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ABSTRACT

Central heating plants distribute energy by sending steam or hot water through buried
pipelines. Some heat losses occur during operation of these pipelines. The values of such
losses are neceded for several reasons, such as determining if maintenance needs to be done
on a section of pipeline. This report presents a study of procedures for estimating heat
losses based on underground temperature measurements.

The report begins with a description of the problem and a literature review. Both
experimental and analytical procedures for estimating the heat losses from measurements
were developed by T. Kusuda® of the National Bureau of Standards (NBS). The shallow-
depth temperature measurements proposed here are considerably easier to make than the
deep measurements being used by Kusuda. Furthermore, the methods of analyses
presented here also have substantial advantages, some of which arise from sequential
estimation and optimal design.

Temperatures measured near the ground surface can vary considerably in time periods
as small as a couple of hours. For this reason, new transient and quasi-steady-state
solutions were developed. For near-surface temperature measurements, it is necessary to
use the measurements in connection with the quasi-steady-state solution.

Another aspect of the report is the discussion of parameter estimation techniques for
estimating various constants; that is, parameters such as heat loss per foot, soil thermal
conductivity, and pipe depth. These techniques have a statistical basis and use nonlinear
least squares. The importance of the sensitivity coefficients (first derivatives of the
temperature with respect to the parameters) is stressed relative to optimal design of the
experiments. The design of the experiments involves choice of the depth of the temperature
measurements and, more importantly, the horizontal distance from the pipeline axis.

Subsurface temperature measurements obtained at Oak Ridge National Laboratory
were used to estimate pipe heat loss and pipe depth. The data were analyzed in several
ways. In one way, parameters were estimated at each axial position of the pipe. In another,
the data were used to obtain a single set of parameters in a sequential manner that gives
insight into the effect of including measurements at each location. A method was also
suggested which can aid in determining if the soil thermal conductivity can be
simultaneously estimated with the heat loss per foot.

“T. Kusuda, S. Aso, and W. Ellis, 4 Method for Estimating Heat Loss from Underground Heat Distribution Systems,
National Bureau of Standards, Washington, D.C., Feb. 1, 1983.
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NOMENCLATURE

dimensionless quantity defined by Eq. (22a)
dimensionless quantity defined by Eq. (22b)

Biot number defined by Eq. (18b)

specific heat

constants in Eq. (50)

sum of squares of sensitivity coefficients, see Eq. (58)
steam pipe depth

complementary error function = 27~ % f ® e ™V du
expected value operator ‘
exponential integral = f * uTle ™ du

volume energy source

Green’s function

heat transfer coefficient

sum defined by Eq. (59)

integral defined by Eq. (14)

integral defined by Eq. (15)

thermal conductivity

number of parameters

heat flux

solar heat flux

heat flow from pipe per foot

dimensionless radius

sum of squares function

time

temperature

undisturbed temperature at the depth of y

initial temperature

ambient temperature

variance operator

horizontal distance from centerline of and normal to buried pipe
sensitivity coefficient for ith location and jth parameter
depth below the heated surface

measured temperature

thermal diffusivity
regularization parameter for D in Eq. (60)
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regularization parameter for Q in Eq. (60)
parameter

Dirac delta function

Euler’s constant, Eq. (25)

optimality criterion

measurement error, Eq. (35a)

density

error standard deviation

dummy time variable

dimensionless time defined by Eq. (18a)
variance-covariance matrix



1. INTRODUCTION
1.1 DESCRIPTION OF PROBLEM

Central heating plants distribute energy by sending steam through pipelines buried
underground. With the advent of increased fuel costs, interest in fuel conservation and
expense in the replacement of steam mains, there is interest in procedures for estimating
heat losses to assist in determining the necessity or priority of pipeline replacement.

Several types of measurements have been suggested for use in determining heat losses,
including infrared thermography,! subsurface ground temperature measurements,>® and
condensate measurements.* This report presents a detailed examination of the estimation
concepts related to the subsurface ground measurements. A method for including
measurements from other sources is also included. Methods incorporating different types
of measurements (such as temperatures and condensate production rates) can be more
effective for estimating heat losses than those using a single type of measurement.

For methods to be used on university campuses, military bases, and elsewhere, the
measurements should be relatively easy to obtain and should cause minimal disruption of
the normal operation of the steam lines.

1.2 LITERATURE REVIEW

Considerable work on the prediction of heat losses from underground measurements
has been done by T. Kusuda® of the Building Physics Division of the National Bureau of
Standards, Washington, D.C. Kusuda’s experimental method involved relatively deep
subsurface measurements. This method has both advantages and disadvantages. The
advantages include simplifications in the analysis of the data. The values of the surface
heat transfer coefficient are not important and may be considered to be infinite with
insignificant errors. In addition, deep subsurface measurements change very slowly with
time and can be treated as being in a steady state condition. One disadvantage is that such
deep measurements require a large, special-purpose device for positioning the temperature
sensor. Not only are such devices expensive and cumbersome, but the time to set up each
measurement tends to be larger than measurements nearer the heated surface.

An objective of this report is to present analytical support for using measurements
much nearer the soil surface. This method requires that the surface heat transfer
coefficient, &, be included in the analysis and that realistic values be found for A
Moreover, the transient nature of the in situ temperature measurements must be
considered. These points are addressed in this report, and some near-surface data are
analyzed.

Kusuda® provided a good method for determining the steady state-heat loss of the pipes
by using the method of least squares. Although he was acquainted with some optimization

1



methods, Kusuda’s analysis did not consider the parameter estimation which provides
methods for optimal design of experiments, insight into the estimation problem through the
examination of the sensitivity coefficients, and a powerful method of sequential parameter
estimation.>®

Another aspect of the work of Kusuda et al.3 is the transient determination of the
thermal conductivity using a line probe technique. The method of least squares was used to
find the slope of the large time temperature curve which is simply related to the thermal
conductivity. This method is the conventional way these data are analyzed. Sequential
parameter estimation® has the power to give additional insights, including information
regarding the validity of the transient heat conduction model.

The thermal conductivity of soil is known to vary considerably from soil to soil, with
moisture content, and with temperature. In ref. 3, thermal conductivities from 0.34 to 0.94
Btu/hr-ft-°F were calculated using the line source probe. In several papers,” ° Salomone
et al. report that the thermal conductivity of soils is particularly sensitive to moisture
content as it decreases below a critical content for which a sustained moisture migration
occurs. Below this critical content, vapor permeability increases to a point that vapor
outflow exceeds liquid inflow, causing progressive drying and decreased thermal
conductivity. A sustained moisture migration occurs for these low moisture contents.
(Reference 10 discusses coupled heat and water flows, but due to the complexity of such
models and the need for relatively simple models, coupled heat and mass transfer is not
considered in this report.)

For moisture content above the critical value, Salomone et al.” % stated that the
thermal conductivity is relatively constant and reported values equivalent to 0.82 to 1.15
Btu/hr-ft-°F and 1.44 to 1.92 Btu/hr-ft-°F for fine-grained and granular soils,
respectively. For some sands, values of thermal conductivity as low as 0.2 Btu/hr-ft-°F are
reported’ for very low moisture contents.

A number of investigators have proposed mathematical models for the steady-state
temperature distribution around buried pipes with heat loss to the ground surface. These
models are based on a solution of a two-dimensional heat conduction problem which, for
constant thermal conductivity, involves Laplace’s equation with appropriate boundary
conditions. One of the earliest solutions is due to Schofield,!! who gave the temperature
distribution around a line source inside a semi-infinite medium with an isothermal surface.
He proposed a correction, called Schofield’s added thickness rule, for the convective heat
loss at the ground surface. Eckert and Drake!? also discussed the case of a line source in a
semi-infinite medium with an isothermal surface.

Several papers have appeared that consider finite diameter buried cylinders but provide
numerical values only for the thermal resistance rather than the temperature distribution,
which is required herein. Thiyagarajan and Yovanovich!? gave the thermal resistance for a
constant heat flux at the pipe and an isothermal surface of the semi-infinite body.
Schneider'# calculated the resistance for a convective boundary condition at the pipe as
well as the ground surface.

In this report, the case of a line source in a semi-infinite medium is extended to cover
the transient case. The convective boundary condition at the ground surface is treated.
This transient solution is important because it gives greater insight into the use of
temperature measurements for estimations of the heat loss. The near-surface temperature



measurements are not in a true steady state; for example, at a depth of 6 in., temperatures
can change over 10°F in a 12-hour period. Nevertheless, it is possible to utilize steady-
state equations, provided the measured temperatures are used properly. The transient
analysis gives insight into the correct manner to model the in situ transient case with
steady-state equations.

The Green’s function method is used herein to solve the transient heat conduction
problem. The transient solution is simplified to obtain a general steady-state expression
which is used to obtain an improvement over the Schofield added thickness rule.

1.3 MATHEMATICAL DESCRIPTION AND ASSUMPTIONS

In this report, a transient heat conduction model is employed to describe the
temperature distribution near the buried pipes. The estimation techniques to be described
in Sect. 3 are powerful enough to treat more complicated models, but for simplicity, a heat
conduction model is employed. The physical model depicted in Fig. 1 shows a steam pipe
the distance D below the soil surface. The main quantity of interest is the heat flow per
unit length of pipe, @, which has units of Btu/hr-ft. Details regarding the temperature
distribution near the pipe are not needed since the temperature measurements are made
“far” from the pipe. (Two or three pipe radii distant from the pipe is sufficient to be
“far.) Hence, information regarding the heat transfer coefficient inside the pipe and the
insulation of the pipe is not needed.

ORNL-DWG 85-15954

AIR AT 7, (1)
HEAT TRANSFER
COEFFICIENT, 4
LT LT TN
l x SoIL

STEAM PIPE
COVERED WITH
INSULATION

CONTROL VOLUME
SURROUNDING STEAM

FLOWING STEAM PIPE AND INSULATION

Fig. 1. Diagram showing a steam pipe buried a depth D below soil surface.

At the soil surface there is a time-varying solar heat flux of g,,(¢) in Btu/hr-ft%, and
there is heat transfer to the ambient air at temperature 7T (z); the heat transfer
coefficient at the surface of the soil is denoted by &, as shown in Fig. 1.

The main assumptions for the model are



a. Conduction is the dominant mode of heat flow in the soil.
b. The soil thermal conductivity, &, specific heat, ¢, and density, p, are constant.

c. The ground surface heat transfer coefficient is considered constant with position and
time.

d. There is negligible radiation from the heated ground surface (or it can be linearized
and incorporated into the convective heat transfer coefficient).

e. The ground surface conditions are uniform with x (Fig. 1); that is, the ground is bare
or there is uniform vegetation.

f. The depth D of the pipe is “large” compared to the effective pipe radius.
g. The temperatures are measured near the ground surface, not near the pipe.

h. The heat flow, @, does not vary or varies only slowly with time and does not vary or
varies only slightly along the pipe axis.

One of the critical assumptions is that the thermal conductivity is constant. From refs.
3,7, 8, and 9, it is known that the conductivity is quite small when the moisture content is
low. Nevertheless, the assumption of constant conductivity is made; the constant value can
be considered an average or “effective” value. The validity of this assumption can be
checked (to some extent) by examining the temperature residuals, which are the
differences between the measured and calculated temperatures. If the differences are small
and random, then the model is adequate; and if not, then the model may need
improvement. An examination of the residuals shown in Table III of ref. 3 reveals
relatively small residuals. In an independent and unpublished study of transient
temperatures measured at Karns, Tennessee, the authors found that the transient heat
conduction model gave excellent agreement with very small residuals. These studies give
credibility to the transient heat conduction model of this report.

The mathematical model is the transient heat conduction equation,

3*T T o oT
=+ =+ & = (1
axz ayz k J at

where @« = k/pc is the thermal diffusivity (ft?/hr or mz/s) and k, p, and ¢ are considered

to be constants. The symbol g is for volume energy sources. The boundary condition at the
soil surface,y = 0, is

9T
dy

o = [T = TE00] + g 2)
y=0

where h is the surface heat transfer coefficient, 7' (¢) is the ambient air temperature and
gs0/(t) is the absorbed solar energy heat flow. Both 7 (¢) and g,,/(¢) can have arbitrary



time variations, but % is considered to be constant, both in time and with x. For large
values of y (i.e., large soil depths), the temperature approaches a constant,

T(x,00,t) = Ty . 3)

For large absolute values of the horizontal distance x, there is negligible effect of the
steam pipe; thus, the heat flow is one-dimensional and there is no gradient in the
x-direction,

-k%f—=0forx—+ooandx—>-—oo. (4)

The initial temperature distribution is unknown, but its value is not critical since the time
period continues indefinitely. One of the simplest assumptions is to choose the “initial
time” to be when the one-dimensional temperature distribution is nearly equal to the deep
depth value of T,

T(x,yso) = TO . (5)

In addition to the above conditions, there is a source of energy due to the buried steam
pipe. In the list of assumptions, the depth D is assumed to be large compared to the pipe
radius, and the temperature distribution of interest is “far” from the pipe. For these
conditions, the pipe can be simply modeled as a line source, g,

g = Q ¥D—y) x7), (6)

where §(z) is the Dirac delta function; it has the characteristics of having the integral over
x' and y' of 8(D—y') 6(x’) equal to unity if it includes 8(D) &(0), and zero, otherwise.
In other words, there is an energy contribution at the point (y = D, x = 0). The
symbol Q is rate of heat leaving the pipe per unit length in Btu/hr-ft (or W/m).

Solutions of the heat conduction problem are given in Sect. 2.

1.4 OUTLINE OF THE REPORT

Before proceeding to the analysis of the problem, the remainder of the report is briefly
outlined. Section 2 gives a transient analysis of the heat conduction problem for the source
term Q. The steady-state solution of this problem is also derived; for the limiting case of
an isothermal surface, it reduces to the well-known expression that is based on potential
theory and was used by McLain et al.,> Kusuda et al.,® and others.'>1?2 Some modifications
of the steady-state solution are also given. Section 3 explores the parameter estimation



problem for the steady-state model. Minimization techniques associated with parameter
estimation are discussed. Important insights gained from the sensitivity coefficients are also
delineated. Section 4 displays some Oak Ridge data previously reported,” and provides

some detailed parameter estimation studies. Section 5 gives a summary, some conclusions,
and recommendations.



2. DERIVATION OF EQUATIONS FOR UNDERGROUND HEAT LOSSES

The temperature distribution in the soil around steam pipes (particularly near the soil-
air surface) is clearly transient with daily and yearly variations. Even though this transient
behavior is well-known, the heat flow from the pipes has been analyzed as a steady-state
problem. It is pointed out in this report that it is indeed correct to use a steady-state
solution provided the correct one-dimensional transient temperatures are used in
connection with it. This point can be important if near-surface temperature measurements
are taken over several hours. To explain the problem more fully, a new transient analysis
based on the use of Green’s functions is given.

Mathematical Solution

The mathematical solution for Egs. (1)-(6) can be symbolically written using Green’s
functions in the form,!’

t fo o
T(x,y,t) = Ty + -% -I;:o Gsor(7) L'z*w G(x,p,t;x',0,7)dx'dr

+ gkk- t-o T (1) C,JO__ G(x,y,t;x',0,7)dx'dr

t [0 ¢
o [el. fy , GGy tixiytn) dD=y") §(x1) dxdydr . (1)

Note that there are three integrals to evaluate: one for g,y(2), one for T (2), and one for
Q. The notation G(-) represents a Green’s function. The boundary conditions of this
problem can be described using a notation proposed in ref. 15. The problem is two-
dimensional. In the x-direction, there are no physical boundaries and so is given the
notation X00, where X denotes the x-coordinate and the first 0 for the x — —owo
condition and the second 0 for the x —> co condition. These are called “natural” boundary
conditions. There is a convective boundary condition at y = 0 and also y goes to +oo; the
notation Y30 is used because the convective boundary condition is called the third kind.
This notation can also be used as subscripts for the Green’s function, G(-), to describe
more completely the one that is needed; namely, Gygoy3o(-). An important property of the
Green’s functions in Cartesian coordinates is that the two- and three-dimensional functions
can be written as products of one-dimensional functions; for the present case, one can write



Gxoorao(X,y, ;3" 1) = Gyoolx,8;x",7)Gy30(p.15y"7) . (8)

The one-dimensional Green’s functions in Eq. (8), along with many others, have been
tabulated.'>!6

One result of the multiplicative relation given by Eq. (8) is that the x’ integration in
the first two integral expressions of Eq. (7) can be readily performed since there is an
explicit dependence on x’ only in Gygo(x,t;x’,7) and that

J'OO Gxog(x,t;x’,r)dx’ = 1, (9)
—co

For convenience, let the first two integration expressions of Eq. (7) be combined and
written as

Tl(y’t) = % J;t-——O [qsol(T) + hToo(T) GY30(y,t;0"r)dT . (10)

This transient term cannot be evaluated unless gg,t) and T (t) are known, but it is
shown below that these terms are not needed to estimate Q. The temperature 7(y,?) is the
one-dimensional temperature at the same depth y as for measurements near the steam
pipe, but at a sufficiently large distance from the pipe so that 7(y,¢) is unaffected by the
pipe.

With the notation given by Eq. (10), Eq. (7) can be written as

! [e]
Tyt) = To + T + 5 [ 1) Gixoolx t3x",7)8(x")dx’

x'=—o0

x [ | Gysol.1:y"r)o(D —y)dy'dr] . (11)
e

Due to the nature of the Dirac delta function, there is a contribution only at x* = 0 and
y' = D and thus Eq. (11) becomes

t
T(xpt) = Ty + Ti(p,t) + ikQ f=0 Gxoo (x,850,7) Gysoy,t;D,7)d7 , (12)

where

2

GX()() (x,t;O,T) = [4a7r(t—7)]—‘/z exp [— -4;(—-::‘5] (133.)

and

— 2
GY30 (}’J§D,T) = [4&7((?“‘1‘)]_% { exp [— %_(_t_?}-.j_‘



(y+D)? h ot —7)h? h(y +D)
— e _ —— [t LASEEELAT b, + — T 7
+ exp [ dali—1) 3 ex 02 T
+ B fate—nyH (13b)
[401(1(“*1’)]"(2 k
One needed integral for Eq. (12) is
- { . -1 _ _—-_’.2—_— (143)
I J;) [4ra(t—7)]7" exp [ 4a(t*—7)] dr
- 1 fm 1 e ¥ dy = 1 E r’ (14b)
Ao Yppgar U dra N P I
where E(z) is called the exponential integral.!”
Another needed integral is
_h R aft —1)h? hy+D) = x?
I, = X J; [4malt —7)]7 " exp [ 2 + X i —7)
X —2 e+ — [a(t—7) (15)
erfc [[4a(t—r)]/‘ X { 7)]

This is a complicated integral, but the argument of erfc(-) is always large for the range of
hD/k values of interest; namely, hD/k > 5. [The value of the argument of erfc is then
always 3.2 or larger, which causes erfc(-) to be less than 107%.] For this case, erfc(z) can
be approximated by

erfe(z) = —— e~ (16)
wZ
If Eq. (16) is used in Eq. (15), I, can be approximated by
1 at/D? 1
L = 2re -!;) y
vl1+v Y% +1]/2Bi
D
)]
(x/D* + |=+1
_ dv | 17
X exp . v (17)
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where

y = T g RD (18a,b)

It is shown in the appendix that

foo w(llbﬁ e™ dw = Ea) — e Ea+b7') . (19a)

where E((z) is defined by

E(z) = foo u"le *du (19b)
¥4
By using the substitution of
Fh2 2 2
= 2 et o | E 41X o+ (20a,b)
VT Ty 2 D D ’
Equation (17) can be written as
1 o 1 -
== i d b
= e do ey )
where
Y
2= + 1
it 0 ] (22a,b)
= e = o . a,
A(at /DY) Bi(ry )?
Hence, I, is approximated by
+2 2
I, = 1 r, o p E, o + b—l‘ ] ) (23)
2ra dat/D? 4ot /D*

The final solution for the transient temperature around the buried pipe is obtained by
using Eqgs. (14b) and (23) in Eq. (12) to get



11

+2 +2
0 Ty 72
T(xpyt) = Ty + T)(y,t) + E -
(x.p.t) 0 1,0 ack 1 dan? ' | 02
pr2
+ 27 B |——— . (24a)
dat /D?
where r; 2 is defined by Eq. (20b) and rit2is defined by
2 2
X y (24b)
it = E] + —5—1].

Equation (24a) is the transient solution for any x and y in the ground for the pipe located
at y = D and x = 0. The location must be 2 or 3 pipe radii away from the source to give
an accurate solution; this is a definition of “far” from the pipe.

The steady-state solution can be found by letting 7 go to infinity, but £,(z) with
z - 0 goes to infinity. However, there are two E(-) expressions in Eq. (24), one positive
and one negative, so that this effect cancels. Using the relation!’

E(z) = -y —lnz + z — , vy = 0.577216 , (25)

in Eq. (24) for small z (i.e., large times, f) gives the “steady-state” result of

Ts(x,y,t) = TO + Tl(y,t)

0 x? + (y+D)? Bt -1 2%
+ Ak [ln ¥+ (y—D)’ + 2" E(b7Y)], (26)

where b given by Eq. (22b) can be written as

y

2D+l

b = 2
Bi ||=

D

(27)

y

+ D + 1

1

The value of b~! is expected to be about 5 to 10. For such “large” values,
exp(6™ ) E(b™ Y in Eq. (26) can be approximated by (see Eq. 5.1.51 of ref. 17)

e BT = b — b2 + 253 — 3p* . (28)
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The term exp (b™') £(67!) in Eq. (26) is quite important, particularly as
measurements are taken near the ground surface because the natural logarithm term goes
to zero, and it is the only contribution inside the brackets.

Plots of the above equations are instructive. The transient equation given by Eq. (24) is
considered first, and the following values are used:

k = 0.75 Btu/hr-ft-°F, o = 0.0188 ft*/hr, y = 0.75 ft, D = 4 ft, @ = 400 Btu/hr-ft,
and k = 1.875 Btu/hr-ft>-°F.

For convenience, the sum of Ty and T (y,t) is considered to be the constant value of
81°F. Figure 2 shows a plot of Eq. (24) for these conditions; the temperature in °F is
plotted versus distance for fixed real and dimensionless times. Three observations are
drawn from this figure. First, the transients are quite slow. If a pipeline is not used during
some extended period, then the temperature can take as long as ten months to approach
steady-state conditions after being reactivated. Second, the thermal effect can extend a
considerable distance from the pipe; the distance to decrease to 1/2 of the maximum
steady-state value is about 4 ft (about D), and the distance to reduce to 10% of the
maximum is 12 ft (about 3D). Third, though the temperature changes considerably
between at/D? = 1 to 10, the difference in the temperature at x = 0 and that at a
moderate distance (such as x = 4 or 8 ft) is nearly constant. In other words, the shape of
the temperature curve is nearly constant for az/D? > 1 and for x < 2D.

ORNL~-DWG 85~-18955

130 | | | I |
" & >100 (STEADY STATE)
feo ot -gl=4 =~4 MONTH |
Y 10
1o - 8710 —
° To* 7y 1) =81°F
100 L D= 4ft,0=4008% |
y=0.75 ft
O ar.gy
12
80 |
0 2 4 6 8 0 12

X, £t

Iig. 2. Temperatures at y == 0.75 ft for D = 4 fi, § = 400 Biu/hr-{t, Bi = 10.
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Figure 3 shows the steady-state temperature distribution for additional surface heat
transfer coefficients values. The corresponding values of the dimensionless number,
Bi (=hD/k), are also shown. Note that a doubling of the Bi value from 10 to 20 causes
only a 5°F change at x = 0; hence, a 100% increase in Bi only causes about a 12%
decrease in the temperature rise near x = 0. This insensitivity of temperature changes to
changes in Bi values suggests that the value of % need not be precisely known when
estimating Q. For extremely large values of Bi, the interior temperatures approach the
values associated with a constant surface temperature (i.e., for A -> co or large D
values).

ORNL-DWG 8518956

4
140 I i | : l
Bi=5 OR hx 1Btu/hr-ft2—of
130 Bi=10 OR A=2 Btu/hr —fte—°F —
Bi=20 OR h~4
120 _
w To+ 7y (y,7)=81°F
° 440 .
[
B/ =100
100
Bi= 1000
OR A 200
Btu/hr-ft2—°F
90 |—
80 | l 1 I l
0 2 4 6 8 10 12

X, ft

Fig. 3. Steady-state temperatures at y = 0,75 ft for D = 4 ft and 0 = 400 Btu/hr-fi.

The steady-state part of Eq. (26) is tedious to determine using a calculator because the
E|(-) function must be evaluated. For that reason, the approximation shown by Eq. (28)
has been given. The E;(-) term can be considered a correction to the In (-) portion of
Eq. (26). The correction is negligible if 4 goes to zero which happens if Bi — oo, or,
equivalently, if the surface temperature is constant. A correction called Schofield’s added
thickness rule is well-known and simulates the effect of a finite surface heat transfer
coefficient.
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An improvement upon Schofield’s correction is now derived. A value for the numerator,
N, in the expression,

N x2 + (y + D)? bl -1
= | + 2e°  Eb , 29
]nx2+(ymD)2 "%+ - Dy (67 @)

for small values of & is sought. The right side of Eq. (29) contains the terms in the
brackets of Eq. (26). The two ln (-) terms of Eq. (29) can be combined so that for small b
values one obtains

N b»—l =1+
1 = 2¢" E\(b7") = 26(1 — b) .
" TE o 1 D) e’ E\bT) ( ) (30)

Taking the inverse logarithm of both sides of Eq. (30) yields

N
x2 + (y + D)?

= eBUD) = | 4 2+ oY), (31)

where O(b7) means order of 3. A second order term involving 42 is not present. Solving
Eq. (31) [with O(b?) neglected] for N and using Eq. (27) gives

N:x2+(y+p)2+2[x2+(y+1))2b

= x2 + (y + D) + e — (32)

Using this result, an cxcellent approximation for Eq. (26) with Bi = AD/k = 10is

T, (x,y,t) = Ty + Ti(y,t)

2 2
ER IR B ___45
+ - 1n 2 2 N
4wk % y
e R R
D D

If the —4/Bi? term is dropped, Eq. (33) becomes what is commonly called the Schofield
added-thickness rule; in dimensional terms the increased thickness is 2k/h. As Bi is made
smaller, the new correction of —4/Bi* becomes more important. [Actually, Schofield!'!
suggested that the solution be just the In (-) term in Eq. (26) with D in the numerator
and denominator replaced by D + (k/h).]
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The line source solution can also be employed to investigate the effect of replacing a
pipe of finite radius with a line source, which is done by using multiple sources. In most
cases, the effect is small, however. To illustrate the effect in a simple manner, the
“buried-pipe formula” can be used;? if this effect is added to Eq. (33) one obtains

Tx,y,t) = Ty + T(y,t)

! 2
IS S 2 ] L A S
D D D2 Bi, Bi’ (34)
+41rk fn " 2 2 ,
x + —L—l
D D

where a is the pipe radius, which is assumed to be at an isotherm. The “added thickness”
and the pipe isotherm effects are opposite to each other, with the first increasing the
temperature and the second decreasing it.

The effect of the surface heat transfer coefficient [as reflected in the added thickness
(i.e., 2/Bi term)] is more important than that of the pipe isotherm, particularly for shallow
depths. To illustrate, consider the following realistic values of

h = 2 Btu/hr-ft>-°F, k = 0.75 Btu/hr-ft-°F, D = 4 ft,a = 1 ft.

Then, two terms in the numerator of Eq. (34) are
2 )" %
[1~~;-2- =[1——~1—] = 0.968 ,

42
2 2k 2(0.75)
Bi hD 2(4)

= 0.188 .

The reduction due to the pipe isotherm is 0.032, but the increase due to the added
thickness 0.188 is a factor of 6 larger. Hence, the finite k correction is more important
than that for the finite pipe radius.

In the parameter estimation analysis in Sect. 3, the model to be used is Eq. (26) or
equivalently, Eq. (33). The temperature distribution relative to the steam pipes take
months to approach steady state, as shown in Fig. 2, but the tiransient temperature
component due to daily and annual variations, T(y,t), can vary much more rapidly. From
measurements at Oak Ridge National Laboratory, it is known that the temperature 6"
below the ground surface can have as large a variation as 10°F in a period of 12 hours.
For that reason, the measurements of 7(x,y,t) should be all taken in a relatively short
period of time (such as an hour) if the time variations of T|(y,?) are not recorded. For a
longer time period for making all the measurements, the actual time variations of 7(y,#)
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should be measured and used in Egs. (26) or (33). Whether the duration for taking the
measurements is brief or long, the T(y,t) values should be measured at a sufficiently large
distance, x, from the pipe. From inspection of Fig. 3, this x distance is considerably larger
than 14 ft; using Eq. (33), the x distance (for Bi = 10, D = 4 ft, and y = 9") to cause a
reduction to 2% of the x == 0 value is x == 30 ft. This value of x is surprisingly large.
Ideally, this location for measuring 7(y,t) should have the same kind of vegetation and
the same sun exposure as that over the pipeline.



3. PARAMETER ESTIMATION ANALYSIS FOR
UNDERGROUND STEAM PIPE HEAT LOSSES

Parameter estimation theory has been under development for a number of years. Many
papers and several books have been written.>®!®!% Bven so, in many fields of engineering,
there is little awareness of this literature. This is also true for the estimation of parameters
associated with heat losses in buried steam pipes. The method of least squares has been
used,’ but several important concepts and procedures are not given. These concepts relate
to sensitivity coefficients, sequential analysis, and optimal experiment design. This section
contains a discussion of these topics in addition to the usual topic of minimizing a
nonlinear sum of squares function.

Section 3.1 contains a discussion of standard statistical assumptions regarding the
measurement errors. Related sum of squares functions are given and methods of
minimizing the functions are provided. Section 3.2 presents an examination of the
sensitivity coefficients for the buried steam pipe problem. Section 3.3 discusses the more
advanced concepts of optimal experiments and sequential estimation.

3.1 STATISTICAL ASSUMPTIONS, SUM OF SQUARES FUNCTION,
AND MINIMIZATION

It is important to consider the measurement errors in any parameter cstimation
problem because the accuracy of the estimated values can be substantially greater by
intelligent selection of the criterion to be minimized. The selection of the criterion, in turn,
depends on the statistics of the measurement errors. A set of eight standard statistical
assumptions are given in ref. 5. If the standard assumptions are satisfied, then the method
of least squares is appropriate. If the assumptions are not satisfied, another criterion may
be more appropriate than the method of least squares.

The first standard statistical assumption is that the measurement errors are additive or

),‘- = Ti + € (353)

where Y; is the measured value, T; is the true (errorless, but unknown) value, and ¢; is the
measurement error. The symbol ¥; can represent measured soil temperature at a particular
location (x;, y;) or at a particular time as well as location. It could also represent another
measured quantity, such as soil moisture content.

The second standard assumption is that the errors, ¢;, have a zero mean,

E(g) = 0, (35b)
17
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where E(.) means the expected value operator. Equation (35b) indicates that the errors
are centered about zero; that is, there is no bias.
The third standard assumption is that the errors have a constant variance,

Vie) = o, (35¢)

where V(-) is the variance operator and o2 denotes the variance of ¢; The absence of an i
subscript in Eq. (35¢) means that all the errors have the same variance.
The fourth standard statistical assumption is that the errors are uncorrelated or

cov(ee;) = 0 for i # j (35d)

where cov(.) is the covariance operator. This assumption means, for example, that the
error at one location (x;y;) is uncorrelated with the error at another location (x;y;). In
other words, if the measured temperature is too high at one location due to some random
effect, the temperature at an adjacent location would not necessarily be too high.

The four assumptions are the major ones. The fifth relates to the error probability
distribution, and the sixth to whether o* is known or unknown. The seventh relates to the
source of the errors; the standard assumption is that the main error is in measurements of
T; rather than in x;y; and time. The eighth, and final, assumption relates to prior
information.

The parameter estimation criterion is best selected based on the characteristics of the
measurements. If the standard assumptions are satisfied, then the least squares criterion is
appropriate, that is, the sum, .S,

sis = 3 (- 1) (36)

is minimized with respect to the parameters; n is the number of measured Y; values. If
very little is known regarding the measurements, the method of least squares is also used.

When all the statistical assumptions are valid, except the third, the recommended
criterion is to minimize,

n 2
Sw = [Yi - Ti] o’ (37)

where a,-"'z is the variance of ¢. In Eq. (37) it is not 