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ON A CENTRAL LIMIT THEOREM FOR VARIABLE SIZE SIMPLE
RANDOM SAMPLING FROM A FINITE POPULATION

Tommy Wright

ABSTRACT

This paper introduces a sampling plan for finite populations herein called " variable size
simple random sampling" and compares properties of estimators based on it with results
from the usual fixed size simple random sampling without replacement. Necessary and
sufficient conditions (in the spirit of Hajek (1960)) for the limiting distribution of the

sample total (or sample mean) to be normal are given.

KEY WORDS AND PHRASES: Finite population; Limiting distribution, Lindeberg-Hajek
condition; Poisson sampling: Simple random sampling without replacement; Truncated
binomial; Variable sample size.



1. INTRODUCTION

By design, the vasi majority of statistical theory, methods, and practice assumes that
an investigator is going to make inferences based on data derived from fixed size sampling
procedures. A fixed size sampling procedure is a sampling procedure in which the size of the
sample n is fixed before any selection begins, and in theory n is not permitted to vary.
For example, this is indeed the usual case when sampling from a finite population of N
units for estimation purposes. (See Cochran (1977); Hansen, Hurwitz, and Madow (1953);
Kish (1965); Sukhatme and Sukhatme (1970); Hajek (1981); and Brewer and Hanif
(1983).) Even though the intent may be to have a fixed size sampling procedure by design,
the actual application may yield a sample whose size is different from that planned; this
occurs, for example, in survey sampling when there is unit nonresponse (Madow, Nissel-
son, Olkin, and Rubin (1983)). Removing outliers from an observed sample without
replacement also leads to a sample size that is different from that planned (Barnett, 1983).
While unit nonresponse and removal of outliers lead to examples of unintentional variable
size samples, some variable size samples are the result of careful planning that intention-
ally leads to variable size sampling procedures such as (1) sequential sampling procedures
“(Wald, 1947) and (2) Poisson sampling (sometimes called Bernoulli sampling) as discussed
by Hajek (1981) and Strand (1979). A variable size sampling procedure is a sampling pro-
cedure in which the size of the sample n is by design and with intent permitted to vary
during the selection process. While Cassel, Sarndal, and Wretman (1977) do not use this
exact expression, they do consider such designs. Also, domain estimation (Cochran, 1977,
pp- 34-39) in sampling from a finite population is based on samples where the size of the

observed sample from a domain of interest is a random variable.
Although it is true in practice that with variable size sampling procedures there is the
fear that the realized sample size might be too large to manage or too small to support

needed analysis, it is important that properties of these procedures and estimators be
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examined for theoretical interest and as a first step toward variable sample size procedures
where the size of the sample is permitted to vary over a specified subset of {1, 2....,. N}
containing preferred values for n. In an earlier paper, we considered variable size simple
random sampling (VSSRS) from a finite population (Wright, 1985), and in Section 2 of this
paper, we define and summarize some of the properties of VSSRS. Section 3 compares sam-
pling variances under VSSRS with the sampling variance under the usual (fixed size) sim-~
ple random sampling (FSSRS). In Section 4, a central limit theorem under VSSRS is given

which yields results similar to those of Hajek (1960).

2. VARIABLE SIZE SIMPLE RANDOM SAMPLING
Let U = {1.2,3,... N} denote a finite population of N units and assume that the "

unit has associated with it the real number ¥; fori{ = 1,..., N. The value of the parameter

N
of interest, uy = Z Y;/N, is assumed to be unknown. We assume that a sample will be
i=]

selected to yield an estimate ry for py. Perhaps the most basic sampling plan, which is
the basis for numerous other sampling designs, is simple random sampling without
replacement. Under simple random sampling without replacernent, the size of the sample n

is assumed to be fixed and is determined before any sampling begins; sampling is per-

~1
of being selected. Yor the

formed so that each of the

1,\,,]] samples has probability [ ]X
remainder of this paper we will refer to this sampling plan as fixed size simple random
sampling (FSSRS).

In the following definition, we introduce a variable size sampling plan for a finite popu-
lation where the size n of the observed sample is not fixed before sampling begins, but is a
random variable that takes on integer values between 1 and N inclusively with maximum
probability of n beingat n = N/2 and (W+2)/2 if N isevenand atn = (N+1)/2 if N

is odd.
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Definition. If the sampling plan is such that each of the 2% — 1 nonempty subsets of U
has an equal probability of selection, then the sampling plan is called variable size simple
random sampling (VSSRS), and the observed sample is called a variable size simple random
sample.
Under VSSRS, n is a random variable whose distribution is given in Lemma 1.
Lemma 1. If n is the size of the observed sample under VSSKRS, then the probability func-
tion of n is

Pl =j)= [7]/ @Y —-1) for j=12..N. (1)
Proof. The proof is immediate because the probability of each possible sample is

1/(2¥ — 1) and there are ways of selecting j units from N different units when

order is unimportant. #

Note that P(n = j)=P(n =N — j) for j = 1,2,.., N — 1 and hence the distribution
of n is symmetric except for n = N . It is easy to see from Lemma 1 that n is a truncated
binomial random variable at zero with parameters N and 1/2 (Johnson and Kotz, 1969,
pp. 73-74). The following properties of n and the sampling plan all follow from Lemma

1.

Property 1. The characteristic function of n is

E(exp(itn)) = {(explit) + DY — 1}/ @¥ —1) for t€R. (2

Property 2. If w=2Y"1/(2" ~ 1), then

E(n)=Nwm ., and

Var(n)=Nir(1—a2Y +1—=N) @Q¥*1 =2 —2V) . (3)

For large N, E(n) =N /2 and Var(n ) N /4. Hence VSSRS is of limited practical use
because the average size of the sample is approximately one-half the size of the population,
which would be large in many cases. But as was noted earlier, our interest in this paper is

theory; and we view VSSRS as a first step towards finding more practical variable size

sampling plans.
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Property 3. Leti and j be two different but arbitrary fixed units in U. Then

a; = P(iis included in the sample) = o, and

(4

m; = P( and j are included in the sample) = n/ 2 .

Property 3 implies that each unit has an equal probability of sample inclusion and so does
each pair. This comment is also true for FSSRS; however in that case, m; = n/N and
m; =nln ~1)/NWN - 1).

Jt is immediately clear that a variable size simple random sample can be realized by
applying one of the following three sampling methods. One method, sometimes referred to
as the "mass draw" technique, calls for listing all possible 2% — 1 subsets of the popula-
tion of size N and picking one of them with probability 1/(2¥ — 1). This method is
directly from the definition and seems practical for relatively small values of ¥. An
alternative method is to select the sample in two stages. On the first stage, select the size
of the sample n = j with probability P(n = j) = [1\1{}/(2’\’ —1)for j =1,2,...N. On

the second stage given n = j, select from among the

1}7] subsets of j units, one with
probability 1/ {‘7 ] That is, on the second stage one selects a fixed size simple random
sample of j units. A third method. which gives what is called a sampling scheme in
which we select the units for the sample one-by-one, can be obtained via the method

presented by Rao (1962).

3. ESTIMATION OF THE POPULATION MEAN uy UNDER VARIABLE SIZE SIM-
PLE RANDOM SAMPLING
In this section, we consider some results about the statistic ¥, the sample mean, under
VSSRS and make some comparisons with the statistic y under FSSRS.
Lemma 2. Under VSSRS, y is an unbiased estimator of zy .

Proof. Let A = {all nonempty samples of U} and A; = {all samples of size n = j, where

N N —
1< SN} and note that 2, [Zj] =2 — 1. Also for a€A or a€A;, let y, be the
i=1



sample mean of the units in . Then

EG) = 540" =3 ¥ 5./ 1)

€A j=10kA,

uy/ Y —1)

£ 17

i=1

=My o

as was to be shown. #

Lemma 3. Under VSSRS, Var () = o2(NE(1/n) — 1)/(N ~— 1), where

N
of =3 (¥Y; —uy)?/N.

i=]

Proof . Var (y) = 3, (3o — uy )3/ 2V — 1)
o€ A

=5 T Gumm 0¥ -1

ji=1 otGAj

il

& (N
)» [,~]<N~j)o"y?'/(N—1)j/(sz1)
i=1

It

jagl (N — 1Dl @Y - 1)

é:l[Iy]Noa?/ WV ~1)j — é[zg

o= (_T)g

N [1}’]/ jQY - 1)‘/ W — 1Y ~1)

Jj=1

=gf(NE(1/n)—1)/ (N —1). &

Lemma 4. Let Var (y) be the variance of y under VSSRS and Var (y1;) =

(N —n)of /(N — 1)n be the usual variance of y under FSSRS for fixed sample size

n = j. Then
Var (y) = E(Var (y1n)) .

Proof. The result follows immediately from Lemma 3. &
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It is clear that in general Var(yln) is a nondegenerate random variable in n for
n =1,2,.,N. From Lemma 4, the expected value of Var (y1n ) under FSSRS is the same
as Var (y) under VSSRS. Thus there are values of n for which Var (3) € Var (31n) and
other values of n for which Var () 2 Var (¥1n). In the remainder of this section, we
generalize the direction of the inequality for the various values of n in Theorem 1. Gen-
erally, for values of n > N/2, Var(y) > Var (¥ In); and the direction is reversed for
values of n < N /2. The next two lemmas will be used in the proof of Theorem 1.
Lemma 5. Let n be any discrete random variable with probability function defined for

n=12,...,N,where N <oco. Then

En)EW/ n) 2 1. (3)
FProof. By the Cauchy-Schwarz Inequality, for every ai,..., ay. by, ..., by € R, we
N 2 N N -
have | } a,b,| € J a? } b7 . If we takea, =VnP(n)and b, = VP(n)/ n . then
n=1 n=l n=
we observe

[ﬁmﬁﬁm "< £ [vire| & [veeors].

Because P(n ) and n are nonnegative Vn, we have

2
&

N

z 2n)

n =1

v
T oapk(n)

n=l

n =1

N
P n] ,

which is the desired result. #
Lemma 6. If n has the probability function given in (1), then for all &V,

En —DEM/ n) < 1. &
Proof. From equation (11) of Stephan (1945), we note that for n > 0, 1/n can be

expressed as a series of inverse factorials by

! ! i —1)in 1
1__o 1! IR U 91,3

o, G-1Dind
n a+1 + (n+1Xn+2) *

e IR S SO MO

where R, (n) = t1(n—~1)1/(n -+t ) is the remainder after the first £ terms. For ¢t = 3, we



have

2! 314
1 1 (8)

1 + + : + '
n nt1l (n+1)n+2) (n+1)n+2)n+3) nla+ DR +2)(n+3)°

Forn 2 1, it is easy to see that

1 < 1 + 1 + 2 + 3t
n n+t1l (n+1)n+2) h+Dnr+2Xn+3) rh+ DA +2)n+3)
9)
-1 + 1 + 8
n+1 (n+D(nr+2) r+DE+H2Xn+3)
Next, we show that
E(1/ n) SQ2N22Y + 84N 2V + 5282% — 17N3
(10)
— 138N2 — 421N ~ 528)/ 6(N + DN+ 2)(N + 3)2¥ — 1) .
By (9) and the fact that n is a truncated binomial random variable at zero, we have
1 1 1 1
El—| S E| |+ E|————=c |+ 8E
e ] (n+ D +2) (n+ Din+2)n +3)
N+2
_ 1 (NI L 2 g- [N+2 1 '
GRSV F-R o ) (N+2) foy (nr2)( 2
2 v
(11)
32 & (N+3) |1

N+3]

The first sum in the brackets is P{(X 2 2). where X is a binomial random variable with

(N+3)N+2) & (nt3] 2

parameters N + 1 and 1/2. Similarly, the second and third sums in the brackets are respec-
tively P(Y 2 3) and P(W 2 4), where ¥ and W are binomial random variables with

respective parameters N + 2. 1/2 and N + 3, 1/2. Thus



¥o(ner) (27 1

Z w1 [3] =17 X PO=1-W+2y @Y,

X (w2 |7 2

L (i) |5 =1L POO=1-( 45N +8) 2700 aad
VIR 3

L (n3)|z] =17 Z PRI =1 (VT4 N+ 32N +48)/ 327"

Thus substituting these three equalities into (11) yields E S (12N22Y + 84N 2

¢

+ 5282 — 17IN? — 138N2 — 421N — 528)/6(N + DNV + 2)(N + 3)(2¥ —~1),  which
establishes (10).

By Property 2 and (10),

€1 forall N

E(n - DE 1
n

if

12N 225 + 84N 2V + 52828 —1TN 3138 N 2—421N ~528
6(N + 1N+ 2N+ 3)2Y-1)

v €1 forall N,
28 -1

N 2”“1~1l ,

if and only if

114N 22V 4 32-3— NN + 373N 2% 4 1128027 < 6N%22Y + i}wﬂ + 40N32V

(12)
+ 564°22Y + 17N3 + 138N2

+ 421N + 528 forall N .

Now the left-hand side of (12) is strictly less than the right-hand side for N > 19

because
114N 2% < 6NZ222Y i N > 19,
* : 23 24N 3N .
71\/2' < 40N32 if N >1,

373N 2V <~1§7~N42N £ N >4,
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and 1128927 < 56492%Y  if N > 1.

Table 1 gives the values for the left-hand and right-hand sides for N = 1, 2,..., 20. Hence,

Lemma 6 follows.

TABLE 1. Values of (12) for 1 S N £ 10.

N Left-hand side Right-hand side
1 3,481 3,481
2 11.328 13,290
3 40,692 57.192
4 161,600 250,244
5 688,656 1,069,344
6 3,043,584 4,464,558
7 13.625,152 18,441,988
8 61,009,920 76,305.336
9 271,732,992 318,762,480
10 1,201,528.832 1,348,578,002
11 5,273,220,096 5.774,602.,692
12 22.980,968,448 24.962,979,372
13 99,520,221,184 108,606,526,576
14 428.563,955,712 474,226,047,222
15 1,836,403,605.504 2.,073,666.106,404
16 7.834,678,329,344 9,066,676,074,080
17 33.296,001,073,152 39,598,149,533,712

18 141,015,398,744,064 172.643,510,800,794
19 595.392.030,048.256 751.141,298.547,556
20  2,506,900,339,949,568  3,260,714,072,608,212

Theorem 1. (1) Forn 2 E(n ), Var(y) 2 Var (51n) .

() Forn <EM), Var(y) S Var(in}.

Proof of (1) To prove wpart (1), first let n =%(r). By Lemma 3,

Var(y) = o2(NE(1/n) — 1) / (W — 1). From Property 2, we have

I

Var G1E(n)) = (N ~ Ex Do/ (N — DE(R)

il

of(1 -1/ 2 )/ (W — 1) .
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By Lemma 5, E(n) 2 1/ E(1/ n) if and only if

1
*1?1—“27\,—_'3-

n

NE[l

or equivalently

of(NE 1

n

-1 N -2 -1/2YY WV -1),

which is the same as

Var () 2 Var G1E(n)) .

The rest of part (1) follows because Var(yln ) = = 1| is a strictly decreas-

a? N
WN-10 |

ing function in n .
Proof of (2). To prove part (2), let n = E(n ) — 1 or equivalently £(n—~1). Then
Var (3) € Var F1E(n—1))
if and only if
cFWEW/ n)— 1)/ (N —1) £ oW/ En—-1) ~ 1)/ (N — 1),
if and only if
E(n —1DE{/n) €1,

which is so by Lemma 6. Because Var(yin) is a strictly decreasing function in n, it fol-
lows that Var (3) € Var (y1n) when n < E(n). This completes the proof of Theorem
1. ®

From Theorem 1, if n 2 E(n ), then FSSRS makes y as precise an éstimator of uy as
VSSRS, and VSSRS makes y as precise an estimator of gy as FSSRS when n < E(n ).
Remark. Note that the inequality in Lemma 5 is a general result, while the inequality in

Lemma 6 is not. At first glance, one might think that the inequality in Lemama 6 should
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be true for any random variable defined over the first N positive integers because it makes
one think about the inequality (rn—1)/ n < 1, which is always true for any value of
n 2 1. The following example illustrates that the inequality in Lemma 6 does not hold in
general.
Example. Let the probability function of the random variable n be defined by

1/2 forn =1, N

Pln) =
0 otherwise .

Then it is easy to show that £(n -- 1)5'{ % =N -~ 1DWN + 1)/ 4N > 1if N 2 5.

4. A CENTRAL LIMIT THEQOREM UNDEERE VSSRS

In this section, we justify necessary and sufficient conditions for the limiting distribu-
tion of € =ny under VSSRS to be normally distributed. The approach and result are
quite similar to that taken initially by Hajek (1960) and used by others, including Scott
and Wu (1981). The main theorem follows from Lemuma 7 and the proof of Theorem 3.1
of Hajek (1960).

Recall the definition of VSSRS and the probability function of n given in (1). Another
example of variable size sampling from a finite population that is a special case of what

Hajek (1981) refers to as Poisson sampling of mean size n is given by

12 Nk

i

n
N 1

P(Sklﬁ,)»‘z N

(13)

where s, is a subset of U consisting of & units and P{s,ln ) is the probability of 5, given
n. It is important to note that we think of Poisson sampling here as being conditional on

mn.

If £€=ny = 3. Y, where {¥;,..., Y.} is the set of observed values of the variable
i=1

size simple random sample 5, , then it follows that, given n, £ has finite conditional mean
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value
n X
E(fin)= = 2 Y, (14)
N &
and conditional variance
_n N-n & _ 2
Var ({ln) = N N1 iz=:1(Yi uy )° . (15)
Next consider an infinite sequence of VSRS experiments {(Y,1, Y,z ..., Yon ). 0y,

k, N,}. where N, is the size of the v* population with population values
Y.Yu2o ..., Y wN ) Ty 18 the size of the variable size simple random sample from the v
population; and &, is the size of the conditional Poisson sample s¢, from the v popula-
tion for » = 1, 2,... In what follows, we consider the v experiment and for simplicity
will omit the subscripts ¥ until needed again.

Recall that under VSSRS, n is a truncated binomial random variable at zero with

parameters N and 1/2. It is easy to see that under Poisson sampling (conditional on n ), &

is a binomial random variable with parameters N and n /N . Hence

Ekin)=n and Varkln)=E({(k —n)Yin)=n (16)

n
1 N

Next we define an experiment that is an extension of the one proposed by Hajek (1960)
and yields simultaneously a variable size simple random sample s, and a Poisson sample
s;. where s, Cs, ifn €k and s, C s, if £ €n. The experiment consists of the fol-

lowing three steps:
1. First realize a value 2 according to
pe)= [N/ (27 =D for 1<n €N,

2. Next realize a value & given rn according to

k N~&
n

1

i for 0Kk €N .

. Pkin) = [1}(’]
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3. There are three cases to consider for step 3.

(a) When k = n, select a fixed size simple random sample s, = 5, that is a

simultaneous realization of VSSRS and Poisson sampling.

(b) When k& > n, select a fixed size simple random sample 5; and (given s, )
select a fixed size simple random sample 5, from s;. The observed s; is

our realization of Poisson sampling, and s, is our realization of VSSRS.

(¢) When & < n, select a fixed size simple random sample s, and (given s, )
select a fixed size simple random sample s, from s5,. The observed s, is
our realization of Poisson sampling. and s, is our realization of VSSRS.

Now for the overlapping samples 5, and s; just described, let

o= 3 ¥V, —pp)=£&-nuy (17)
i€s,
and
¢ = g (Y —py). (18)
iEsk
Note that
0 if Xk =n
z; Y, —uy) if Kk <n (19)
¢ = i€s, 5y
2: (YiW!Ly) if £ > n.
iésk—s"

Lemma 7. If N, e as ¥ — oo, then ¢ - ¢ converges in probability to zerc as v oo,

Proof. First we will show that

E(p -0 <opd E(G— 2. (20)

If n and k are fixed, then 5, — 5, (or 5, — 5, ) represents a fixed size simple random
sample from U of size |k — al by Results 0 and 1 of Wright and 'I'sao (1985). Thus from

(15) we have
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E(p—¢ Vln.k)=Var({(p —¢")In, k)

Qb
kK —nl N =Ik —nl
=% TR L=y

£k —nlog.

Thus from (21), an application of the Cauchy-Schwarz Inequality, and (16), we have
E((p— ¢ Pin)=EWEUp—¢" Pln.&)in)
S o E(k —nlln)

S (22)
= of EWNkE —nin)

=02 S V& —n P Pkin)
k

< of ﬁ(k —n)P&in)
=0'}3'\/ n,(lv%).

Also by (22) and another application of the Cauchy-Schwarz Inequality,
E{(p—¢ ) =EE{p~¢"PIn))

(23
SE

of n(l-—%)]

}:'\/ n(l— %)P(n)

= of

<ot EG(- 2.

Thus (20) has been shown. Next we show that
Var (") = 02E(n (1 — }%)) ) (24)

To show (24), first note that Poisson sampling as described in {13) can be achieved as fol-
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lows: "For each unit of the population of size N, perform one Bernoulli trial. If a success

occurs, the trial unit is accepted as part of the (Poisson) sample; otherwise the unit is
passed up. The probability of success - is assumed to be the same for all trials, and the

trials are mutually independent” (Strand, 1979). This implies that ¢ based on 5, can be

presented as a sum of N independent random variables,

N
o= L (25)
where
Y, — puy with probability —;— (Gifigs)
§i = (26)
0 with probability 1 — ;‘7 (ifi € U ~ 5;).

Thus EQ;1n) = ; — pydn/ N, Var ({;ln) = (¥; — py Prn (N —n)/ N2 E@1a)=0,

N
and Var (" 1n) = 3 Var ({;In) = gfn (N —n)/ N.Hence
i=1

Var (¢*) = Var (E(@"1r)) + E(Var (§"1n )
Q@n
= E(Var (\;5* ln ))
= 0B (1~ ).
which demonstrates (24).
From (20) and (24), it follows that
E((dp—¢" )Y Var(¢') £ af;—\/ E(r( -~ 7’:];))/ o2E(n(1 — %)) )
(28)

= 2NN —1)E) .,

because from Properties 1 and 2 one can show that E(n?) = (N + DE(® )/ 2. Using a

generalization of Chebyshev's Ineqguality given on pp. 54-35 of Hogg and Craig (1972)
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with the random variable (¢ ~ @' )? and constant ¢ = k*Var(¢*), where &k > 0, it fol-

lows that
Pl ~ ¢ 2 1ovar 60 | < B - 692 kVar 8.
or equivalently
P[lq&—-qb'! >kW5] SEW¢p — ¢ )2 k¥Var(¢") . (29)

Thus Ve >0 we can have P(lp —¢'| Z €)= P[!¢ — ¢l 2 kVVar(¢')|. where
k =€/ VVar (¢").
Now reconsidering the sequence of experiments {(¥Y,q4,..., ¥ o D Ry Ky, Ny Tet ¢,

and ¢, be the random variables given in (17) and (18) corresponding to the ¥™ experi-

ment. Thus Ve > 0
lim Pllg, — ¢, | = e]: o im P[iqs,, — ¢l 2k~ Var ($)) ]
vV oo p >

< Jim_ @, = 670 KVar @] by 29)

=0 since E(n,)=N,2"""Y Q" ~1).

Hence the proof of Lemma 7 is complete. W

From Lemma 7, it is clear that the limiting distributions of ¢, and ¢, are the same pro-
vided that limiting distributions exist. Hence in talking about the limiting distribution of
¢,(or £,), it is enough to consider the limiting distribution of ¢,.
Lemma 8. Let U,={1,2,.,N,} and let U, ={ili€elU, and IY,; —uyp,l
> T\/m} where 7 > 0. Let NV, o0 as ¥ — oo, Then the random variable ¢, is

asymptotically normal with mean 0 and variance Var (¢,) if and only if

GZ (Yvi - i"Yv)2
ey
lim - =0 for 7> 0. (30)
vowe 3 (Y, =y )
€U,
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Proof. The proof is essentially equivalent to that of Theorem 3.1 in Hajek (1960). =&

A CENTRAL LIMIT THEOREM UNDER VSSRS. lLet N, —»oo as v —oo. Then under

VSSRS,
lim P{&, — E(€,) < x~/Var(E,)} = A f " exp(—t2/ 2)dt
v —oo v2mr

if and only if (30) holds for {(Y,y, ..., Yo ). 1ty N,}.

Proof. Follows from Lemmas 7 and 8.

The condition (30) has been referred to as the Lindeberg - Hajek Condition (see, e.g.. Scott
and Wu, 1981) because it occurs in Hajek's Theorem for finite populations. Hajek's
Theorem is proved using the Lindeberg Condition of the Central Limit Theorem for

independently distributed random variables.
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