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ABSTRACT

This report represents the proceedings of the second DOE/CESAR
Workshop entitled "Planning and Sensing for Autonomous Naviga-
tion.” The meeting was held August 18-19, 1985 in conjunction
with, and just prier to the Internatiopal Joint Conference on
Artificial Intelligence at the University of California, Los
Angeles.

The workshop was organized around several issues developed to
focus attention and clarify workshop priorities. The issues
dealt with methods for "world weapping” and "discovery™ in
unstructured environments, approaches to real-tiwe planning with
sensor feedback, computer architectures and concurrent algori-
thes, sensor integration, and uncertainty represeptation and
propagation. A series of overview papers contained herein
served as background for discussion. Written summaries of
group discussions were prepared during the meeting and are
included in these proceedings.
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INTRODUCTION

The Center for Engineering Systems Advanced Research (CESAR) was
established in 1983 at the Qak Ridge National Laboratory (ORNL)
to address long-range, energy-related research in intelligent
control systems. These systems are intended to plan and perform
a variety of tasks in unstructured eonvironments, given only
gqualitatively specified goals. The Center provides a framework
for merging concepts from the fields of artificial and machine
intelligence with advanced control theory.

In order to enhance cooperation with universities, laboratories,
and industry, CESAR periodically organizes and conducts special-
ists' workshops. The first of these, held in Leesburg, Virginia
on November 2-4, 1983, was the DOE/CESAR Workshop on Research
Goals and Priorities in Intelligent Machines. A major accom-
plishment of this study was to identify those fundamental
research areas that are not being addressed sufficiently by
other organizations, and have a relatively high potential
for medium- and long-range impact on the design of intelligent
machines for energy-related environments. The proceedings of
this workshop are available from CESAR upon reguest.

This report represents the proceedings of the second DOE/CESAR
workshop entitled "Planning and Sensing for Autonomous Naviga-
tion." The meeting was held August 18-19, 1985 in conjunction
with, and just prior to the International Joint Conference on
Artificial Intelligence at the University of California, Los

Angeles. Initial solicitations of interest were distributed in
the January-March time frame; these were followed with official
invitations for participation. The meeting attendance was kept

relatively small ("30) to foster informality and free exchanges;
however, the demand was such that a waiting list developed and
not all interested parties could bhe effectively accommodated.
The 1list of attendees, along with associated biosketches,is
provided in Section V. They represent a broad cross section of
university, laboratory, and industry.

The workshop was organized around several issues which were posed
to the participants in advance of the meeting. These questions

served to focus attention and clarify priorities. The issues
were:
1. How can "world mapping” and “"discovery" best be accomplished

in unstructured environments?

2. What are the most promising approaches for real-time
planning with sensor feedback from execution?

3. What are the most suitable computer architectures for the
"brain" of an intelligent machine?



4. Can vision-dependent navigation in unstructured envircaments
work effectively in real time; how is the information
obtained best integrated with data from other sensors?

3. What are the wmost promising approaches toward uncertainty

representation and propagation?

It was recognized from the outset that these guestions are
highly correlated; during the meeting it was derided to merge
questions 2 and 4.

In order to effectively discuss these highly complex issues, a
series of overview papers were presented. These papers, pre-
sented in full in Section 11, are listed below:

1. Alberto Elfes: "Multiple Levels of Representation and
Problem Solving Using Maps from Sonar Data”

2. Stan Rosenschein and Leslie Kaelbling: "The Synthesis of
Digital Machines with Provable Epistemic Properties”

3. Jacob BRarhen: "An Intelligent Machine Operating System for
Hypercube Ensemble Architecture"

4. Scott Harwon: "Planning for Transit in Unknown Natural

Terrain”
5. Ed Oblow: "O-Theory: A Hybrid Uncertainty Theory"

Elfes described his Dolphin system, a probability-based sonar
map representation in multiple levels of resclution, used for
successful indoor and ouvtdoor navigation. Rosenschein and
Kaelbling have adopted a design approach using epistemic logic
in the formal analysis of the robot's information status, and
using metaprograms that automatically constrict real-time
control programs amenable to this type of formal analysis.
Barhen discussed an intelligent machine operating system based
upon a virtual time paradigm including scheduling aml load
balancing the activities of multiple parallel processors.
Harmon presented an approach for navigation in unknown patural
terrain in which the route planning problem is subdivided into
"orienteering” using domain specific knowledge and "global
temporal planning” which is more problem independent. Finally,
Oblow offered an uncertainty theory formulation based on the
Dempster-Shafer approach and intended to bridge the gap between
fuzzy set theory and Bayesian inference theory. Presentaztion of
these five overview papers constituted the more formal part of
the workshop.



Following the overview papers, each of our discussion leaders
led the group in addressing the workshop themes listed above
(recall questions 2 and 4 were merged). Section III contains
the informal discussion summaries prepared by Jim Crowley, Stan
Rosenschein, Jacob Barhen, and Peter Cheeseman. The discussion
on each of these subjects was lively and interesting. VLSI and
concurrent computation are needed for real-time robotic systems;
more hands-on experience is needed for a specific architecture to
be recommended. World modeling was seen as a problem dependent
hierarchy renging from wall {or road) following, o geometric
modeling, object discoverers, and strategy learners in various
degrees of sophistication. High~level and low-level planning
processes may proceed at different time scales, but must be
coordinated if timely response to environmental events is to
guaranteed. This section alse presents what is now fondly known
as the "Cheeseman Challenge” and some of the correspondence
related to consistent and comprehensive uncertainty analysis.

The group discussions were not intended to provide the final
word on these complex issues. Rather the CESAR Workshop was
intended to provide a useful forum for technical interchange on
such important issues. Other written feedback from participants
is also included in this section.

The positive feedback received from this meeting encourages us
to begin planning our next meeting. We welcome your suggestions
for recommended subject areas.
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INVITATION
OaK RIDGE MATIONAL LABORATORY POST OFFICE BOX X
CaAK RIDGE, TENNESSEE 37831
OPERATED BY MART(IN MARIZTTA ENERGY SYSTEMS, IMC.
March 22, 1985
To: Workshop Participants: Artificial Intelligence and

Mobile Robots

From: C. R. HWeisbin, Director, Center for Engineering
Systems Advanced Research (CESAR)

Subject: DOE/CESAR Workshop "Planning and Sensing for Autono-
mous Navigation" August 18-19, 1985

I. INTRODUCTION:

In behalf of the Department of Energy's Office of Basic
Energy Sciences, the Oak Ridge National Laboratory Progran
in Intelligent Machines (CESAR) plans to held its 1985
technical workshop "Planning and Sensing for Autonomous
Navigation," on August 18-19, 1985. This meeting should be
of significant interest to attendees of the St. Louis
Workshop on "Artificial Intelligence and Mobile Robots,"
since both meetings concern similar research themes, i.e.,
spatial representation, real-time planning, perception,
advanced computer architectures, etc.

IT1. MEETING LOGISTICS:

The DOE/CESAR meeting will be held at UCLA on August 18-19,
1985 in conjunction with the forthcoming International
Joint Conference on Artificial Intelligence. The CESAR
Program is prepared to pay for all incremental costs (e.g.,
price of additional hotel fee, etc.) for workshop partici-
pants who will be attending the IJCAI mesting, additional
transportation costs for those who do not plan to partici-
pate in IJACI. Based upon respense to this (and related)
initial solicitations, formal invitations will be extended
by CESAR/ORNL in May, and a tentative agenda will be
distributed in Juine.

ITI. MEETING FORMAT:

We currently anticipate attendance of 725, with invitations
extended ta technical leaders of advanced programs related

to planning and sensing by intelligent machines. Initial
informal contacts have been made with individuals at SRI,
FMC, NOSC., CHMU, etc. The first =morning {(August 18) will

have overview presentations; the remainder of the workshop
will involve free wheeling discussions and panels.



Iv:

ACTION ITEHMS:

If you would be interested in participating in the DOE/CESAR
Workshop please complete the following form and return it
to:

Dr. C. R, Weisbin, Directer

Center for Engineering Systems Advaunced Research
Oak Ridge National Laboratory

PFuilding 8025 - Room 6N

P.0O. Box X

Oak Ridge, TN 37831

NAME :
(PLEASE PRINT OR TYPE)

ORGANIZATION:

ADDRESS :

TELEPHONE NOG.

TECHNICAL RESEARCH [NTERESTS:

I (would/would not) be able to present an overview on

the subject of:

C. Maienschein

P. Manley, DOE/HO
Cheeseman, SRI
Crowley., CMU

N. Reid, 0850

= 0O
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AGENDA

CENTER FOR ENGINEERING SYSTEMS ADVANCED RESEARCH WORKSHOP

August 18 and 19, 1985

Sunday, August 18

8:00 - 10:15 First three overview papers and plenary
discussion

10:15 - 10:30 Coffee Break

10:30 -~ 12:00 Last two overview papers

12:00 - 1:30 Lunch and informal discussion

1:30 Break up into small subgroups to prepare

draft answers to workshop themes
3:00 Coffee Break

5:30 Draft responses to C. R. Weisbin

Monday, August 19

8:00 - 10:15 Draft responses presented in plenary session
for feedback by entire group

10:15 - 10:30 Coffee Break

10:30 - 12:00 Draft responses continued

12:00 - 1:30 Lunch and informal discussion

1:30 -~ 3:00 Break up into small subgroups to revise draft
based on morning discussion

3:00 ~ 3:15 Coffee Break

3:15 - 6:00 Presentation of final responses to workshop

themes

ADJOURN
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FULL PAPERS

Paper 1

Multiple Levelis of Representation and
Problem-Solving Using Maps From Sonar Data

Alberto Elfes

The Rohotics Institute
Carnegie-Mellon University
Pittshurgh, PA 15213

Abstract

This paper describes a sonar-based mapping and navigation system for autonomous mobile robots operating in
unknown and unstructured surroundings. The system uses sonar range data to build a multi-leveled and multi-
Jaceted description of the robot’s operating environment. Sonar maps are represented in the system along several
dimensions: the Abstraction axis, the Geographical axis, and the Resolution axis. Different kinds of problem-
solving activities can be performed and different levels of performance can be achieved by working with these
multiple representations of maps. The major modules of the Bolphin system are described and related to the
various mapping representations used. The system is also situated within the wider context of developing an

advanced sofiware architecture for auionomous mobile robols.

1. Introduction

The Bolphin system is intended to provide sonar-based mapping and navigation for an autonomous mobile
robot operating in unknown and unstructured environments. The system is completely autonomous in the
sense that it has no a priori knowledge of its surroundings and also carries no user-provided map data. It
acquires data from the real world through a set of sonar sensors and uses the interpreted data 1o build a
multi-leveled and multi-faceted description of the robot’s operating environment. In Cruising mode, the
system acquires data, builds maps, plans safe paths and navigates towards a given goal. In Exploration mode,
it can wander around and collect enough information so as to be able to build a good description of its

environment.
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The system is intended for indoor as well as outdoor use; outdoors, it may be coupled to other systems, such

as vision, to locate landmarks that would serve as intermediate or final destinations,

In the course of this paper, we will briefly describe a general framework for mobile robot software, situate

the present system within this framework, discuss the multiple representations used for sonar maps as well as

their use in different kinds of problem-solving activities, and conclude with a description of the overall system

architecture.

2. A Conceptual Framework for Autonomous Mobile Robot Software

Rescarch in mobile autonomous vehicles provides a very rich environment for the development and test of
advanced concepts in a varicty of areas, such as Robotics, Artificial Intelligence, Sensor Understanding and
Integration, Real-World Modelling, Planning and Control. Some research efforis, however, have tended to

address only very specific problems in robotics and mobility, while ignoring more global issues.

A premise of the work described in this paper is that the levels of autonomy and performance essential for a
maobile robot will emerge on one hand through research in specific problem areas, but also, on the other hand,
by investigating the integration and coupling of individual problem-solving elements (such as a path-planning

module or a sonar mapping algorithm) into a cooperating whole.

In our research on the concepts and tools necessary for the development of a general architecture for
autonomous mobile robot software, we identified seven conceptual levels of activities that are needed in a

mobile system (Fig. 2-1):

e Robot Inierface: This level takes care of the physical control of the different sensors and actuators
available to the robot. It provides a set of well-defined primitives for locomotion, sensor control,
data acquisition, etc. that serve as an interface, allowing the higher levels of the system to be
programmed "device-independently”. It includes activities such as actuator control by Actuator
Modules, and dead-reckoning estimation of robot position and orientation. Internal Sensors
provide information on the status of the different physical subsystems of the robot, while External
Sensors are used to acquire data from the robot’s environment.

o Sensor Interpretation: On this level the acquisition of sensor data and its interpretation by Sensor
Modules is done. Each Sensor Module is specialized in one type of sensor or even in extracting a
specific kind of information from the sensor data. They provide information to the higher levels
using a common representation and a common frame of reference.

e Sensor Integration: Here the integration of information coming from qualitatively different
sensors is performed. This is done by taking pieces of interpreted data provided by the Sensor
Modules and correlating them to each other. For example, geometric boundaries of an obstacle
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VHi. Global Control

o Globatl Control of System Behaviour
o Scheduling of Activities
# Integration of Plan-Driven with Data-Driven Activities

Vi. Global Planning

® Task-Level Planning to provide sequences of sensory, actuator and problem-solving (software) actions
& Simulation
e Error-Recovery and Replanning in case of failure or unexpected events

V. Problem-Solving

® Problem-Solving Modules provide services such as Path-Planning, Obstacle Avoidance, Internal Sensor
Monitoring, User interface, etc.

IV. Real-World Modelling

® Integration of local pieces of correlated information into a Global Real-World Model that describes the robot's
environment of operation

® Matching acquired information against stored maps

® Object Identification

® Landmark Recognition

lll. Sensor integration

@ Information provided by different Sensor Modules is correlated and abstracted
& Common representations and compatible frames of reference are used

il. Sensor Interpretation

@ Acquisition of Sensor Data {Vision, Sonar, Rangefinder, etc.)
® Interpretation of Sensor Data

l. Robot Interface

® Set of Primitives for Robot Operation
* Actuator Control (e.g., locomotion)
& Sensor Control

Figure 2-1: Conceptual Activity Levels for a Mobile Robot Software Architecture.
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gxtracted by sonar can be projected onto an image provided by the vision subsystem and can felp
in identifying a ceriain object. On this level, information is aggregated and assertions about
specific parts of the real world can be made.

e f‘{eal— World Modelling: Partial, aggregated and local picces of information are used in the
incremental construction of a coherent Global Real-World Model of the robot’s environment; this
Model can then be used for several other activities, such as landmark recognition, matching of

newly acquired information against already siored maps, and generation of expectancies and
goals.

o Problem-Sclving: In the context of antonomous locomotion, a varicty of problem-solving activitics
arc necessary, such as path-planning, monitoring of intcrnal scnsors, obstacle-avoidance,
interfacing to a human uscr, ete. These different activities are performed by Server Modules that
provide specific services.

e Global Planning: This level provides task-level planning for autonomous generation of sequences
of actuator, sensor and processing opcrations to achicve a global goal proposed to the robot. Other
necessary activities include simulation, error detection, diagnosis and recovery, and replanning in
the casc of unexpected situations or failures.

e Global Conirol: Finally, on this level Supervisory Modules are responsible for the scheduling of
different activities and for combining Plan-driven with Data-driven activitics in an integrated
manner so as to achieve coherent behaviour,

Clearly, none of the presently existing mobile robot sysiems covers all of the levels described above. This
conceptual structure provides, however, a context within which several of our research efforts sitvate
themselves [2, 5, 6]. The Belphin system for sonar-based mapping and navigation, in particular, embodies

several of the elements of the framework, as discussed in Section 5.
3. Building Sonar Maps

3.1. Introduction

Several of the efforts towards autonomous navigation in unstructured environments have used sierco vision
to extract 3D information from the robot’s surroundings [4, 3, 10}. One of the major difficulties with this
approach is that the resulting maps are typically very sparse, due to the intrinsic computational expense of
extracting range data from sterco pairs of images. This limitation led us to explore the use of an alternative

kind of sensor, such as sonar, that could deliver range information directly.

The Bolphin sonar system is able to build dense maps of the robot’s environment and classify regions as
EMPTY, OCCUPIED or UNKNOWN. The central representation of sonar mapping informaticn is called the

Probabilistic ot Sensor-Level Local Map, which uses a medium-resolution grid (typically 0.5 f). Information
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about empty, occupied and unknown areas, as well as the associated confidence factors, is stored in the cells of
a two-dimensional array. These sonar maps are very useful for motion planning. They are much denser than
those made by the stereo vision programs, and computationally at least one order of magnitude faster to

produce.

Preseatly, the cycle of operation of the sonar system is as follows: from its current position, the system
acquires a set of range measurements provided by the sonar sensors; these readings are then interpreted as
providing assertions concerning emply and occupied areas, and serve to update the sonar map. The map is now
used to plan safe paths around obstacles, and the robot moves a certain distance along the path. It updates its

position and orientation estimate and repeats the cycle.

3.2. The Sonar Sensor Subsystem

The sonar devices chosen are Polaroid laboraiory grade ultrasonic transducers [8]. These sonar elements
have a uscful measuring range of 0.9 to 35.0 fi, with an accuracy on the order of 1 %. The main lobe of the
sensitivity function corresponds to a beam angle of 30° at —38 dB. The system is optimized for giving the

range of the nearest sound reflector in its ficld of view, and works well for this purpose.

The sonar sensory system was built at Denning Mobile Robatics, and was mounted on two different robots
(Neptune[7] for indoor use, and the Terragator for outdoors). It is composed of a2 ring of 24 Polaroid sensors
spaced 15° apart, and a Z80 controlling microprocessor that selects and fires the sensors, timing the returns
and providing range values. This range information is then sent over a serial link to a VAX mainframe, where
the interpretation of the sonar data and the higher level mapping and navigation functions are presently

performed.

3.3. Approach
In this section we will briefly review the Local Map building process (described in detail in {5]), and in the

next section we will discuss how other representations are derived from it.

There are a number of problems inherent to the data obtained from the sonar device: the timing circuitry
causes imprecision in the distance measured; multiple reflections or reflections away from tne sensor, due to a
low angle of incidence on a specular surface, generate erroneous readings; finally, the wide angle of the sonar

beam imposes only a very loose constraint on the position of the detected object.

These conditions led us to consider a probabilistic approach to the interpretation of range data and the

building of sonar-based maps,
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Our method starts with a number of range measurements obtained from Polaroid sonar units whose
position with respect to the robot is known. Each measurement provides information about probably empty
and possibly occupied volumes in the space subtended by the beam (a 30° cone for the present sensors). This
occupancy information is projected onto a rasterized two-dimensional horizontal map. Sets of readings taken
both from different sensors and from different positions of the robot are progressively incorporated into the
sonar map. Primarily because of the wide beam angle, the sonar data provides only indirect information
about the location of the detected objects. The constraints obtained from individual readings are combined to

reduce the uncertainty, As more readings are added the area deduced to be empty expands, and the

expanding empty arca encroaches on and sharpens the possibly occupied region. The map becomes gradually

more detailed.

‘The sonar beam is modelled by probability distribution functions. Informally, these functions describe our
confidence that the points inside the cone of the beam are empty and cur uncertainty about the location of
the point that caused the echo. The functions are bascd on the range value and on the spatial sensitivity

pattern of the sonar.

3.4. Representing Maps

Local Sonar Maps are two-dimensional arrays of cells corresponding to a horizontal grid imposed on the
area to be mapped. The grid has MXN cells, each of size AXA. In each cell we store information that
describes its status (UNKNOWN, EMPTY or OCCUPIED) and the associated certainty factors. The following

convention is used to represent map information:

UNKNOWN 0
EMPTY [-1,0)
OCCUPIED (0,1]

A cell is considered UNKNOWN if no information concerning it is available. A cell (x’. ¥ J) can be EMPTY with
a confidence factor Emp(xl,y].) (corresponding to values from O to —1) and OCCUPIED with a degree of
certainty Occ{xl,y}.) ranging from 0 to 1. Due¢ to sonar and reflection errors, we may have conflicting
information in a given cell (xfyj). A measure of this disparity is given by:
Error(x,y ) =1~ (| Emp(xy )l +10cclx,y)D) .
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3.5. Composing Information from Several Readings

To build a Sonar Map, we compute the empty and occupied sonar beam probability distributions for
individual range readings, then combine them with the information already stored in the map. The position
and orientation of the sonar sensor is used to register the beam with the map, and the beam probabilities are

then projected onto the discrete map cells.

Each sonar reading provides partial evidence about a map cell being OCCUPIED or EMPTY. This evidence is
combined with existing data to refine the status of each cell. The evidence combination rules that control this
process allow the new evidence to enhance or weaken existing hypotheses. Different readings asserting that a
cell is EMPTY will enhance each other, as will readings implying that the cell is OCCUPIED; on the other hand,
evidence that the cell is EMPTY will weaken the certainty of it being OCCUPIED and vice-versa.

One range measurcment contains only a small amount of information. By combining the cvidence from
many rcadings as the robot moves in its environment, the area known to be empty is expanded. The number
of regions somewhere containing an occupied cell increases, while the range of uncertainty in cach such
region decreases. The overall effect as more readings are added is a gradually increasing coverage along with
an increasing precision in the object locations. Typically after a few hundred readings (and less than a sccond
of computer time) our method is able to "condense out” a comprehensive map covering a thousand square

feet with better than one foot accuracy in the position of the objects detected.

3.6. Maps

A typical map obtained through the method outlined above is shown in Fig. 3-1, and the corresponding
certainty factor distributions are shown in Figs. 3-2 and 3-3. These are the maps obtained after doing a
thresholding step, where OCCUPIED and EMPTY values are compared and a final decision is made concerning

what label to attach to each cell.

4. Multiple Axis of Representation of Sonar Mapping Information
From the Probabilistic Local Maps described in the previous section, several other data structures are
derived. We use the following dimensions of representation (Fig. 4-1):
o THE ABSTRACTION AXIS: Along this axis we move from a sensor-based, data-intensive

representation to increasingly higher levels of interpretation and abstraction. Three levels are
defined: the Sensor Level, the Geometric Level and the Symbolic Level.
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Figure 3-1: A Two-Dimensional Sonar Map. Empiy areas with a high certainty factor are represented by
white areas; lower certainty factors by " + " symbols of increasing thickness. Occupied areas are
represented by "X" symbols, and Unknown areas by "-" . The position of the robot is shown by
a circle and the outline of the room and of the major objects by a solid line.

® THE GEOGRAPHICAL AXIS: Along this axis we define Views, Local Maps and Global Maps,
depending on the extent and characteristics of the area covered.

® THE RESOLUTION AXIS: Sonar Maps are gencrated at different values of grid resolution for

different applications. Some computations can be performed satisfactorily at low levels of detail,
while others need high or even multiple degrees of resolution.
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Figure 3-2: The Occupied Areas in the Sonar Map. This 3-D view shows the Certainty Factors Occ(xl. , yf).

4.1. The Abstraction Axis

The first kind of sonar map built from the sonar range readings uses the Probabilistic representation
described earlier. A two-dimensional grid covering a limited area of interest is used. This map is derived
directly from the interpretation of the sensor readings and is, in a sense, the description closest to the real
world. It serves as the basis from which other kinds of representation are derived. Along the Abstraction Axis,

this data-intensive representation is also defined as the Sensor Level map.
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Figure 3-3: The Empty Areas in the Sonar Map. This 3-D view shows the Certainty Factors Emp(x ’ y].).

The second level is called the Geometric Level. It is built by scanning the Sensor Level Map and identifying
blobs of cells with high OCCUPIED cenfidence factors. These are merged into uniquely labeled objects with

explicitly represented polygonal boundaries. If needed, the same can be done with EMPTY areas.
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Figure 4.1: Multiple Axis of Representation of Sonar Maps.

The third is the Symbolic Level, where maps of larger arcas (typically Global Maps) are described using a
graph-like representation. This description bears only a topological cquivalence to the real world. Nodes
represent interesting™ arcas, where more detailed mapping information is necessary or available, while edges

correspond to simpler or "uninteresting” {navigatipnally speaking) arcas, such as corridors.

Different Xinds of problem-solving activitics are better performed on different levels of abstraction. For
example, global path-planning (such as how to get from onc building wing to another) is donc on the
symbolic level, while navigation through a specific office or lab is done on the sensor-level map, where all the

detailed information about objects and free space, as well as the associated certainty factors, is stored.
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4.2. The Gecgraphical Axis

In order to be able to focus on specific geographic areas and to handle portions of as well as complete maps,
we define a hierarchy of maps with increasing degrees of coverage. Progressing along the Geographical Axis,
we start with Views, which are maps gencrated from scans taken from the current position, and that describe
the area visible to the robot from that place. As the vehicle moves, several Views are acquired and integrated
into a Local Map. The latier corresponds to physically delimited spaces such as labs or offices, which define a
connected region of visibility. Global Maps are sets of several Local Maps, and cover wider spaces such as a

whole wing of a building, with labs, offices, open areas, corridors, etc.

4.3. The Resolution Axis

Finally, along the Resolution Axis, we again start with the Local Probability Maps and generate a
progression of them, with increasingly less detail. This permits certains kinds of comiputations to be
performed either at lower levels of resolution with correspondingly less computational expense, or else allows

operations at coarser levels to guide the problem-sotving activities at finer levels of resolution.

The finest sonar maps that can be obtained from the method outlined in Section 3 (considering the
limitations intrinsic to the sensor) have a cell size of 0.1 % 0.1 ft . For navigation purpcses, we have typically
been using a 0.5 fi grid for indoors and a 1.0 fi grid for outdoors. Nevertheless, several operations on the maps
are expensive and are done more quickly at even lower levels of resolution. For these cases we reduce higher
resolution maps by an averaging process that produces a coarser description. One example of an application.
of this technique is the Map Matching procedure described in [5]: two Local Maps being compared with each
other are first matched at a low level of detail; the result then constrains the search for a match at the next

higher level of resolution.

5. Overall System Architecture

To provide a context for these multiple descriptions, we will briefly present the current architecture of
Delphin, and show how the different dimensions and levels of representation of sonar maps interact with and
are used by the various problem-solving activities that happen in the system. We will also situate it within a

more global architecture, and discuss its relationship to the conceptual framework outlined in Section 2.
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The overall architecture of the Sonar Mapping and Navigation part of the Belphin system is shown in Fig.

5-1. The function

described below:

Sonar Control;

Scanner:

Mapper:

Cartographer:

Matcher:

Object Extraction:

Graph Building:

Path-Planning:

Navigator:

Conductor:

Guardian:

Supcrvisor:

of the major modules and their interaction with the different sonar map representations is

Interfaces to and controls the Sonar Sensor Ring, providing range readings.

Preprocesses and filters the sonar data. Annotates it with the position and orientation of the
Sensor.

Using the information provided by the Scanner, generates a View obtained from the
current position of the robot. This View is then integrated into a Local Map.

Aggregates sets of Local Maps into Global Maps. Provides map bookkeeping functions.

Matches a newly acquired L.ocal Map against portions of Global Maps for operations such
as landmark identification or providing an alternative update for the global_ (absolute)
robot position and orientation estimate.

Identifies obstacles by merging blobs of OCCUPIED cells and extracting the corresponding
polygonal boundaries.

Searches for regions with simple or complex patterns of pbstacles to identify "interesting”
and "'free" spaces.

Three levels of path-planning are possible: Symbolic Path-Planning is done over wider
areas {Global Maps) and at a higher level of abstraction (Symbolic Maps); Geometric
Path-Planning is done as an intermediary stage, when the uncertainty in Local Maps is
low; and Sensor Map Path-Planning is used to generate safe paths, taking into account the
certainty factors. The path generated is provided to the Navigator.

Takes care of the overall locomotion control of the vehicle. This includes examining
already planned paths to determine whether they are still usable, invoking the path-
planners to provide new paths, overseeing the actual locomotion, setting intermediary
goals, etc.

Controls the physical locomotion of the robot vehicle along the proposed path. Provides an
estimate of the new position and orientation of the robot.

During actual locomotion, this module checks the incoming sonar readings and signals a
stop if the robot is coming too closc to a (possibly moving) obstacle not detected

previously. It serves as a "sonar bumper”.

Takes care of the overall control of the system.
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Figure 5.1: Architecture of the Sonar Mapping and Navigation System
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Comparing this architecture with the conceptual framework outlined in Section 2, we can identify the
following correspondence: the Sonar Control and Conductor modules belong to Level 1; Scanning, Mapping,
Object Extraction and Graph Building provide functions on Level II; the Cartographer and the Matcher
operate on Level IV; Path-Planning, Navigation and the Guardian are situated in 1.evel V; and the Supervisor

is in Level VII.

5.1. Extending the Architecture

The implementation described above embodies a sequential control-flow organization. This, however, does
not reflect the intrinsic problem-solving characteristics inherent to mobile robot software. The various
modules involved in the problem-solving effort are frequently quasi-independent and have a low degree of

coupling; therefore, they should conceptually proceed in parallel, interacting with each other as needed.

It is in this context that we designed a Distributed Problem-Solving framework within which the kinds of
parallel and coordinated activities needed for a mobile robot could be expressed naturally [2]. This
framework offers parallelism on the process level. Conceptually, it provides a computing environment where
the problem-solving activities are performed by several independent processes. These can communicate with
each other through messages as well as post on or retrieve relevant information from multiple Blackboards. A
set of primitives was implemented that provide message-based communication, process control, blackboard

creation and access, and event handling [1].

This framework was used to design a Distributed Control System to supervise and coordinate the activities
of a mobile robot {2]. The different tasks are handled by independent Expert Modules; each is a pair of
<master, slave> processes, where the master controls the scheduling and the activities of the slave.
Communication among Expert Modules occurs asynchronously over a Blackboard structure encapsulated in a
Blackboard Monitor. Information specific to the accomplishment of an overall goal is provided through a.
Control Plan. The system can be distributed over a network of processors; an Executive local to each

processor and an interprocess message communication mechanism ensure transparency of the underlying

network structure.

We have recently started the implementation of a distributed version of Bolphin as an actual testbed for these
ideas [6]. This Control System would correspond to a Level VII activity.

Moving towards a higher degree of autonomy and flexibility, we are also beginning to address the
development of a task-level Global Planner that would automatically generate the Control Plan mentioned

above. We are considering a hicrarchical approach similar to NOAH [9], using a graph to represent the plan



and explicitly storing alternatives and sensor-dependent conditions as part of it. The elementary operations of

sensor information gathering, interpretation, actuator control and specific problem-solving activitics are the
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primitives on which the planner bases its plan.

A simplificd view of an expanded version of the Delphin system, including Distributed Control and a Global
Planner, is shown in ¥ig. 52. The Control Blackboard stores the more relevant pieces of high-level

information nceded for overall coordinated behaviour, Comiplex sub-systems such as senser processing may

have independent blackboards of their own.

Control Plan

Executive

Control

Blackboard

= Planner

Sonar Mapping

.

Navigation

Supervisor

Locomotion

Sensor Control

\/

Sonar Maps

Actuators

Sensors

|

\ Environment

e e e "

Figure 52: General Architecture of the Dolphin System

Robot
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6. Tests of the System

The Moiphin sonar-based mapping and navigation system described here was tested in several indoor runs in
cluttered environments using the Nepiune mobile robot {7], developed at the Mobile Robot Laboratory of the
Robotics Institute, CMU. It was also tested in outdoor environments, operating among trees, using the
Terragator vobot, developed at the Robotics Construction Laboraty, CMU. The system operated successfully

in both kinds of environments, navigating the robot towards a given destination.

7. Conclusions

We have described a system that uses a Sensor Level, probability-based sonar map representation of
medium resolution to build several kinds of maps. Three different dimensions of representation are defined:
the Abstraction Axis, the Geographical Axis and the Resolution Axis. These maps are used by a sonar
mapping and navigation system that performed successfully in indoor and outdoor environments. We are now

¢xpanding the system to test distributed control and global planning mechanisms.
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Abstract

Many artifictal intelligence applications involve the design of systems in-
tended to track and react to conditions in their physical environments in
real time. Real-time performance is difficult to achieve using traditional
Al techniques because of their reliance on expensive runtime symbolic in-
ference. This paper addresses this problem by describing a mathematical
framework and design tools for analyzing and synthesizing machines with
compiled knowledge. The concept of knowledge is formulated math~mat-
ically in terms of the relationship between states of a machine and states
of its environment over time. The design approach is based on the use of
metaprograms to compute a machine description which can then be trans-
formed either into physical circuitry or into code that simulates the described
machine. The compilation of knowledge is facilitated by parameterizing
machine constructors by other machine constructors and by objects usually
encoded as runtime structures.

1 Introduction

Many important computer applications involve the design of hardware and
software that are part of a larger system embedded in a physical environ-
ment. Applications of this kind arise in process control, avionics, robotics,
and artificial intelligence; in the typical case, the computer’s principal task
is to track and react to conditions in the environment. For the system
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to operate as desired, it must be designed to recognize the relevant envi-
ronmental conditions and to compute appropriate responses when required.
As more open-ended environments are considered and as the conditions to
be recognized and the responses to be supplied become more complex, the
job of designing real-time embedded systems becomes correspondingly more
difficult.

The problem is particularly acute in the design of highly reactive Al
systems, such as intelligent robots. A robot can be viewed abstractly as a
complex control system that monitors sensory inputs and acts to achieve
or maintain certain goal conditions in its environment. In simple control
systems, facts about the environment can often be encoded as 2 small set of
numerical parameters. More complex kinds of infermation, however, such
as those needed by intelligent robots, require correspondingly more complex
data structures for their encoding. Moreover, real-time performance requires
that there be a constant bound on the number of computational operations
performed between inputs and outputs.

The Artificial Intelligence Center at SRI Internationgl is designing and
implementing a mobile robot in the tradition of Shakey [13]. The aim of this
project is to combine significant perceptual, reasoning, and communication
abilities in an autonomous computer-controiied device and to have it operate
in real time. In attempting to reconcile the goal of manipulating complex
information with that of real-time operation, we have adopied a design
approach based on (1) the use of epistemic logic in the formal analysis
of the robot’s information states and (2) the use of metaprograms that
automatically construct real-time control programs amenable to this type
of formal analysis.

Real-time performance is difficult to achieve using traditional Al tech-
niques. This difficulty stems, in pact, from a failure to distinguish between
two types of facts that are relevant to a robot’s operation. The first of these
can be called the dynamic facts, as they involve moment-to-moment condi-
tions of the environment. The second type comprises the permanent or static
facts, i.e. those which are perhaps better thougit of as part of a mode! of the
environment in which the robot operates. The traditiona! Al approach to
the encoding of information (“knowledge representation”) is to think about
all these facts as objects of the same sort and to encode them uniformly as
symbolic data structures that are manipulated by the program. This ap-
proach is attractive because it seems to offer the possibility of reducing the
problem of designing intelligent machines to the conceptually simpler task
of constructing programs that syntactically derive consequences of facts in
a knowledge base [11,10].

As attractive as this strategy may be, its implementation raises serious
technical difficulties which derive from the computationa! complexity of in-
ference. It is well recognized that the more open-ended the environment,
the more expressive the logic needed to describe it and the less tractable is
the problem of reasoning explicitly in the logic. In some applications, the
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moment-to-moment synchronization of the programs with conditions in the
surrounding world can be conveniently ignored. In such domains (e.g. the-
orem proving, medical diagnosis, geology, and organizational behavior), the
time complexity of inference is not a critical problem; thus, the implementa-
tion of intelligent information processing by means of conventional symbolic
inference techniques is {easible.

However, in the mobile-robot domain, the permanent facts relevant to
time-critical, low-level interpretation and decision-making are so complex
that is it impossible to reason with them explicitly in real time. This point
is hardly controversial; the assumption is generally made that in applica-
tions of this sort, static knowledge must be “compiled in.” This paper
explores the idea of knowledge compilation from a theoretical standpoint
and suggests how it might be applied at various levels in the construction
of intelligent systems, thus avoiding certain problematic aspects of general
deductive inference.

Much work on formalizing properties of knowledge has been done 1n phi-
losophy [5,9], theoretical computer science [3], and Al [12,10,8]. Most of
the work in this tradition is carried out in an abstract setting; the essential
concept of knowledge is not given a concrete physical or computational in-
terpretation. Where such an interpretation ss given, it is usually in terms
of procedures that manipulate sentences of a formal language, often ignor-
ing issues of computational complexity. The situated-automata approach
attempts to avoid inferential complexity by providing a concrete computa-
tional model for epistemic logic in a framework that deces not depend con
viewing the system as manipulating sentences of a logic [14].

In the situated-automata framework, the concept of knowledge is ana-
lyzed in terms of logical relationships between the state of a process (e.g., a
machine) and that of its surrounding world. Because of constraints between
a process and its environment, not every state of the machine-environment
pair is possible, in general. A process r is said to know a proposition ¢ in a
situation where its internal state is s, if in all possible situations in which »
is in state s, ¢ is satisfied. This definition of knowledge satisfies the axioms
of modal system S5, including deductive closure and positive and negative
introspection.

In its original formulation, situated-automata theory dealt with the state
of a system as an unanalyzed whole. Since machines designed for real appli-
cations can take on an enormous number of states, they must be built hier-
archically, with the size of the state set growing as the product of the sizes
of the state sets of the component machines. This paper extends situated-
automata theory to hierarchically constructed machines in order to facilitate
the epistemic analysis of composite machines.

On the practical level, this approach has led to the development of Rex,
a set of tools for constructing complex programs with rigorously definable
epistemic properties. Instead of constructing a description of the target ma-
chine directly, the programmer defines a procedure (the metaprogram) that,



33

when run, computes a description of the machine. The metaprogramming
tools have the property that they produce only real-time target machines.
Of course, the metaprogram itself need not be real-time, since it is not
intended to be coupled to the robot’s physical environment.

In the remainder of this paper we present a brief description of the the-
oretical background of this work, an introduction to Rex with some simple
examples of its application to problems suggested by the mobile robot do-
main, and a discussion of the synthesis problem.

2 Theoretical Background

A useful theory of intelligent embedded systems must be capable of describ-
ing how certain parts of the physical world encode information about other
parts over time and how their behavior exploits that information. We model
this situation abstractly by constructing the requisite concepts from a small
set of primitives: space, time, possibility, and truth.

2.1 Basic Concepts

Let a universe U = {L,T,W), where the set L (locations) is a topology
suitable for modeling physical space, T (times) an ordered set of instants,
and W (possible worlds) an abstract set of indices of possibility, i.e. possible
histories or ways the world could be.

We define the set of propositions @ to be 2% T, Intuitively, each element
© € & is the set of world-time pairs in which that proposition holds. ¢ has
the structure of a Boolean algebra (of sets). The ordering & corresponds
to entailment: ¢ T ¢’ means that ¢ is less general than (i.e., entails)
¢'. The operations N, LI, and — correspond to intersection, union, and
complementation of propositions. The strongest postcondition operator 8¢ :
& — P satisfies: S(p)(w,t + ¢) = o(w,t). If the superscript € is omitted,
it is assumed to be equal to 1.

We identify processes with their spatial trajectories, i.e., the set of map-
pings # : W x T — L. a{w,t) denotes the vclume of space occupied by
process 7 in world w at time ¢. The set of processes inherits the structure
of L; it is closed under pointwise union, intersection, and complementation,
and one process can be a subprocess of another. The null process is de-
noted by [ ], and [my,..., 7] denotes a process tuple that is made up of
subprocesses 7y,..., .

The value domasn of a process #, written Dy, is a distinguished set
of mutually exclusive and exhaustive properties of that process. For any
process 7, the function val; : W x T — D, associates with each world and
time the value (or state) of 7 in that world at that time. Two processes my
and w2 are said to be behaviorally equivalent (written my == w3} if and only
if they take on the same value at each world and time. Formally:

m o==ap = Vw,t val; (w,t) = valg,(w,t)
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In designing computational systems, we are especially interested in dis-
crete processes, i.e., processes that can be described in terms of discrete sets
of locations, states, and instants of time. For example, registers in a digital
computer are easily modeled as compound processes made up of flip-flop
subprocesses with value domain {H, L}, H denoting the property of being
in a high-voltage state and L a low-voltage state.

A machine is modeled as a pair of (possibly complex) discrete processes
subject to behavioral constraints. The notation m(X,Y) means that output
process Y acts as a machine of type m with respect to input process X, i.e.,
X and Y satisfy the behavioral constraints imposed by m. When we wish
to be concrete, we refer to these processes as storage locations, since they
can be realized as physical components in digital hardware.

We shall make use of two varieties of primitive machine: pure func-
tional machines (e.g., logic gates), symbolized by f*, and delay elements,
A.. These machine types are characterized by the following formulas:

(X, Y) = Vu,t valy (w,t) = flvalx(w,t))
AAX,Y) = VYw. (valy(w,0) = ¢)
A (¥t > 0. valy(w,t + 1) = valx{w,t)).

The f* machine “instantaneously” computes the primitive function f :
Dx -+ Dy the output of the delay machine is the constant ¢, followed
by its input, displaced in time by one unit. Complex machines are ulti-
mately made up of storage locations constrained to act as machines of these
primitive types and may be built up through the use of composition oper-
ators. One complete set of such operators consists of serial, parallel, and
feedback compositions. These have well-understood mathematical properties
and have been studied extensively in the context of the theory of automata
and switching circuits [4].

2.2 The Information Content of Processes

In possible-world models of modal logics of knowledge with world-time in-
dices, w,t k= K(X, ) is usually defined to be true if and only if w',t' |= ¢
for all w',t' epistemscally accessible to agent X from w,t. If the accessi-
bility relation s an equivalence relation, the logic will satisfy the axioms
of modal system $5 [6], including the axioms of deductive closure, positive
introspection, and negative introspection. One approach to formalizing the
information content of processes would be to use such a modal logic of knowl-
edge, with agents identified with processes and the epistemic accessibility
relation for a process # defined as follows:

w, i~y Wt = valy(w, t) = val, (v, )

Under this definition, asx is clearly an equivalence relation on W x T, and
the S5 axioms are satisfied [14].

In place of the K(X, ¢) notation, it will be convenient to make use of a
denotation function that maps the values of a process to their propositional



content. For a given process n and value v € Dy, we define the denotation of
v for r as the strongest proposition consistent with 7’s having value v. This
proposition corresponds to the information that the process has about its
environment when its value is v. We formally define the denotation function
from values to propositions gy : Dy — P as

pr(v) = {(w,t) | val(w,t) = v}.
Denotations and knowledge are directly related in the following way:

w,t | K(m,0) = polval(w,t)) T o

The ordering on & induces an ordering on denotation functions over the
same value domaii:

11 € p2 = Vo iy (v) T pz(v)
If pty © p2, then py is at least as informative as po.

The need for formal semantics of knowledge representations is well recog-
nized by Al researchers. Traditionally, however, denotation functions have
been stipulated uniformly, in the sense that the same symbols are used in
every module to mean the same things. Furthermore, the relation between
the operation of the machine and the content of the representation is often
ignored. In situated-automata theory, 2 more fine-grained approach to deno-
tation is adopted. Meanings are associated to values in a location-dependent
fashion, and the denotation function depends crucially on the behavior of
the machine. The relationship between denotation and machine structure is
the subject of the next section.

2.3 Machines as Inducers of Semantic Transforimmations

A machine can be seen as performing a transduction from the time series of
values at its input location to values at its output location. Correspondingly,
at the denotational level, each machine type has associated with it a higher-
order function on denotation functions. We call this function the semantse
transformation function of the machine; it takes the denotation function of
the input onto the denotation function of the output. We will notate the
semantic transformation function associated with machine type m by r(m).
Formally,
m{X,Y) D py = 7(m)(nx).

For any machine, the semantic transformation function is entirely deter-
mined by the transformation functions of the primitive machines and the
interconnection of the primitive machines.



41

For the pure functional machines f*, the semantic transformation func-
tion 1s defined in the following way:

(M) = 1 s

wef~v)

Essentially, the denotation function of a particular value of the output lo-
cation of a functional machine is a disjunction over the denotations of all of
the possible values of the input location which could have given rise to that
value in the output location.

For A, the family of delay machines parameterized by ¢, the semantic
transformation function is defined as follows:

r{Ac)(p)(v) = { g&é%p(ﬂ) :)ftﬁefwi;se

The proposition o is taken to be strongest proposition guaranteed to be
true when the machine is started. Formally, pp = {{w,0) | w € W}. The
denotation of a value v at the output location is either the strongest post-
condition of the denotation of v at the input location if v £ c or, if v = ¢,
the disjunction of that proposition with pg.

The denotation function of a complex storage location [Xy,...,X,] is
the intersection of the denotation functions of its sublocations:

Ii[xl,...,x.,]([“l,---a“n])= ﬂ px,(u5).

1<i<n

It follows that information is spatially monotonic; if X is a subprocess of
Y and X carries the information that ¢, then so does Y. Of course the
converse is not true in general, and much of the “inference” that goes on
in an intelligent machine might be viewed as snformatson localization, i.e.,
causing information carried by a large piece of storage to be carried by a
smaller piece,

In addition, all semantic transformation functions induced by machines
are monotonic. This can be seen by observing that no negations occur in the
definition of any of the semantic transformation functions; intersection and
union are both monotonic functions on the domain of denotation functions.
Even an inverter {i.e. a primitive not* where not{0) = 1, not(1) = 0) induces
a monotonic semantic transformation function;

1 € g2 D r{not’){p1) C 7{not*)(p2).

Also, it is not the case that r(rof*}(u)(0) = ~(1)(0); instead 7(not*){(p)(0) =
#{(1), a different proposition entirely.

Given machines m; and m- and their corresponding semantic transfor-
mation functions, it is possible to calculate the semantic transformation
functions of the compositions of these machines. Let m; o m2 and m, || me
respectively denote the sersal and parallel compositions of m; and ms, and
let ©m denote the feedback operator applied to m.
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The semantic transformation function of the serial composition of m;
and o is simply the function composition of the semantic transformation
functions.

r(my o ma)(p)(v) = 7(m2)(r(m1)(1))(v)

In the parallel case, the semantic transformation function of the compo-
sition of m; and m2 satisfies the following equation:

r(my || ma)(u)(v) = 7(m1)(p)(v) M 7(mz)(p)(v)

The feedback case involves a fixpoint. r(©m)(p) satisfies the following:

r(@m)(p)(v) = r(m)(u')(v)

where p'([uy, u2]) = p(uy) N r(Om)(p)(uz).

3 A Framework for Metaprogramming

Rex is a set of development tools for constructing complex machines hierar-
chically. Machines are built by defining a metaprogram that constructs an
abstract machine description by creating storage designators and incremen-
tally constraining them to behave in particular ways with respect to one
another. This description, which stipulates how the value of each atomic
storage location is to be computed over time, can then be transformed ei-
ther into physical circuitry or into code that simulates the described ma-
chine. This process is depicted schematically in Figure 1.

CIRCUIT
MACHINE -
DESCRIPTION CODE

Figure 1: Stages in Machine Construction

3.1 A Description of Rex

In this section we present an informal description of the constructs that
make up Rex, working from primitive machine constructors to the definition
of arbitrarily complex machine constructors by the user.
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3.1.1 Primitive Machine Constructors

There are two kinds of primitive machine constructor in Rex, corresponding
to the primitive machine types discussed in Section 2. For the A, machine,
we have

(init-next value expr),

which denotes a storage location that is constrained to contain the value
value initially and to contain at time ¢ 4+ 1 the value at ¢ of the location
denoted by ezpr.

The family of primitive function machines,
(primfn expry ... expr,),

denote locations constrained to always contain the result of applying primfn
to the the values of the locations denoted by ezpry ... expr,. primfn may
be any one of a set of primitive machine constructors available to the pro-
grammer, By convention, an identifier namem names a machine constructor
intuitively related to the function name, for example ifm, timesm, squaremn,
equalm, and cosm.

3.1.2 Storage Expressions and Wifs

We refer to invocations of constructors that denote storage locations, such
as the ones mentioned above, as storage expressions. These may have be-
havioral constraints associated with them arising from their construction.
A storage expression with no behavioral constraints may be created from an
identifier with the form

(stg tdent).
The form
(if condition expry exprs)
allows the structure of the machine to depend on conditions that are eval-
uated at construction time. If condition is true at the time this machine
constructor is invoked, this expression denotes expry, else ezpra. In order to

impose complex constraints on the behavior of a particular storage location,
we use the form

(the var wff; ... wfl,),

which binds var to a new storage location, constrains that location to satisfy
wff; ...wff,, and returns it.
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A wff. or well-fTormed formula, serves to constrain the behavior of the
storage locations it mentions, but does not dencte & particular storage lo-
cation. There are four wil forms in Rex. The first formm,

=2 expry €TPre)

constrains the storage locations dencted by cipr, snd expry to be behav-
tforally equivalent, which means that at every point in time, cach is to con-
tain the same value as the other. It is 2 programming error to attempt
to constrain two storage locations to be behaviorally equivalent if they are
already constrained to behave in a way that precludes this possibility. The
actual implementation of Rex imposes the slightly stronger requirement that
at least one of the expressions in 2 == form must denote an unconstrained
storage location. The form

(if condition wffy wfh) ,

like the if form in the previous paragraph, depends on the value of condition
at the time of invocation. If it is true, this form imposes the constraints of
wff;, otherwise, wffo. The form

(and wffy ... wffy)

imposes the conjunction of constraints of wff, ... wff,. The form
(some (vary... varg) wifi ... wify)

is similar to the (the ...) form, generating k new storage locations and im-
posing multiple constraints upon them but returning no storage designator.

3.1.3 Defining New Machine Constructors and Constrainers

In Rex, both machine constructors and machine constrainers may be hierar-
chically defined. These correspond to storage expressions and wils, respec-
tively. The form

(defm name {param, ... param,} (arg ... arg,) ezpr)

binds the identifier name to its definition as a machine constructor. The
braces hold a list of parameters that are used by the machine constructor at
construction time. The arguments denote the input locations of the machine
under construction; ezpr denotes the {possibly compound) output storage
location and constrains its behavior. The form

(defr name {param; ... param,} (argi... argy) wffi... off,)
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is much like the defm form, binding name to its definition as a machine
constrainer. The constraints it will impose are the conjoined constraints of

wffl aan Wﬂn.

Once a machine constructor or constrainer name has been defined through
the use of defm or defr, it may be invoked as a storage expressionn or wif
as follows:

(name actual-param, ... actual-param, actual-argy ... actual-arg,,).

All of the storage locations that we have discussed so far are atomic;
however, just as the logic admits of compound processes (see Section 2},
storage expressions in Rex can denote compound objects. The expression
[x . y] denotes the storage location which is the pair of locations denoted
by x and y. As in Lisp, tuples (or lists) are built up from pairs, with [x;
. xe . ... % . []] ...]] abbreviated as [x; x2 ... Xa]. Through the use
of the == operator, storage designators can be unified, allowing compact
metaprograms to recursively instantiate storage and constrain its behavior.
(See the example in Section 3.5.)

Syntactically, we allow structured arguments in the argument list of a
defm form. These are handled by unifying them with the actual arguments
when the function is invoked. Thus,

(defm £ {} ([x y z])
(g xy 2))

is equivalent to

(defm £ {} (u)
(the v
(some (x y z)
== [x y z])
= v (g xy z)))))

We also allow the first argument of a the form to be structured, in order
to simplify writing expressions which denote complex storage. Thus, we can
write

(the [x y z]
=x (f y z))
==y (f x 2))
=z (f x y)))

rather than
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(the w
= w [x y z])
(==x (f y z))
==y (f x z))
==z (f x y)))

The notation %c is used as an abbreviation for the constant ¢ machine
constructor and is equivalent to

(the x (== x (init-next ¢ x))).

We note that constants may have complex structure if the structure of the
initial value is the same as that of the storage comtaining the constant.
Thus, the following expression denotes a valid constant containing the triple
(1,2,3]:

(the [x y 2] (== [x y 2] (init-next ’(1 2 3) [x y z])))

3.2 Running Sum of Squares

As a simple introductory example, we describe the process of constructing
a machine that continually computes the running sum of the squares of
its inputs over time. A Rex function that constructs a description of this
machine can be defined as follows:

(defm running-sum-of-squares {} (input)
(the sum
(== sum (init-next O (plusm sum (squarem input))))))

Rex takes the preceding text as input, and generates the following abstract
machine description {a schematic diagram of this machine is given in Figure
2):

((PLUS T1 T2 PLUS1)
(SQUARE INPUT T1)
(DELAY O PLUS1 T2))

In the abstract machine description, the atoms INPUT, PLUS1, Ti, and T2
designate storage locations, which, for example, in a digital circuit, would
be wires carrying signals. The machine description can be interpreted in
two ways. From the structural point of view, each line corresponds to a
primitive component of the machine and the description as a whole encodes
the connectivity of the components. From the behavioral point of view, each
line of the description imposes constraints on the behavior of the storage
locations it mentions.
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INPUT SQUARE

Ti
DELAY{(D) T2

PLUSI

L 4

PLUS

Figure 2: A Simple Machine for Computing Running Sum of Squares

Structurally, (PLUS T1 T2 PLUS1) means that there is an “adder” per-
manently connecting input locations T1 and T2, with output location PLUS1.
(SQUARE INPUT T1) means that location T1 will be the output location of a
“squaring’ component with input location INPUT. The behavioral interpre-
tations of PLUS and SQUARE are self-evident. Structurally, (DELAY O PLUS1
T2) means that a delay element connects location PLUS{ with location T2.
Behaviorally, T2 has the initial value 0 and at time t + 1 has the value of
PLUS1 at time ¢t. The reader can easily verify that, at any point in time, the
location PLUS1 contains the sum of the squares of all the previous values of
INPUT.

As a (trivial) illustration of the use of construction-time parameters, we
redefine running-sum as follows:

(defm running-sum-of-squares {init} (input)

(the sum
(== sum (init-next init (plusm sum (squarem input))))))

This parameterized version of the definition allows Rex to construct a family
of machines, all of which add a quantity to the running sum but differ in
the quantity they add.

3.3 Machine Compositions in Rex

Various forms of machine composition (eg. serial composition, parallel com-
position, and feedback) are expressed naturally in Rex. (See Figure 3 for the
schematics.) Serial composition corresponds to simple function composition,

(defm £ {} () (g (h )));

parallel composition is achieved through pairing,

(defm £ {} (x) [(gx) . (hx)]1);
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Figure 3: Serial, Parallel, and Feedback Composition

and feedback comes about through cyclically dependent variables.

(defm £ {¥ (%)
(the y
==y (g xy)))).

By using higher-order definitions in which machine constructors are pa-
rameters of other machine constructors, these compositions can be defined
generically, though they are not often used in this form. The definitions are
as follows!:

(defm serial {ml m2} (x) (m2 (m1 x)))
(defm parallel {m1 m2} (x) [(m1 x) . (m2 x)]))

(defm feedback {m} (%)
(the y
(== y {m % y))))

'If the implementation is in a version of Lisp that requires funcall, these definitions
must be modified slightly to include the call explicitly.
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3.4 Position and Orientation

This section contains an example illustrating how Rex can be conveniently
used in the mobile-robot domain to construct machines that track certain
properties of the environment. The machine portrayed schematically in
Figure 4 is intended to be a submodule of a mobile-robot program. If the
machine’s input location tracks the motor-command output of the entire
robot, its output will track the robot’s position and orientation with respect
to its initial position and orientation. The new position and orientation are
functions of the old position and orientation and of the current action as well.
The entire machine is a serial-parallel composition of two submachines, one
for orienation and another for position, with the cutput of the orientation
machine constituting one of the inputs to the position machine. Note that
reversing the sequence of the == expressions would have no effect on the
generated machine since constraints can accumulate in any order.

In Figure 5 we present the definitions of the various modules of the
position and orientation machine constructors. At the submodule level, the
structure of the action is broken down into a command and an argument.
The command may be either turn, forvard, or noop. If the command is
turn, the argument is the number of degrees the robot is turning; if it is
forward, the argument is the distance the robot is moving forward. The
argument carries no information if the command is noop.

In the Rex definitions, the locations x, y, and orient always contain
the current position and orientation, while the local variables local-x,
local-y, and local-~orient are used to store values for the next compu-
tational step.

3.5 Prioritized-choice Machine

As another example from the mobile robot domain, consider a mobile robot
that is intended to carry out many tasks in parallel but with differing pri-
orities. As a concrete illustration, let us imagine that the robot is supposed
to avoid collisions, take the second possible left turn, stay parallel with the
wall on its right, and keep moving, in that order of priority, The example in
Figure 6 shows how Rex is used for prioritizing such activities. For simplic-
ity, in this example the priorities are frozen at construction time; dynamic
prioritization can also accomplished within the Rex framework by encoding
priorities in the state of the machine.
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Figure 4: Schematic Diagram of Position and Orientation Machine
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(defm position-and-orientation {} (action)
(the [pos orient]
(== orient {orientation actionmn))
== pos (position action orient))))

(defm orientation {} ([ecmd argl)
(the orient
(some (local-orient)
== Jocal-orient (init-mext O orient))
== orient (ifm (equalm cmd ¥turn)
(plusm local-orient arg)
local-orient)))))

(defm position {} ({cmd argl] orient)
(the [x y]
(some {local-x local-y)

== [local-x local-y] (init-next ’(0 0) [x yl))

== x (ifm (equalm cmd ¥forward)
(plusm local-x (timesm arg (cosm orient)))
local-x))

== y (ifm (equalm cmd ¥forward)
(plusm local-y (timesm arg (sinm orient)))
local-y)))))

Figure 5: Rex Definitions for Position and Orientation Machine Construc-
tors

(defm robot {} (data)

(priority-choose 4 [(avoid-collision data)
(second-left~-turn data)
(parallel-to-right-wall data)
(keep~moving)1))

(defm priority-choose {n} (choice-list)
(the choice
(if (=n 1)
== choice-list [choice]))
(some (head tail)
== choice-list [head . taill)
== choice (ifm (equalm head ¥%noop)
(priority-choose (- n 1) tail)
head))))

Figure 6: Rex Definition of Prioritized-choice Machine Constructors
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Figure 7: Schematic diagram of prioritized choice machine

(EQUAL NOOPI A T1)

(EQUAL NOOPi B T2)

(EQUAL NOOP1 € T3)

(IF T3 D C CH1)

(IF T2 CH1 B CHZ)

(IF T1 CH2 A CH3)

(DELAY *NOOP* NGOPi NOOP1}

; *NOOP* is the (comstant) valuve of NOOPi

Figure 8: Machine Description of Prioritized-choice Machine

The robot machine constructor builds a machine that takes data as
input and generates actions. We shall assume we already have four machines
that transduce values on the data line into either actions or the value noop.
The output value of each machine indicates what the robot must do to satisfy
that machine’s goal. The metaprogram connects these machines together
in such a way as to cause the resultant overall machine to deliver as output
the value of the highest-priority submachine whose output is different from
noop. If there is no such value, the last action is output, whether or not
its value is noop. We emphasize that the recursion occurs at construction
time and results in a spatial array of components rather than a temporal
succession of computational steps.

Figure 8 contains the linearized abstract machine description computed
by using the invocation (priority-choose 4 [a b ¢ d]). The storage
location returned is CH3.
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4 Reasoning about Epistemic Properties

4.1 Analysis

The theoretical concepts presented in Section 2 can be used to analyze the
semantic properties of machines. The theory determines how the denotation
of the outputs depend on the denotations of the inputs and the structure
of the machine. In practice, when these functions become complex, the de-
signer may find it convenient to specify the denotation function g indirectly
by positing a convenient auxiliary domain A and expressing p as the com-
position of iwo functions d and e, where d : Dx — A, e: A — &, and
#(v) = e(d(v)).

The following is an example illustrating the use of auxiliary denotation
functions for structured data domains. Let ¥ = [P, N] be a compound
process, where Dp = {man, boy, woman,girl} and Dy = {0,1,2,...}.
(The bold typeface is to emphasize that the symbols are to be regarded as
simple data values.) Let A, be some set of properties of individuals, A; the
set of natural numbers, and let dy(man) = man, etc., and dz(n) = n. Then,
we can define

e(lp, n]) = {(w,t) | a. p(a){w,t) A age(s, w,t) = n}
and set
py ([u,v]) = e([di(u), dz2(v))).

This definition implies, for example, that
py ([gir], 7)) (w, t) = 3a. girl{a)(w, t) A age(a, w,t) = 7.

Notice that if men are constrained to be over twenty-one years of age, then
if m is a machine whose semantic transform is py, it is a theorem that YV
never takes on the value [man, 7}!

4.2 Example of Analysis

We use the tools introduced in previous sections to analyze the semantic
properties of the orientation machine defined in Figure 4.

Since the constraints imposed by machines are inherently relational, it
is much easier to prove properties of machines constructed by Rex if the
defining forms are translated into a relational version of Rex. The transla-
tion is straightforward, and may be automated. In relational Rex, a colon is
prefixed onto each function name, making it into a relational form. For ex-
ample, (== x (plusm y z)) is expressed in the relational form as (:plusm
y z x). The other salient difference is that in a :defm form, the output
locations are listed as a fourth argument.
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The relational version of the orientation module of the position and
orientation machine (see Figure 4) is:

(:defm orientation {} ([cmd argl) orient
(some (t1 t2)
(:init-next O orient local)
(:plusm arg ti)
(:equalm cmd ¥turn t2)
(:ifm t2 t1 orient)))

This form of Rex is significantly more tedious for a programmer to use, due
to the necessity of naming all intermediate storage locations.

The relational version of the Rex definition may then be translated into
the logic, expressed as a conjunction of primitive machine constraints.
orientation([cmd,arg], orient) =
Jlocal,tl,t2.
Ao(orient,local) A
plus([local,arg|, t1) A
equal([cnd, %turn],t2) A
if ([t2,t1,1ocal], orient)

Now, we give the denotation functions of the inputs, and derive the de-
notation function of the output. The value domains of the input components
are:

Deng = {forward,turn, noop}

Darg:: {...,"“2,“'1,0,172‘...}

The denotation function of the storage location c¢md is as follows:
pena(forward) = moving

Pend{turn) = turning

Hena(noOOP) = still,

where moving(w,t) D ~turning(w,t), etc. The denotation function of arg
is most conveniently described as the composition of two functions, as dis-
cussed above. parg(n) = e(d(n)) where d(n) = n and

(moving(w, t) A dist(w,t) = n A angle(w,t) = 0) V
e(n)(w,t) = (turning(w,t) A dist(w,t) = 0 A angle(w,t) =n) Vv
(stell(w, t) A dist(w,t) = O A angle(w, t) = 0).

The denotation function of orient can be derived from the formal de-
scription of the orientation machine and the input denotations:

t
l’orient(v) = {(wa t) ' d(v) = z anglc('w»t,)}
t'=0
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In other words, the storage location orient always encodes the sum of the
angles turned through by the robot since it was started.

4.3 Observations on Synthesis

The metaprogramming approach described in the Section 3 lends itself to
the synthesis of machines with formally specifiable knowledge properties. To
this point we have been considering how, given a denotation function of X
and a machine m(X,Y’), one can compute the denotation function of Y. In
practice, however, we are often interested in the inverse problem, namely,
given the denotation function px of the input and an sntended denotation
py for the output, construct a machine m that guarantees that uy is indeed
the objective denotation of the output. Formally, find an m such that

m(X,Y) D py = r{m){px).

It 1s difficult to guarantee exact equality in the general case; a more
practical goal is to synthesize a machine that induces a denotation func-
tion satisfying specified properties. For example, we may wish to bound the
induced denotation function above and below under the ordering C intro-
duced in Section 2. That is, given an input denotation function g and a
pair of bounding denotation functions p~ and pt we might be interested in
constructing a machine m such that

p Cor(m)(p) C pt.

Lower bounds guarantee “ignorance” while upper bounds guarantee “knowl-
edge.” (Guaranteeing ignorance can be a positive goal of the designer, e.g.
in assuring the privacy of information in data bases.)

In cases where the notion of knowledge is too strong, a weaker notion
similar to belief can be defined in terms of positive and negative knowledge
conditions. This will allow us to build machines that “jump to conclusions”
hased on lack of knowledge and automatically retract them as new knowledge
is gained. For example, working in a modal language, we can introduce
axioms like the following for each specific ¢ of interest:

B(X,¢) = K(X,p) V (~K(X,9) A ~K(X,~0) A B(X,¢'))

where ¢’ is a condition which provides sufficient evidence for X to believe ¢.
Eventually, the conditions ground out in positive and negative K formulas.
B(X, ¢) is clearly nonmonotonic; increased information can falsify the B
condition.
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4.4 Compiled Knowledge

It is possible to employ static structures ordinarily used at run time to con-
trol the construction of efficient specialized machines. In Rex this amounts
to defining a machine constructor

(defm robot {knowledge-base} (imput) ...)

instead of
(defm robot {} (knowledge-base imput) ...),
or similarly,
(defm parser {grammar; (input) ...)
instead of
(defm parser {} (grammar input) ...)

It should be noted that truly static processes, such as an unchanging asser-
tional database or fixed grammar rules, carry no information beyond ¢ and
hence may be encoded directly as constraints among those processes that
do vary over time.

Specific strategies exist for constructing machines that realize inference
rules. Let us consider a pair of processes X and Y with value domains
Dy and Dy. Let the denotation function of X be px and the sntended
denotation function of ¥ be p and assume that Dy forms a lattice under
the ordering < where

v1 < v = py (vy) C py (vz).

For any element u € Dy, there is a unique greatest lower bound v of the set
{v) | px(u) T p(e")} that is also a member of the set. We take f: Dx ~ Dy
to be the function that picks out this v; the function machine f*(X,Y)
guarantees that the objective denotation function py entails the intended
denotation function p.

ny = 7(f*)(px) C pn

A similar construction can be performed for delay machines, and multiple
machines can be combined uniformly by again taking greatest lower bounds
of their results, provided their value domains have the structure of a lattice.

This idea can be exploited using the machinery presented in Section 3.
In Rex, machine constructors may be parameterized by other machine con-
structors. This facility can be used to define generic modules that take as
parameters machine constructors which embody particular inference rules.
The generic module constructs a composite machine that at each point in
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time combines the results produced by the separate inference machines. The
denotation of any value generated by the composite machine is guaranteed
to be the strongest representable proposition that follows from the results of
the individual inference modules. The following is an example of a generic
machine of this sort. The parameters are each machine constructors: the se-
mantic transform associated with each infrule parameter corresponds to a
rule of inference; the glb parameter constructs a machine which takes great-
est lower bounds in the lattice which is the target domain of the inference
rules, as described above.

(defm combine-infrules {infrulel infrule2 infrule3 glb} (data)
(glb (infrulel data)
(glb (infrule2 data)
(infrule3 data))))

5 Related Work

Our approach is similar in spirit to work by Johnson [7] on the synthesis
of digital circuits from recursion equations. Johuson’s work is based on
the transformation of recursive behavioral specifications of a circuit into
realizations. Similar methods have also been used by Hillis and Chapman
for circuit design {1], and by Goad for model-based vision [2]. Rex also
bears some resemblance to dataflow languages, e.g. Lucid [15], although our
semantics are location-oriented rather than stream-oriented as in Lucid and
other data-flow languages.

6 Implementation Status

The Rex system has been implemented in Zetalisp and Common Lisp and is
currently running on the Symbolics 3600, DEC 2060, and Sun Workstation.
Rex is implemented as an extension to Lisp making use of Lisp’s macro {a-
cility for special syntactic forms. Rex definitions result in the creation of
Lisp functions that construct machine descriptions by collecting and prop-
agating constraints on storage locations of the target machine. Equational
constraints are resolved by using a variant of the unification algorithm. An
abstract machine description computed by Rex may be realized in digital
bhardware, since 1t is virtually a circuit diagram and seems well suited for
implementation on fine-grained parallel architectures such as the Connec-
tion Machine. However, it is also suitable for realization as code in con-
ventional languages for sequential hardware. Our current implementation,
for instance, supports code genmeration i both Lisp and C. The congru-
ence closure algorithm is employed to eliminate common subcomputations;
a topological sort is performed to order variable assignments (storage loca-
tion updates} according to data dependency in the abstract machine.
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The Rex environment is presently being used to implement complex
robot control programs for SRI’s mobile robot.

7 Acknowledgments

This work was supported in part by a gift from the Systems Develop-
ment Foundation, in part by FMC Corporation under contract 147466 {SRI
Project 7390), and in part by General Motors Research Laboratories under
contract 50-13 (SRI Project 8662).

We have profited greatly from discussions with David Chapman.



59

8 REFERENCES

[1]
(2l

3]

[4]

(5]

(6]

(8]

[9]

[10]

(11]

(12]

(13]

Chapman, David (personal communication).

Goad, Chris. “Special Purpose Automatic Programming for 3D Model-
based Vision.” Proceedings of Image Understanding Workshop, Ar-
lington, VA, 23 June, 1983, pp. 94-104.

Halpern, Joseph and Y.O. Moses. “Knowledge and common knowl-
edge in a distributed environment.” Proceedings of the 3rd ACM
Conference on Principles of Distributed Computing, 1984, pp. 50-61;
a revised version appears as IBM RJ 4421, 1984.

Hartmanis, J. and R.E. Stearns. Algebratc Structure Theory of Se-
guential Machines. Prentice-Hall, Inc. Englewood Cliffs, New Jersey,
1966.

Hintikka, J. Knowledge and Belief. Cornell University Press, Ithaca,
1962.

Hughes, G. E. and M. J. Cresswell. An Introduction to Modal Log:c.
Methuen and Co. Ltd., London, 1968.

Johnson, Steven D. Synthesis of Digital Designs from Recursion Equa-
tions. MIT Press, Cambrnidge, Massachusetts, 1984.

Konolige, Kurt. A Deduction Model of Belief and sts Logics. Technical
Note No. 326, Artificial Intelligence Center, SRI International, Menlo
Park, CA, August, 1984.

Kripke, Saul. “Semantical Analysis of Modal Logic.” Zestschrift fur
Mathematische Logik und Grundlagen der Mathemattk 9, 1963, pp.
67-96.

Levesque, Hector J. “A Logic of Implicit and Explicit Belief.” Pro-
ceedings of the National Conference on Artificial Intelligence, 1984,
pp. 198-202.

McCarthy, John. “Programs with Common Sense.” In Semantic In-
Jormation Processing, Marvin Minsky (ed.), MIT Press, Cambridge,
Massachusetts, 1968.

Moore, Robert C. “A Formal Theory of Knowledge and Action.” In
Formal Theories of the Commonsense World, Jerry R. Hobbs and
Robert C. Moore (eds.), Ablex Publishing Company, Norwood, New
Jersey, 1985.

Nilsson, Nils J., “Shakey the Rohot,” Technical Note No. 323, Arti-
ficial Intelligence Center, SRI International, Menlo Park, CA, April
1984.



60

[14] Rosenschein, Stanley J. “Formal Theories of Knowledge in Al and
Robotics.” Proceedings of Workshop on Intelligent Robots: Achieve-
ments and Issues,” SRI International, Menlo Park, CA, 13-14 Novem-
ber, 1984, pp. 237-252.

[15]) Wadge, William W. and Edward A. Ashcroft. Lucid, the Dataflow
Programming Language. Academic Press, London, 1985.



61

Paper 3

AN INTELLIGENT MACHINE OPERATING SYSTEM FOR HYPERCUBE
ENSEMBLE ARCHITECTURES
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P.0. Box X, Oak Ridge, TN 37831

ABSTRACT

The research we conduct for the Department of Energy
[Office of Basic Energy Sciences], the United States Air
Force [Wright Aeronartical Laboratories] and the United States
Army [Human Engineering Laboratory] involves the development of
dynamic resource allocation (scheduling and load-balancing)
algorithms in a virtual time environment. These algorithms will
be embedded into a virtual time intelligent machine operating
system. Our emphasis is on applications characterized by struc-
tures irregular in time and space, with irregularities unpredic-
table in advance, and which might be as often communication-
bound as compute-bound. Since our ultimate objective is to
exploit advanced computer architectures for machine intelligence
problems, the generic IMOS/VT methodology is targeted at a wide
spectrum of concurrent computation requirements, extending from
“coarse-grain" architectures to "fine-grain" connection-machine-
type systems. Our current implementation framework focuses on
hypercube ensembles.

I. INTRODUCTION
For the successful real-time operation of a wide range of autonomous
or semi-autonomous intelligence-targeted robotic systems, it is essential
that the computers on board be able to "think" fast enough. The current

consensus is that while the microprocessors at the heart of any computer

*This work is curreqtly funded by the U.S. Department of Energy (0ffice
ot Basic Energy Sciences), the U.S. Army (Human Engineering Laboratory)
and the U.S. Air Force {Wright Aeronautical Laboratories).
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will probably not become much faster, there is a continuing trend for
them to become smaller and cheaper. Thus the key to more powerful com-
puters (i.e., faster thinking) is to have many processors cooperating in
the solution of a given problem. Such systems are defined as "concurrent"
rather than parallel, to avoid the "lockstep" connotation associated with
the latter.

The development of concurrent computers, particularly in the context
of intelligent machines, raises several challenging issues. How powerful
should each processor be? How should the processors communicate with
each other? How should the workload be divided among the processors?

How does one make sure that processors are not sitting idle waiting for
input from other processors? The Center for Engineering Systems Advanced
Research (CESAR) at the Oak Ridge National Laboratory (ORNL) has recently
initiated a program which starts from some of the most advanced and pro-
mising developments in concurrent computation. It addresses research
required to develop an efficient systems' environment including dynamic
resource allocation (i.e., load-balancing/scheduling) algorithms within a
virtual-time operating system suitable for a wide range of real-time
applications.

The computer design being investigated at ORNL/CESAR is based on a
"nypercube"” architecture. The system, built by NCUBE Corporation, was
designed from the ground up to be optimally implemented in state-of-the-
art VLSI. It provides unmatched raw performance since up to 1024 pro-
cessors, each of about the power of one and a half VAX 11/780, can be
connected to their nearest boolean hypercube neighbors and communicate

only through message passing. Since VLSI technology is used, the total
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volume of such a system is much less than one cubic meter. Recent re-
search at the California Institute of Technology {Caltech) has shown a
similar design to be one of the most powerful and versatile.

Our ultimate intent is to develop a "Virtual Time" Intelligent
Machine Operating System (IMOS/VT), to provide a generalized framework
for implementing machine intelligence. This type of operating system is
expected to be especially suitable for hard-real-time environments, as
encountered in autonomous machines or SDI applications, since processors
will be able to think ahead in “virtual time", issue a set of tentative
commands, and modify them only if new information warrants it. It is
this thinking ahead which, for problems involving thousands of processors
and of processes with a time-varying interconnection structure, evens out
the workload not only in time but also between processors.

Currently we are involved with the development of a "generic" version
of IMOS/V¥T and supporting algorithms. 1In particular, since the emphasis
is on exploiting advanced computer architectures for machine intelligence
applications, the virtual time methodology needs to be targeted at a wide
spectrum of concurrent computation requirements, extending from “coarse-
grain” architectures (e.g., the ORNL/NCUBE hypercube, the BBN butterfly
multiprocessor) to "fine-grain" connection-machine-type systems. Develop-
ment of a few selected IMOS/VT modules has just been initiated, using
both the NCUBE machine and an ORNL-enhanced version of the Caltech hyper-
cube simulator. This effort represents the first basic steps towards the
goal of successful operation of complex distributed systems in hard real-

time environments.
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In Section Il we cutline some of the critical issues related to the
control of intelligent machines using distributed concurrent processors.
Design considerations in the development of a virtual-time operating
system and its supporting algorithms are addressed in Section III and IV.
We conclude by indicating key mile stones for a “full-fledged” implemen-

tation of the Virtual-Time Methodology.

IT. CONTROL OF INTELLIGENT MACHINES USING CONCURRENT PROCESSORS:
CRITICAL I5SUES

Advanced autonomous robots, such as the HERMIES-II prototype current-
ly being developed and tested at CESARY or the Hexapod walking machine
constructed by Ohio State University,2 and other intelligence-targeted
machines of the futured are generally composed of a variety of asynchro-
nously controlled components. For a robot, these components may include
manipulator arms, electro-optical sensors, sonars, navigation
controllers, etc... In order to take advantage of the distributed nature
of the associated robotic processes, it was envisioned? that a Robot
Operating System (ROS) should be developed, to provide a generalized
framework for implementing machine intelligence, through real-time
control of a distributed multimicroprocessor system. In the following,
we first review some recent advances in message-passing architectures; we

then address some critical issues of specific interest to this workshop.

a. VLSI-Based Message-Passing Ensembles

The rationale for our approach lies in recent advances in VLSI
te-_chno]ogys’6 which dramatically reduce the cost of computation. The

basic trend is to use the state-of-the-art VLSI to integrate an entire
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processing system on a single chip, including communications links,

memory interface and 32-bit processor, resulting in smaller and cheaper
processors comparable in performance to their larger and more expensive
predecessors. This trend, which we see as continuing over the next
decade, is the major technological drive behind concurrent computation,
i.e., the use of an ensemble of small computers that work concurrently on
parts of a complex problem, and coordinate their computations entirely by
sending messages to each other. Such considerations have recently led

to the successful development of several families of such “ensemble
machines." Work at Caltech, for example ranges in scope from the "cosmic
cube” (initially 64 nodes connected in a Boolean 6-cube, using 8086/8087
16-bit processors and currently upgraded to 68020's) to the "mosaic ex-
periment" (which involves single-chip nodes). In a similar vein, the
much finer grain “connection machine" being developed by Thinking Machines
Inc. is reported7 to have implemented processor-to-processor communication
through a fast message routing system that forms a hypercube. The in-
trinsic characteristics of hypercube ensembles, which are briefly summar-
ized below, when put in perspective of the ROS requirements, provided us
with strong incentives to configure the "brain" of future HERMIES robots
as homogeneous hypercubes of appropriate dimensionality.

By “hypercube ensemble machine" we refer to a Multiple Instruction
Multiple Data (MIMD) multiprocessor design in which N=2d identical (i.e.,
homogeneous) nodes are connected in a binary d-dimensional cube topology
using fully asynchronous bidirectional channels. For illustrative pur-

poses, a few hypercubes of low order are shown in Fig. 1, where circles
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Fig. 1. Hypercube Architecture in d Dimensions. An
order-d hypercube is constructed recursively
from two order-{d-1) cubes by connecting
nodes having a Hamming distance of one,
through the most significant bit of their
identifying number (dotted lines).

denote nodes and lines refer to communication channels. It is important
to notice that hypercubes can be constructed in a modular fashion, i.e.,
an order-d hypercube is constructed from two order-{(d -1) cubes by con-

necting appropriate nodes.



67

Several architectural advances of ensemble machines are of special
significance to us. Previous mu]tiprocessors8 were generally constructed
to allow direct implementation of conventional programming constructs.

In particular, these multiprocessors typically include special switching
hardware to allow each processor to access the memory of others. A range
of problems are associated with these tightly coupled multiprocessor
architectures. Of particular impact is the fact that hardware cost and
complexity grow much faster than linearly with the size of the machine,
resulting in an ever increasing loss of efficiency of the software as the
number of processors is raised (e.g., as in CMU's C.mmp).9 On the other
hand, research at Caltech and elsewhere has indicated that architectures
communicating through message passing (e.g., such as hypercube ensembles)
have better properties.

Two architectural characteristics make the hypercube ensemble machine
particularly attractive for CESAR applications. The first refers to com-
munication time between nodes. For example, consider a 12-dimensional
cube (N=212=4096 processors). It is homomorphic to a 64 x 64 square
grid. However, the most distant nodes in the latter are 126 channels
apart, but only 12 in the former. The second characteristic refers to
symmetry. The system looks topologically identical from the point of
view of each node there are no corner vs, edge, or root and leaf nodes as
in regular grids or trees. This property will simplify the dynamic real-
location of subcubes by ROS, to whatever task requires additional com-

puting power.
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b. Developing Algorithms for Ensemble Machines

An essential step to insure the successful implementation of ensemble
machines as “"brains" of future HERMIES robots (or, e.g., of autonomous
land vehicles, futuristic airplanes, space stations, weapon systems,...)
is the development of adequate algorithms for concurrent computation. It
should be pointed out that this task is far more difficult in the frame-
work of intelligent systems, than for the usually demanding computations
encountered in the classical fields of science and engineering.lo In the
latter {(including, for exampie, matrix, grid or finite element
formu]ationsll) the algorithm structure is so regular, that the corre-
sponding processes (a “process” is simply an instance of a sequential
program augmented by message passing primitives, and may represent, for
example, computation of an equation term) can be mapped directly onto the
hardware topology.

For intelligent machine applications, typical process structures are
irregular and also involve nonlocal communications. This requires that
an optimal (or near-optimal) mapping of the process structure (task
graph) onto the ensemble be computed,l2 Even for “"static" process struc-
tures (i.e., those with a non time-varying topology) where the mapping
can be computed prior to execution, this endeavor is extremely difficult,
particulariy when precedence constraints are involved. A prototype
mapping system, ROSES (ROS Experimental Scheduler) developed for our DOE
robotics activities, is currently being tested,12 and shows excellent
promise.13 An application for which a near-optimal mapping has been

achieved is the solution of the inverse dynamics equations.
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The situation becomes considerably more complex if the process
structure evolves dynamically, as may be required for intelligent ma-
chines operating in unstructured environments. Complications include the
development of appropriate methodologies for real-time mapping and remap-
ping of task graphs onto the machine's topology, the capability for pro-
cesses to spawn or annihilate other processes, and most importantly for
the operating system to be capable of load-balancing the activities of
all processors to achieve optimal utilization and throughput. Our

approach is outlined in the following section.

III. INTELLIGENT MACHINE OPERATING SYSTEM

OQur intent is to develop essential components of a methodological
framework for real-time systems capable of fully exploiting the fundamen-
tal computational breakthrough offered by ensemble machines for con-
current computation. A Phase-1 effort attempts to develop dynamic
resource allocation (scheduling and load-balancing) algorithms in a vir-
tual time environment, The application areas targeted might include
either autonomous robotics, avionics, or SDI tasks, with an initial
demonstration limited to a relatively “simple" problem. In the following
discussion, in order to fix the ideas, all nomenclature will refer to
robotics.

a. Basic Concepts

Each of the many activities taking place in a robotic system {e.g.,
vision, sensing, manipulation, ...) will be represented by many asynchro-
nous interruptable entities called "processes" or "objects". Processes
may be grouped dynamically into "tasks". In particular, device control

processes will correspond to, track and control each hardware component.
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In the same vein, equation sets (e.g., the inverse dynamics equations)
will be partitioned into precedence-constrained processes.

It should be emphasized that it is highly desirable that an ensemble
machine be dynamically reconfigurable into a set of ensembles of lower
dimensionality. For example, on the ORNL/NCUBE, one 6-~dimensional cube
is equivalent to eight 3-dimensional cubes, or to one 5-dimensional and
two 4-dimensional cubes, etc. The intent is to assign major robot acti-
vities to specific partitions. The corresponding processes will be
distributed among the processors of each ensemble subset, and should be
movable between them at any time to preserve the locality of communication
and load balancing. This is also essential to insure sustained system
performance when the machine size is scaled up. Obviously, dynamic
reconfiqurability is desirable both for "coarse" as well as “"fine-grained"

concurrent computation ensembles.

b. Virtual Time Environment

One of the principal functions of an operating system for an Intel-
lTigent Machine is to coordinate processes, the activities of which may
refer to times other than real time (i.e., wall-clock time). There are
several categories of such "non-real" times, which together will be
lumped under the name "Virtual Time".

(1) One category of “"non-real” time arises in simulation of the
future, a necessary element of planning. When the task of simulation is
carried out by a group of asynchronous processes running concurrently on
a number of processors, each process will in general be at a different

point of the simulation - i.e., at a differant "virtual time". It is the



responsibility of the operating system to coordinate the interaction of
these processes (via inter-processor messages) in a manner which (a) pre-
serves the logical consistency of the world model, (b) is as efficient as
possible, and (c¢) is transparent to the system's user.

(2) Another category of Virtual Time is future real time. Commands
or directives to effectors often must have a real-time dimension. For
example, a directive to a robot arm may consist of a trajectory,
comprising a series of motions, which are to be coordinated in time with
the trajectory of another robot arm. A planning task issues streams of
directive messages - and messages changing earlier directives - to the
effector tasks. The actions of different effectors must remain coor-
dinated in spite of changes, delays, and so forth. The operating system
must provide facilities for the coordination of timing, under these con-
ditions.

(3) Yet another category of Virtual Time arises in calculations
(e.g. solving equations) which, in order that results be obtained with
sufficient speed, must be carried out asynchronously (i.e, "chaotic
relaxation") by a group of concurrent processes.

To implement these concepts, our work builds upon the basic tech-
niques of Time-Warp simulation,14 and extend them as needed for real-time
implementation. The Time-Warp mechanism is used essentially to speed up
simulations by solving