Digital Equipment Corporation
{Rdb), Relational Technology Inc. {INGRES), and Software House {S1032). They were responsive
and supportive throughout this study.

Phase I of the evaluation was a cooperative effort with Princeton Plasma Physics Laboratory
(PPPL). The author expresses appreciation to Dr. Stan Kaye of PPPL for the design of 2 magnetic
fusion energy database and operations pertinent to such data.

In the second phase of the evaluation, participation from Martin Marietta Energy Systems,
Tne. VAX users and personnel with interest in database management was invited, Jeri McNeany
and Jack Jomes of the Computing and Telecommumications Division and Ann Stewart of the Fusion
Energy Division contributed to the design of the Phase II test database and the development of a
battery of operations to use in the evaluation. I gratefully acknowledge the further participation of
Jeri MiNeany who translated the test operations into the proper svntax for both 31032 and S1022.

This project was initiated by Dr. W. R. Wing of the Fusion Energy Division. His suggestions,

ideas, and discussions were important contributions to this work. The author thanks him.

vit

ABSTRACT

Four commercially available database products for the VAX /VMS operating system were eval-
uated for relative performance and ease of use. The products were DATATRIEVE, INGRES, Rdb,
and $1032. Performance was measured in terms of elapsed time, CPU time, direct I/O counts,
buffered I/O counts, and page faults. Ease of use is more subjective and has not heen (uantified
here; however, discussion and tables of features as well as query syntax are included. This report
describes the enviroument in which these products were evaluated and the characteristics of the

databases used. All comparisons must be interpreted in the context of this setting,

ix

1. INTRODUCTION

This study was undertaken because of the increasing investment in VAX computers by Martin
Marietta Energy Systems, Inc., and the use of these computers for database asctivities. As in many
other product areas, there is a need for software evaluation. Even in the relatively new Held of
relational database management, lmited ftxﬁhcr for the VAX/VI‘VIS operating system, there are a
number of alternative products.

This report describes the evaluation of four commercially avsilable relational database products
for the VAX/VMS operating system. The study was not an exbaustive test of the products, but it
did exercise the relational operators SELECT, PROJECT, and JOIN and the relational capability of
dynamic restructuring. The work was not intended to be an avtempt to rank the products. Results
from an evaluation such as this are very dependent upon the version of the software used, database
design, technigue emploved, and operating environment. Accordingly, all of these factors will he
described in detail so that the results reported here may be usefid in predicting how each of the
products will perform with the reader’s data in the reader’s environment,

The products included in this investigation are DATATRIEVE, INGRES, Rdb/VMS(Rdb), and
System 1032 {S1032). Théy were evaluated for relative performance and ease of use. Performance
was measured in terms of elapsed time, CPU time, direct I/O counts, buffered I/0) counts, and page
fault counts,

Fase of use is more subjective, Among the things to consider are docuntentation, interactive
assistance, data manipulation language, programming language interface, technical support, and
special features such as interactive forms and graphics,

More important than the ease-of-use issue is ease of use with efficiency. BEach product included
in this investigation was judged easy o use. By using the vendor-provided learning tools, a person
without prior trainivg in the product could quickly and easily make use of the product. Judgments
of efficiency are based on tabulated performance figures and discussion of features and capabilities.

There were two phases to this study. Phase I was a cooperative effort with other Department of
Energy magnetic fusion energy laboratories in an attempt to determine what database management
system(s) would be most compatible with and useful in an experimental physics environment. Par-
ticnlar emphasis was placed on numerical data, host language interface, and performance. INGRES,
Rdb, and S1032 were included in this phase.

Phase II reflected the concern within Pnergy Systems with migration from the PDP-10 to
the VAX. Of primary interest was the accommodation of data and operations of the kind handled
by System 1022 (51022). Datasets from $1022 were used in the design of the Phase II database.

Operations were executed on the database in S1022 as well as in the VAX systems. In addition

1

2 Introduction

to INGRES, Rdb, and S1032, DATATRIEVE -a product ciirrently used on many Energy Systems’
VAXs—was included.

Section 2 of this report gives a brief description of the four database preducts. The technigue
employed in evaluating relative performauece is presented in Sect, 3. Section 4 contains a description
of the operating environment. Phase I database design, operations, and results are presented in
Sect. 5, and those of Phase 10, in Sect. 6. General observations and a comparison of features are
discussed in the final section.

There is currently much interest in the techniguie of benchmarking, with studies under way and
papers appearing in the literature. T have refrained from using the teria benchmark, which presumes
a standard; I know of no such measurement for relational database performance. Moreover, a better
indicator of the usefulness of database management systems is their performance of realistic functions

on an actual database; that is the basis of this study.

2. PRODUCT DESCRIPTION

Although the primary interest was in relational database management systems, this study
included S1032, which is relational-like rather than relational, and DATATRIEVE, which is not a
database management system but a query language and report generator with relational capabilities.
The other two products, INGRES and Rdb, are fully functional relational database management
systems.

It is important to note the version of each product since evaluation results are dependent
upon the software, are valid for one point in time, and can be expected to change with product

development. Results reported herein pertain to the following:

DATATRIEVE v3.0

INGRES v2.1
Rdb vip
51032 v3.0

DATATRIEVE, from DEC, is a component of the VAX Information Architecture with interfaces
to the other components. As stated above, it is not a datahase management system. It has no unique
Actess méthod but uses that of the interfacing system: Record Management Services {RMS), Rulb,
or DBMS, a CODASYL{Conference on Da,ta,'Systems Languages)-compliant database management
system by DECG. In Phase II of this evaluation, DATATRIEVE was used as the query language with
RMS indexed sequential access method {ISAM) files and with Rdb. In the following sections,
DATATRIEVE, when it appears alone, indicates use with RMS. Rdb is always specified when
discussion applies to it. ’

INGRES, from Relational Technology Inc., was developed as a research prototype at the Univer-
sity of California, Berkeley, in the early to mid-70s under TTNIX. It has been available for VMS since
1981. The INGRES system is written in C. It provides a layered architecture with the base layer
being the relational database management system and its language, QUEL. Upper layers consist of
several kinds of user interfaces: guery by forms, report by forms, graph by forms, and application
by forms. Four storage structures are available: Heap (sequential), ISAM, Hash, and with v3.0 {not
included in this study) B-tree, as well as the compressed form of each.

INGRES runs two processes that communicate entively through mailboxes, When INGRES s
mnvoked, a database is indicated and a backend process is spawned which couples with the database
and handles all the database access. INGRES accommodates multiple databases, but ondy one can
be accessed per INGRES process. There are no multiple database operations. This is not necessarily

a shorteoming because a database may contain several thousand relations. It does, however, require

3

4 Product Deseription

more centralized control or coordination: a database raust contain s}l information to be accessed in
COMMOL.

Rdb from DEC was annonnced in the spring of 1984 and was shipped in late summer/early fall
of 1684. It has full relational functionality, but to achieve the user inteiface capabilities of the other
systems, it is necessary to use the VAX Information Architecture (VIA) products: Common Data
Dictionary {CDD}, DATATRIEVE, TDMS for forms, and ACMS for application development. Rdb
is a component of VIA but can be used in a stand-alone mode without any of the other VIA products.
It is optimized for use with a host language rather than its own terminal interface operator RDO or
with DATATRIEVE. Two fle structures are available: sequential and B-tree. Its implementation
of B-tree indexing imposes no order on the data and inclades no concept of a primary or clustering
index.

In addition to being a member of the VIA product set, Rdb is also 2 comaponent of DEC’s
Standard Relational Interface {DSRI), which implies compatibility with a second family of prod-
ucts. Currently, the only other product is Rdb/ELN, a relatiopal database management system
for the ELN operating environment used primarily in real-time processing. There are projections
and conjectures of fsture DSRI products sich as database servers and database machines. DEC’s
commnitment to a standard relationsl interface ensures Rdb’s compatibility with any such products.

S$1032 has been available since early 1983 from Software House, the vendor of S1022. It is
not a VMS version of $1022 but is a unique product developed for VAX/VMS, written in iwacro
and making use of VMS features such as asynchronous I/O. S1032 does not adhere strictly to the
relational formula: arrays are allowed, all relational operators ars not implementad, and its command
language is dependent on database stricture, Using its procedural language, it is possible to affect
the missing join and project (implying uniGueness) operations. There are two file structures in
S1032: sequential and B-tree. As with Rdb, all B-tree indexes are created egual.

The above is a brief description of the products. More descriptive information appears in

Sects. 5, 6, and 7.

3. METHOD

The approach of this study was to base evaluation on expected use. Real data and database
operations pertinent to the testing environment were used.

Relational database systems elaim ease of use and good performance with minimal tuning. Con-
sequently, vendor-provided documentation served as the learning tool, and default system parameter
settings were used unless documentation speciﬁed otherwise. This approach may not yvield optimum
performance but that was not the goal of this study. The aim was to determine relative performance
for expected use.

The implementation plan for the evaluation was for a group effort in designing a database
and defining a battery of operations followed by each participant working independently with all
systems. Unfortunately, time constraints, priQrities, and work assiguments permitted only hmited
participation by other members of the group.

The set of operations began with defining and loading the database and continued tlrough
the exercise of all relational operations. Database design incorporated all common VMS datatypes,
records of different sizes, and relations with different numbers of records. Operations were run
numerous times under controlled conditions, with the average of the three best trials being the
result recorded. Performance measurements were obtained using VAX Run-Time Library (RTL)
procedures arcessed through the RTL interface provided by the database systems. Results are those
obtained in a single-user environment. A Digital Equipment Corporation (DEC) product, VAX-11
SPM, System Performance Mbonitor, sampled the system and recorded system resosurce mtilization
during all tests. SPM reports were used in the interpretasion of performance figures. Operations
were alzo repeatedly run in a multiuser environment with the machine devoted to mudtiple processes
all doing database operations in one database system with SPM monitoring the system.

The performance in a multiuser environment varied greatly depending on the type of operation,
whether CPU- or I/O-tutensive. The measurement affected was the elapsed time; all other perfor-
mance measurements remained essentially the same as in the single-user mode. For CPU-Iniensive
operations and five users of different databases or different operations with the same database,
respouse time was seen to increase by approximately 300%. This was true for all four systems
evaluated. For I/O-intensive operations, the inerease in response time, although less, was still quite
significant: 100--200% for five users of different databases or the same database but different opera-
tions. When all processes were executing the same type of operation, each process got approximately
the same proportion of the CPU. The relative positions in performance ranking established in the
single process tests were maintained in the mndtiuser tests.

To determine the irapact of these database products on other processes, a CPU-intensive job

of known activity was run while database operations were being executed. Again, the result was

5

6 Method

dependent on the tvpe of database operation. Similar results were found for all four systems eval-
uated. Against one database process, CPU usage by the competing process for a fixed time was
reduced by 500 for high I/O operations. With five database processes executing, the CPU usage

for the competing process was reduced by 85-88%.

4. OPERATING ENVIRONMENT

The operating environment is an important consideration in performance. One cannot expect
the same performance when the products are tested on a VAX 11/730 with two megabytes of memory
and a VAX 11/780 with cight megabytes or when the working set size is 150 pages versus one of
1024 pages.

Figure 4.1 shows the operating environment of this study.

...

VAX 11/780 with seven megabytes of memory
VMS v3.7
RP07 disk drive

User quotas

PRCLM 3 WEQUOTA 400*
ASTLIM 20 WSEXTENT 1024*
ENQLM 600* BIOLM i
TQELM 10 DIOLM 6
BYTLM 24486 FILLM 50*
PBYTLM 0 SHRFILLM 0
WSDEFAULT 400* PGFLQUOTA 10000

* Increased from system default settings

Fig. 4.1. Operaiing enviromment for testing database products.

...

The user guotas are not necessarily the optimal settings. They are the ones recommended in
products’ documentation. In the case of working set size, it may be advisable to set WSQUOTA
slightly higher {512). Because of the controlled conditions of this study, the database process was
always able to get a working set size of 1024 pages (WSEXTENT).

The four systems were simple to install using the VMSINSTAL procedure, Docomentation
adequately specified global section, global page, and other VMS systemn parameter requirements.
With each database system, there were a number of special parameters; these were given the default

settings recommended in the documentation.

5. PHASE 1

Prior to this study, a database commitiee with members fron the Department of Energy mag-
netic fusion energy laboratories had decided to integrate relational database technology into their
data acquisition and analysis, functions being done more and more on VAXs. For fairly obvious rea-
sons, such as similarity of environmens, sharing of codes, personnel, and data, it was hoped that a
cominon system woidd be used at the laboratories. With the special constraints and general reguice-
ments of this nser group in mind, an evaluation of three systems, INGRES, Rdb, and 51032, was
underiaken. These systems were selected because of their functionality, availability for evaluation,

and compatibility with user experience and exisiing software.

5.1. DATABASE DESIGN

For this phase of the evaluation, a Magnetic Fusion Energy (MFE) database was designed and
a set of 16 representative gueries defined. The database desien is seen in Fig, 5.1.

To determine the impact of database size on performance, the test operations were run on the
MFE database at three different sizes represemring common database usage. Figure 5.2 shows the
number of records per relation.

Data, both real and generated, were loaded froms VAX RMS files. The procedure and syntax for

defining and loading the MAGSET relation in the three database management systems are discussed

in the sections that follow,

...

MFE Database

Relation 1: 26 fields

SUMSET 3 character (Bytes: 4, 8, 100)
9 integer

14 Hoating point
3 indexes
2 imteger

1 Hoating point

Relation 2: 21 fields

NBISET 2 character {Bytes: 4, 4)
10 nteger
8 floating point

2 indexes {integer)

Relation 3: O fields
MAGSET { integer
8 Hoating point

1 index (integer)

Fig. 5.1. Database design for MFE.

...

10 Phase I

...

Number of Records
SUNMSET NBISET MAGSET TOTAL

1 827 676 827 2330
2 8270 6760 8270 23300
3 33080 27040 33080 93200

Fig. 5.2. MFE database size.

5.2. DATABASE DEFINITION AND STORAGE

5.2.1. INGRES

Before using INGRES, a VAX user miist be made an authorized INGRES user by the INGRES
system manager or database administrator using the INGRES utility ACCESSDDB. This illustrates
the point made earlier of central control in INGRES. It is also necessary for a special INGRES
account to be created on all devices on which INGRES databases will reside. Databases are stored
in subdirectories in the INGRES.DATA directory, not in users’ areas.

Prior to inveking INGRES, a user must run the INGRES utility procedure CREATEDB. This
is executed at VMS monitor level. The name of a new datahase is the only input. CREATEDB
creates a directory in INGRES.DATA containing 19 files that are INGRES relations and will contain
database metadata comprising the data dictionary for INGRES. Figure 5.3 is a directory of the area
resulting from “CREATEDB MFE.” Data are later stored in this same area, one file per relation,

Figure 5.4 is a listing of the command file used in defining and loading the MAGSET relation.
The “copy” cominand enables INGRES to interface with VAX RMS. With “copy,” it is possible to
move data from an RMS file into an INGRES relation and also to move data to an RMS file from
an INGRES relation. To copy data from an RMS file, the file must be one of the following types:
{1) variable length with carriage return, or (2} fixed length with no carriage control. If not of a

correct type, the RMS CONVERT wutility can be used to convert the file.

INGRES documentation recommends that data be loaded into a relation with sequential or heap
structure. The relation may subsequently be modified to alternative structures with the “modify”
command. Figure 5.4 shows that MAGSET’s structure was modified from heap to ISAM, resulting
in ordering of MAGSET on the integer fiekd SHOTNUM, the primary index.

...

Directory SYS$SYSDEVICE:[INGRES.DATA.MFE]

ABFAPPL.KK;1 12 9-APR-1985 14:17
ABFOBJS KK;1 12 9-APR-1985 14:17
ADMIN21.:1 8 0-APR-1985 14:17
ATTRIBUTE KK;1 52 9-APR-1085 14:17
FDFIELDS.KI;1 4 9-APR-1985 14:17
FDFRAMES KK;1 28 9-APR-1085 14:17
FDTRIMKK;1 4 9-APR-1985 14:17
GCOMMANDS.KK:1 4 9-APR-1985 14:17

RAPHS KK;1 23 9-APR-1985 14:17
INDEXES KK;1 20 9-APR-19085 14:17
INTEGRITLKK;1 28 G-APR-1985 14:17
PROTECTKK;1 28 9-APR-1085 14:17
QBFMAPKK;1 12 9-APR-19085 14:17
RCOMMANDS KK;1 4 0-APR-1085 14:17
RELATION KK;1 28 9-APR-1085 14:17
REPORTS KK;1 12 0-APR-1985 14:17
TREE.KK;1 28 0-APR-1085 14:17
ZOPTISTAT KK;1 20 9-APR-1085 14:17
ZOPT2STAT KK;1 20 9-APE-1985 14:17

Total of 19 files, 362 blocks.

Fig. 5.3. CREATEDB MFE direciory.

...

5.2.2. Rdb

In Rdb, all database definition must be done through Rdb’s 'mteractive utility proredure, Rela-
tional Database Operator {(RDO). A command file of RDO commands for defining MAGSET is seen
in Fig. 5.5. Since default settings were taken, the three tuning parameters which may be specified
in database definition are not shown. The parameters——number of buffers [20], buffer size [3 pages],
and page size |2 blocks]—determine the physical storage of the database file. The user is advised
to take the default values except In cases such as a record too large for a page or usage dominated

by a particular type of transaction. In the latter case, the bulfer parameters can be modified for

12 Phasge I

..

%2 createdh mfe

$ ingres wmfe
\# Defining Relation 3, MAGSEY, in database ¥FE %\

ciraate magaet (shotnum=i4, lawbda~fl, lihaf=f4d,
hetpdi=f4, bhehpeqsf4, bettdi~fé,
getbegsi4, tanedi=fl, tauseq~fd)

\e
\# Storing data in Belation 3 from an RHS file s\

cepy magest (sholnum=c13, lambda=clf, lihaf=c1g,
betpdi=cif, detpeg=cif, betidircld,
bettegucif, taunedizclf, tauneegm=clP) from

"gysSuserc: [kannan.datalmageetd . dat”

\e

medify magset §o isam on shotnum
\g
\a

fenit

Fig. 5.4 Cormend fle to define and load MAGSET in INGRES,

..

performance tuning. Some varying of parameter settings was done during this evaluation, and an
effect on performance was clearly seen. Increasing the number of buffers and deereasing the buffer
size improved random selection, while increasing buffer size and decreasing the mumber of buffers

gave improved performance for projection.

In Rdb, as in INGRES, it is generally preferable to store data into a sequential file and later
impose an alternative structure. This was done for all relations except MAGSET, where cnly one

index was used. By doing the loading and indexing both ways (loading with indexing and loading

Phage T 13

..

$rdo
define database "sys$aysdvice: [rab.tokamak]mfe"
in cdd$top.mfe.

define relation magset.
shotnum datatype is signed longword.
lambda datatype is f.floating.
libaf datatype ie f floating.
betpdi datatype is f floating.
betpeq datatype is f flcating.
bettdi dabatype is ¥ floating.
betteq datatype is £ floabing.
Sauedi datatype is f_ floabing.
taneeq datatype is f floating.

end magaet relation.

! IHDEX for NAGSET

define index magsel shotnum for magsek

duplicates are allowed.

shotnum.

end magset shotnum index.

cormit

exik

$exit

Fig. 5.5. BRDO commands for defining MAGSET.

into a sequential file and then defining the index), it was seen that for MAGSET there was little
difference in system usage.

During database definition, two files are created: MFE.Rdb {890 blocks) and MFE.SNP (202
blocks). The file with extension Rdhb contains the database which comsists of one relation for each
user-defined relation and ten Rdb-defined relations comprising Rdb’s data dictionary. Before any:
user data are loaded, the database occupies 890 blocks; this is Rdb overhead and in some cases may,

be much larger than the actual data.

14 Phase I

The SNP file 15 a snapshot file used 1o READ ONLY tramsactions. If such transactions ars

large, this file may grow to thousands of blocks; and although the space is reused during subsequent

transactions, it is not released.

The RDO command ANALYZE is used to examine the database, Figures 5.6 and 5.7, displays
produced by the ANALYZE command, show information about MFE.Rdb after database definition

and hefore storing user data.

Record Name

MAGSET
RDBDECONSTRAINTS
ROBECONSTRAINT_RELATIONS
ROEFDATABASE

RDEBF IELDS
RDOBSFIELD_VERSIONS
RDEFINDEX_SEGMENTS
RDBSINDICES
RDBBRELATIONS
RDBLRELATION_FIELDS
RDBSVIEW_RELATIONS

Space utilization analysis -
261 data pages. each page
Available data storage area

is

-- Xused --- #data pages

95 ~183%

8¢ - 96% 66 | =

78 - 89% 34 i=

6 ~ TU% 2 1=

58 - 69% 4 ==

43 - 58% 11

3 - Ag% A3 j========o==s=

28 - 38% g 1

19 - 24% g 1

g - 18% 48 j==omwczsmmos
¥Fig.

Cccurrences

54
7]

completed at 31-MAY-198%
is 2 blocks long
78 percent

Bytes Used

utilized

66 |s====z===== mmTzEmmsmsSomo=ae ammom==

451

17:12:58.2

o

-,

¥ Z

% Total Used
Frag Space Space
jof “x o
bod o 2}

g g 24

& 11 17

o 7Z 69
19 58 7Y

a 2 32

g 2 32

] 17 25

g 34 23

g jol J5i

In addition to the data dictionary within the Rdb database, metadata will also be stored in the
Common Data Dictionary (CDD) if it is present on the VAX. The CDD is updated automatically

upon initial database definition. In subsequent database usage, defimition wodifications are made

Phase I 15

in the CDD only if the database is invoked with the CDD path specified. Care must be taken or
inconsistencies may oceur between data in the CDD and metadata within the Bdb database.

Defining roust be done through RDO, but storage of data from BMS files imto Ridb databases
vammot be accomplished using RDO. RDO has no user inferface with RMS; to read from or write to
RNMS files, either a host language program or DATATRIEVE must be used. At the time of Phase I,
DATATRIEVE v3.0 (which interfares with Rdb) was not available, so data were stored using Rdb
from FORTRAN.

Using Rdb with a bost language was quite easy. With few exceptions, the syntax is the saine as
that of RDO. The commands are embedded in the host language code with the addition of the Rdb
statement flag, &Rdb&, in columns 1 through 5. {More discussion of the host langnage interface is
found in Sect. 7.] Figure 5.8 is a listing of a portion of the FORTRAN program used in loading the
relation MAGSET,

Use of a context variable may be unfamiliar to the reader. “M m the STORE statement is an
example of a context variable. Its use clearly indicates the relation to which a field beinngs. Context
variables may be used in DATATRIEVE and 51032 and on occasion are necessary in those systems,

Such variables are required in the data manipulation language of both INGRES and Rdb.

5.2.3. 81032

The command file shown in Fig. 5.9 was used in defining and loading MAGSET in 51032,
File MFE.DMB was created. For the version {3.0] of S1032 used in this study, it is as efficient in
subsequent database usage for datasets to be defined separately, creating DMS files, as it is for all

relations to be stored as a database in one DMB file.

81032 is the only system with the recommendation to index while loading. It is somewhat more
efficient to index (key) at load time than to store data into a sequential file and then index. In
generating, maintaining, and using $1032, indexes were found o be very efficient.

The imteractive LOAD command is the most efficient way to read data from an RMS file
and store them in an S1032 dataset. The format of the data in an RMS file is described in a
record descriptor using either the ATTRIBUTE or the RD command. As seen in Fig. 5.9, internal
and external data formats can be described in the ATTRIBUTE command. There are oecasions,

however, when the RD command, which provides more flexibility, must be used.

5.2.4. Performance and Size

Table 5.1 shows the system usage statistics for defining and loading the MAGSET relation
consisting of 827 records in the three database systems. The same relative performance was seen
with the other two relations and with the larger MFE databases; $1052 did the task i 15-209% less

time.

16 Phase I

...

intagerd shojnum

real#d lambda, lihaf betpdi,bebpeq,bettdi . betteqg,tanedi, baveeq
&Rdb% IFVOEE DATABASE FILENANE “rdb§dp™

opan(unit=18, file='sysfuserc: [kannan.datalmegset. . dat’,

1 sbatua="o0ld’ ,err=0691)
&0dbg START TRANSACTION READ.WRITE RESERVING HMAGSET FOR EACLUSIVE WRITE
184 continus

read {19, 158, err=50092, end=2000) shotnum, lambda , 1ihaf, betpdi,
1 betpeqg, bettdi bakteq, tausedi, Yaneaqg
158 format (i13,8(118.8))

&Bdb& STORE M IN MAGSET USING

#Rdb& O ERROR

goe to 9883
ERdb& END_ERROR
&Rdbs M. SHOTNUH=shotnum;
£RdAbE H.LANBDA=lambda ;
ARdb& ¥.LIHAF=1ihaf ;
$RdADY ¥.BEYPDI=betpdi;
&Rdbd H.BETPEG=betpeg;
£Rdb& M.BETIDI=bettdi;
&RdbX M.BETIEG=betteq;
&RdbA M. TAUED I=tauedi ;
§Rdbk M. TAUBE(=taueeq;

&Rdb& END_STORE
go %o 1§42

ofgdd conbinue

%

&Rdbk CONMIT

Fig. 5.8. Partial listing of FORTRAN program used to load MAGSET in Rdb.

...

Phuase T 17

...

$!
$0if33

create database mfe oubtput sys$sysdevice: [rdb.s1832]mfe
database mfe

dataset magseb

attribute shotnum or san integer keved length 13
attribute lambda or lam real length ip
attribute lihaf real length 1f
attribute betpdi real length 1if
attribute betpeq real length 1f
attribute betbtdi real length if
attribute betteq real length 18
attribute fauvedi real length 1§
attribute’taueeq real length 1P

end datases

end database

ioad magset data.input sys$userc:[kannan.datalmagset.dat

Fig. 5.9. Command file to define and load MAGSET in 51052.

...

As seen in Table 5.2, 81032 databases are the smallest of the three. This advantage decreases
with increasing database size. The larger data dictionary overhead assoclated with INGRES and

Rdb databases is fixed to a certain extent, thus becoming less significant with larger databases,

5.3. OPERATIONS

In selecting the operations to use with the MFE database, relational operators were tested on
experimental data. The selected 16 operations comprising Phase I performance evaluation appear
on the following pages. Operations are described, syntax for each system given, and performance
measurements for each of the three databases tabulated. Numbers 1, 2, and 3 in the following tables
refer to the databases of 2,330, 23,300, and 93,200 records, respectively.

18 Phase I

Table 5.1. Loading and Indexing MAGEET relation
(827 records, 1 index)

Time® Counts
System Elapsed CPU Buf I/O Dir I/O Page flts
INGRES :18 :16 182 162 785
Rdb :18 :16 3 112 166
S1032 :16 :13 45 5T 362

" Here and in the following tables, tiine is expressed in the format hhamuss with leading zeroes omitted. Fractions
of seconds are given when the measured time is less than one second.

Table 5.2. Space usage of the MFE Jdstabase

Database size
{disk blocks)

System 2330 23300 93200
INGRES 1000 6428 24432
Rdb 1682 8222 20824
S1032 696 5460 21852

The syntax shown is for interactive retrieval to the terminal {SYS$OUTPUT). The performance

figures for operations which retrieve a large number of records are for cutput to an RMS sequential

disk file.

Operations for S1032 were run from command procedures coptaining $1052 interactive com-
mands. INGRES operations also were executed from command procedures of interactive commands;
however, statistics ohtained referred only to the INGRES backend process. Even though the back-
end process accounts for most of the resource usage, collecting total usage data required embedding
the commands in a host language and using system service routines to gather statistics on both
processes. The tahulated numbers for INGRES are the total for both processes and are for use
of INGRES from FORTRAN. The large buffered I/O counts are incurred because of data being
passed by mailbox from the INGRES backend process to the FORTRAN program. Displaying data
during an interactive INGRES session uses the same mechanism. Retrieving into another relation
requires no transfer of data between the two INGRES processes; neither does the interactive reading

or writing of an RMS file. For such operations, buffered I/O is negligible.

Phase I 19

Al operations were expressed in RDO svmtax and run, but RDO is not a practical tool for
evaluating performance. Within RDO, the only way to determine system usage Is with control-T.
Because there is no RMS interface, all output must be to the terminal or into a relation. After
testing with RbO, the commands were embedded in a2 FORTRAN program and all performance
measurements obtained from execution of the program.

For the most part, the following query syntax and tabulated performance statistics require no
explanation. Comments are included as footnotes where clarification is needed. Tabulated data
show the relative performance of the three systems and the relationship of performance to database
size within a system. As expected, an increase in database size results in a corresponding increase
in response time (and CPU time). However, in most cases the ratio of response times was somewhat
less than the ratio of numbers of records in the database. There was no significant difference among
the three products in this respect.

Overall, Bdb exhibited the best performance. For operations on one relation, all three systems
were comparable. In the case of global aggregate operations (9, 10, 11}, 51032 did better than
Rdb, which in turn perfarmed much better than INGRES. Operations 8, 12, 14, 15, 16 test the
join operation capability. Because 81032 does not yet support a join operation, its performance was
significantly poorer than INGRES and Rdb. Figure 5.10 graphically ifllustrates these results for the
database of 93,200 records.

20 Phage I

OPERATION 1

An operation on one relation
Selecting (projecting) three fields from whole relation

INGRES: range of s is sumset?
retrieve {s.shotmum, s.ip, s.pheat)

\&

Rdb: for s in sumset
print s.shotoum, s.ip, s.pheat

end for

S1032: set suinset
find all

print shotnuroe, ip, pheat

Time Counts

Elapsed CPU Buf I/O Dir I/O Page flts

INGRES 1 07 :06 195 a6 260
2 1:01 :65 1882 089 354

3 4:22 3:42 7505 3848 348

Rdb 1 08 :06 9 90 527
2 1:02 51 14 755 513

3 4:05 3:24 35 2063 507

S1032 1 :10 :08 4 127 145
2 1:23 1:12 13 1226 166

3 5:26 4:44 40 4893 143

%“Range” statements meed to be miade only once per INGRES session and not with each quexy as shown here for

clarity.

Phase I 21

OPERATION 2

{Same as Operation 1 except selecting 17% of the records)

An operation on oune relation

Selecting three fields from 17% of the records based on an
indexed field

INGRES: range of s is sumset
retrieve {s.shotnum, s.ip, s.pheat) where s.nbeams=1
\g

Rdb: for s in sumset with s.nbeams=1

print s.shotnum, s.ip, s.pheat

end. for

S1032: set sumset
find obeams eq 1

print, shotoum, ip, pheat

Tie Counts

Flapsed CPU Buf i / O Dir] / O _}:"‘g_gﬁfyis'

INGRES 1 03 :02 44 54 419
2 46 :14 327 434 436

3 59 :h3 1272 1766 444

Rdb i 02 01 i 47 21
2 15 10 2 382 71

3 1:03 42 5 1852 36

51032 1 02 D2 4 52 K
2 20 :16 5 478 75

3 1:19 :58 10 16G0 89

22 Phase [

CPERATION 3

(Same as Operation 1 except selecting 83% of the records)

An operation cn one relation

Selecting three fields from 83% of the records based on an
indexed field

INGRES: range of s is sumset

retrieve {s.shotnum, s.ip, s.pheat) where s.nbeams =1

\g

Rdbh: for s in sumset with s.nbeams { }1
print s.shotnum, s.ip, s.pheat

end for

$1032: set sumset
d nbeams ne 1

priot shetoom, ip, pheat

Time Counts

Elapsed CPU BufI/O Dir I/O Page flis

INGRES 1 06 05 163 08 424
2 57 52 1566 050 404

3 4:59 3:30 6246 3819 402

Rdb 1 05 04 1 75 15
2 85 145 6 732 16

3 3:40 3:01 24 2019 17

51032 1 :08 07 4 119 18
2 1:13 1:01 11 1178 18

3 4:48 4:03 34 4704 32

Phase I 23

OPERATION 4

An operation on oue relation
Minimum of an indexed field®

INGRES: range of s is sumset
retrieve (minip=min{s.ip))

\g

Rdb: print min s.ip of s in sumset
Alternative syntax (1): print min s.ip of 5 in sumset with sip > 0
Alternative syntax (2): for first 1 s in sumset sorted by sip
print sip
end for
S1032: set sumset
find all
sort ip
getrecord print $min(ip)
print ip

9 All systems have the five aggregate functions: mininmm, maxirmum, average, total, and count. Af this point in their
development, it appears that indexes are npot used efficiently with aggregate functions. With Rdb and 51632, the
examples below show that performance improves with alternative syntax.

24 Phase I

INGRES 1

Rdb 1
1{1
117

20
21)

3a
3b

51032 1
1C

2(‘

3C

“Use of alternative syntax (1).
bUse of alternative syotax (2).

“Use of aggregate function $min.

Time Counts
Elapsad CPU Buf 1/0 Dir 1/O Page flts
:02 :02 7 93 427
:18 112 7 917 426
1:11 49 7 3677 426
:02 :01 0 70 12
:00.7 :00.5 0 16 10
:00.03 :00.03 0 0 7
:25 112 0 697 18
:03 :03 0 47 18
:00.08 :00.04 0 2 10
1:39 49 0 2776 15
11 :09 0 122 53
:00.1 :00.06 0 3 11
:01 :01 3 12 41
:06 05 0 112 16
:02 :02 3 34 77
67 :39 0 1095 10
:08 07 3 118 319
3:46 2:37 0 4377 12

Phase T 25
OPERATION 5

An operation on one relation
Minimum of an indexed field over 17% of the relation
selected on an indexed field

INGRES: range of s is sumset

retrieve (minip=min (sip where subeams=1))

\e

Radb: print min s.ip of s in sumset with s.nbeams=1

$1032: set sumset,

find nheams eq 1

sort ip
getrecord print $min(ip)
print ip
Time Counts
Elapsed CPU Buf 1I/O Dir I/D Page fits
INGRES 1 02 101 11 50 453
2 :11 06 1 422 451
3 43 23 11 - 1734 453
Rdb 1 :01 0.4 0 46 9
:08 :03 0 374 11
134 :15 0 1623 10
51032 1 :01 01 3 1 11
1¢ 02 01 1 35 112
2 03 02 3 34 19
2@ :15 110 1 451 4]
3 :08 06 3 117 43
3= 1:04 37 1 1782 52

Use of aggregate function $min.

26 Phase I

OPERATION 6

An operation on one relation

Minimum of an indexed field over 83% of the relation

selected on an indexed field

INGRES: range of s is sumset

retrieve (minip=min(s.ip where s.nbheams !==1})

\&

Rdb: print min s.ip of s in sumset with s.nbeams { }1

S1032: set sumset
find nbeams ne 1

sort ip
getrecord print $min(ip)
priot ip
Time Counts
Elapsed CPU Buf I/O Dir 1/O Page flts
INGRES 1 :04 02 93 441
2 32 :16 916 433
3 2:08 1:03 3677 439
Rdb 1 :03 :01 0 T2 6
2 125 :13 0 598 7
3 1:39 :51 0 27T 7
S1032 1 :01 :01 3 1 4
1¢ :0b 04 1 110 2
2 103 02 3 34 50
20 149 135 1 1069 4
3 :09 07 3 118 133
3¢ 3:16 2:19 1 4271 8

%Use of aggregate function $min.

Phase I 27

OPERATION 7

An operation on one relation
Complex aggregate

INGRIES: range of s is sumset
retrieve (minip=min(s.ip where s.ip > avg({s.ip})

\g

Rdb: print min sip of s in sumset with s.ip > average su.ip of su in sumset
Alternative syntax: print min sip of s in sumset with s.ip > 0 and s.ip > average su.ip

of su in sumset with suip > 0

S1032: set sumset
find all
variable x real
let x=$ave(ip)
find ip gt x
sort ip
getrecord print $min(ip)

print ip

28 Phase I

INGRES 1

idb 1

51032 1

AUse of altermative giery syntax.

bUse of aggregate function $min.

Time Counts

Elapsed CPU Buf 1/0 Dir I/O Page flts
05 03 7 177 443
46 27 7 1823 442
3:03 1:48 7 7345 441
:05 :03 0 140 12
01 :01 0 16 12
:50 :25 0 1394 18
:07 :06 0 05 18
3:18 1:45 0 5553 13
124 21 0 244 13
:05 04 3 113 63
:08 06 1 188 116
143 :31 3 1129 63
1:11 :50 1 1868 306
2:49 2:03 3 4552 254
4:39 3:18 1 7519 415

INGRES:

Rdb:

S1032:¢

OPERATION 8

A join of two relations on an indexed feld
Selecting (projecting) one field from each relation

range of s iy sumset
range of n is nbiset

retrieve (s.shotnum, n.nbeams) where s.shotnum=n.shotnum

\g

for s in sumset cross n in nhiset gver shotnum
print s.shotnum, n.ubeams

end for

set suinset
find all
for each record do
map to nbiset via shotnum
for each record do
write sumset.shotnum, nhiset nbeams
end _for

end for

Phase T

29

%The print command in 31032 (v2.0) can be used only with fields from one relation. To output fields from different
relations, “WRITE” nmst he nsed in single record mode.

30 Phase I

INGRES

Rdb

51032

Time
Flapsed CPU
:00 07
1:25 1:11
6:26 5:28
:05 04
AT 42
3:27 2:49
152 A7
10:03 9:22
38:32 34:41

Counts
BuwfI/O Dir I/O Page fits
105 130 831
942 1227 1295
3764 4974 1697
1 50 110
4 267 760
24 1068 6201
2 170 185
7 1644 170
21 6590 205

Fhase I 31

OPERATION 9

A global aggregate®
Selecting 17% of relation 1 hased on an indexed field
An aggregate function on relation 2

INGRES: range of s is sumset
range of n is nbiset

retrieve (mum=count {s.shotnum where s.shotnum=n.shotnum and n.nbeams=1}}

\g

Rdb: print count of s in sumset cross n in nbiset over shotpum with n.beams=1

51032: set nbiset
find nbeams eq 1
map to sumset via shotnum

print $count

Time Counts
Elapsed CPU Buf I/O Dir I/O Page fts
INGRES 1 06 :04 19 95 1029
2 :40 128 19 688 1047
3 2:45 1:48 20 2620 1099
Rdb 1 01 :01 0 5 1
2 :13 :10 0 211 181
3 132 :30 0 921 149
S1032 1 02 :01 0 18 54
:08 07 0 234 218
3 230 126 0 974 09

%4Global aggregate” refers to the evaluation of an aggregate or statistical function on records in one relation grouped
according to a field in another relation. If is implemented in very different ways in these products: INGRES first
forms a cartesian product of the two relations; Rdb uses nested loops; and S1032 here uses only indexes.

32 Phase I

OPERATION 10

A global aggregate

Selecting 83% of relation 1 based on an indexed field
An aggregate funciion on relation 2

INGRES: range of s is sumset

range of n is nhiset

retrieve (num=count (s.shotmum where s.shotnum=n shotuinmn and n.beams '=1})

\e

Rdb: print count of s in sumset cross n in ubiset over shotnum with n.nheams {) 1

S1032: set nbiset
iind nbeams ne 1
map to sumset via shotnim

print $count

Time Counts

Elapsed Cru Buf I/O Dir I/O Page fits

INGRES 1 :10 :07 17 145 938
2 1:34 1:16 32 1288 1591

3 8:36 5:15 64 5142 2302

Rdb 1 02 :02 0 37 17
2 21 117 0 235 620

3 1:38 1:12 & 063 4676

S$1032 1 61 :01 0 7 19
2 :10 10 0 137 23

3 51 39 0 H44 24

Phase T 33
OPERATION 11

A glohbal aggregate
Selecting 40% of relation 1 based wn an indexed field
Au aggregate function on relation 2

INGRES: range of s is sumset
range of n is nbiset

retrieve {num=count (n.shotnum where n.shotoum=s.shotmum and sip >=200.0 and s.ip <=300.0)]

\&

Rdb: print count of m in nhiset cross s in sumset over shotnnum with s.ip between 200.0 and 300.0

S1032: set sumset
find ip between 200.0 and 300.0
map to nbiset via shotnum

print $eonnt

Time Counts

Elapsed CPU BufI/O Dir 1/O Page fits

INGRES 1 :00 06 17 147 937
2 1:15 1565 18 1246 1543

3 5:18 3:59 54 5018 2302

Radb 1 :06 03 0 203 24
2 1:17 223 9 3162 276

3 5:30 2:00 10 13313 527

51032 i 02 02 0 19 13
2 :15 :14 0 253 20

1.00 :56 0 1040 69

34 DPhasel

OPERATION 12

A join of two relations on an indexed field
Selecting 40% of relation 1 based an an indexed ficld
Selecting (projecting) one field from each relation

INGRES: range of s is suraset
range of n is nhiset

retrieve (n.shotnum, sip) where n.shotnum=s.shotnum and s.ip >= 200.0 and s.ip <= 300.0

\g

Rdb: for 5 in sumset eross n in nbiset over shotnum with s.ip between 200.0 and 300.0
print n.shotmum, s.ip

end for

51032: set sumset
find ip between 200.0 and 300.0
for each record do
map to nbiset via shotnum
for each record do
write nbiset.shotuam,ip
end _for

end _for

INGRES

Rdb

51032

[y

Phase T

Time Counts
Elapsed CPU Buf I/O Dir I/O Page flis
08 :06 55 128 656
1:15 :55 458 1214 1033
5:22 4:04 1797 4017 1989
07 04 1 202 71
1:28 40 11 3171 244
6:13 2:42 17 13353 117
123 :20 2 i21 45
4:27 3:68 3 1266 58
17:18 14:35 10 5072 &9

35

36 Phase I

OPERATION 13

A global aggregate®

Project on an indexed field

Aggregate function on relation 2

INGRES: range of s is sumset

range of n is nbiset

retrieve (n.nbeams, pum==count{s.shotmun by n.nbeams

where s.shotnum=n.shotnum))

\e

Rdb: for n in nbiset reduced to n.nbeams

print n.nbeams, count of s in sumset with snbeams=n.nbeams

end for

$1032: set nbiser
find all
mayp to siumset via shotnum

values nbeams

Time

Elapsed CPU

INGRES 1 :19 :13
2 2:40 2:11

3 10:23 8:43

Rdb 1 01 01
2 :08 07

3 :36 :33

$1032 1 02 :01
2 112 11

3 55 42

%Recause of the content of this database, the join may be ou either field shotnum or nbeains.

Counts
Buf I/O Dir I/O Page fits
38 231 1264
79 1870 2316
118 7259 3417
0 15 17
0 34 131
0 194 12
0 16 29
0 240 55
0 1000 192

Phase T

OPERATION 14

A join of all three relations in the database
Selecting 209 of relation 1 based on an indexed field
Selecting {projecting] fields from relations 2 and 3

INGRES: range of 5 is sumset
range of n is nbiset
range of m is magset
retrieve (s.shotnum, m.lambda) where s.shotnum=n shotnum

and s.shotnum=m shotnum and nnbeams=1

\z

Radb: for n in nhiset cross s in sumset cross m in magset
with s.shotnum=n.shotnum and s.shotnum=m shotnum
and n.abeams=1
print s.shotomm, mambda
end for

S1032: set nbiset
find nheams eq 1
map to sumset via shotpum
for each record do
map to magset via shotnum
for each record do
write sumset.shotnum, lambda
end_for
end for

37

38 Phasel

INGRES

Rdb

51032

P Y - I N o & N

w0

Time Counts

Elapsed CPU Buf1/O Dir T/O Page fits
:08 :06 36 04 680
1:04 :51 239 835 743
3:32 2:34 856 3346 1014
:03 102 1 46 263
:33 24 1 403 2399
1:35 1:23 4 862 3385
:16 :12 2 104 53
3:18 2:42 2 1167 79
8:28 6:43 5 4010 192

NGRES

Rdb

51032

{Same as Operation 14 except 4 times the number of

n

L]

N)

o0

OPERATION 15

records.)

Tie
Flapsed 1§15aV)
:12 10
1:58 1:38
8:37 721
RE 5
1:30 &2
4:13 326
142 3T
T:40 8:57
28:22 20:54

Fagee I

Counts
Buf I/O Dir /O Page fits
106 142 604
936 1438 1585
3599 5799 3045
1 81 48
4 &22 260
22 2008 4471
68 28
5 1625 0
17 6541 168

3

Lol

9

(e

FPhase [

OPERATION 16

A join of all thyee velations
Selecting 409 of relation 1 based on an indexed fie
Selecting {projecting) fields from relations 2 and 3

1d

and s.ip

I
4

>z 200.0 and s.ip <= 300.0

Rdh: for s in sumset cress nin nbiset ¢ross m in magsed
with s.ip hetween 200.0 and 300.0
and n.shotnam=—ni.shotniin and s.shotnum=—n.shotnum
prist n.shotnam. mlaiabda

end_for

S1032: sel sumset,
find ip between 200.0 and 300.0
sap to nbiset via shotnum
for each record do
map to masgset via shotuum
for each record do
write nbiset.shotnum, lambda
end for

end _for

Phase I 41

Time Clonmnts

Elapsed Py Buf 1/O Dir 1/0 Page fts

TCRES 1 :12 _LY a4 152 135
Z 157 1:33 727 1437 1631
3 3:30 G:h2 2715 5775 4088
Reb 1 08 34 g 178 30
2 1:43 250 1 2438 454
3 IRE 32 17 14406 249
81652 i 24 21 2 144 301
2 4:.01 327 3 1309 263

Minutes

40 -

30—

20

i
b
m

Fig. 5.10. Revponss time for duiabase of 93,200 records.

v

I 2804y

L INGRES

[N

Ndb
51032

g, PHASE 11

The goal of Phase I wos to evaluate database systems for the Energy Systewms’ VAX environ-
merd. Abbhousk larze mainframe processors vetain thelr imporiance, there is 2 growing mumber of
users of VA K-class machines, In partioular, the VAX itself. Whether pew to compabers or migrating
from Yarger mackines such as IBM mainframes and the PDP-10 or from smaller machines of the
POP-11 class, users appreciate the ease of use of the VAX/VME and are interested in software
products that have this characteristie. In the database management Held, that wmplies products
bazed on the relational model.

The products incleded in this phase of the evaluation were DATATRIEVE, INGRES, Bdb, and
51022, INGRES aud Rdb were of particular interest because of thelr fall relational functionality,
51022 because of Ha syntactical similarity to S1022 and the long relationship and good reputation
Sofpware House has with Tuergy Systems, and DATATRIEVE becanse i was already Installed on
memy Energy Systems’ VAXs., There was also loberest in Rdb and DATATRIEVE because of their
compatibility with existing and proposed DEC products. Other relationad database systems were
considered but were not iucluded for a variety of reasons such as lack of time, wnavailability for
on-site evaluation, cost, and Hmited relational functionality.

Many potential users of a VAX databzse management system are accustomed to 31022 and its
rapabilities. They expect and need these capsbilities in their VAX work., Aun effort was made to
melude daia and operations commen to S1022 in this phase of the evaluation.

The database was defined and loaded, and all operations were executed in 51022 on the FDP-10
of the Fusion Saergy Division’s (FED) User Service Center. The FED computer operations staff was
very helpful; all wser jobs and network file transfers were stopped in order £o shinolate the single-user
epvironment of the VAX fests,

Accoumting methods oo the PDP-10 and VAN differ in the way system usage is attributed to
a user process, S1022 statistics are given alung with those of the VAX systems; however, without
knowing the system acconnting algorithms, it is dificult to compare performance figures other than
elapsed time. That is an iberesting comparison, pavticularly to the end user, because it indicates

the difference in response time lkely to be experienced.

£.1. DATABASE DESIGN

Figure 8.1 shows the composition of the database, TESTDB, used in Phase II. The relatinns
FHOTO and TITLE were 51022 datasets. They were written from S1022 (o sequential disk files,
eopied to the VAX using DB Cnet, and then casily delined, preserving datatypes and indexing of

£1022, and loaded 1n the four systorus,

43

A4 Fhase T

Y ke

4 DELATIONS

2 4%

PHGTC 50600 RECORDS

DIVNAM 137 RECORDS
FIELDS; 39 BYTES: | KEY

[@]
=i

b2

XPEMNT 827 RECORDS
5 YIELDS; 63 BYTES

ivrformance statistios for detining. loading, and indexing TESTDD are siven in Tahle 6.1 along

with the :pace nsed by the resulting dazabas .

ionz, the observed elapsed time for S1022 was close to that of the VAX

syster however, the OFU tiine was genevally much less than for sny of the VAX sysiems. It wa

w

oot deterisined how aies of the difference is at‘ributable to system accouniing. The PDP-10 dees

Phase IT 45

Table 6.1. Defining, loading, and indexing TESTDB

{4 Relations)
Time Counts Disk
System Elapsed CPU Buf I/0 Dir 1/0 Page flts Blocks
DTR* 27:03 19:42 577 19448 8585 110630
INGRES 20:24 12:55 4789 13415 10331 6628
Rdb 19:28 13:54 316 9392 7967 8827
51032 11:35 10:08 T41 4264 5650 5631
READ WRITE |
51022 9:18 3:40 13348 13712 4727

%In tables and figures DATATRIEVE will be abbreviated to DTR.

not differentiate between the buffered and direct I/O; I/O statistics are block reads and writes, as

mdicated.

Taking the PDP-10 word size of 36 bits into account, it is seen that the S1022 database size in
bytes is very close to that of $1032. A PDP-10 word contains four 8-bhit bytes or five 7-bit bytes.
S1022 stores text as 5 bytes per word. A block consists of 128 words or 640 bytes of text compared
to the VAX'’s 512 bytes per block. ‘

Indexing the PHOTO relation {12 keys) accounted for approximately one-half the elapsed time
for INGRES and Rdb. So many indexes are unlikely in these two systems, but the design of
TESTDB preserved S1022 indexes. Indexes are not as essential to INGRES and Rdb as they are
to DATATRIEVE and S1032. No operations in the former two require indexes; performance may
be improved with the use of indexes, but they are never necessary. With 51032, data manipulation
{anguage and operations are dependent on data structure; indexes are required in some cases. Indexes

are also necessary for some operations in DATATRIEVE.

The numbers for DATATRIEVE in Table 6.1 resulied from restructuring the data in DATA-
TRIEVE and then using the RMS utility procedure CONVERT for indexing. Table’ 6.2 contrasts in-
dexing by ’CONVERT with indexing by DATATRIEVE for the two relations PHOTO and XPRMNT.
In all cases, data were first restractured by DATATRIEVE. This inchaded convertﬁi.ng some ASCII
fields to numeric and eliminating some fields. Table 6.2 makes clear the important point that DATA-
TRIEVE is not a database management system. It is a query language and report Writer and should
be used for its intended purpose; it interfaces with RMS, Rdb, and DBMS. Databases should be

maintained and tuned by the system in which they reside.

46 Phase [T

Table 6.2. Indexing by DATATRIEVE and CONVERT

Time Counts

Relation Elapsed CPU Buf 1/O Dir 1/O Page flts
PHOTO

DTR & CONVERT 10:40 T:54 316 5541 4425

DTR 1:46:31 24:06 1562 334535 516
XPRMNT

DTR & CONVERT 11:10 8:30 102 9910 1390

DTR 52:10 17:31 1051 120123 514

The impact upon resource usage dees not end with the initial load. Databases indexed by
DATATRIEVE generally require more space {44% more for XPRMNT) and perform less efficiently
in subsequent usage, incurring larger direct I/O counts because of DATATRIEVE’s bucket size of

two blocks.

6.3. OPERATIONS

A set of 26 operations to be used with TESTDD was defined. The following types of operations
were inchuded; select, project, join, aggregate, sort, append, delete, modify, and dynamic database
restructuring. Results from select and project operations were written to (1) the screen, (2) RMS
files, and (3) database relations. Where applicable, operations were repeated for 1%, 10%, and
209% of a relaticn. Operations were performed on the indexed datobase; indexes were deleted; then
operations were repeated, where possible, on the sequential database.

All operations were executed from the interactive language of each sysiem. This was in keeping
with the Phase II goal of evaluation on the basis of common 51022 usage. Recorded results are for
the INGRES backend process; however, experience with Phase I ensures that for types of operations
inclizded in Pbase II the INGRES froutend process contributes ondy negligibly to the system usage
statistics. DATATRIEVE was used with both RMS and Rdb. In addition, Rdh operatious, where
pessible, were executed using RDO.

A representative saiaple of the 26 operations is presented in the sections that follow. Discussion

also incliudes operations not shown,

6.3.1. Selection and Projection
The relation PHOTO was used for select and project operations. Selection was based on

the value of an indexed field. Four fields {52 bytes) were projected and written to the terminal

Phase IT 47

{SYS$OUTPUT). The operation was repeated for output to an RMS file and then again for output
to a relation. The sequence was executed for selection of ~ 1% (49 revords) of the relation. When
the sequence was repeated for 10% (513 recérds] and ~20% {1072 records) of the relation, output
was ondy to RMS files and relations; there were too many records retrieved for useful terminal dis-
play. For 19 of the relation, performance for retrieval to the terminal was close to that for retrieval
to an RMS file. Figure 6.2 shows the syntax for retrieval to an RMS file and Fig. 6.3 the syntax
for retrieval to a relation. Tables 6.3 and 6.4 show the corresponding performance. Selection was
determined by the field “div,” whick was a keyed field. The index on “div” was deleted and the
operations repeated. For DATATRIEVE and INGRES, where there are primary and secondary in-
dexes, the tests were run with “div” as the primary index and then again with “div” as a secondary

index. These conditions are indicated in the tables.

...

An operation on one relation (5000 records)
Selection of 20% of the relation based on an indexed field
Projection of 4 fields (32 bytes) to an RMS file

DTR with RMS For PHOTO with div starting with “Y” -
privt. name, addr, acct, wo on DIVY.LIS

INGRES range of p is PHOTO
retrieve into DIVY (p.name, p.addr, p.acct, p.wo) where p.div=*Y*”
copy DIVY {name=c0, addr=cl), acct=¢0, wo=cOnl} into DIVY.LIS

Rdb/RDO RMS files cannot be read or written from RDO
Rdb/DTR. Same syntax as DTR with RMS
51032 set ds THOTO

find div beg Y

initialize 3 DIVY.LIS

print on 3 name, addr, acct, wo
release 3

Fig. €.2. Syntax for retrieval to an RMS file.

...

Some basic differences among the four systems are pointed out in these operations. Forming
a relation is a natural operation in INGRES. Field descriptions are assumed from the existing
relations in which the fields reside. For the other systems, a relation must be explivitly defined prior
to storing data in it. With Rdb, this removes some spontaneity from database activity; if using an
Rdb database from DATATRIEVE, the user caunot retain retrieved information in an Rdb relation
unless the relation bad been anticipated and previously defined wsing RDO.

48 Phase II

...

An operation on one relation {5000 records)
Selection of 20% of the relation based on an indesed Seld
Projection of 4 fields {32 bytes) to a relation

DTR with RMS Define domain DIVY using DIVY REC on DIVY.DAT
Define record DIVY REC using
01 DIVY_REC.
05 name pic x(25).
05 addr pic x(15).
05 acet usage is long.
05 wo pic x{8).

Define file DIVY;
Ready DIVY write
DIVY=PHOTO with div starting with “Y”

INGRES range of p is photo
retrieve into divy {p.name, p.addr, p.acct, p.wo) where p.div=:“Y*

\g

Rdb/RDO define relation DIVY.

name datatype is text of size 25.
addr datatype is text of size 15.
acct datatype is signed longword.
wo datatype is text of size 8.

end DIVY relation.

for p in PHOTO with p.div starting with “Y”

store d in DIVY using
d.name=p.name;
d.addr=p.addr;
d.acct=p.acct;
d.wo=p.wo;

end_store

end for

Rdb/DTR Following definition of DIVY from RDO:
For PHOTO with div starting with “Y™
store divy using

begin
naine=name
addr=addr
acct—acct
WO=w0

end

S1032 set ds PHOTO
find div beg Y
create ds DIVY
attribute name text 25
attribute addr text 15
attribute acct integer
attribute wo text 8
end._dataset
set dataset photo
dump ds_output DIVY

Fig. 6.3. Syntax for retrieval 1o a relation.

...

Table 6.3. Retrieval to a relation

Phase II 49

Time Counts
System Elapsed CPU Buf I/O Dir I/O Page fits
DTR with RMS :13¢ 09 11 144 12
:26° 13 11 872
:19¢ :13 11 178 7
INGRES Ve 06 63 146 436
:20° :13 64 879 561
:20° 111 61 436 5561
Rdb/RDCO? =30 :16 983 270
:36° 17 644 161
Rdb/DTR 46 29 26 1044 224
40° 30 18 499 133
S106s2 17 11 18 401 46
145° 32 18 9381 611
READ WRITE
51022 :08 :01 795 106

%Selecting on a primary index.
b Selecting on secondary index.
CSelecting on an npindexed field.

45tatistics from using control-T; only one I/ figure given.

Writing selected information to an RMS file is a two-step process in INGRES. The information
must first be written to a relation. In RDO it cannot be dne at all; RMS files cannot be read or

written from RDO,

The different treatment of indexes was alluded to iIn Sect. 2. In Rdb and S1032, there is

no concept of primary versus secondary indexes; all indexes are created equal. In DATATRIEVE

and INGRES with ISAM relations, the primary index is a clustering index and has an edge on

performance over any secondary indexes. This is sharply illustrated in Tables 6.3 and 6.4. It is

interesting to note that response time is significantly better for selection based on an unkeyed field

than on a field having a secondary index defined. In the latter case, the increased buffered I/O

50 Phase IT

Table 6.4 Retrieval to an RMS fle

Time Counts
Systerm Elapsed CPU Buf I/O Dir I/O Page fits
DTR with RMS :12¢ (9 4 89 31
:25b 113 4 816 21
:19¢ :14 4 123 22
INGRES 1194 :09 75 173 697
135 :16 TF 006 814
:26¢ :15 74 463 824
Rdb/DTR :279 :16 4 815 32
129¢ 217 4 345 17
S1032 ;164 .11 4 436 116
:41¢ :32 4 860 31

BEAD WRITE

51022 :12 :04 793 04

“Belecting on primary index.
bSelecting on secondary index.
®Selecting on 2n nnindexed feld.

dSelecting on an ndexed field.

counts are incurred because the secondary index is searched as well as the base relation, which is
not ordered by the indexed field.

DATATRIEVE does not attempt query optimization; it executes what the user prescribes.
INGRES does have a query uptisnizer; however, here is an operation it does not seem to optimize.
Retrieving 20% of a 5000-record relation hased on a field which has a secondary index defined, the
above tables indicate optimization shovdd result in disregard of the index.

This pattern of a primary index being hetter than no index better than secondary index was
not seen in selection of 16 and 10% of the relation. As shown in Table 6.5, the primary index always
excelled, but the secondary index gave much better response time than the unkeyed field.

When DATATRIEVE is used for the selection of 20% of the Rdb relation, the index has a
negative effect; however, Table 6.5 shows the benefit of the mdex when selecting fewer records.

The greatest improvement from the vse of indexes is seen in $1032, where the introduction of an

Phase II 51

index results in decreases in response time of 82%, 71%, and 62% for 1%, 10%, and 20% retrieval,

respectively.

Table 6.5. Retrieval to & relation
{Response time}

Percentage of Relation Selected

System 1% 10% 20%
DTR with RMS @ 04 07 113
b 05 12 126
e ;12 :14 A
INGRES o D4 08 112
b 46 :14 120
£ 18 19 20
Rdb/DTR d N4 19 46
¢ .16 126 140
51032 d 06 12 :17
< 235 41 45

“Selecting on primary index.
6Seied:ing on secondary mdex.
“Selecting on an unindexed field.

dSelecting on an indexed field.

The relational operator “project” is commonly defined implying unigueness. In DATATRIEVE
and Rdb, the reduce command effects project with uniqueness. In addition, a sort order based on the
ordering of the reduce felds is implicit in DATATRIEVE. In INGRES the all-inclusive “retrieve,”
with the qualifier “unique,” projects cutput to the terminal but not to a relation; there is uno
“retrieve unigue into.” Projecting to a relation is accomplished by “retrieve into” with the default
storage structure for relations set to hash, which means duplicate rows are removed. S1032 has no
project command; a procedure with explicit looping is required. The same is irite for 531022, These
two systems show longer response times than the other systems. Although the response time for

1022 is 30% less than that of $1082, the CPU time is reduced by 84% presumably due to different

52 Phase IT

accounting algorithms for the PDP-10 and VAX. Figure 6.4 shows projection syntax and Table 6.6

the corresponding performance.

.................

DTR with RMS

INGRES

Rdb/RDO

Rdb/DTR

51032

.................

..

Project (unique) 3 fields of one relation
Print PHOTO reduced to DIV, ACCT, SACCT on PROJECT LIS

range of p is PHOTO
sct ret_into “hash”
retrieve into proj (p.div, p.acct, p.sacct) sort by p.div, p.acct, p.sacct
copy proj (div=c0, acet=c0, sacct=cOnl) into
\ “syshuserc:[Kannan INGRES] PROJECT.LIS text”
g

(To a relation rather than an RMS file)
for p in PHOTO reduced to p.div, p.arcct, p.sacct
sorted by p.div, p.acct, p.sacct
store pr in proj using
pr.div=p.div
pr.acct=p.acct
pr.sacct=p.sacct

end.store
end_for

Same as DTR with RMS

set ds PHOTO
init 3 PROJECT.LIS
Begin
Find all
Sort div acct sacct
Variable odiv Text 3 initially * ©
Variable cacct, osacct integer initially 0
For each PHOTO record do
If sacct ne osacct then
write on 3 div, acct, sacct
Let osacct=sacct, oacct=acct, odiveadiv
ELSEIF acct ne oacct then
write on 3 div, arct, sacct
Let ocacct—=acct, odiv=div
ELSEIF div ne odiv then
write on 3 div, acct, sacct
Let odiv=div
END_IF
END. FOR,
END

Fig. 6.4. Projection syntax,

..

FPhase I 58

Table 6.6. Projection

Time Counts
System Elapsed CPU Bif I/O Dir 1/O Page fits
DTER with RMS 2:13 1:17 17 3866 280
INGRES :34 126 29 436 586
Rdb/RDO 24 118 400 852
Rdb/DTR 24 20 3 341 747
51032 3:58 2:45 18 4739 640

READ WRITE

51022 2:46 27 6676 300

6.3.2. Joins

The join of most interest and use, the equijoin (based on equality of a common field), is presented
in Sect. 5.3, Operations 8, 1'2, 14, 15, 16. Three of the 26 operations of Phase {1 are also equijoins.
The order of performance was the same as in Phase I: Rdb {RDO and DTR), INGRES, S1032. [The
version (3.0) of $1032 included in this iuvestigation does uot have a true join.] In terms of elapsed
and CPU time, DATATRIEVE with RMS ISAM files showed significantly poorer performance than
the other three systems. Join operations in $1022 were approximately 30% faster than in $1032,
but they were somewhat slower than in Rdb and INGRES. In $1032 and $1022 indexed felds arve
necessary for ajoin. In DATATRIEVE, joining over unkeyed fields is possible but may beimpractical;
a join which took 2 minutes 50 seconds elapsed time for keyed fields in DATATRIEVE was stopped
incomplete after 12 hours using unkeyed fields. This same join in Rdb over keyved fields took 50
seconds, and over unkeved fields, 3 minutes 40 seconds. Whether or not the joining fields were keyed
made virtually no differenée to INGRES; the elapsed time of 1 minute 8 seconds occurred in both
cases.

When an equijoin is performed, data are retrieved from the two relations only if the joining
fields have matching values. Sometimes, however, in joining two relations it is useful to retrieve data
from a relation whether or not a match is fouhd. This type of join is called an outer join. Figure 6.5
and Table 6.7 summarize the outer join included in Phase II. Data were retrieved from PHOTO
and, if corresponding data were present, also from DIVNAM.

There is much variety in the implementation of an outer join. RDO does not provide one. The
other three systems handle it in very different ways: a view in DATATRIEVE, a procedure with

Iooping in S1032, and delete, append, and intermediate relations in INGRES. The resulting RMS

54 Phase IT

..

Quter JOIN
DTR with RMS define domain viewl of photo, divham
and Rdb 01 photo.flds occurs for photo.

name from photo.

phone from photo.

need from photo.

join fld occurs for divnam with
phaoto_rec. div==divnum rec.div.

09 divname from divnam.

FRER

ready viewl
for view1 sorted hy name priut on
OUTERJOIN.LIS

INGRES range of p is PHOTO

raonge of d is DIVNAM

set ret_into “heap”

retrieve into RELL (p.div, p.name, p.phone, p.need, d.divname)
where p.div==d.div

retrieve into REL2 {p.div, p.name, p.phone, p.need)

range of rl is REL1

range of 12 is REL2

delete r2 where r2.div=d.div

append to REL1 (rz.div, r2.name, r2.phone, r2.need}

retrieve into REL3 (rl.name, rl.phone, rl.need, ri.divname)
sort by rl.name

copy REL3 (name=c0, phone==x0, need:=c0, divhame=cOnl)
into “sys$userc: ILANNAN INGRES|OUTERJOIN.LIS text”

\g

S1032 set ds PHOTO
init 3 OUTERJOIN.LIS
find all
sort name
for each PHOTO record do
map to DIVNAM via div
if § nrec eq 0 then
write on 3 name, phone, need
else
write on 3, name, phoue, need, divname
end.if
end_for

Fig. 6.5. Syntax of onter JOIN

...

file contained 5000 records except from INGRES, where duplicate rows were sliminated in forming

the relation REL3.

Phase II 55

Table 6.7. Quier JOIN

Time Counts

System Elapsed CPU Buf I/O Dir I/O Page fits
DTR with RMS 5:27 2:05 36 G878 746
INGRES 3:48 2:32 996 2806 2000
Rdb /DTR 1:58 1:49 18 449 3763
S1032 7:36 6:31 16 4932 106

READ WRITE
51022 3:40 45 G004 1020

6.3.3. Maintenance Operations

Modifications of two kinds were made to the database: content and structure alterations. In
the former case, data were modified in keyed and unkeyed fields for 199, 10%, 20%, and 100% of a
relation, and records were appended to and deleted from unkeyed and keyed relations. The resulfs
were not unexpected: maintenance on keyed fields uses more systemn resources.

The impact of index maintenance was minimal when modifying the value of an integer field for
1% of the PHOTO relation. Even when three fields in 209 of the PHOTO relation were modified,
whether the fields were keyved or unkeved made lLittle differenice to the performance of 51032; execution
time was approximately 50 seconds in both cases. INGRES showed a six-fold increase in execution
time for keyed fields from 20Y% of the relation: from 30 seconds to 3 minutes. With DATATRIEVE
the degradation was even more pronounced; from 30 seconds to 4.5 minutes with RMS, from 50
seconds t 0 3.5 minutes with Rdh.

Table 6.8 shows the performance for the extreme case of field modification over an entire relation.
The syutax for this operation is seen in Fig. 6.6. Because the index on the field sp required a few
seconds to delete and less than a minute to build, it is obvious from Table 6.8 that the index should
be deleted before the maintenance described here is performed, |

The mumber of direct I/Os for DATATRIEVE was out of line with the other systems. This
behavior was observed i two sorfing operations {not shown) and in Table 6.2. Here is another
oeeasion to use RMS facilities. There are RMS parameters to tune which could coneeivably affect
the I/O usage.

Other maintenance operations performed included appending and deleting records, These oper-
ations were performed on both indexed and unindexed relations except in the case of DATATRIEVE,

where records cannot be deleted from an unindexed relation.

56 Phase IT

Table 6.8. Modification of a field over whole relation

Time Gounts
Syster Elapsed CPU Buf /O Dir I/O Page flts
DTR with RMS 26:40° 9:49 0 74862 21
1:328 1:21 321 12
INGRES 9:50° 9:31 89 26217 439
1:30° 1:05 46 1201 453
Rdb/DTR 14:08¢ 6:57 503 21074 13290
3:15b 2:40 73 1296 1763
51032 10:42¢° 9:29 18 14862 a1
3:30° 2:07 0 733 210
READ WRITE
81022 15:55¢% 1:43 22600 15578

Mo difying an indexed field.
bModifying an unindexed field.

Deletion of records was based on a field value selection: all records in the relation PHOTO
with div=“K20.” This resulted in the removal of 31 records, 0.6% of the relation. In INGRES
and 51032, deletion was much faster on the indexed velations, presumably due to the initial search
having more impact than index maintenance for such a small nuinber of records. In 51022, this
operation was instantaneous whether indexed or not. Rdb from DATATRIEVE required more time
for the indexed relation than the wnindexed. The execution time for DATATRIEVE with RMS was
30 seconds, which was significantly slower than the other systems. The direct I/O usage was also
much greater.

The append operation consisted of adding one hundred records in an RMS sequential file to
the relation XPRMNT. This operation could not be perfarmed in Rdb from RDO because of the
lack of au RMS interface,

The records were added to XPRMNT svith three indexes defined and also to XPRMNT with

all indexes deleted. Performance was significantly better for the unindexed relation. Execution time

is shown in Table 6.9.

Phase 1T

57

...

DTR with RMS
and Rdb

INGRES

Rdb/RDO

51032

ready XPRMNT write
for XPRMNT modify using ip=ip*1.05

range of x is XPRMNT
replace x{ip=1.05%x.ip)

\g

for x in XPRMNT
modify x using x.ip=1.06%x.ip
end_modify

end for

set ds XPRNMNT
find all
change is {ip*1.05)

Fig. 6.6. Modification of a field over whole relation.

...

Table 6.9. Append operation execution time

Execution time

Indexed Unindexed
DTR with RMS 40 :08
INGRES 119 :08
Rdb/DTR 141 :15
$1082 17 04
51022 08 :02

As for modifications to the structure of the database, relational systems proponents claim it can

be done, and moreover, done easily and dynamically. Certainly indexes can be added and deleted at
will; relations likewise with facility. (The latter is a matter of course with DATATRIEVE where each

relation is a separate domain.) But what about altering structure internal to a relation, adding a

58 Phase II

field, deleting a field, or changing the datatype of 2 field? Only Rdb (through RDO} can accomplish
these feats without going through soree amount of dumping and reloading.

Database maintenance brings into question concuwrrency and recovery. There was no attempt
in this study to evalnate those functions. The multiuser tests alluded to carlier included concurrent
updates as well as updates executing concurrently with ¢neries. All systems handled such situations.

DATATRIEVE and $1032 do nc journaling,. With INGRES, it is optional and was never acti-
vated. Rdb has two types of journaling: after-image and before-image. The after-image journaling
was never exercised; however, the before-image journaling is automatic and occasionally caused such
problems as the journal file growing o 30000 blocks, exceeding user disk quota and causing the pro-
cess to abort. This may be something future Rdb releases will amend, or it may be up to the user

to monitor trausaction lengths carefully.

7. GENERAL OBSERVATIONS AND COMPARISON OF FEATURES

In this final section, general observations are given, many of which are already obvious from
Sects. 5 and 6. Also, features and fimctions not included elsewhere in this report are discussed. As
stated earlier, the products will not be assigned a ranking; however, conchusions are drawn pertaining
to their relative performance, ease of use, and relational functionality.

In comparison with the other three products, INGRES w ith its forms, grabhs, utility proce-
dures, and interactive and embedded query language—is the most complete system. It conforms
closely to the relational model, as does Rdb, but it is a more mature product with wser interfaces
fully developed and integrated into the system. INGRES regnires more centralized control and more
effort from both the INGRES system manager and the VMS manager. It is the only one of the
products with a size restriction likely to cause concern——maximum record size of 2008 bytes. All the
products are quite liberal in the numbers of relations, felds, records, and indexes allowed.

Indexes have a greater impact on performance of S1032 and DATATRIEVE than of INGRES
and Rdb. S1032 is efficient in use and maintenance of indexes. The same good performance is
seen with all indexes and not, as in DATATRIEVE and to a less extent in INGRES, only with the
primary index.

Data manipulation language is probably more subject to personal preference than any other
component of a database management system. 51032's language is both a positive factor and a
negative ope. It is very natural, meaning conversational and readable, yet not verboge. It permits
extensive use of abbreviations, which reduces readability but facilitates interaction. The data ma-
nipulation language of 51032 is the most procedural of the products tested. This bas the advantage
of being more like familiar programming languages and affording Hexibility in developing procedures.
Omn the other hand, this is viewed as a disadvantage on the hasis of the relational model and its
vocabulary of set operations.

Language in INGRES and Rdb is independent of database structure. An operation is expressed
one way and can be performed whether or not mdexes are defined. The query optimizer determines
the execution path. In DATATRIEVE and 51032, however, la.nguage is dependent on data structure,
and there is no query optimizer. Especially in S1032, different syntax is required for indexes. Lack of
a query optimizer means the command language must ustruct the system in how to do the operation
as well as tell the system what results are wanted.

In Sects. 5 and 6, there were many examples of the interactive data definition and manipulation
languages. Figures 7.1, 7.2, and 7.3 show the use of these languages with a host programming
language, in this case FORTRAN. DATATRIEVE is not included because it was not a part of
Phase I, where the host language interface was evaluated. It has a callable interface and thus is

similar to 51032.

59

66 General Observations and Comparison of Features

#2 declare
integer®4 num_of_recs
ingres mfe

¢ range of s is sumaed

vange of n iz nbiset

¥ retrieve (num_of recs = coumnt(s.shotpum where s.shotnum=a.shobnum
3 and n.nbeams=1))
i {

type ¥, Humber of records:’,num_of_recs

£}

Fig. T.1. INGRES host laguage interface.

...

integer*4d num.of recs
4Rdb& INVOKE DATABASE FILENANE “NFE"

ZRdb& GET num.of _recs = COWHT OF 3 IN SUMSET CROSS

dRébk H IN BBISET OVER SHOTHUH
&Rdb& ¥ITH W.NBEAMS=1

kRdbg EHD_GET

type ¥, ' HNumber of records:’,num.of recs

Fig. 7.2. Rdb host language interfacs.

...

General Obsersations and Comparsson of Features 61

...

common/S1832_CON/ num_of _recs

integert4d num.of recs
call DM_BEGIH ! Initializes S1§32
call DN_COMMON{ nrec’,¥descr{num of recs))

call DN_CMD(’open db mfe’)
call DN EXEC('set nbiset; € nb eq 1; map to sumset via sn;
1 let nrec = $nrec’)

type *.' HNumber of records:’, num.of recs

call DNEND ! terminates S1$32

- Fig. 7.3. S1¢32 host language interface.

...

As seen in these examples, INGRES and Rdb commands are embedded in the host language
program. Preprocessors, which translate and optimize the database commands, are provided for
many of the VMS-supported langnages. One set of commands serves the user in both interactive
work and database access through a program. This is a more tightly coupled interface than that
of S1032. In S1032, a set of 23 callable procedures constitutes the host langnage interface. In
addition to learning new commands, the 51032 programmer must be concerned with buffers and
static memory, especially when transferring much data between the program and the database.

Not having its own aceess method keeps DATATRIEVE from being a database management
system, but it also gives DATATRIEVE its distinet advantage: use with RMS files. For causal use
of small databases which do not require restructuring, DATATRIEVE is a reasonable choice. Data
do not have to be stored multiple times. A load step is unnecessary.

Phase Il experience showed DATATRIEVE to be easy to use. It was, however, the easiest to
misuse, especially in the hands of a novice. In DATATRIEVE, operations can be expressed several
ways. Performance statistics made it quite clear that different execution paths were taken when
the command syntax was changed. Most of the 26 operations in Phase II were executed a variety
of ways. What was considered the most obvious way, and which was, therefore, tried first, was in
almost all cases grossly inefficient and exhibited performance owt of line with the other systems.

Alternate syntax was sought and found, sometimes with good results, sometimes with results which

62 General Cbservations ond Comparison of Features

proiapted more seeking. The final recorded results were not so different from those of the other
products, but there were cases where these final vesults were ten times better than initial attempts.
DATATRIEVE documentation should contain caveats such as “use RMS wtilities,” “use FOR not
FIND,” “use primary indexes,” “do RMS tuning.”

Documentation is comparable for the four products: adequaie but not excellent. There are
omissions in the indexes of all. S1032 has too few specific examples. As stated above, DATATRIEVE
decumentation needs warnings and advice about which command to use.

As for vendor technical assistance, all have competent telephone support. Clten answers were
not immediately avaiiable, but calls were dependably returned.

Table 7.1 contains features of database systems and indicates the availability of each in the
systems of this study. It is not intended to be a comprehensive collection. Some featyres included
elsewhere in this report are not presented here. Features commonplace in current database systems
are also omitted. Some items in the table have appeared earlier or are self-explanatory and will not
be discussed; however, some deserve fitrther explanation.

The table does not indicate differences in quality and implementation. In some cases, there are
decided differences, such as forras and graphics which are nuch wmiore extensive in INGRES than
i the other systems which also have them. Another example is arrays. Arrays are nol included
in the relational model. They are useful in some applications and are accommodated in both
DATATRIEVE and S$1032. Accessing a specific element of an array is awkward in DATATRIEVE;
query syntax does not include array subscripts. Array manipulation is handled with facility by
S1032; there are few restrictions.

INGRES does not differentiate between missing values and zeroes in numeric fields and blanks
in character fields. If missing data require special treatment, such as being excluded from statistical
functions, the user must represent it in some unique way. Without a comaocn designation for missing
values, databases of less general use are created.

$1032 is given a check for report writer even though it has no separate component for that spe-
cific purpose. Tts procedural language and flexible formatting provide report generation capahility.

An effort was made in defining the two databases for this evaluation to include all comsnon
VMS datatypes. One exception was packed decimal, which only DATATRIEVE and 51032 support.
A new datatype is introduced by Rdb: segmented string. In early development of Rdb, this was
referred to as a “blob” because of its size {maximum of 65K bytes) and its unformatted structure.
This datatype allows the storage of large amounts of text, such as abstracts or source code, or long
strings of binary data. Most Rdb operations are not supported for segmented strings; however, they
can be aceessed and processed by programs.

In conclusion, DATATRIEVE, INGRES, Rdb, and 81032 are not equal in their performance,

functionality, and usability. They each have strengths and weaknesses, advantages and disadvan-

General Observations and Comparison of Features 63

Table 7.1. Features of database systems

Feature DTR INGRES Rdb 51032
ARRAYS v _ v
FORMS - v o4
GRAPHICS v v _

ON-LINE HELP v v v v
COMPILED PROCS - - v
QUERY OPTIMIZING v v
MISSING VALUE v - v v
VALIDITY CHECKING v v v Vv
RMS INTERFACE v v _ v
INIT FILE v v v v
SESSION LOG v v Vv
REPORT WRITER v v ; v
VARIABLE LEN REC v v v
STATISTICAL FUNCTIONS v v v v
RTL INTERFACE v v i} v
UNRESTRICTED JOIN _ v v

VIEWS Vv v Vv _
B-TREE INDEXING va v v
PACKED DECIMAL DATA v -] v
JOURNALING v v
SECURITY v v v Vv
DECuet SUPPORT Vv v v v

tages. None exhibits anomalous behavior which would ¢ priors eliminate it from consideration. The
answer to the question “which database system to use” is the question, “what is the application?”.
By making a rational extrapolation from the results given in this report to the parameters of the
reader’s problewm, it may he possible to seleet a best product or eliminate some of the contenders.
In the uncharted waters of software selection, perhaps this approach will help maintain orientation

even if it does not prescribe an exact course.

1. R. K. Abercrombie
2. E. F. Abercrombie
3. B. L. Alspaugh-
4. D. H. Alspangh
5. B. T. Anderson
6. L. L. Anthony
7. Z. Batte
8. L. R. Baylor
9. J. D. Bell
10. R. R. Bentz
11. M B. Biddix
12. K. L. Boylan
13. R. W, Browell
14. S. I.. Bunch
15. R. D. Burris
16. D. N. Clark
17. A. L. Coflie
18. T. B. Cock
19. J. B. Cordts
20. B. B. Corey
21. J. G. Craven
22. C. M. Davenport
23. 1. Defenderfer
24, J. H. Dixon
25. R. A. Dory
26. J. B. Drake
27. L. Duncan
28. T. H. Dunigan
29. P. H. Edmonds
30. J. E. Edwards
31. W. B. Ewbank
32. R. D. Foskett
33. R. M. French
34. E. L. Frome
35, T. L. Futrell
36. D. C. Giles
31. R. O. Green
38. V. P. Gupta
30. F. D. Hammerling
40. C. E. Hammous
41. M B. Heath
42. T. Heath
43. H. H. Hogue
44. B. M Horwedel
45. J. E. Horwedel
46. J. V. Hughes
47. D. F. Hunt
48. R. C. Isler
49. J. M. Jansen, Jr,
50, C. Jelener
51. G. W. Joe
52. C. K. Johnson

. V. B. Johnson

85

ORNL/TM-9696
Dist. Category UC-20 g

INTERNAL DISTRIBUTION

124-125

1286.

;ua‘;a;a'ma@mggma%gwgggbgomg

. I, G, Jones

.S R, Jordan

. K. L. Kannan

. H. E. Ketterer

. P. W. King

. E. S. Krebs

. L. R. Layman

. A. M Lokey

. W. W. Manges
. J. B. Mankin

. D. M MeCloud
. J. L. McNeany
. S. H. Merriman
. K. C. Miller

. D. L. Million

. D. L. Morgan

. J. K. Mumro

R Plckeft

Saltma,rsh
S Schwartz
. J. Sharp

. 1. Shipp

. D. Sims

. W. Stanton

. W. Taylor

. H. Thompson
. G. Travis

. C. Tucker

. J. Verastegui
. D. Vickers

. W. Wallace

. J. E. White

b, W. R. Wing

. J. W, Wooten
LK. G. Young
118-119.
.. Laboratory Records, ORNL-RC
. Document Reference Section
122.
123.
. Pusion Energy Division

Laboratory Records Department

Central Research Library
Fusion Energy Division Library

Publications Office
ORNL Patent Office

127
128
129

130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142,
143,
144.
145.
147.
148,
149,
150.
151.
152.
153.
154.
155.
156.
157.
158.

159.

66
EXTERNAL DISTRIBUTION

. A. A. Brocks, 100 W. Wiitshire Dr., Cak Ridge, TN 37830

. T. W. Fredian, Bldg. NW17, Rm. 262, Albany Street, Cambridge, MA 02139

. A. Macmahon, Fusion Research Center, University of Texas at Austin, RL.M 11.222,
Austin, TX 78712

L. Mann, Conrolled Thermonuclear Research Division, Los Alamos National Laboratory,
MS-F'647, Los Alamos, NM 87545

P. Pearson, Lawrence Livermore Naticnal Laboratory, P.O. Box 808 (L-560), Livermore,
CA 04550

W. Pfeiffer, GA Technologies, TO-503B, P.O. Box 85600, San Diego, CA 92138

T). Hitcheock, Fusion Theory and Computer Services Branch, Applied Plasma Physics,
Office of Fusion Energy, Office of Energy Rescarch, ER-55, GTN, U.S. Department of
Energy, Washington, DC 20545

P. H. Diamond, Institute for Fusion Studies, University of Texas at Austin, Austin, TX
78712

Office of the Assistant Manager for Energy Research and Development, Department of
Eunergy, Oak Ridge Operatious Oftice, P.O. Bex T, Oak Ridge, TN 37831

J. D. Callen, Department of Nuclear Engineering, University of Wisconsin, Madison, W1
53706

R. W. Conn, Department of Chemical, Nuclear, and Thermal Engincering, University of
California, Los Angeles, CA 90024

S. O. Dean, Director, Fusion Energy Development, Science Applications International
Corp., Gaithersburg, MD 20760

H. K. Forsen, Bechtel Group, Inc., Research Engineering, P.O. Box 3865, San Fraucisco,
CA 94205

1. R. Gilleland, GA Technologies, In¢., Fusion and Advanced Technology, P.O. Box 85608,
San Diego, CA 92138

R. W. Gould, Department of Applied Physics, California Institute of Technology,
Pasadena, CA 91125

R. W. Gross, Plasma Research Library, Columbia University, New York, NY 10027

D. M. Meade, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
W. M. Stacey, School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA 30332

D. Steiner, Rensselaer Polytechnic Institute, Troy, NY 12181

. R. Varma, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
Bibliothek, Max-Planck Institut fur Plasmaphbysik, D-8046 Garching bei Miunchen, Federal
Republic of Germany

Bibliothek, Institut fur Plasmaphysik, KFA, Postfach 1213, D-5170 Julich, Federal
Republic of Germany

Bibliotheque, Centre des Recherches en Physique des Plasmas, 21 Avenue des Bains, 1007
Lausanme, Switzerland

Bibliotheque, Service du Confinement des Plasmas, CEA, B.P. No. 6, 92
Fontenay-anx-Roses {Seine}, France

Documentation S. I. G. N., Department de la Physique du Plasma et de la Fusion
Controlee, Centre d’Etudes Nucleaires, B.P. 85, Centre du Tri, 38081 Cedex, Grenable,
France

Library, Culham Laboratory, UKAEA, Abingdon, Oxfordshire, OX14 3DB, England
Library, FOMInstituut voor Plasma-Fysica, Rijnhuizen, Edisonbasn 14, 3439 MN
Nieuwegein, The Netherlands

Library, Institute of Plasma Physics, Nageya University, Nagoya, Japan

Library, International Centre for Theoretical Physics, Trieste, Italy

Library, Laboratorio Gas Ionizatti, CP 56, I-00044 Frascati (Roma}, Italy

Library, Plasma Physics Laboratory, Kyoto University, Gokasho, Uji, Kyoto, Japan
Plasma Research Laboratory, Australian National University, P.O. Box 4, Canberra,
A.C.T. 2000, Australia,

Thermonuclear Library, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki,
Japan

160.
161.
162.
163.

164.

165.

166.

167.

168.
169.
170.
171.
172
173.
174.
175.
176.
177.
178.
179,
180.
181.
182.

183.

184,
185.

186-341.

87

G. A. Eliseev, I, V. Kurchatov Institute of Atomic Energy, P.O. Box 3402, 123182 Moscow,
US.5.R.

V. A. Glukhikh, Scientific-Research Institute of Electro-Physical Appamtu,s, 188631
Leningrad, U.SS.R.

1. Shpigel, Institute of General Physics, US.5.R. Academy of Sciences, Ulitsa Vavilova 38,
Moscow, T1.S.8.R.

D.D. Ryut(w Institute of Nue lm.r Physics, Siberian Branch of the Academy of Sciences
of the U.S.8.R., Sovetskaya St. 5, 630090 Novosibirsk, U.S.S.R.

V. T. Tolok, Kharkov Physical-Technical Institute, A(ademlcal St. 1, 310108 Kharkov,
J.S.5.R.

Library, Institute of Physics, Academia Sinica, Beijing, Peoples Republic of China

J. F. Clarke, Associate Director for Fusion Energy, Office of Fusion Energy, ER-50,
Germauntown, U.8. Department of Energy, Washington, DC 20545

D. B. Nelson, Division of Applied Plasma Physics, Office of Fusion Energy, Office of
Euergy Besearch ER-54, Germantown, U.S. Department of Energy, Washington, DC
20545

N. A. Davies, Tokamak Systems Branch, Office of Fusion Energy, Office of Energy
Research, ER-55, Germantown, 1.S. Department of Energy, Washington, DC 20545

E. Oktay, Tokamak Systems Branch, Office of Fusion Energy, Office of Energy Research,
ER-55, Germantown, 1.3, Department of Energy, Washingtou, DC 20545

ThPcuy Department Read File, ¢ fo D. W. Ross, University of Texas, Institute for Fusion
Studies, Austin, T 78712

Theory Department Read File, ¢/o R. C. Davidson, Directar, Plasma Fusion Center, NW
16-202, Massachusetts Institute of Technology, Cambridge, MA (2139

Theory Department Read File, c/o F. W. Perkins, Princeton Plasma Physics Laboratory,
P.0. Box 451, Princeton, NJ 08544

Theory Department Read File, ¢ /o L. Kovrizhmykh, Institute of General Physics, Academy
of Sciences of the U.5.5.R., Ulitsa Vavilova 38, Moscow, U1.S.S.R.

Theory Department Read File, ¢ /o B. B. Kadomtsev, I. V. Kurchatov Institute of Atomic
Energy, P.O. Box 3402, 123182 Moscow, U.S.SR.

Theory Department Read File, c/ o T. Kamimura, Institute of Plasma Physics, Nagoya
University, Nagoya, Japan

Theory Department Read File, ¢c/o (. Mercier, Euratom-CEA, Service des Recherches sur
la Fusion Controlee, Fontenay-aux-Roses {Seine}, France

Theory Department Read File, c¢/o T. E. Stringer, JET Joint Undertaking, Culham
Laboratory, Abingdon, Oxfordshire OX 14 3DB, Eugland

Theory Department Read File, ¢fo K. Reberts, Culbam Laboratory, Abingdon,
Oxfordshire OX 14 3DB, England

Theory Department Read File, ¢/o D. Biskamp, Max-Planck-Institut fur Plasmaphysik,
D-8046 Garching bei Munchen, Federal Republic of Germany

Theory Department Read File, ¢/o T. Takeda, Japan Atomic Energy Research Institute,
Tokai, Naka, Ibaraki, Japan

Theory Department Read File, ¢ /o C. 8. Liu, GA Technologies, Inc., P.O. Box 81608, San
Diego, CA 92138

Theory Department Read File, ¢/o L. D. Pearlstein, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 84550

Theory Departmient Read File, x:/ o R. Gerwinn, CTR Division, Los Alamos National
Laboratory, P.O. Box 1663, Los Alamos, NM 87545

R. E. Mickens, Department of Physics, Atlanta University, Atlanta, GA 30314

C. De Palo, Library, Asxc»cm?mne EURATOMENEA au]ld F‘usmn?, CP 85, 100044
Frascati (Roma), Italy

Given distribution as shown im TIC-4500 Maguetic Fusiou Energy {(Category Distribution
UC-20 g Theoretical Plasma Physics)

