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ABSTRACT 

A three-dimensional analysis of cavity antennas is presented. The 

analysis is based on the finite difference method with a successive 

overrelaxation convergence scheme. This method permits the 

calculation of resonance frequencies and corresponding electric and 

magnetic fields of eigenmodes in a cavity antenna with an arbitrary 

shape. 





I. INTRODUCTION 

Cavity antennas have been used for various purposes, such as communication 

systems, for a long time. Recently, the usefulness of cavity antennas has aroused the 

interest of researchers in the plasma radio-frequency (rfl heating area, especially in 

the ion cyclotron resonance frequency (ICRF) range.l Ion cyclotron resonance 

heating (ICRH) has been successfully used for heating experiments in tokamaks and 

has been chosen to demonstrate ignition heating for first-generation tokamaks, such 

as the Tokamak Fusion Test Reactor (TM‘R), the Joint European Torus (JET), and 

Doublet-III. A carefully designed and fully tested resonant cavity antenna for those 

tokamaks is desirable. The Radio-Frequency Test Facility (RFTF) a t  Oak Ridge 

National Laboratory (ORNL) is dedicated to this mission. 

To design the cavity antenna, it is necessary to understand the characteristic 

properties such as resonant frequency, field components and impedance, etc. For a 

simple cavity, we can obtain those parameters by using the equivalent circuit 

method2 or the variational principle method3 or even by solving Maxwell’s equations 

with analytical methods. However, these methods are very difficult or  even 

impossible to apply to a complicated cavity such as those that are of interest for rf 

heating. Hence, we need to develop a three-dimensional (3-D) analysis to obtain a 

numerical solution of Maxwell’s equations with complicated boundary conditions. 

A few 3-D algorithms4 have been published for solving the wave equation, but 

none has been developed for the purpose of plasma heating. Among the existing 

algorithms, Hara et al.4 have the most complete and powerful code. However, the 

accuracy becomes poor for the very complicated boundary conditions, because the 

mesh points are easily limited by the finite element method. 

A finite difference analysis 3-10 Poisson e q ~ a t i o n ~ - ~  was developed by the 

authors for use in designing and conducting neutral beam experiments. We have 

extended this analysis to the 3-D wave equation. Our analysis has several basic 
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merits. First, a finite difference 

(SON) convergence scheme and 

methodlo is used with a successive overrelaxation 

a method of treating boundaries that allows the 

cavity to have an arbitrary shape. Second, due to the SOW. scheme used, we do not 

need to find the inverse matrix to  obtain the eigenvalue, which reduces the 

necessary storage requirements. Third, either Dirichlet or Neumann boundary 

conditions are easily considered. Hence, more mesh points can be adopted for 

complicated boundary data  o r  increased accuracy. However, one of the 

disadvantages of SO11 is the existence of convergence, and the convergence rates are 

strongly dependent on the chosen SQR factor. The third point implies that we can 

solve the wave equation in terms of H components as well as E components. 

Examining the Helmholtz magnetic field equation is important because it produces 

the lowest resonance frequency (see See. U), which is of considerable interest in 

ICRF plasma heating, where low-frequency launchers of compact dimensions are 

desi rahle ~ 

The purpose of this paper is to demonstrate the analysis and its validity by 

calculating the eigenfrequencies and field components of a finite rectangular 

waveguide and other waveguides. The applications of this algorithm to rf heating 

will be given in a separate paper. The structure of the remainder of this paper is as 

foilows. In Sec. TI, we briefly describe the wave equations, boundary conditions, and 

possible constraining conditions. In Sec. HI, we describe the subject analyses. The 

results for specific waveguides are presented in Sec. IV. We summarize our 

conclusions in Sec. V. 
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11. WAVE EQUATIONS IN VACUUM WITH PERFECTLY 

CONDUCTING WALLS 

Since we consider the wave equations in vacuum, Maxwell’s equations with the 

sinusoidal time-dependent e-iwt fields, E and H, are 

P*E = 0 , ( la )  

V X E  = ip,oH , 

where and eo are the permeability and dielectric constant in vacuum. By 

combining the two curl equations and making use of the vanishing divergences, we 

find that both E and H satisfy 

Boundary conditions on perfectly conducting walls are 

n - E  = 0 , 

where n is a unit vector outward normal to the surface of boundary, namely S. 

Equation (3) may be stated as follows: the boundary condition on E is that Ell vanish 

at the surface, and the boundary condition on H is that dHll/dn vanish at the surface, 

where Ell and HII are the parallel components of E and H, respectively. 

Equations (2) and (3) constitute the well-known eigenvalue problem. For the 

perfectly conducting cavity, all components of E and H are real. Equation (3) can be 
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solved independently for three components. Since the boundary conditions on Ell and 

HI are different, the corresponding eigenvalues will, in general, be different. There 

are two distinct categories of waves: transverse magnetic (TM) wave if the boundary 

condition is Ell = 0, and transverse electric (TE) wave if the boundary condition is 

aHlJdn = 0. The lowest nontrivial eigenfrequency of the TE mode is lower than that 

of the TM made. For rf heating, the low-frequency, compact, high-power antenna is 

needed because of the typical port sizes and magnetic fields on tokamaks, From 

plasma diagnostic techniques, the magnetic field can be directly measured by probe, 

but the absolute value of the electric field cannot be. Hence, solving Eq. (2) in terms 

of H is more practical, though it is sometimes more difficult. 

For most higher eigenfrequency modes, the eigenfunetions (E or H) are 

degenerate. When the eigenfunctions are degenerate, we impose conditions of 

constraint to remove the degeneracy. Those constraint conditions could simply use 

Eq. (la) or Eq. (lb). 

111. DESCRIPTION OF ANALYSIS 

For simplicity, we discuss our numerical method in Cartesian coordinates. 

Thus, Eq. (2 )  can be rewritten in three scalar equations for H,, H,, and H,: 

a2H d2Hy a2Hy 
L+---+- + k 2 H  1 0  , 
ax2 ay2 aZ2 Y 
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where k2 = ~ O E O  02. Similar equations can be obtained for E if we replace H by E in 

Eq. (4). 

Equation (4) is similar to the Poisson equation with a linearized source term. 

We have modified the validated analysis described in Ref. 6, whiek describes some of 

the details of the present analysis. In the subject analysis, we expand the fields (E or 

H) and their particle derivatives in Eq. (4) at node 0 (see Fig. 1) in terms of the fields 

ORNL-DWG 85-34.74 FED 

FIG. 1. The setup of nodal points and their finite difference expansion coeficients. 
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at i ts  neighbor grid points (1-6) by using the first-order finite difference 

approximation. We have, for example, 

where HXi is the value of H, at the ith node and Ci is the expansion coefficient in that 

direction, 

Then, we iterate the calculation by SOR until the difference between the two 

sides of Ey. (5) vanishes. That is, Res = Hzo - Xi CiHZi = 0. We define this as a 

minor iteration. During the minor iteration, k2 is kept constant. Once Hj (or Ej) is 

found, after a completed minor iteration, a new value of k2 can be gotten from 

where pem is an arbitrarily chosen grid point and Hj = Hj/Hj max. Hj max is the 

maximum value of all Hj. This new k2 is input into a minor iteration. A major 

iteration is then finished. The iteration process is completed and the eigenfrequency 

is found when the previous k2 and the latest k2 are sufficiently close. An alternative 

way to find the new k2 needs to be mentioned here, because it converges rapidly in 

most cases. We can obtain the new k2 by dividing k2 by Hj max (or Ej max). 

Convergence is achieved when X-Ij max is unity. Mathematically, this corresponds to 

choosing the HjiVem) equal to Hj max in Eq. (6) .  However, this method fails if the 

maximum value of Hj is assigned as a constant boundary value where the nodes are 

excluded from the iteration. The algorithm is shown in Fig. 2. 
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M I N 0 R I N T E R AC T I 0 N S 
SOLVE 

2 n - 1  + k2,-! ~ n - 1  = 
Hm rn 

ORNL-DWG 85-3475 FED 

4 

INPUT 

SETUP BOUNDARY CONDITIONS 
AND CALCULATE COEFFICIENTS 
c,, c,, c,, c4, c,, c,, c,, c, 

1Y ES 

f CALCULATEk i  1 
I k k  = 1 +Q2H,/Hm I 

L 
MAJOR ITERATIONS I m = m + l  
k$ = ak; + (1  -a) km., 2 

t 
ARE BOTH k2 
AND H UNCHANGED? 

FIG. 2. Algorithm for Maxwell's equations. 
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Convergence is critically dependent on the relaxation parameters" for the SOR 

method. In the major iteration, we use underrelaxation to get the new k2 of the mth 

iteration; that is, 

k m =  2 akm 2 +- ( l -a )km- l  2 , (7) 

where k: is evaluated from Eq. (6). The underrelaxation parameter, a, is in the 

range of 0 < a I 1. Similarly, we use overrelaxation with the relaxation parameter, 

1 I j3 < 2, in the minor iteration; that is, 

where ~n is the result from Eq. (5). Whether or not the iteration process converges 
J 

at  all and whether the convergence is fast or slow depends on the chosen values of a 

and j3. We give a more detailed discussion in Sec. IV. Theorems on the choice of a 

and p are being developed. 

B. Implementation of Boundary Conditions 

Two types of boundary conditions, either the Dirichlet boundary condition (Ej 

= 0 or Hj = 0) or the Neumann boundary condition (dEj/dxk = 0 or dHj/dXk = 01, are 

required ta solve Eq. (4). For example, to solve Eq. (4c), we let M, = 0 on boundary 

surfaces xy, aH,/dx = 0 on boundary surfaces yz, and dH,/dy = 0 on boundary 

surfaces zx, as illustrated in Fig. 3. Setting up the Dirichlet boundary condition is 

rather simple. We let the fields equal zero only at the nodes and keep them constant 

on each iteration. To treat the Neumann boundary condition, we need to redefine 

the eoeffkients Ci. For a point that lies on the boundary line, Ci is set at zero for the 

direction that points outside the boundary, and the opposite Ci is doubled. FOP" 
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dHz/ d y  0 

FIG. 3. Schematic representation of the cavity resonator and the boundary 

conditions of H,. 

example, for point A, we let C3 = 0 and double C1; for point B, we let C, = 0 and 

double C,; for point C ,  we let C1 = 0 and double C3, and for point D, we let C4 = 0 

and double C z .  For points that lie on the corners, we double the two nonzero Ci's that 

lie interior to the boundary. For example far point a, we let C3 == C4 = 0 and double 

C1 and C2. The Ci's for points b, c, and d need similar treatment. 

We cannot expect all the boundaries to be fitted in the nodal lines. A typical 

case is shown in Fig. 4, a circle. This problem causes slight complications in the 

Neumann boundary conditions. However, here we have developed a new schemela to 

deal with these oblique Neumann boundary conditions. 

C. Imposed Conditions for Higher Eigenmodes 

The procedure described above (See. IKA) can only produce the lowest mode, 

because Eq. (6) provides a bound only for the lowest eigenfrequency. To get the 
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FIG. 4. A typical irregular boundary. 

higher modes, we must implement the Gram-Schmidt orthogonalization. It is worth 

pointing out here that the lowest eigenfrequency of the TE mode is zero, and the 

corresponding eigenfunction is an arbitrary constant. For this particular case, we 

can simply obtain the first nontrivial eigenfrequency by subtracting a constant from 

Hj (or Ej). This constant could be the averaged value of Hj (or Ej) at each iteration. If 

the higher modes have degeneracy, the constraint condition V-H = 0 (or V . E = O )  

is also required in order to exclude the undesired mode. 

IV. EXAMPLES 

We use a rectangular cavity, a ridged waveguide, and a complicated cavity to 

examine the validity of our analysis. It is well known that if a, b, and c are the 

dimensions of the rectangular cavity (Fig. 5a) and c 2 a > b, then the magnetic field 

and electric field of the "Eo1 mode (the lowest nontrivial mode) are 

(9) nx rIz 
H x =  Asin- cos- ,  

a C 
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Y 
t 

FIG. 5. Sample results for a resonant cavity: (a) the dimensions of the cavity, (b) H, 

of T E o l  wave, (e) H, of TEol wave, and (d) E, of TEol wave. The chained 

lines represent the negative fields, and the vector of field points to the inside 

of the paper. 
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nx nz 
E = Csin- sin-, 
Y a C 

H = E :  = E  = o ,  
Y X  2 

where A, B, and C are constants. 

The corresponding eigenfunction is 

Figure 5 gives the results of our calculation with a = c = 2 m and b = 1 m. In 

this paper, the contours of the field are plotted for all examples. The difference 

between the value of k2 from the subject analysis ( = 4.89 md2) and that from Eq. (13) 

(= n2/2 rn-2) is less than 1%. Since the analysis of See. III considers arbitrary 

boundary data, and since the analysis cannot determine that the exampie of a 

shoebox cavity is solvable exactly, the agreement in  the lowest eigenvalue 

constitutes a nontrivial validation of the subject analysis. 

The second example considered is that of a ridged waveguide. This waveguide 

has  a lower cutoff frequency and a wider band of useful frequencies than  a 

rectangular waveguide with equivalent outside dimensions. Figure 6 shows a 

typical ridged waveguide and its lowest mode (TEol) H, field. Figure 6(b) shows the 

result for an  infinitely lomg waveguide. Infinite length is a necessary assumption for 

the equivalent circuit approximation.2 To compare our results with the equivalent 

circuit approximation, the lowest eigenfrequencies of three ridged waveguides with 

different aspect ratios are computed by both methods. The results are plotted in Fig. 

7 with apparent agreement. In order to illustrate our 3-D analysis of the finite 
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FIG. 6. Sample results for a ridged waveguide: (a) the dimensions of waveguide 

(a:b:d:e = 4:2:1:1), (b) H, of TEol wave for c = m with both ends open, and (c) 

H, of TEol wave for c/b = 1 with closed back end. For comparison we also 

show (d) H, of T E o l  wave for a rectangular waveguide with closed back end. 

The dashed lines represent the negative fields and the vector of field points 

to the outside of the paper. 
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0 SUBJECT ANALYSIS 
- EQUIVALENT ClRCUlT 

c /b  = a  

0 0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
d / b  

FIG. 7, Comparison of the eigenmode resonance frequencies computed with our 

method and with the equivalent circuit approximation by Pyle.2 f/f is the 

ratio of resonance frequency with the rectangular waveguide to that with 

the ridge. 

waveguide, Fig. 6(c) shows the results for a finite ridged waveguide (c  = b), and 

Fig. 6(d) shows the results for a rectangular waveguide without the ridge. Both 

waveguides are closed by a metallic wall a t  the back end. The resonance frequency 

for the finite-length waveguide is reduced by only 13% due to the ridged effect. From 

Fig. 7, we find that the resonance frequency reduction is 28% for the corresponding 

infinitely long waveguides, 

We also use this example to discuss the correlation of convergence and the 

relaxation parameters, a and p. For this purpose, two ridged waveguides with 

different aspect ratios (one infinitely long and the other with a finite length) have 



been used to study the convergence. The parameters for Convergence are illustrated 

in Table I. For the infinitely long ridged waveguide, the result shows that 

convergence is speeded up with the larger a and p, if we keep the other parameters 

constant. In the case of the finite-length waveguide, closed only at  one end with a 

Neumann boundary condition a t  the other end, the result shows that the code 

converges only a t  a particular parameter range. If the finite-length ridged 

waveguide is closed on both ends, then convergence is readily achieved for 0.05 < fl 
- < 1.7,Q.O5 < a 2 1. 

The last example of the analysis considered here is the cavity illustrated in 

Fig. 8. This cavity is similar to the cavity antenna that has been proposed for the 

ICRH experiment in Doublet ITI-D. Experiments on it are proceeding at  the RFTF. 

We have used this example to examine the consistency of our results for two different 

orientations. The eigenfrequencies of both cases are identical to within 3%. The 

Table I .  The parameters f o r  convergence fo r  a r idged  waveguiden 

Aspect r a t i o  B 
Minor 

i t e r a t i o n  
Ma j o r  

i t e r a t i o n  
ci 

a = 2 ,  b = 1, c = 45 1 . 0  1 . 0  64 
0 .9  63 
0.8 72 
0 .5  > l o o  

15 1 .0  0 .8  > l o o  
1 . 2  > l o o  
1 . 5  69 
1 . 7  34 

a =  2,  b = 1, c = 1 15 1 . 0  1 . 0  120 
(one end closed)  0 . 7  80 

0.5 >120 
-I__ I-_ -- - 

u 
The number of  nodes used h e r e  i s  20  x 18 x 10. 
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TOP 
VIEW 

/ V A C ~ U M  CYLINDER 
I 

B O T T O M  

FIG. 8. Sample results for a complicated cavity: (a) structure of the cavity, (b) top 

view of /El field, and ( c )  side view of /E/ field. 

corresponding electric fields, which are consistent in both cases, are shown in Fig. 8. 

This result proves that  the subject analysis is independent of boundary data 

orientation. 

V. S U M M A R Y  

We have developed a 3-1) analysis that can deduce the resonance frequencies 

and the wave fields for a cavity antenna of arbitrary shape by using the finite 

difference method with an SOH. convergent scheme. This analysis has been very 
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carefully tested for various cavities. The results shown are in good agreement with 

other theoretical analyses. 
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