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ABSTRACT

This numerical study defined the behavior of a sensible heat
thermal energy storage system whose physical design and operation had
been optimized to minimize the production of thermodynamic irreversibil-~
ities. Unlike previous studies, it included the effects of transient
conduction within the storage material.

A dimensionless set of governing equations was defined for a com-
plete storage-removal cycle that ivncluded the effects of entropy genera-
tion due to convection and viscous effects in the flowing fluid, two-
dimensional translent conduction within the storage material, and to
convection due to the discharged not fluid coming to equilibrium with
the environment during the storage period. A computer program was
written to solve this equation set and this program was in turn con-
trolled by a sophisticated optimization routine to determine a dimen-
sionless storage time, flow channel half-height, and heat transfer co-—
efficient that resulted in a minimum amount of availability destruction.

The results of this analysis showed that entropy generation within
the storage material due to transient conduction was a major contributor
to the total thermal irreversibilicies associated with the operation of
a sensible heat thermal energy storage system. For the couanterflow con-
figuration and over the range of design variables examined, material en~
tropy generation accounted for between 26.% and 60.%Z of the total
thermal availability destruction that occurred during a complete stor~
age—~removal cycle. It was also shown that the storage material aspect

ratio (the ratio of a section's half-thickness to 1its 1length) had a
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significant dwpact on the optimum design of a storage system. Its
influernice was second only to the fluid mass velocity,

Other significant results of this study were:

a. The thermodynamic efficiencies for the storage systems were ex-—
tremely poor in that it destroyed from 20.% to 82.%7Z of the entering
thermal and pressure availability.

b. A counterflow configuration without a dwell period was shown to
operate more efficiently than a parallel flow configuration with or
without a dwell period. Depending oa the value of the dimensionless
mass velocity, the parallel flow configurations ioncreased the total
thermal entropy generated, over the corresponding counterflow design,
from 12.%7 to 67.%.

c. Dwell periods were shown to be impractical because of thelr ex-
treme length; dimensionless times on the order of 6500.0 were re-
quired, These are much greater than the optimum storage period times
defined for the counterflow configurations without dwell periods, which

ranged from 0.5 to 6.0.
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1. INTRODICTION

Background and General Statement of the Problem

The 1973 Middle East o0il embargo forced changes in many prevailing
social, political, and engineering conventions. Long standing assunp-
tions of unlimited, easily accessible energy resources were no longer
viable. In an attempt to lessen the impact of this and future
shortages, national conservation goals were formally defined. These
goals included but were not limited to:

a. using less of an energy resource to do a particular task,

b. doing several tasks (conqurrently or sequentially) with the same
portion of an energy resource, and

c. wusing different energy rescurce, ones more closely matching the
desired tasks.
Perhaps most important there was a resurgence of the concept that the
real value of an energy resource, the one to be conserved, was its po-
tential to do useful work rather than its energy content. The United
States Congress even directed that a study be conducted to determine the
relevance of this idea to federal energy conservation programs [1].

Even though the maximum useful work concept had been in existance
for more than a century, its acceptance as an analytical tool was de-
layed by a largely recalcitrant technical community. Defining useful
work wmeant utilizing the Second Law of Thermodynamics as an integral
part of the analysis and the majority of thermal engineers were re—

luctant to do this. Ideas involving the Second Law of Thermodynamics,



and its associated property entropy, had been traditionally presented to
students within a strict, classical scientific framework. Consequently,
many thermal engineers came to consider these concepts as “too abstract
to use seriously.” As a result of this intellectual inertia it was not
until very receatly that second law considerations began to be incorpor-
ated into the maiostream of thermal engineering analysis
[2,3,4,5,6,7,8,9,10,11,12,14]. In recent years the acceptance and ap-
plication of the second law has increased to the point that several
special technical session$ have been held at National Heat Transfer Con-
ferences to discuss the subject. References [3-13] were presented at at
the 1984 ASME/AIChE National Heat Transfer Conference session and demon-
strate that second law considevations have been found to be useful in
virtually all areas of thermal engineering.

The purpose of this study is to add to this growing body of second
law oriented thermal analyses. This will be accomplished by conducting
a design optimization study of a particular thermal system: a sensible
heat thermal energy storage system with a distributed storage element.
Heat transfer processes in general, and storage systems in particular,
are inherently irreversible thus destroying much of the potential of a
resource. As such they are a fertile area for productive second law
study. These types of systems were in service during the early 1970's
and their value as a conservation tool also received renewed apprecia-
tion after the oil embargo.

Feasibility studies conducted early in the post embargo era iden-

tified them as an especially practical means of achieving conservation



goals. They were particularly useful in situations where the supply of
and demand for thermal energy did not occur simultaneously. Specif-
ically they could:

a. improve the overall efficiency of large energy producing systems
through load leveling,

b. enhance the development of alternative energy resources such as
solar, and

c. decrease the consumption of energy resources through the use of
waste heat recovery systems.
Since these initial studies, these systems have indeed found many res-
idential, commercial, and industrial applications [15,16,17,18,19,20].

A particular type of system, the sensible heat thermal energy stor-
age system, has become one of the most common types of units. This is
due in part to their relatively low cost and inherently simple design.
Sophisticated analytical techniques have been developed to facilitate
their design and operation {21,22,23,24] and they continue to be consid-
ered an appropriate field for study by the federal government [25,26].
This technology base however is grounded firmly in the First Law. of
Thermodynamics., A storage system is considered more efficient if, for
the same energy input, it stores more thermal energy than another com-
parably size unit. This procedure results in high first law effi-
ciencies, but it also produces systems that destroy most of the poten~—
tial of an energy resource. While this has been, and continues to be,

an acceptable design philosophy {25], it 1is in direct conflict with

modern conservation effortse.



The specific goal of this study is to define geowetry and process
parameters that wlll pevmit these types of storage systems to operate
with minimum thermedynamic irreversibilities. The specific storage sys~—
tem to be modeled is a counterflow regenerator. It consists of a
storage material that 1is alternately exposed to hot and cold fluid
streams. The material stores sensible heat energy during the storage
period and discharges it during the removal period. During anormal oper-
ation the two fluid streams alternately counterflow in the same channel.

Previous Related Studies: Second Law Aspects
of Thermal Analysis

The receant increase'in the application of the Second Law of Thermo-
dynamics to thermal analysis resunlted from the renewed interest in con-
servation that occurred during and after the 1973 oil ewbargo. This
change was necessary because the emphasis of conservation programs had
changed from maximizing energy transfer across a process to conserving
the potential of energy resources. The following brief discussion ex-
plains the reasons for this shift in priorities and the resulting need
for using the Second Law of Thermodynamics.

In a qualitative sense the purpose of most industrial thermal sys-—
tems is to utilize an energy resource to cause a change. For example,
burning fuel to change a fluid's temperature and pressure to generate
electricity or using a hot effluent stream to change the temperature of
a solid slab to store waste heat. 1t follows then that the most valu-
able property of an energy resource, the one to be conserved, is its

ability to produce such changes. This maximum useful work concept had



been defined, forgotten and then rediscovered many times in the past;
especially when energy supplies were cheap and plentiful. It took the
0il embargo to gel the idea that total energy resources were indeed
limited and that true conservaﬁion consisted of maximizing the useful
work available in themn.

To implement this new standard, it was necessary to be able to de-
fine the maximum useful work available in' a given energy resource.
Energy, or more correctly internal energy, could not by itself give an
indication of useful work and was therefore inadequate as a measure of
performance. Several definitions were presented in attempts to rigor-
ously quantify useful work. Availability or available work became the
most prominent and often used. Tt is defined as an extensive property
that describes the maximum useful work that could be doﬁe by a given
amount of energy. Expressed in terms of thermodynamic properties for a
unit mass of homogeneous flowing fluid with negligible kinetic and po-

tential energies [26]:
¥ = Ah — T (si—se) (1-1)

Availability is thus defined in terms of three thermodynamic proper—
ties: enthalpy, temperature, and entropy. Enthalpy changes are cal-
culated by the First Law of Thermodynamics and are directly related to
net changes in heat and work. Eﬁcropy is a property of matter that mea~
sures the degree of disorder at the microscopic level. Most important

from an availability conservation perspective, entropy is not conserved



as is internal energy. The natural state is for eantropy to be generated
in a real (irreversible) system. Associated with this production is a
loss of ability to do useful work. Because entropy is calculated using
the Second Law of Thermodynamics, implementing availability analyses re-
quired the quantitative application of the Second Law of Therwmodynamics
to thermal analysis.

With this availability function as a tool, it was possible to ad-
dress conserving the potential of energy resources. As with the tradi-
tional first law approach, an availability comparison could be easily
formulated to describe any system of interest. Analytically this com-

parison was defined {1] as:

_ availability required for a task (1-2)
availability in the inputs

This tatio and other slight variations were adopted as the thermodynamic
efficiencies needed to implement meaningful conservation studies.

An excellent example of an availability analysis wusing equation
(1-2) can be found in [28]. 1In this study the authors conducted bhoth
availability and energy analyses of a nominal 300 MW(e) coal-fired gen-
erating plant. The results of this study are summarized in Table 1.1l.
While the net efficiencies are essentially the same, the distribution
between process steps 1is quite different. The energy (first law) re-
sults indicate that the greatest inefficiency occurs in the condenser
and cooling towers. The availability (second law) analysis, however,
shows that the biggest inefficiency (destruction of availability) is in

the combustion and steam generator steps.



Table l.1. Summary of availability and energy analyses
of a 300 MW(e) coal-fired geunerating plant

% of entering Z of entering

Process step availability energy
destroyed lost

Boiler 45.0 0.0

Exhaust stack 5.0 8.0

Turbine 5.0 1.0

Condenser and ultimate 5.0 . 50.0

heat sink

Generator 7.0 7.0

PSR it

Total 67.0 66.0




These results were first presented in order to identify areas where
conservation efforts would be the most effective. Obviously, the direc-
tion of research and development would be profoundly effected by which
set of results were chosen as the benchmark. The question that follows
is, "Which is the correct set?” Quite simply, there 1is no single
totally correct choice. First and second law results represeat two
different, but equally wvalid, realities. The particular reality, or
blend of realities, to be observed at any given time is a function of
economics. This realization has lead Bejan [29] to define an optimal
thermal design as the least irreversible system the designer can
afford.

In the past, combustion processes were not seriously considered for
efficiency improvement because of low fuel costs. Currently however,
one of the major objectives of the Electric Power Research Institute is
to improve the heat rate (BTU/KW(e)) of fossil-fired plants [30]. This
is due, in part, to rapidly escalating fuel costs.

Macroscopic availability balances of entire processes are
especially useful when thermal analysis is combined with other dis-
ciplines such as economics and optimization. Two recent examples of
this type of analyses are by Frangopoulos [11] and Hesselmann (13].
Frangopoulos conducted an optimization of the costs of a typical thermal
power plaant. The objective function contained both initial and operat-
ing costs, the optimization was constrained by second law considera-
tions, and the entropy generation characteristics of the plant compo-

nents were calculated by performing macroscopic availability halances.



Hesselmann optimized the investment costs of a heat exchanger network
for the case of constant inlet fiuid availability.

Some of the most interesting recent results have been produced when
the focus of the analysis was shifted to the individual components of a
process. These studies defined the entropy generation characteristics
of system components as a function of their geometries and operating
conditions. These types of analyses were facilitated by the application
of the Guoy-Stadola [31] theorem which states that the rate of avail-
ability destruction 1is proportional to the rate of entropy generation.

Expressed mathematically this gives:

Rate of availability

destruction = T, Sgen (1-3)

This theorem permits the second law analysis of components as a function
of their own operating characteristics. This capability can best be
illustrated by examining the second law inequality which has been rear-

ranged to indicate the degree of irreversibility of a thermodynamic sys-

tem:

. ds S.l . .
T — — o ...4
Sgen it + T E ms + E : ms (1~4)

out in

Equation (l-4) states that the rate of entropy generation is a function
of the working fluids specifiec entropy, heat transfer rates, mass flow
rates, and entering and exiting temperatures and pressures. The value

of these;, and therefore the rate of entropy generation, can all be
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influenced by the design and operation of a component. Utilizing equa-
tions (1-3) and (l-4) thus permits the designer to incorporate second
law effects directly into the design process.

A typlcal example of this new generation of second law oriented
thermal analysis is by Perez-Blanco [5] and deals with performance en—
hancement of heat exchangers. Almost all methods of enhancing heat
transfer performance decrease thermal entropy generation but increase
pressure entropy generation. This suggests there is some optimum level
of enhancement that results in a minimum amount of total entropy gener-
ation. Building on earlier work by Bejan [14], Perez-Blanco defined an
analytical relationship for the total entropy generated by a smooth tube
heat exchanger as a function of typical design parameters. These in-
cluded Reynolds, Prandtl, Brinkman, and MNusselt numbers as well as the
friction factor, aspect ratio, and inlet fluid temperature. Using this
model, the author defined entropy generation characteristics of the heat
exchanger for two types of enhancement; a reduced heat transfer area and
a reduced temperature difference across the tube walls. It was shown
that enhancements which reduced tempevature differences produced the
lowest rates of entropy generation. These results also reinforced the
cost intensive nature of optimum second law designs.

Related Studies of Sensible Heat Thermal
Energy Storage Systems

Sensible heat thermal energy storage systems that operate with
separate storage-removal periods can be classified by either their oper-

ating or physical characteristics. From an operating perspective, there
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are two basic categories of units: those which use a single fluid and
those which employ two simultaneous heat transfer fluids. Those using a
single fluid are referred to as storage units [21] and those with two
simultaneous heat transfer fluids are called thermal storage exchangers
[21]. Both types can be made to operate in either a single blow or
periodic mode of operation. A single blow operating mode occurs when
the fluid inlet temperature experiences a step change and then remains
constant at the elevated valve until the end of the period. Classifica-~
tions based on geometry generally fall into one of four groups:

a. continuous elements of storage material with discrete passages,

b. metallic wire mesh as the storage material, as in the matrix of
a rotary regenerator,

¢c. packed beds with small particles of storage material, and

d. ceramic or refractory storage materials stacked in orderly ar-
rays.
Although there are many possible combinations of geometry and operating
modes, the mathematical models used to define thelr performance are
quite similar and have been solved in varying degrees of complexity by
many investigators.

Thermal energy storage systems have been the object of serious
study since the mid 1920's. These early studies by Anzelius [32],
Nusselt [33], Hausen [34], and Schumann [35] developed analytical solu-
tions for the transient behavior of a simplified model; a continuous
slab of material exposed on one side to a moving fluid and perfectly in-

sulated on the other side. A major assumption for these studies was
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that there was a zero thermal conductivity in the direction of flow and
an infioite conductivity normal to the flow. Subsequent analyses became
more sophisticated and solution techniques more elaborate. Larson [36]
extended the early work by Schumaon {35] to include arbitrary initial
matecrial and entering fluid temperatures.

Coppage and London [37] summarized the state of periodic regener-—
ator theory and then developed a supplemental approximate theory for ex-
trapolating these known solutions to other conditions (fi.e., initial or
boundary) of intecest. London [38] later presented computer generated
solutions for this same type of equipment. As with previous studies,
these results were determined wusing the assumptions of zero material
conductivity in the flow direction and infinite conductivity normal to
the flow. Much later, Willmott [39] also presented computer generated
solutions for this simplified model.

One of the most recent and thorough analyses of continuous material
storage systems was conducted by Szego [22}. 1In this numerical study he
accounted for the effects of axial and transverse conduction in the
storage material, modeled both flat slab and hollow cylinder geometries,
and considered single and two fluid operation. Szego's work formed the
basis of a text by Schmidt and Willmott {21] that contains the most cur-
rent summary of first law amalytical techniques and operating procedures
for thermal energy storage units of all kinds.

Packed bed storage systems were defined analytically by Rosen [40]
and numerically by Handley [41]. These studies considered the effects

on finite particle conductivity in the direction of the flowing fluid.



13

As with wmost other investigators, they both made the assumption of
negligible thermal conductivity in the longitudinal direction. Subse-
quent efforts by Jefferson [42] and Riaz [43] 1included the effects of
transverse conduction. These results, however, were not applicable to
continuous storage materials,

As previously indicated, these results were based on the First Law
of Thermodynamics; that is performance parameters were defined to max—
imize the amount of thermal energy stored. Bejan [44] was the first to
demonstrate the importance of applying the Second Law of Thermodynamics
to thermal energy storage systems. He stated that since availability
was the commodity of interest,k storage sysﬁens should be designed to
store availability rather than thermal energy; that is they should oper-
ate with a minimum of entropy generation.

In this study, Bejan modeléd the storagé period of a simple system
using a set of governing equations designed to emphasize rates of en-
tropy generation rather than energy storage. His system consisted of a
well stirred bath placed in an insulated vessel and initially at thermal
equilibrum with the atmosphere, A hot gas entered the system, was
cooled by flowing through a heat'ezchanger immersed in the bath, and was
then discharged to the atmosphere. Bejan defined a figure of merit that
was a function of entropy generztion due to convection and viscous
losses within the heat exchanger:duct and to the discharged fluid coming
to equilibrum with the atmosphere, He determined independent optimum
storage times and heat exchanger sizes that minimized the total rates of

entropy generation during the storage period. Bejan's results
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established two very important characteristics of storage units designed
to operate with a minimum of thermal irreversibility. That is:

a. when operated at optimum storage times, the first law efficiency
(amount of thermal energy stored) was very poor, and

b. depending on the particular operating point, optimum heat ex~
changer sizes were nmuch larger than traditional units.

Mathiprakasam and Beescn [45] extended the second law analysis of
simple storage systems to 1include both the storage and removal
periods. They conducted an analytical study of a storage system with
both rectangular and circular flow passages and defined the effects of
flow direction, mass flow rate, and cycle times on the second law effi-
ciency of the system. Their major assumptions, which 1limit the
applicability of the results, were that the pressure drop in the flow
channel was zero and the thermal conductivity of the storage material
was zero in the flow direction and infinite normal to the flow.

Perhaps the most rigorous and sophisticated second law analyses of
systems with lumped storage elements are those of Krane. 1In one study
[46] he substantially modified and extended Bejan's model [44] of a sys-—
tem with a lumped storage element that was both heated and cooled by
flowing gas streams. Krane's analysis, which included both viscous and
thermal sources of entropy generation, was the first to show that an en—
tire storage-removal cycle (as opposed to the storage period alone) mnust
be analyzed in order to optimize the design and operation of a sensible
hear system. This study also showed that from 70.% to 90.%Z of the

entering availability was destroyed by irreversibilities. Another
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significant result was that the first law efficiency of an optimum
system is quite low. 1In a second study KXrane [47] performed the first
second law study of a sensible heat system with joulean heating of the
storage element. This analysis showed that irreversibhilities iIn
electrically—heated:sensible heat systems destroyed from 60.% to 80.% of
the availability that entered ‘the system during a complete storage—

removal cycle.

Detailed Problem Statement

The preceding discussion demonstrates the need for a second law
oriented thermal analysis of a sensible heat storage system with
practical composition and operating parameters. All of the second law
oriented studies conducted to date have modeled the storage material as
a lumped element; that is with an infinite thermal conductivity.
Because of this assumption, entropy generation due to heat transfer
through finite température gradients has not been considéred. Also at
the présent time, it has not been demonstrated that a sophisticated
optimization study utilizing the individual temperature and pressure
components of entropy generation is practical.

The goal of the present study is to extend Krane's analysis [46] of
a lumped element system to include the effects of a storage material
with a finite thermal conductivity. Solving this problem will relax the
last major simplifying assumption of previous studies and generate use-
able results for second law oriented thermal analysis in general and

thermal energy storage systems in particular. 1t will extend the rigor
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cf existing thermal energy storage analysis and demcnstrate the prac~—
ticality of designing real equipment by minimizing the rate of entropy
generation,

To fix ideas, consider the sensible heat thermal energy storage
system shown schematically in Figure l.l1. It consists of a storage
material unit with associated piping and valving to permit a counterflow
arrangement of fluid. In an actual system, two such units are operated
in parallel to provide a continuous stream of heated fluid to the
load. The storage matevrial has a geometric configuration with discrete
fluid passages that allow the fluid to contact the storage material.
This study is focused on a specific geometry: the flat slab. This con-
figuration consists of a number of small aspect ratio channels of rec-
tangular cross—section for the flowing fluid, connected in parallel and
separated by slabs of the heat storage material as showa in Figure 1l.2.

The storage systen operates in a thermodynamic cycle with a single
cycle consisting of both a storage period and removal period. During
the storage period, valves A and B are open and valves C and D are
closeds A constaat mass flowrate, &s’ of hot fluid at a constant inlet
temperature, Tf,i,s’ and pressure, Pf,i,s’ enters through valve A,
passes through the flow channel, and is then discharged to the at-—
mosphere through valve B. This exiting fluld has a temperature greater
than ambient but its pressure is equal to ambient pressure. During this
time, both the average temperature of the storage material and the fluid
outlet temperature gradually approach the fluid 1inlet temperature.

After an appropriate time, the storage period is terminated by closing
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valves A and B. At the end of the storage period there are two operat-
ing options. These are to begia the removal period immediately or go
through a dwell period and then:begin the removal period.

During the removal period, a constant mass flowrate, ar, of cold

fluid at a coanstant inlet temperature, T and pressure, Pe i ¢
H b 3

’ f,i,r?
enters the system through valve C, passes through the flow channel, and
then exits the system through valve D to be used elsewhere. As was the
case for the storage period, this exiting fluid has a temperature
greater than ambient but a presSure equal to ambient. This removal pro-
cess continues until the storage material avérage temperature returns to
its initial value, which is also greater than ambient. Time dependent
average material and fluid outlet temperature histories for this typical
counterflow cycle are shown in Figure 1.3,

The specific objective of this present study 1s to quantify the ef~
fects of finite material thermal conductivities on the second law
efficiency of a flat slab, counterflow sensible heat thermal energy
storage system. To meet this objective, an analytical model based on
the second law of thermodynamics will be developed and then controlled
by an optimization routine. This procedure will determine an optimum
set of geometry and operational parameters that result in a mioimum
amount of generated entropy for a complete storage-removal cycle.
Geometry parameters to be investigated are the storage material aspect
ratio (i.e., the ratio of a section's half-thickness to its length.)
Also, the effects of fluid flow direction (i.e., counterflow vs parallel

flow), storage period fluid inlet temperature, and storage period
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initial material temperature will also be examined, The following is a
summary of the major assumptions to be utilized in formulating the
analytical model:

a. There are three sources of entropy generation common to both the
storage and removal periods: heat transfer through the finite temper-
ature difference between the flowing fluid and the storage material,
conduction heat transfer through finite temperature gradients within the
storage material, and viscous effects in the flowing fluid.

b. There 1is an additional source of entropy generation during the
storage period due to heat transfer through the finite temperature dif-
ference between the discharged hot gas and ambient. All of the avail-
ability in the exiting hot gas is destroyed and this destruction is to
be charged to the storage period when calculating values for the figure
of merit.

c. The system is operated in a cycle consisting of both a storage
and removal period and possibly a dwell period.

d. Both the storage and remcval periods are initiated by a step
change in the fluid inlet temperature which thereafter remains coastant.

e. The same fluid, an ideal gas with constant specific heat, flows
through the unit in both the storage and removal periods. The mass flow
rate can differ between the storage and removal periods but remains con-
stant during each period.

f. The hot and cold fluids exit the storage unit at atmospheric
pressure and enter at a pressure just great enough to overcome the pres-

sure drop due to viscous effects.
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g+ There 1is no phase change ian either the storage material or flow-
ing fluid and each have constant properties.

he There 1is a constant coavective heat transfer coefficient along
the length of the storage elemeat.

i. There is two—dimeusional conduction within the storage material
and one-dimensional (i.e., conservation of energy) for the flowing fluid
in the flow direction.

jo The initial temperature distribution within the storage matevrial
is uniform and greater than the ambient temperature. This represents a
“tare capacity” which permits the storage system to deliver a thermal
energy to the load.

k. There are no heat losses to the surroundings from the storage

material,
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2. DEVELOPMENT OF THE ANALYTICAL MODEL

Selection of the Physical System to be Modeled

For this study of a flat slab configuration, it is assumed that
each flow channel and storage material section is identical and the
fluid mass flowrate inm each channel 1is the same. With these stipula-
tions, it is possible to define surfaces of symmetry as illustrated in
Figure 2.1. Accordingly, it is necessary to model only one symmetrical
section of the complete storage unit. This representative section has a
length L, a material hal f~thickness w, a flow channel half-height d, and

a unit width I' into the paper and is illustrated in Figure 2.2Z.

Definition of a Second Law Figure of Merit

To meet the oﬁjectives of this study, it is necessary to define a
figure of merit that is a function of the enfropy generation character-
istics of the storage unit. Using the methodology of Krane [46,47], the
following second law oriented figure of meri; can be defined for a gen~
eric, sensible heat thermal energy storage system operating io a coa

plete cycle:

total availability

entropy generation destroyed during

N = number for a = a cycle
Ye /total availability of the

cycle hot and cold fluids that
enter the system
during a cycle

(2.1)

As can be seen, the behavior of N, 1s directly rvelated to the

degree of 1irreversibility of the storage system. As 1t approaches a
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limiting value of ona, all of the entering availability is destroyed. A
value of zero indicates a completely reversible operation with no avail-
ability destruction. Accordingly, a system storing availability should
be designed and operated to minimize the value of N..

To begin the development of the figure of werit, we conduct an
availability balance for the representative section during the storage

period., This gives:

total availability initial availability
of the entering + of the storage
hot fluid material
s s
(2.2)
final availability total availability
= of the storage + destroyed during .
material s the storage period

Note that equation (2.2) reflects the assumption that the fluid avail-
ability contained in the exiting hot fluid during the storage period is
assumed to be completely destroyed and 1s considered a part of the total
destruction that occurs during the storage periods A similar availabil-

ity balance for the removal period results in:

total availability initial availability
of the enteriag + of the storage
cold fluid material

r T
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7

final availability total availability
= of the storage + of the exiting (2.3)
material r \ cold fluid

total availabilicty
+§ destroyed during .
the removal period

Because the system operates in a cycle, we can immediately specify that:

initial availability of . { final availability of (2.4a)
the storage material the storage material -a

and

initial availability of - { final availability of (2.4b)
the storage material the storage material ToAE

Adding equations (2.2) and (2.3), and utilizing equation (2.4) we can

write:
total availability total availability
of the entering + | of the entering =
hot fluid s cold fluid .
total availability total availability
of the exiting + destroyed during (2.3)
cold fluid r the storage period

total availability
+ destoyed during .
the removal period
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Expressed algebraically, eguation (2.5) yields:

+ ¥ = + . ®
(ws,i *r,i) wr,e (wdestroyed)s * (wdestroyed)r (2.6)
Now recall the Gouy-Stodola theorem {31], which states that the
availability destroyed is proportional to the entropy generated. Apply-

ing this to our system results in:

( =T SgenS (2.7a)

Ydestroyed)s

and

(¥ )r = T_ Sgenr . (2.7b)

destroyed

Equarions (2.6) and (2.7) can be used to define the total availability

destroyed during a cycle as:

(¥ )

destroyed’s * (wdestroyed)r = [

s,1 r,i r,e

(2.8)

= (TmSgenS + fmbgenr) .

This allows the qualitative figure of merit given by equation (2.1), to

be rewritten algebraically as:

(Tm) (Sgens + Sgenr)

N = . (2.9
C ws,i + Tr,i
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Realizing that there are both thermal and viscous components of Sgeng

and Sgen,, equation (2.9) can be expanded to give:

+ +
. T (Sgens,AT + Sgens’AP Sgenr,AT Sgenr,AP) , (2.10)
+ + + * )
¢ G sar Y ¥s,i,0p P ¥e a0 T YrLi,00)

Now define the following quantities:

total availability concained

in the entering hot and cold } _ y + oy

AP fluids due to pressures s,1,AP r,1,AP
greater than ambient

(2.113a)
and
total availability contained
w = | in the entering hot and cold } _ ¥ +y
AT ~ | fluids due to temperacures s,i,AT r,i,AT *
greater than ambient (2.11b)
Substituting equation (2.11) into equation (2.10) results in:
: +
N (T) (Sgens’AT Sgens,A?) . (T) (Sgenr,AT + Sgenr’AP)
¢ Wap ¥ ¥at Yap ¥ ¥ar
(2.12)
Now define a new parameter:
A . . W
_ {availability distribution} _ AP
A = . Z e, (2.13)
ratio wAT
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The availability distribution ratio 1is an indication of how the total
availability of the entering hot and cold fluids is distributed between
that due to pressures and to temperatures being greater than ambient.

Rewriting equation (2.12) in terms of A gives:

- A .
N, ”(1 ¥ /\)NAP * (1 7 x) Nyt (2.14a)

where:

number of entropy

generation units

AP due to viscous
effects

+ Sgen )

- (Tw) (Sgens r,AP

8P
WAP

(2.14Db)

and

number of entropy
generating units (Tm) (SgenS AT + Sgenr AT)
NAT = due to heat transfer = é 2 .
through finite AT
temperature differences (2.14c¢)

The reason for defining A is now apparent. It permits the entropy
generation number, N., to be written as the sum of two separate terms:
one due to viscous effects and one due to heat transfer across a finite
temperature difference. Because of the assumption used in this analysis
that the storage and removal period fluids enter the flow channel at a
pressure just great enough to overcome viscous effects (and therefore
exit at atmospheric pressure), all of the entering pressure availability

is destroyed and the N term always has the value one.

AP
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Definition of Governing Equations

To actually calculate a value for the figure of merit, it is neces-

sary to define relationships for W Sgens and Sgenr,

ap?* Yare ,AT AT®

The Sgen, , terms are not required for this analysis because of the as—

AP

sumption that N always has the value one.

AP
The entering availability of a unit mass of fluid in a steady
state, steady flow process with negligible changes in kinetic and poten-

tial energy is given by [27]:

b= (b =) =T (s —s) . (2.15)

For an ideal gas with constant specific heats we can write [27]:.

(he g =) =Cp (T, - T) (2.16a)

and
T p
_ o f,i f,1

(Sm Sf,i) = =Cpln ( T ) + Rln ( o ) . (2.16b)

Substituting equation (2.16) into equation (2.15) and rearranging gives:
T - T T P
= T S NETE ) .1
b = CpT ( T ) In ( T ) + c In ( P ) . (2.17)

The total entering availability over some elapsed time is therefore:
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‘i’zﬁl‘[ p dt . (2.18)

Because neither ¢ or m are functions of time, equation (2.18) reduces

to:
¥ = mypt . (2.19)

Separating equation (2.19) into temperature and pressure components

yields:
y = mCpT t Iﬁ&iw:;zf. - 1n E£L£ (2.20a)
AT Platy T, T.. - cva
and
Y = mCp T t; |2 1n e (2.20b)
AP -1 | Cp Po

Finally, evaluating equation (2.20) for both the storage and removal

period and summarizing the results yields:



(2.21a)

and

(2.21b)

To develop the (Sgen)AT terms, it is necessary to define expres-
sions for the rates of entropy generation due to temperature gradients
within the storage wmaterial, coﬁvectiye heat transfer between the flow-
ing fluid and the material, and coacvective heét transfer between the hot
fluid discharged during the storage period and the atmosphere.

Bejan [14] has derived the following reiationship for the rate of
entropy generation 1in a unit volume of material due to conduction

through finite temperature gradients:
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Sgen = 7 (VD7 . (2.22)

The total entropy generated in an arbitrary volume of material during
some finite time period is found by integrating equation (2.22) over
both volume and time. The total entropy generated in the representative
section during the storage period as a result of conduction within the

material can be written as:

t

s L W K 5T 2
Sgen = L M2
g AT,m,s T X

. 1
£=0 x=0 y=0 =z=0

2
M3 (2.23a)
ang2
+ ay’F dzdydxdt
and for the removal period as:
t
r 0 0 1 k 3 T 2
Sgen - m m,T
AT,m,T T2 X
t=ts x=L y=w z=0 “m,r (2.23b)

aTm r 2
+ By’ dzdydxdt .

Again utilizing the results of Bejan (l14), the rate of entropy gen-
eration due to convective heat transfer per unit length of flowing fluid

can be written as:
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(T, — T )2
.Sgen = (‘Lh‘é) ‘—_f_—_‘l—“ . (2'24)

Defining the (A/L) term in equaticn (2.24) as a unit width, I', and not-
ing that the total amount of entropy generated in the representative
section as a result of convective heat transfer is determined by in-
tegrating equation (2.24) over length and time; the following equation

can be written for the storage period:

ts L
h (T, =T )2
3 = 2 . 2.25
bgenf,AT,s f J’ ” dxdt ( a)
t=0 x=0 f,s
and for the removal period:
t
(
- ) hrr (Tf —‘Tw r)z
= “ 2
Sgenf,AT,r » dxdt . (2.25b)
t=t x=L f,r

The availability destroyed as a result of the hot fluid exiting the
storage system to the surroundings can also be described by equa-
tion (2.18). There is no preséure availability destroyed because the
fluid exits the system at atmospheric pressure. Thus, the total avail-
ability destroyed as a result of the hot fluid exiting to the surround-

ings during the storage period is given by:

s
. Tfes e Te
a CpT_ —-'3—;_,——“——- — 1n -——%f’-—!—s- dr . (2.26)

™ o0

exit

]
g% ot

t
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Equation (2.26) follows from equation (2.18) and the time integral re-
mains because the fluid outlet temperature is a function of time.
Substituting equatioms (2.21), (2.23), (2.25), and (2.26) into
(2.14) and recalling that NAP is equal to oune, the following second law
figure of merit can be defined for the representative section of the

storage system shown in Figure 2.1:

A 1
= 2.
N, (1 ¥ A>+(1 ¥ A>NAT (2.272)

whare:
\ +
T, Sgenm’AT’S + T Ggenm’AT’r TmSgenf,AT,s
* T, Sgeuf,AT,r * wexit
Npr = = , (2.27b)
AT
W
o= WAP , (2.27¢)
AT
[ P
. R f,i,s
WAP mstTmtS tp In ( P )]
(2.274)
r Pler Cp P ’
L o0
T - T T
. f,i,s @ f,i,s
= -1
wAT mstths [( T ) n ( T,
(2.27e)
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Sgenm,AT,s = ” dzdydxdt ,
t=0: x=0 y=0 z=0 m,s (2.276)
] 2 2
Te 0 0 1 (aTm,r) + (aTm!r)
- 9% « ay
Sgenm,AT,r km f f f = dzdydxdt ,
b=t x=L y=w z=0 { m, T (2.27g)
t
Y T hsr (Tf S _‘Tw s)2
= ¥ k]
Sgenf,AT,S J’ J. 2 dxdt (2.27hn)
t=0 x=0 f,s
t
ro 0 hT (T, ~T )2
Sgenf,AT,r _{ ” dxdt (2.271)
L=t x=L f,r
s
and
tS k
T -~ T T
= - fseas ® — f,e,s
exit mSCpTw ( Tm ) In ( Tw ) dt .
t=0 (2.277)

An examination of equation (2,27) shows that to calculate a value
for the figure of merit, it is necessary to specify transient fluid and
material temperatures as well as fluid inlet temperatures and pres-

sures. Expressions will now be defined to generate this information.
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The transient temperature response of the representative section of
the storage system 1is governed by a coupled set of differential equa-
tions, a one~dimensional conservation of energy for the fluid, and a
two~-dimensional transient heat conduction equation for the storage

material. We can write for the material during the storage period:

32T 32T aT
m,s m,s _ 1
a

ax? ay?

m,S
ot

. (2.28)

The energy balance for hot fluid during the storage period can be writ-—

ten as:

m Cp. L\aT '
s f f,s
= — R o2
( th ) ax (Tw,s Tf,s) (2.29)

The initial and boundary conditions for the storage period are:

@ < 0 T = T s (2.30a)
f,s m,0,8
where T is a constant, greater than ambient.
Mm,0,8
aTm ]
= = 2 = k
@ > 0 @x 0 Tf,s Tf,i,s 5y 0 0< y<w,
(2.30b)
aTm
Gx =L ——=20 0K y< w, (2.30¢)
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it
[&]

it
o
[
N
»
"
o

m
@y Py , (2.304d)

and

Qy = w

Tn a similar manner, the following mathematical description can be

written for the material and cold fluid during the removal period:

asz r asz r 1 aTm r
i 3 + s . 3 .
> > i (2.31)
and
m Cp.LY3T
f £,r :
(rhA) axr = Ty r— Te ) - (2.32)
r ? »

Where the initial and boundary conditions for the removal period are

given by:
@ = te Tm,o,r = f(x,y) , (2.33a)
aTm .
@ > ¢t @x =0 — =0 0<y<w, (2.33b)
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= = m’r =
@Gx = L Tf,r Tf,i,r 5y 0 0K y<w,
(2.33¢)
aTm r
@y = 0 ~§;L~ = 0 0< x< L, (2.334d)
and
BTm -
= - H) - _—
Ay = w m 3y h]r (Tw’r Tf,r) . (2.33e)

For the constant property fluid and constant mass flowrate assump—

tions, the velationship for the fluid pressure drop in the non~-circular

flow channel is given by:

- _ [fL y2
(ap) = (P ; —P) = (BF{) (f’,_—g—;) . (2.34)

Equation (2.,34) can be rewritten for the storage period as:

(=) (%)
(AP)S = (Pf,i,s - Pm) = oo *i-é-:“ (2.35a)

and for the removal period as:

2
(er> (pvr )
(ap) = (Pg o = P) =\ . . (2.35b)

Together with the figure of merit, equation (2,27); equations

(2.28), (2.29), (2.30), (2.31), (2.32), (2.33), and (2.35) form a



complete set of governing equaticn for the representative section of

storage unit,

Non-Dimensionalization of the Governing Equations

To ensure the broadest applicability of the results of this study,
the set of governing equations are non-dimensionalized as follows. The

following dimensionless temperature and pressure groups are defined:

T~T°°
6=——-—-—--:--‘- (2.36)
Tf,i,s T
and
P—Poo
B =~§-—:—-———__—-—§—- . (2.37)
f,i,s L

X =3 » - (2.38a)

Y = %,T. R (2~38b)

+

=T, (2.38¢)

Bl = %{‘-‘1 , (2.38d)
m

Fo = &£ | (2.38e)
w?

and
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G = . (2.38£)

Note also that the dimensionless heat exchanger size, NTU, can be de-

fined in terms of the above dimensionless groups as:

. (2.38g)

The temperature and pressure groups are of a standard form and the
choice of ambient values as non-diwmensionalization parameters was dic—
tated by the physical problem. Ambient conditions represent a "ground
state” at which a substance has zero availability. The “x” distance is
non~dimensionalized using the length of the storage unit, L. The "y"
distance 1is non—dimensionalized wusing the storage material half~
thickness, w. The Biot number, Bi, and the Fourier number, Fo, repre-
sent, respectively, the dimensionless convective heat transfer term and
the dimensionless time. The V' grouping 1is a storage material dimen-
sionless aspect ratio, the ratio of the symmetrical section's half-
thickness to its length. The 6" term represents a dimensionless mass
flow per unit width of section into the paper.

To begin the non-dimensionalization of the figure of merit, recall

equation (2.20a); an entering fluid's temperature availability:

. Tf 1 —=~Tm Tf i
= — e — 2
wAT meTmtl < Tm ) In Tm . (2.20a)

Rewriting equation (2.20a) in terms of the dimensionless variables

gives:



m CpT w2Fo m CpT w?Fo
Ww_ = |5 *® S|4 ¢ | B2 Ty (2.39a)
AO a A9, s a Ad,r °

where:
T T
pr - f,i,s - f,1,s > ]
Wao,s = 9,1, ( T l> 1n [ef,i,s ( T Ly+ 1},
(2.39b)
— Te is Teis |
= — L e —— —t e AL
Yao,r = Ofir T o R T Lj+ 1y,
{2.39c)
O i, = 10 (2.39d)
and
T,
BT
T
®,1,r T T, . (2.39¢)
L,1,8 _
Tm

Non-dimensionalization of ‘the eatering pressure availability pro-~
ceeds in an identical manner. We can immediately define the following

for the entering pressure avallability:

ﬁSCmeWZFos _ &ermeFor > _
W = | ——— + | — .
A8 a "a8,s a Yag,r (2.40a)



44

where:
- R Pf i.s
= ——ta2
wAB,s Cp 1n 8f,i,s P L)+ 11,
b e
- -
- R P i.s
= —— — T +
WAB,I Cp In Bf,1,r P l g
L ]
Bea,s T 10
and
PEi,r
PW
B . = -
f,i,r Pf,l,s .
Pm
Equations (2.39) and (2.40) can now be used

alize A, the availability distribution ratio.

stitutions, equation (2.27c) becomes:

m CpT Fo w? m _CpT Fo w2
S L S ;1' + r @ r "Q‘
o AB,s a AB,T

n CpT To w2 m_CpT Fo_w?
S @ 5 —‘3 + r ) r n‘—J-
a AO, s a AS,r

Cancelling out the coammon term (mez/a), dividing the

denominator by (1./Phkm), and realizing that:

(2.40Db)

(2.40¢)

(2.404)

(2.40¢e)

to non-dimension—

Making the indicated sub-

(2.41)

numerator and
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&1Cpf
Phk
m

== | (2.42)
G

the completely non-dimensionalized availability distribution ratio can

be written as:

FoS _ For .
—_—1 W + — W
(G; ) AB,s G: | LB, T
— W + {—1 W

G; A0 ,s (G+ L0, T

r

To begin the non~dimensionalization of the NAT term, recall equa-

tion (2.27f); the total entropy generated in the material during the

storage period:

L ) aT 2 aT 2
s w am!s + t;,s
Sgen \n o = J f f f k x -5 dzdydxdt .
* ’
£=0 =0

(2.27£)

After a straightforward non-dimensionalization of the length, time and
temperature gradient terms, we can write the following for the entropy
generated in the material during the storage period:

kmeI') _
Sgenm’A@’s= o Sgenm’Ae’S (2.44a)

where:
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S 1 1 1
Sgenm,A@,s = f f f f [ngenm,Ae,s] dzdYdXdFo (2.44D)
=0

and

T . " . (2.44¢)
f,i,s J
[Om’S (——-’———Tw 1) + 1
Similarly for the removal period we can show that:
(kmeI‘> _
= . )
Sgenm,AO,r 3 Sgenm’A@,r (2.45a)

where:

Fo

r 0 0 0
Sge”m,Ae,r = f f f f [GSgenm’Ae’r] dzdYdXdFo (2.45b)

F0=FoS X=1 Y=] Z=1

and

§Sgen . (2.45¢)

m,AQ,r -
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The non-dimensionalization of the fluid entropy generation terms
proceeds in the same manor. Beginning with equation (2.27h) which gave

the total entropy generated in the fluid during the storage period:

t:s L
hT (T - T )2
Sgen = f 3 £,8 45 dxdt (2.27h0)
f,AT,S Tz > )
t=0 x=0 f,s

and proceeding as before with other temperature terms results in the

following equivalent dimensionless quantity:

(hSrLWZ) _
Sgenf,Ae,S = \—5 [Sgenf,AG,S] (2.463)
where:
FoS 1
Sgenf,Ae’S = f f [SSgenf,Ae’S] dXdEo (2.46h)
Fo=o0 X=0
and

Te ot :
X188 - 2
T 1) (ef,s Ow,s)

-]

§Sgen = . (2.46¢)

f,Ae,S 2
Te 1.s
o s (=2~ 1) 1

The identical operation for the removal period term, (2.27i), results

in:
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hrerz) _
Sgeng ag.r T\ o) [Sgeng 4o ] (2.47a)
where:
For 0
Sgenf,AG,r = J“ J' [GSgenf,Ae’r] dXdFo (2.47b)
Fo=Fo X=1
s

and

Te z
“E,1.8 - 2
T L (ef,r ew,r)

o

Ggéen = . (2.47c)

2
£,40,r . Tf,i,s 1)
f,r T°°

The equation for the exiting availability that is destroyed due to

the discharged hot fluid coming to equilibrium with the environment is
non-dimensionalized in a manner identical to the entering fluid avail-

ability term. This operation results in:

(2.48a)

where:
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wexic = Jﬂ Gwexit dFo (2.48Db)

and

T T
- _ £,i,s _ f,i,s )
Hoxie = Of,e,s ( T 1) In [ef,e,s ( T lj+ 1

(2.48¢)

Equations (2.39), (2.44), (2.45), (2.46), (2.47), and (2.48) are

used to non-dimensionalize the NAT term in (2.27b). Making these sub~-

stitutions gives:

T k _wLT T k_wLT T h I'Lw?
e m Sgen + (2B ggen s =85 Sgen
a 5 m,AQ,s a m,AQ,r a ’ f,A0,s

(TwhrPsz) 3
+ e ey R +
N = a ggeanAe,r

AT @ CPT Fo w2\ _ ﬁGCTwForw2> B ;
W PR (. SR A 2.49
a AQ,s a. wAe,r (2 )

Cancelling out the common term Tm/a and factoring out a wzrkm term from

. ) —
(mstTaw ) Yexit

the numerator and denominator of (2.49) results in:

L\ = LY = hsL -
= + { - + § —
w Sgenm,Ae,s w Sgenm,AO,r km Sgenf,A@,s
h L m Cp
+ | e §gen | —— ¥
km £,00,r 'k exit

m

aT ﬁ CpFo ‘ m CpFo
. —_ X I
'k A0,s 'k A0, (2.50)
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into the

Note that the variable ' represents a unit width (i.e.,
For the flat slab

paper) of the representative fluid-material section.
configuration, the unit width is alsc the heated perimeter, Ph. Making

this substitution into equation (2.50) and noting that

=L
’

+

Bl ol
1

=]
<3

and

the completely non—-dimensionalized NAT term can be written as:

B
—— e + 2
( ) Sgenm,Ae,s T (V+> Sgenm,Ae,r ( V+ ) Sgenf,A@,s

+
v
Bi r\ - 1 -
et Jadt i
+ Sgeuf,AG,r * <G+)\yexit
S

v
Nar = Fo\ _ Fo \ _ :
A + [ —
o ) fre,s T\ F "a0,r (2.51)
S T

Equations (2.43) and (2.51) can now be utilized to calculate a value of
merit as a function of the dimensionless system of var-

the figure of

iables.
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The non~dimensionalization of the fluid-material thermal response
equations is quite straightforward and will not be repeated here. The
reader 1is invited to read references [21] and [22] for details. The

dimensionless transieant response equations for the storage period are

then:
. aZGms affams I
V2 = + = = gl (2.52)
ax? Y2
and
0, . fer1
5 — =z
3% + oy (E)f’5 Ow’s) 0 . (2.53)
v
The initial and boundary conditions are given by:
Tm 0,8
—r !
@ Fo = 0 em,o,s = Tf s (2.54a)
Laiss
T , ’
>+
aem <
= = - = 4 »
@ X=0 ef’s ef,i,s ~3?L~ 0 0<Y<1, (2.54b)
aem 5
@ X=1 BY’ = Q 0<Y< 1, (2.54¢)
aem s
@ ¥Y=0 ax’ = 0 0<X<1, (2.544)

and
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99
- m,8 _ o _
@ Y=1 37 Bls [ef,s ew,s] 0< X< 1. (2., 54e)
Similarily we can write for the removal period:
., 2% 320 30
v 2 w,r + m,r m, T (2.55)
ax2 3Y? aFo
and
30, _ GIBi_
Pl iy [t —~— =
A% + v+ (ef,r ew,r) 0. (2.56)
The initial and boundary conditions are given by:
@ Fo-’=EoS em,o = F(X,Y) , (2.57a)
aem .
@x=0 eY’ = 0 0<Y< 1, (2.57b)
aem r
= = 2 = y
@x=1 ef’r @f,i,r 7Y 0 0<Y<1, (2,57¢)
aem c
@Y=0 ma-"("!" = ( 0<Xx«x 1, (2.57d)

and
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@y=1

= — (
Bir [ef,r ew,r] 0< X< 1., (2.57e)

To begin the non-dimensionalization of the pressure drop equations,

recall equation (2.34):

fLY fp V2
(Pp ; — P = (BE)(%§:> . (2.34)

Define the following terms:

A = Phd
cs

and
Dh=4do
Substituting Dh = 4d into (2.34) results in:

. 2
(P, —P) = (é)(%53>(§3~>,. (2.58)
i cs/ \Pc

Recognizing that:

¢'Bi _ PhLh

(2.59)
»
v’ nCp,

and solving this term for PhL, and substituting the result into equation

(2.58) gives:
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P17 Fa) (g) (G fi)(A ﬁ)@v ) ' (260
v cs c 7

Noting that:

.
m

A
c

h
. = pV and oVCp = 5t

and rewriting equation (2.60) gives:

+
. N G Bi)( pV?
(Pe g P) = (BSC)( V+><gc ) (2.61)

Recalling Reynolds analogy ([56]:

StPr2/3 =

cofrn

equation (2.61) becomes:

.+ \2
_ _o.2/3 [GYBi 1 m
(P, —B) = Pr / ( v+><ogc>(Acs) . (2.62)

The ideal gas equation of state yields:

1. . (2.63)
P

Rewriting equation (2.63) in terms of the dimensionless variables gives:



Tf i,s
RT |6 T Tyl
i o 9,1 o |

—_—= * (2’64)
P . fP. .
p o Bf’l ( f’l,s - 1) + ‘L

P

-]

Substituting equation (2.64) into equation (2.62) gives:

- Tf i,s
2
Pe i 2/3 ¢'ei e\ T, e
P’ — 1 = Pr ; > - T (20653)
w© v : f,i,s
—_—2
Bf,i( Pw l) + 1
where:
& RToo 2
cg c

1t is a dimensionless mass velocity parameter common in thermal analysis
problems.

An inspection of equation (2.40b) and equation (2.40c¢c) shows that
the pressure ratio E’f’i/Pn° is required to calculate the inlet fluids
pressure availability. Solving equation (2.65a) for the required inlet
pressure excess (i.e., an amount greater than ambient) and substituting

the value of B. ., . as given by (2.40d), the following can be written
¥ ] .

for the fluid inlet pressure excess during the storage period:

| P
£a5.8 _ g5 4 /O35E 2B (2.66a)

P

o

where :
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+
G Bi T
_,.2/3 s s f,i,s
ASS Pr ( V+ ) ef,i,s (MMTWWM‘ l) + 1 TS . (2.66b)

[v]

Substituting the definition of B 4 r given by equation (2,40e) into
s+
equation (2.65a) and solving for the inlet fluid pressure excess during

the removal period gives:

Pf i,r o
Pm T
where :

Tf i,s
| Bl B
¢ Bi \ [%¢,1,\7T o 1] Ty
o L..2/3 r T i
AB = Pr .
by + P

v f,i,s 1)+ 1

P_ (2.67b)

To complete the set of governing equations it is necessary to make
an observarion concerning material temperatures and to discuss certain
aspects of the execution of the numerical model. The dimensionless wall
temperature variable, @w’ which appears in several equations is actually
the temperature of the solid storage material evaluated at Y=1. Thus,

we may write for the storage period:

e = f (X,Y,@m S) (2.68a)

and for the removal period:



Qw . " f (X’Y'Om,r) . (2.68b)

Prior to the analysis of the removal period, three variables must
be defined; G:, Bi,., and Toe It is assumed that their value is a simple
ratio of their storage period amount. However, because of geometry con-
siderations, whichever constant is used to ratio Ts must also be used to
ratio G: and Bis. The reasons for this requirement can be explained by
examining equations (2.38f), (2.38d4), and (2.65b). They represent, re-
spectively, definitions for G+, Bi, and Ty and we observe that each
equation contains several constant terms. These are either material ot
fluid physical properties, amblent temperatures and pressures, or a
storage material geometry parameter. The physical properties are as-—
sumed to be the same for the storage and removal periods, ambient condi-
tions ‘and material geometry cannot change between the storage and re-
moval periods. Because of the presence of these constants, the ratio
of T, to T reduces to a ratio of fluid mass flowrates. Specifically,
it reduces to the square of the ratio of removal period to storage
period mass flowrates. We now observe that the ratio of G: to G; re~
duces to the ratio of mass flowrates for the storage and removal
periods. We observe that this is the inverse of the square root of the
ratio of T, to Tge We conclude that whichever constant is multiplied
by T to determine T the inverse of the square root of that constant

+
must also be used to determine the value of Gr' Because it is assumed
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that the heat transfer coefficient, h, in equation (2.384) is a linear
function of the fluid mass flowrate; Big, must also be multiplied by the

square root of the same constant to define Bi .. Incorporating this re-

quirements into the mathematical model results in:

T f (Cl,rs) . (2.69a)

+ +

Gr = f (Cl,GS) , (2.69b)
and

Bir = f (Cl,Bis) . (2.69c)

Closure of the Model and Description
of the Optimization Study

The set of non-dimensionalized equations that describe the entropy
generation characteristics of rhe representative section of storage unit

are summarized below.

N o= A ( 1 ) N, | (2.27a)
¢ 1 + 2 1 + A

Fo Fo
3T b —t T
G: AB,S G? AB,T
= .4
A FoS _ For _ (2.43)
+ — Y
G+ AG,s G+ AC, T
s T

+ +
G = £ (C1,G)) (2.69b)



[ P
W R t,i,s
B —— —p L +
ag,s = Tp M [Pe,1,s ( P_ 1) 1] (2.40b)
R [ (Pf i,s
v = &= SRET YL
agr T G M Peae\TE, T T (2.40¢)
Be,i,8 = 1 (2.404d)
p
( szi,r__ l)
RN (2.40e)
(g2 -

7 e (fris Y afe. . (fts ).
Ad,s ~ Tf,i,s T £,1,s T

(2.39b)
T T
17 f,i,s f.i.8
= —dll 2l - Bl R

Mao,r T %f,1,r ( T 1) In [ef,i,r ( T 1) + {]
(2.39¢)

% ,i,s = ! (2.39d)

Tf,i,r_1
T |
1,0 T ' (2.39)



f,A0,s

(2.51)
r
Bi_ = f (Cl,Big) (2.69¢)
Fo 1. 1L 1
Sgeum’Ae’S = J x:-/(; Y;,; ZJ(; 6Sgenm’Ae,s dzdYdXdFo (2.441b)
Fo=0 -

(2.44¢)
T 2
[@ ( f,i,8 ) + J
m,s T

A0 (2.45b)
» ?
F0=FOS X=1 Y=1 Z=1
30 2 20 2
T —1\2 vyh2 (..._E.LE) n <m__‘11.:.£)
§Sgen = f.1,s CES CRA (2.45¢)
m,AQ,t Tm T 2
E —541L5-1> v 1
m,r T°°
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FoS 1
Sgemf’A@’S f f 6Sgenf,A6,s dXdFo
Fo=0 X=0
Ts 2
La1,8 - 2
N ( ’I'°° {) (ef,s w,s)
6Sgenf,A®,s - >
f,i,s
%e,s \7T. ")t
ew’s = f (X,Y,@m’ )
For 0
Sgenf,AO,r = f f 6Sgenf’Ae, dXd¥o
Fo=Fo X=1
s
Tf i 2
—ts a8 - 2
- T, (ef,r ew,r)
85gens ro,r T A
f,i,s
ef’r( 2 1) +1
o0
ew,r = f (X,Y,@m, )
Fo
S
exit f exit dFo

(2.46b)

(2.46¢)

(2.68a)

(2.471)

(2.47¢)

(2.68b)

(2.48b)
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T T
¥, = Lales ) Eol,s
¥ wie ™ Gf,e,s ( T 1) la ef,e,s( T o+l

(2.48¢c)
+ azem s 326m S aem S
v'2 22 4 LE A aFQ (2.52)
9%2 3Y2
2, G:Bis
2 o =
e = (ef,S ewps) 0 (2.53)
Tm 0,8
3082
T, L
o - (2.54a)
m,o,3 Tf,i,s .
Too
ef’s (0) = ef’i’s (2.54b)
320 32 30
V+2 m, T " m,r a;,r (2.55)
ax2 3Y? 0
+
aef T GrBlr
e 4 ¢ -9 _ ) (2.56)

X vt f,r W, T
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Of,r (L) = @f,i,r (2.57¢)
Pf i,s T T Tmeme
———1’,—-?-— = 0,5 + /0.25 + AB (2.66b)
+ ;
G Bi T
_p.2/3 [ s s { f,i,5
ABS = Pr (-—V—:*——) [Of,i,s ( Tm 1) + 1} ‘L‘S {(2.66b)
P
£,i,r _ ——
P =1 + /ABr (2.67a)

ABr P Pf —
2228 ) 4
P (2.67b)
Pf s
....._IL,}..L?._ 1
T = f (Cl,Ts) (2.69a)

Thus, the numerical model coasists of 37 equations in 48 vari-

ables. These 48 variables are:
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+ - + -
Nc’ As NAT' Fos’ Gs’ wAB,s’ For’ Gr’ was,r’
P
- - R f,i,s
20,s’ wAe,r’ 15 Cp’ Bf,i,s’ P Bf,i,r ’
P T T
f,i,r £,i,s f,i,r -
P’ O 1,8’ T. O¢ i, o Vi, Sgeny ho,s
- — — - _ -
Sgenm,Aegr’ Sgenf,ae,s’ Sgenf,AG,r’ Yexit’ 6Sgenm,AO,s’ ngenm,A@,r
GSgenf’Ae,S, ngenf,AG,r’ 5Wexic’ Bigs Blr’ © ,8° em,r’
Tm 0,8
a 2 bJ
ef,s’ Ow,s’ ef,r’ Ow,r’ Om,o,s’ T ’ 6“,8,3’ ABs’

Pr, Tgs ABr’ and T o

Thus, there are 11 independent variables in the problem. For this
study of a flat slab regenerator, the independent variables were chosen
to be:

+ R f,i,s f.i,r + . 'm 0,S
FOS, GS, Cl’__c_i_)_’ b] ] b ? ] »

Pr, and 1 _ .
s

It is obvious that a large number and variety of design problems
could be formulated with this model. Since the purpose of this present
study 1s to define configurations which minimize the production of en—
tropy, an optimization program was employed to control the execution of

the model and systematically determine these configurations. To make it
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a tractable problem it was necessary to limit the number of wvariables
that the optimization routine could control. This was accomplished by
organizing the 1]l independent variables into either "design” or "opti-
mization™ variables. Design variables are defined as those whose values
are fixed for a given case. Optimization variables, as. the name im
plies, are those variables whose values are controlled by the optimiza-
tion routine such that the figure of merit is minimized. For this
study, the 1l independent variables were divided into eight design and
three optimization variables and the distribution was made to give re-

alistic design cases. The optimization variahles were chosen to be:
1+ s
Fo , G, and Bi .
] S s

Thus, the design variables were:

R Tf i,s Tf i,r + Tm 0,5
al — 1 3] 2 b ..
Cy, Cp’ Tm ’ Tw , vV, """—""'Tw , Pr, aand T, -

The choice of optimization variables was made to permit the simul-
taneous optimization of both geometry and operating parameters. The
rationale for these choices éan bes: be explained by briefly summarizing
the steps in the procedure that could be used to translate the dimen-
sionless results into an actual design. These steps, which assume that
all the necessary constants have been defined, are as follows:

a. The dimensionless mass velocity design variable, T and the

. . . +
optimum value of the dimensionless mass flow term, G , are used to de-
: ]

fine the flow channel half-height, d.



66

be The dimensionless wmass velocity and the flow channel half-
height are used to calculate the Reynolds number.,

c. The Reynolds number and the Prandtl number (a design variable)
are used to calculate the convective heat transfer coefficlent, h,.

d. The optimum storage period Biot number, Bis, and the convective
heat transfer coefficient are used to calculate the storage material
half-~thickness, w,

e. The dimensionless storage material aspect ratio, V+, and the
material half-thickness are used to calculate the leongth, L, of the
storage unit.

f. The optimum value of the dimensionless storage time, Fog, and

the material half-thickness are used to calculate the dimensional stor-
age time.
As these steps illustrate, the particular combination of design and
optimization variables chosen for this study (while not necessarily
unique) do permit physical characteristics such as width and length, and
operating characteristics such as storage time, to be determined in a
single exercise.

To summarize, this study will define the optimum physical design,
operating parameters, and entropy generation characteristics of a number
of desizn cases. An optimized system is one that operates with a min-
imum amount of generated entropy for a complete storage-removal cycle,
This will be accomplished using the finite conductivity mathematical
model defined above, running under control of an optimization program.

A design case will consist of a set of values for the eight desigo



67

variables and the resulting (i.e., calculated by the optimization
program) set of three optimization variables. A sufficient number of
cases will be run to adequately define the effect of changes in the
design wvariables on the optimium system. Most importantly, these
optimization studies will be unconstrained. This means that the
optimization program is free to minimize the figure of merit without
first having satisfied some additional requirement such as a minimum

first law efficiency, minimum flow c¢hannel diameter, or a maximum

physical size.
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3. DEVELOPMENT OF THE NUMERICAL MODEL

In order to execute the analytical model as a part of an optimiza-
tion study, two separate computer programs must be available. These are
a routine to calculate the filgure of merit for a complete storage-
removal cycle and an optimization routine to systematically determine
values of the optimization variables that result in a minimum value for
the figure of merit. The following information details the construction
of the program to calculate the figure of merit and discusses the

proprietary optimization routine selected for use in the analysis.

Discussion of the Optimization Routine Used in the Study

An  optimization program which resides in the University of
Tennessee computer library was utilized for the analysis. This program,
GRGZ, 1s a sophisticated routine for solving problems with either linear
or non—linear objective functions and constraints. It is based on the
generalized reduced gradient algorithm aod has a modular construction to
permit 1its use with completely 1independent objective function subrou-
tines. The basic GRG algorithm has been extensively investigated
[48,49] and the GRG2 program itself has been well documented and tested
{48,50,51]. These comparative evaluations have established that GRGZ is
one of the most capable and versatile non—linear optimization programs
available.

For the end user, the GRG2 program is very easy to use. In addi-
tion to a specific data input format, it requires only one user supplied

subroutine. This subroutine, which must be named GCOMP, calculates the
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objective function for values of the optimization variables. For this
study, the objective function is the figurekof merit, Nc, defined in
SectionkZ. A typicai optimization sequence consists of a continuous ex-
change of informatién between GRCZ and GCOMP. The GRG2 program passes
values of the optimization variables to GCOMP and in return receives a
corresponding value for the figure of merit. Using its own algorithm,
GRG2 systematically determines the one set of optimization variable
values that result in a minimum figure of merit.

The GRG algorithm is a non=linear extension of the simplex method
for linear programming., It was ﬁot possible to become technically pro-
ficient in all the facets of either the basic algorithm or the operation
of the GRG2 program. However, in order to efficieatly conduct an
optimization exercise and insure that the program was generating accur-
ate results, it was necessary to learn something about its behavior dur-
ing an actual optimization cycle.

To determine if a particular set of results were acceptable, it was
necessary to understand the meaning of certain status variébles supplied
by GRG2 at the endkof a cycle. iThis experiénce was gained during the
verification procedure and will be described later in this section. The
one aspect of GRG2's operation that affected both the execution and in-
terpretation of results was the method it usea to calculaﬁe the partial
derivatives of the objective funétion. Because of the complexity of the
objective function, it was not éossible to supply exact dnalytical re~
lationships to calculate the partial derivatives., Accordingly, GRG2 was

required to calculate them using a multistep procedure. Tt accomplished
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this by determining the change in the ojective function for an in~
cremental change in the optimization variable of iaterest. The
incremental length used to determine this chaange 1s a constant embedded
in the programming of GRGZ and it is not normally possible to chauge its
value., If it is too small (relative to the magnitude of the partial
derivative), GRG2Z can mistakenly conclude the objective function is in a
region of little of no change and stop the optimization. This situation
affects the choice of the initial value of the optimization wvariables
supplied to GRG2 at the beginning of an optimization exercise., 1If this
initial wvalue results in a value of the objective function ia the
"flats” of its surface, GRG2 cannot recover and will terminate. Small
incremental lengths also prevent GRG2Z from realizing when it is operat-
ing in an area of local "plateaus” far removed from the actual minimum
point. If the incremental length is too large; there is the possibility
that the discrete function evaluations will be made "across” a minimum
point, thus preventing GRG2 from finding a true minimum value for the
objective function. The specific effects this fixed incremental length

had on the final results of the study will be discussed in Sectiomn 4.

Description of the Program to Calculate the Figure of Merit

The primary configuration to be examined in this study is the
counterflow regenerator operating without a dwell period. A dwell
period is the interval between the storage and removal periods during
which the storage material temperature gradients are allowed to reach a

uniform average temperature, There are, however, two other
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configurations of interest: parallel flow with a dwell period and
parallei flow without a dwell périod. The effects of the dwell period
are included in this study becauSe entropy generation occurs as a result
of the material reaching a uniforu temperature. A computer program,
ENTROP, was written to calculate the figure of merit, Nc, for these
three configurations. It was written in double precision FORTRAN and in
a form to permit interface with the GRG2 progfam. A listing of ENTROP,
a glossary of the subroutines, and some typical output are contained in
Appendix A. The following is a brief description of the operation of
the program and the numerical techniques employed.

In the most macroscopic sensé, the progrém performs five basic com—
putations to generate the information needed to calculate a value for
the figure of merit. They are:

a. calculate the total entering availability and entropy generated
during the storage period,

b. determine an approximateidwell time,'

cs calculate the total entropy generated during the dwell period,

d. determine an approximate’removal time, and

e. calculate the total entering availability and entropy generated
during the removal period.

These five basic steps are explained below and summarized in Figure 3.1.

The sequence begins with GRG2 passing the most curreat value for
the storage period time, Fo,, mass flow parameter, G;, and Biot number,
Bis. Using this information, ENTROF calculates the total entering fluid

availability per unit time. It then calculates the fluid-material
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transient temperature response for the storage period in 59 edual iime
increments (i.e., FoS/59). Onée the fluid and material temperature
distributions have been calculatéd for a time increment, and before pro-
ceeding to the next increment, ENTROP:

a. Calculates the temperature gradients at each node in the ma-
terial and uses them, with the temperature at each node, to calculate
the rate of entropy generation at each node. These individual terms are
then integrated over the material volume to détermine the total eatropy
generation in the stbrage material.

b. Calculates the fluid-wall temperature difference for the nodes
along the flow channel then uses them and the fluid temperature at each
node to calculate the rate of entropy generation at each node. These
terms are then integrated over the length of the channel to determine
the raté of entropy generation in the fluid.

¢. Using the fluid outlet temperature, calculates the rate of

availability destroyed due to the discharged fluid coming to thermal
equilibrium with the environment.
At the end of the 59 time increﬁents, the rétes of entropy generation
for the material, fluid, and discharged fluid are individually in-
tegrated over time to determine the total amounts of entropy generated
during the storage period.

If'a dwell period is desired, ENTROP executes a two step procedure
that determines an approximate time then uses it to calculate the amount
of entropy generated in the material during the period. To determine an

approximate dwell time, ENTROP begins an open ended calculation of the
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fluid-material transient temperature response. "Open ended” in this
context means for an unspecified number of time increments. The
incremental time it wuses 1s the same one wsed during the storage
period. At the end of each time increment, the average material tem-
perature (whiech does not change with time during the dwell peried) is
compared to the highest temperature that existed in the material at the
end of the storage period. The calculations are stopped when the
difference between these two has been reduced to a sufficiently small
amount . This calculation/comparison sequence continues for 20 time
increments at which time the increwmental time is increased by a factor
of two. The calculations then proceed with this larger time step. This
gradually increasing 1incremental time permits covering a large total
elapsed time in as few steps as possible while still retaining
acceptable accuracy. This entire process continues until the fluid-wall
temperature difference meets the convergence criteria. The approximate
dwell time 1{s then equal to the total elapsed time since the start of
the calculations.

To determine the amount of entropy generated in the material during
the dwell period, ENTROP takes the approximate time just defined,
divides it into 59 equal increments then restarts the trassient temper—
ature response calculations. At the end of each time increment ENTROP
determines the rate of entropy generation in the material exactly as it
did for the storage period. Also at the end of each time period, a
check is wade to see {if the temperature difference has wet the con~

vergence criteria. To allow for an inaccurate approximate dwell time,
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this sequence can continue for up to 100 time increments. When the con-
vergence criteria has finally been met, ENTROP stops the transient
calculations and then integrates the material rates over time to
determine the total amount of entropy generated in the material during
the dwell period.

A similar two step procedure 1is also utilized for the removal
period. Using an initial incremental time, ENTROP begins an open ended
calculation of the fluid-material transient temperature response. These
calculations proceed as they did during the dwell period with an in~
creasing incremental time every 20 steps. The only difference is that
the termination decision criterion is based on an average material tem—
peratufe/initial material temperature difference. As was done during
the dwell period, once an approximate time has been determined, ENTROP
restarts the transient temperature calculations using 1/59 of the ap~-
proximate time. At the end of each time increment, ENTROP calculates
the rates of material and fluid entropy generation and checks the tem—
perature convergence. Also as before, when the convergence criteria has
finally been meet, ENTROP stops the transient calculations and then per-
forms an integration over time to determine the total amouats of entropy
generated in the material and fluid during the removal period. In addi-
tion, once the removal time has been determined, ENTROP calculates the
total entering fluid availability.

At the end of rthese steps, ENTROP has generated all the information
needed to calculate a value for the figure of wmerit. Tt then performs

this calculation and returns the value to the CGRG2 routine.
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From this description, it 1is clear that calculating the fluid-
material transient Cemperature rtesponse 1s oune of the most critical
operations of the entire sequence. To accowmplish this, an iterative
procedure was utilized to solve the coupled fluid-material equations.
This consisted of making an initial guess of the fluid temperatures,
then using them as constants in the solutiom of the material conduction
equation. Once the material temperature distribution has been cal-
culated, those temperatures on the convective boundary are designated as
wall temperatures and used to solve the fluid temperature differential
equation. The fluid temperatures thus calculated are then compared to
the previous guesses. If the difference between the two is greater than
a certain amount, the mest recently calculated temperatures becomes the
next guess. The conduction equation is then solved again using these
values. This iterative sequence continues until the coavergence cri-
teria (i.e., difference between successive values) has been met at which
time the resulting fluid and material temperatures are used in the en-
tropy generation calculations. This sequence is illustrated graphically
in the flow diagram showan 1In Figure 3.2.

As can be seen, to actually execute the above steps requires
several different numerical operations. The most prominenc of these
are:

3. a solution of the fluid-material transient temperature re—
sponse; that is the coupled material conduction equation and the fluid
energy balance, and

b. the one~ and two-dimensional integrations.
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A brief discussion of the specific numerical techniques used to perform
these operations follows.

The material coaduction equations were discretized using standard
Taylor series approximations [52)]. A fully iwmplicit scheme using cen~
tral differencing for the spatial coordinates and backward differencing
for the time coordinates was defined. The programming was written such
that the number of nodes in each dimension was an input variable. This
flexibility was necessary because it was onot known ahead of time how
fine a grid would he needed to glve results accurate enough for the
optimization algorichm. In order to solve the conduction equations
under these circumstances certaln procedures had to be defined. These
included:

a. a means of generating the discretized equation set coefficient
matrix at run time, and

b an efficient algorithm for solving this set of equations.

The efficient algoritbm was an especially critical requirement
since very large equation sets often result from discretized conduction
equations and they can require large amounts of computer memory and
execution time. The specific one used was a banded matrix package taken
from the public dowmain CORLIB library [53]. This package consisted of
twe subroutines; DGBFA and DGBSL. Working together they solve the sys—
tem of linear equations, A*X=B. A is the original, sparse coefficient
matrix having a banded construction. DGBFA factors this banded matrvix
using a gaussian elimination techaique. Using these factors, DGBSL then

actually solves for the unknown material temperatures. The only
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additional programming required by this package was a method to read the
non-zero elements of the original banded wmatrix, without having
previously defined all of the original sparse matrix. The steps for
accomplishing this as a function of a variable number of nodes are too
involved to be described here but are discussed at length in Appendix B.

The fluid energy equation was treated as an initial value problem
and was solved using a fourth-order Runge-Kutta technique [54]. Wall
temperatures were required to solve for the fluid temperatures and two
separate methods were programmed to supply them. The first was a
second-~order polynomial curve fit [55] of the nodal material temper-
atures at the convective boundary. Routines were written to define the
set of simultaneous equations as & function of the number of nodes in
the x direction. The routine to actually solve for the unknown fluid
temperatures was taken from the CORLIB library. The second method of
calculating wall temperatures, and the one eventually selected for use,
was a second order interpolation [52] of the appropriate nodal temper-—
atures.

The numerical techniques used to perform the one- and two-dimen-
sional integrations were based on Simpson's one-third rule [54] and are
quite straightforward except that they were modified to utilize finite
values instead of coantinuous functions. The only restriction resulting
from this modification was that an odd number of finite values had to be
used. A detailed description of the modifications necessary to im-—

plement this procedure is contained in Appendix C.
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Verification of the Numerical Model

It was known from the beginning of this study that there would be
no previous results to check the accuracy of the ENTROP computer pro—
gram. Cousequently, it was constructed in a manner to permit verifica-
tion of complete blocks of programming, individual subroutines and some
critical 1individual instruction strings. The following 1is a brief
description of some of the steps that were taken to verify the accuracy
of the program.

Routines that performed curve fits, integrations, interpolations
and solved the initial value problem were verified by using them to
solve example problems with known results. Fach of these example
problems were written into a separate calling program, the data passed
to the appropriate subroutine resident 1in ENTROP, and the results
chacked against the known answer. Other subroutines that could not be
compared to known examples were verified by comparison with hand cal-~
culations. Typical of these were the routines to calculate rates of en-
tropy generation, calculate the average wmaterial temperature, to read
the banded matrix and load the DGBFA working matrix, and to calculate
the discretized coefficient and constant matrix.

Certain critical individual lines of programming were verified by
causing ENTROP to write out intermediate results. This included those
lines used to route the program execution within GCOMP, transfer data
arrays to subroutines, define initial data arrays, initialize temper-~
ature arrays between iterations, and to swap the material horizontal

temperature field for the counterflow configuration.
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Once key blocks of programming were constructed, they too were
verified using known example problems. Typical of these, was the sub-
routine to perform the transient temperature response of the fluid-
storage material. The cperation of this iterative sequence of ianstruc-
tions was checked out by forcing it to duplicate a one~dimensional,
lumped element storage problem from Schmidt and Willmott [21]. The
exact analytical solution to this problem was programmed in a separate
routine and its results compared to ENTROP's answer. A detailed summary
of this comparison is contained in Appendix D.

This same, careful verification was repeated for all program ele-
ments down through the final calculation, the figure of merit. Once the
entire’program was constructed, itg operation was compared to one par-
ticular case from Kraune's well stirred bath study [46]. To model this
one-dimensional, 1umped element system, it was necessary td force ENTROP
to operate well away from the: design configuration it was ment to
model. Allowing for this, the 'agreement with Krane's result was ex-
cellent. A more complete description of this exercise is also contained
in Appeadix D.

Once the entire ENTROP progfam had been constructed and its oper-
ation verified, a series of sensitivity runs were conducted to define
optimum execution parameters such as temperature convergence criteria
and nuﬁber of time increments. ZIt was known that optimization studies
required more accurate models énd the test for establishing some of
these parameters was, therefore; their effect on the figure of merit.

It was during this series of runs that the following parameters was de-

fined:
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a. The number of time increments was chosen to be 59,

b. a 9x9 nodal network was established for the storage material,

c. the temperature convergence criterion for termination of the
fluid temeprature iteration was set at 5.0 x 10™%,

d. the convergence criteria for termination of material temper—
ature iterations was set at 0.001%.

e. the second-order pol&nomial curve fit was more accurate than a
third~order fit, and

f. first— and second—-order interpolations were shown to be more
accurate than a second-order curve fit.

The operation of the GRGZ program, and its somewhat 1involved data
input format, was verified by causing 1t to solve a known, simple, two-
dimensional, unconstrained optimization problem. The operation of the
combined ENTROP, GRGZ model was examined in some detail. Although no
attempt was made to learn the detailed operation of the GRG algorithm,
its behavior during a typical optimization sequence was studied to build
confidence that correct answers were being generated. It was during
these exploratory runs that it became evident that the optimization var-
iables had to be scaled. Scaling 1s often required for optimization
studies and, in particular, is critical to the successful operation of
the GRGZ routine. Scaling is accomplished by multiplying the objective
function and the optimization variables by appropriate constants so
their values within GRGZ have the same order of magnitude. The scaling
is reversed within ENTROP prior to any calculations. The scaling re-
quirement eventually became something of a hindrance during the

optimization studies.
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As previously explained, GRG2Z requires that vranges and initial
values of the optimization wvariables bhe defined prior to a run.
Determining these raunges was itself an involved procedure because the
behavior of the optimized surface was unknown. The scaling requirement ,
however, complicated the procedufe because in ordér to accurately scale
the problem, it was necessary to somewhat restrict the ranges. During
the verification procedure, a set of ranges were defined for an uncon-
strained counterflow problem using a nominal set of medium temperature
design variables. Because these ranges were necessarily small, they
limited the types of design cases that could be optimized without rede-
fining ranges and rescaling the ﬁroblem. The’effect of this restriction

on the results of optimization study is examined later in Section 4.
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4. PRESENTATION AND ANALYSIS OF RESULTS

Description of the Study and Summary of Results

A total of 36 design cases were optimized using the mathematical
model and execution sequence described in the previous sections. Thirty
of these cases were unconstrained optimizations dealing with both the
counterflow and parallel flow configurations. Six constrained,
counterflow cases were also included as a sensitivity study. The uncon-
strained cases were distributed as follows:

a. 24 for a counterflow configuration without a dwell periced, and

b. three each for a parallel flow configuration with and without a
dwell period.

Six constrained cases with two separate constraints (i.e., only one
constraint active at a time) were also iIncluded. These constraints,
which were imposed on the counterflow configuration without a dwell
pericd, were:

a. the dimensionless storage unit size, NTU, was required to be
ten or less, and

b. the storage period first law efficiency was required to be 0.90
or greater.

Each of the 36 design cases was defined by first specifying values
for the eight design variables. Because of the original choice of de-
sign variables, it was possible to permanently fix the value of four of
them without compromising the rigor of the problem. Ranges of values

were defined for the remaining four design variables as a function of
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the particular configuration or design being analyzed. Once a particular
combination of eight design variables had been selected, GRG2 would
treat them as constants and determine the value of the three optimiza-
tion variables which resulted in a minimum value for the figure of
merit. The four design variables that were held constant for all 36
cases and their values were:

a. the constant Cy, used to define the ratio of Tq to Tos defined

b. the fluid property ratio R/Cp, defined as 0.2843 (air),

c. the fluid inlet temperature excess for the removal period,
Tf,i,r/Tm! defined as 1.0, and

d. the fluid Prandtl number Pr, defined as 0.71 (air).

The counterflow configuration without a dwell period is one of the
most coummon operating modes [21] for this type of storage system and was
therefore the primary focus of this study. For the 24 unconstrained
cases dealing with this design, the four design variables that were per~
mitted to float and the values utilized for this study were:

a. the storage period fluid inlet temperature excess, Tf,i,s/Tm’
and values of 2.0 and 3.0 were defined,

b. the dimensionless material aspect ratio, V+, and values of 0,01
and 0.05 were defined,

c. the storage period 1initial material temperature excess,
T /T_, and values of 1.1 and 1.3 were defined, and

Mm,0,8 “w?

d. the storage period dimensionless mass velocity, Tos and values

of 0.005, 0.05, and 0.5 were defined.
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The rtesults of these cases are summarized in tabular form in Tables 4.1
to 4.8,

The unconstrained analyses of the parallel flow configuration were
included in the study for completeness. The inteut was to investigate a
small number of cases to permit a comparison to the counterflow config-
uration at some nominal operating point (i.e., set of eight design var-
iables). Accordingly, only one design variable, Tgs Was varied and
values of 0.005, 0,05, and 0.5 were used. The remaining three design
variables that were utilized and their values were:

a. Tm,o,s/Tm’ which was held constant at 1.1,

b. T /T , which was held constant at 2.0, and
f,i,S o

Co V+

, which was held constant at 0.0l.
The resulting s$ix cases (three runs for each of two operating modes)
were executed and the results are summarized in Tables 4.9 and 4.10.

The twe constrained, counterflow cases were included to define the
sensitivity of the figure of merit to constraints on the design and
operation of a nominal system. These runs were executed with the same

set of design variables as the parallel flow cases and the results are

summarized {in Tables 4.11 and 4.12,

Analysis of the Results

The analysis of the optimization results will begin with a series
of brief explanations of the effects that changes in the optimization
and design variables have on the performance of a typical storage sys-
tem. Presenting this information first will facilitate understaading

the detailed analyses which follow.
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Table 4.1. Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 2.0, material
aspect ratio of 0.01l, and initial
material temperature excess of 1.1

Storage period dimensionless
mass velocity term

Variable
T = 0.005 T, = 0.05 . = 0.5
5 s ]
N, 0.216 0.379 0.797
NTU 52 .47 36.50 23.44
G: 0.106 0.084 0.064
Fos 4.199 4,97 S5.67
Big 4,951 4.33 3.68
A 0.004 0.234 2.387
Pf,i,s/Pm 1.002 1.129 3.59
n 0.425 0.584 0.759
s
YAe,s 12.16 18.09 27.30
?AB s 0.023 2.029 32,36
Sgen s 1.036 1.37 1.77
A Sgen s 55.70 47.70 30.80
Sgeng 0.602 0.900 1.35
A Sgeng 32.30 31.40 23.50
Sgene s 0.223 0.600 2.63
7% Sgen, s 12.00 20.90 45.70
»
z SgenS 1.861 2.868 5.76
Pf,i,d/Pm 1.002 1.091 2.834
) - . .f
?Ae,r 0.0 0.0 0.0
WAB . 0.029 2.199 32.80
Sgen_ . 0.427 0.751 1.37
% Sgen 58.90 55.40 50.30
Sgenf,r 0.298 0.605 1.35
A Sgenf ¢ 41.10 44 .60 49.70

z Sgenr 0.725 1.356 2.727
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Table 4.2. Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 2.0, material
aspect ratio of 0.0l, and initial
material temperature excess of 1.3

Storage period dimensionless
mass velocity term

Variable
T = 0.005 T = 0.05 T = 0,5
s s s

N. 0.254 0.383 0.777
NTU 57 .11 31.34 28 .85
G: 0.114 0.087 0.064
FOS 3.698 4.67 4,73
Bis 4,992 3.60 3.59
A 0.004 0.161 2.15
Pf,i,s/Pm 1.002 1,112 3.92
ﬂs 0.359 0.537 0.577
wAB,s 9.92 16.44 18.09
yAB,S 0.021 1.619 22.91
Sgenm s VD.464 0.640 0.696
% Sgenm s 23.60 18.40 17.50

¥
Sgenf s 0.277 0.523 0.571
pA Sgeng 14,10 15.0 14.40

¥
Sgenegs 1.22 2.32 2.71
% Sgen, s 62.20 66 .60 68.10
E Sgens 1.96 3.482 3.97
Pe i,d/Py 1.002 1.080 3.068
WAG,r 0.0 0.0 0.0
WAB,I 0.015 1.024 16.00
Sgen_ 0.307 0.587 0.685
% Sgen, . 58 .40 49.90 49.60
Sgenf c 0.219 0.589 0.694
% Sgeng 41.60 50.10 50.30

x Sgenr 0.526 1.176 1.379
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Table 4.3. Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 2.0, material
aspect ratio of 0.05, and initial
material temperature excess of 1,1

Storage period dimensionless

Variable kmass velocity term
T = 0.005 T = 0.05 T = 0.5
8 S s

N, 0.389 0.470 0.823
NTU 20.34 18.65 9.14
G: 0.165 0.158 0.121
Fo 1.648 1.90 2.51
Bis 6.156 5.91 3.77
A 0.002 0.140 1.75
Pf,i,s/Pm 1.001 1.069 2.47
Ns 0.478 0.550 0.732

- y w» L .3[‘
WAG,S 3.062 3.69 6
WAB,S 0.002 0.230 5.31
Sgenm s U.453 0.498 0.605
% Sgenp s 57 .30 51.80 26 .80

¥
Sgenf s 0.201 0.229 0.416
% Sgeng ¢ 25.40 23.80 18.50
3

Sgene s 0.137 0.234 1.23
% Sgeng 4 17.30 24.30 54,70
h) SgenS 0.791 0,962 2.254
Pf,i’d/Pw 1.002 1.049 2.04

.(, L -
Vo .r 0.0 0.0 0.0
wAB,r 0.003 0.289 5.76‘
Sgen_ . 0.255 0,313 0.498
% Sgeng .. 64.10 62 .80 49,40
Sgenf r 0.143 0.186 0.511
% Sgeng . 35.90 37.20 50.60

I Sgen_ 0.398 0.499 1.009
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Table 4.4, Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 2.0, material
aspect ratio of 0.05, and initial
material temperature excess of 1.3

Storage period dimensionless
mass velocity term

Variable

T, T 0.005 T 0.05 T, 0.5
N. 0.395 0.462 0.812
NTU 19.67 19.29 11.46
G, 0.168 0.168 0.154
Fo, 0.875 0.811 0.50
Big 5.854 5.74 3.73
A 0.001 0.121 1.97
Pt i,s/Pa 1.002 1.072 2.69
g 0.271 0.253 0.167
?Ae,s 1.598 1.48 1.000
?AB,S 0.001 0.095 0.918
sgeny, o 0.155 0.146 0.098
% sgeny o 34,70 35.10 31.60
Sgen; ¢ 0.079 0.077 0.082
% Sgeng 17.70 18.30 26.20
Sgene’s’ 0.212 0.195 0.131
% Sgeng o 47 .60 46 .60 42.20
I Sgen 0.446 0.418 0.311
Pe i,d/P, 1.002 1.051 2.20
WAB,I 0.0 0.0 0.0
WAB’I 0.001 0.084 1.05
Sgen, . 0.110 0.101 0.061
% Sgenm’r 60.10 59 .40 46,50
Sgeny | 0.073 0.069 0.070
% Sgen . 39.90 40.60 53.50

I sgen_ 0.184 0.170 0.131
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Table 4.5. Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 3.0, material
aspect ratio of 0.01, and initial
material temperature excess of 1.1

Storage period dimensionless
mass velocity term

Variable

L 0.00S T, T 0.05 T, F 0.5
N. 0.200 0.295 0.640
NTU 50.89 39,22 28.43
G, 1.104 0.087 0.072
Fos 4.24 4.89 5.37
Big 4.89 4.50 3.95
A 0.002 0.125 0.109
Pf,i,S/Pm 1.003 1.196 4.65
ng 0.438 0.562 0.686
WAG,S 36,77 50.50 67.25
?AB,S 0.035 2.85 32.60
sgen, . 3.17 3.89 4.66
7 Sge;m’s 61.30 54 .90 : 42,20
Sgeng 0.170 2.27 3.05
% Sgenf’S 32.80 32.10 27.70
Sgen, 0.306 0.926 3.32
% Sge;e,s 5.90 13.10 30.10
I Sgen_ 5.167 7.094 11.03
Pf,i,d/Pm 1.002 1.113 3.11
WAS,r 0.0 0.0 0.0
wAB,r O.467 3.47 40.95
sgeng 1.22 1.88 2.83
% Sgenm’r 58.00 55.60 51.60
Sgenf,r 0.886 1.50 2.066
% Sgenf’r 42.00 44 .40 48,40

X Sgenr 2.109 3.37 5.49
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Table 4.6. Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 3.0, material
aspect ratio of 0.01, and initial
material temperature excess of 1.3

Storage period dimensionless
mass velocity term

Variable
T = 0,005 T = 0.05 T = 0.5
8 s s
N. 0.192 0.280 0.608
NTU 52.37 45,26 29.58
c: 0.107 0.098 0.074
Fos 4,01 4.31 5¢25
Bis 4,889 4,60 3.99
A 0.002 0.117 0.917
Pf,i,S/Pw 1.003 1.221 4.73
Ng 0.404 0.4560 0.663
wAS,s 33.72 39.49 63.88
WAB,S 0.033 2.49 31.31
Sgen_ o 2.03 2.25 3.11
N
%4 Sgenm s 43.30 40,80 28.30
-]

Sgeng o l.14 1.34 2.09
yA Sgenf s 24 .30 24.20 19.10
Sgen, ¢ 1.52 1.93 5.76
% Sgen, ¢ 32.40 35.00 52.60
z Sgens 4.693 5.527 10.95
pf,i,d/Pm 1.002 1.128 3.15
?Ae,r 0.0 0.0 G.0

.029 ol 7.2
YAB,r u 2.13 2 9
Sgen_ . 1.00 1.25 2.52
% Sgenm r 57 .90 56.30 51.40
Sgen; .. U.728 0.968 2.38
7% Sgeng 42.10 43.70 48 .60

I Sgen 1.730 2.22 4.91
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Table 4.7. Optimization results for unconstrained,
counterflow design cases for inlet fluid
‘temperature excess of 3.0, material
aspect ratio of 0.05, and initial
material temperature excess of 1.1

Storage period dimensionless
mass velocity term

Variable

T, T 0.005 T, = 0.05 T, = 0.5
N. 0.350 0.407 0.695
NTU 22.41 20.40 14.70
G, 0.168 0.162 0.143
Fog 2.24 1.95 2.28
Bi, 6.671 6.31 5.13
A 0.001 0.078 0.950
Pe 1,5/ 1.001 1.110 3.50
Ng 0.602 0.554 0.656
wAB,s 12.05 10.88 14.37
WAB,S 0.005 0.357 5.68
Sgenm’S 1.50 l.46 1.62
% Sgenm’s 53.90 56 .80 41.90
Sgenf’s 0.548 0.561 0.747
4 Sgeng 19.70 21.80 19.30
Sgene’S 0.732 0.552 1.50
% Sgeng o 26.40 21.50 38.80
I Sgeng 2,776 2.575 3.87
Pf,i,d/Pw 1.002 1.064 2.44
WAG,r 0.0 0.0 0.0
WAB,r 0.006 0.486 7.96
Sgenm’r 0.936 0.860 1.11
% Sgengy 65.00 63.60 57 .10
Sgenf’r 0.505 0.492 0.831
% Sgeng o 35.00 36.40 42.90

L Sgen, U.144 1.35 1.938
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Table 4.8. Optimization results for unconstrained,
counterflow design cases for inlet fluid
temperature excess of 3.0, material
aspect ratio of 0.05, and initial
material temperature excess of 1.3

Storage period dimensionless
mass velocity term

Variable

T, = 0.005 L 0.05 T, 0.5
N. 0.344 0.387 0.660
NTU 20.99 21.08 14.52
G, 0.167 0.168 0.143
Fog 1.40 1.30 1.95
Bi 6.304 6.27 5.09
A 0.001 0.069 0.780
Pe i.s/P, 1.001 1.111 3.49
Ng 0.416 0.388 0.59%0
WAG,S 7.57 6.98 12.32
?AB,S 0.003 0.235 4.85
Sgenm,s U.843 0.807 1.07
/A Sg,enm’s 49.40 50.90 33.10
Sgenf’S 0.341 0.327 0.521
% Sgeng o 20.00 20.70 16.10
Sgene,S 0.523 0.540 1.63
% Sgene,s 30.60 28.40 50.70
z SgenS 1.707 1.58 3.22
Pf,i,d/Pm 1.002 1.065 2.44
vAe,r 0.0 0.0 0.0
wAB,r 0.003 0.245 4.76
Sg-ﬁanm,r 0.563 0.517 0.917
% Sgeny . 63.10 63.00 56.10
Sgenf’r 0.330 U.303 0.719
% Sgenf’r 36.90 36.90 43.90

z Sgenr 0.8492 0.820 1.63
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Table 4.9. Optimization results for unconstrained,
parallel flow design cases without a dwell period

Storage period dimensionless
mass velocity term

Variable
T = 0.005 T = 0.05 T = (0.5
s s : S
NC 0.313 0.4438 0.815
NTU 41.140 30.84 21.02
c; 0.087 0.072 0.055
Fo 5.108 5.588 . 6.155
Bis 4,750 4,280 3.795
A 0.004 0.207 2.237
Pf i S/Pm 1.001 1.111 3.435
"s’ 0.586 0.706 0.843
wAB,s 18.102 23.820 34.100
wAB s 0.027 2.313 38.98
Sgen, o 1.356 1.631 1.980
% Sgen 0.490 0.380 0.220
Sgeng 0.823 1.090 1.460
]
% sgeng .30 0.254 0.160
2
bgene’s 0.585 1.550 5.580
% Sgen, ¢ 0.210 0.363 0.618
z Sgens 2.764 4.267 9.032
- * .7
Pf,i,d/Pm 1.001 1.078 2.720
?AG r 0.0 0.0 0.0
?AB c 0.0380 2.610 37.290
Sgen . 1.580 1.870 2.280
thy
% Sgen, . 0.550 0.520 0.490
’
Sgeng - 1.280 1.700 2,390
% Sgeng . 0.440 0.476 0.51

I Sgen 2.850 3.570 4.677
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Table 4.10. Optimization results for unconstrained,
parallel flow design cases with a dwell period

Storage period dimensionless
mass velocity term

Variable
T = 0,005 T = 0.05 T = 0.5
S 8 S
N, 0.301 0.427 0.810
NTU 37.130 30.950 22.150
c: 0.080 0.073 0.059
FQS 5.320 5.530 5.930
Fog, 6833.0 6530.0 6170.0
Bis 4617 4,260 3.738
A 0.003 0.202 2.341
P_ . /P 1.002 1.111 3.511
f,i,s =
ns 0.636 0.698 0.805
¥ 20.300 23.410 30.690
Af,s
?AB s 0.028 2.28 35.71
1
Sgenm s 1.470 1.610 1.880
% Sgenm s 0.360 0,339 0.250
Sgenf s 0.9170 1.080 1.410
?*
% Sgeng 0.220 0.226 0.188
Sgene s 0.857 0.1460 3.950
7 Sgene s 0.210 0.305 0.524
Sgenss 0.843 0.619 0.280
% Sgengg 0.206 0.130 0.372
P. ., /P 1.001 1.078 2.776
f,i,d =
LIV 0.0 0.0 0.0
WAB r 0.032 2.440 36.120
»
Sgenm r 1.100 1.330 1.800
% Sgenm r 0.550 0.53 0.49
Sgenf c 0.881 1.170 1.850
% Sgenp | 0.445 0.468 0.507

pX Sgenr 1.986 2.505 3.650
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Table 4.11. Optimization results for cases where
the storage system NTU was constrained
to a value of 10.0 or less

Storage period dimensionless

. Variable mass velocity term
1. = 0.005 T = 0.05 T = 0.5
s s s
NC 0.354 0.462 0.809
NTU 10,00 16.00 10.00
c: 0.100 0.060 0,043
FoS 6.209 6.336 6.336
Bis 1.000 1.673 2.300
A 0.001 0.064 1.521
Pf,i,s/Pm 1.000 1.038 2.55%4
ng 0.571 0.796 0.897
b4 19.050 32.520 44.969
AB,s
wAB,s 0.007 1.133 39.070
Sgeny . 0.930 1.609 2.088
% Sgeny o 0.217 0.169 D.119
]
Sgenf s 2.320 2.501 2.400
% Sgeng s 0.542 0.263 0.137
b
Sgen, 1.029 5.396 13.001
% Sgene s 0.240 0.567 0.743
z SgenS 4,281 9.507 17,490
Pe i a/Pa 1.000 1.027 2.099
YAe,r 0.0 0.0 0.0
¥ 0,008 0.950 29.340
AB,T
sgen, . 0.539 1.337 2.110
% Sgeny . 0.220 0.303 0.364
3
Sgeng . 1.916 3.068 3.687
% Sgen; 0.780 0.697 0.636
b

z Sgenr 2.445 4.404 5.797




100

Table 4.12. Optimization results for
cases where storage period first
law efficiency was coastrained
to a value of 0.90 or greater

Storage period dimensionless
mass velocity term

Variable

T = 0.005 T = 0.05 T = 0.5

s 5 s
N. 0.315 0.437 0.809
NTU 51.947 31.426 18.820
¢, 0.813 0.08102 0.0484
Fog 10.00 10.00 6.525
Big 6.388 3.879 3.886
A 0.003 0.1606 1.946
Pe i.s/P, 1.002 1.112 3.282
Ny 0.899 0.90U 0.900
¥ 37.734 37.872 41.341
AB,s
TAB,S U.072 3.738 45,519
Sgenm,S 1.621 1.576 2.161
% Sgen_ 0.176 0.159 0.158

b4
Sgenf’s 0.759 1.167 1.554
% Sgeng _ 0.082 0.118 D.144
Sgenﬁ,S 6.845 1.167 9.960
% Sgen, ' 0.742 0.724 0.728
z Sgens 9.225 9.923 13.674
Pf,i,d/Pm 1.001 1.079 2.614
?Ae,r 0.0 0.0 0.0
TAB c 0.048 2.549 34,947
b

Sgenm’r 1.640 1.587 2,230
% Sgenm r 0.636 0.514 N.503
sgeng . 0.938 1.499 2,203
% Sgeng . 0.364 0.486 0.497

z Sgenr 2.579 3.056 4,433
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The specific effects that change in the optimization variables have
on the entropy generation characteristics of a storage system are a
complicated functions of the eight design variables. Accordingly, it is
neither practical nor possible to describe all of these complex inter-
actions in detail. A greater understanding of the physics of the
problem can be gained by defining individual qualitative effects (i.e.,
the effect of changing one variable at a time with all other variables
fixed) here and then discussing combined effects in conjunction with
specific results. Because the minimum value of an unconstrained optimi-
zation occurs where the partial derivatives of the objective function
with respect to the optimization variables are equal to zero, it is ap~
propriate to define cause and effect in this way. The most expeditious
means of explaining these effecté is to explore how they influence the
terms in the figure of merit dﬁriug a typical storage period. These

terms are XA, and N but because N is by definition always one,

NAP’ AT’ » AP
it is only necessary to address the A and NAT terms. As an aid to
understanding the following explanations, mathematical and verbal
descriptions of the major dimensionless variables used in this study are
summarized in Table 4.13.

The most straightforward influence to explain is the effect that an

increase in storage time, Fo has on the availability distribution

S,
ratio, A. Qualitatively, the longer the storage period the more total
pressure availability and thermal availability enters the control

volume. However, the magnitude and time dependent behavior of these two

quantities, and therefore the value and behavior of their ratio A, is a
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Table 4,13. Physical interpretation of the major dimensionless
variables used to describe the entropy generation
characteristics of a sensible heat thermal
energy storage system

Verbal description

Variable Definition
+ W
v L
. hw
Bi X
m
at
Fo ;z‘
Pth
Gt -
mef
+
NTU & Ei
\
PhhL
mef
N, Equation (2.27a)
by Equation (2.43)
NAP
NAT Equation (2.51)

Ratio of storage material half-thickness
to its length.

Ratlio of fluid heat transfer coefficient
to the unit conductance of the storage
material over the characteristic dimension
Wo

Dimensionless time. A ratio of the rate
of heat conduction across w to the rate of
heat storage within w3.

Dimensionless mass flow per unit width
into the paper. When used in conjunction
with t, it represents the half-height of
the flow channel.

Dimensionless size of the storage unit.

Ratio of the total availability destroyed
during some elapsed time to the total
availability that entered the storage
system during that time.

Ratio of the pressure availability to
thermal availability that enters the
storage system during some elapsed time.

Ratio of pressure availability destroyed
during some elapsed time to the total
pressure availability that entered the
storage system during that time. For
this study, always has the value one (1).

Ratio of thermal availabllity destroyed
during some elapsed time to the total
thermal availability that entered the
storage system during that time.




103

strong function of the other optimization variables and the eight design
variables., For example, the inlet pressure availability increases for
increasing T and Tf,i’s/Tlm but gets smaller for decreases in GZ and
increases in VY. If all other variables are held constant, a larger
value of T translates into a greater fluid velocity and therefore a
larger pressure droﬁ. To overcone these increased viscous effects the
fluid inlet pressure must be increased and this results in a greater
amount of pressure availability entering the control volume. An
increase in Tf,i,s/rm for a fixed value of T, causes a decrease in the
fluid density and therefore (by 2.70) requires an increased inlet
pressure. A decreased value of G: (all other wvariabhles constant)
physically corresponds to a larger flow channel diameter and therefore
reduced viscous effects. This permits a lower fluid inlet pressure and
therefore less entering availabiliﬁy. An increase in v¥ results in a
shorter flow channel 1length and therefore 1less pressure drop; again
allowing a lower fluid inlet pressure. Changes in the optimization
variable Big can aiso effect the amount of entering pressure avail-
ability’during the storage period. This term was introduced during the
non~dimensionalization of the friction factor in the pressure drop
equation. Accordingly, reductions in its value, all other variahles the
same, corresponds to reduced viscous effects and a lower inlet pressure
requirement. The entering thermal availability is also influenced by
changes in the design variables. An increased Tf,i,s/Tm results in a
greater amount of entering thermal availability. For a fixed T, @

+ . . .
decreased value of Gs (i.e., a larger flow channel diameter) results in
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more total fluid entering the control volume and therefore more entering
thermal availability.

The reader will recall that the NAT term is a ratio of the thermal
availability destroyed to the total thermal availability that entered
the system during some time interval. For a given set of optimization
and design variables, the total availability that enters the system in-
creases linearly with time. However, the value and time dependent be-
havior of the ratio, and therefore the value of the figure of merit, N.,
depends on how much thermal availability is destroyed. Quite under-—
standably, this destruction and its time dependent behavior are de-
pendent on the value of the optimization and design variables. To begin
the explanation of these interactions we will examine the effect of an
increasing storage time on NAT'

The distribution of the destruction of availability among the vari-
ous sources of irreversibility shifts with increasing time during the
storage period. In the beginning of the storage period the fluid outlet
temperature is low and, therefore, most of the entropy generation takes
place in the storage material and the fluid. As time progresses aund the
fluid outlet temperature begins to rise, a greater percentage of avail-
ability destruction is due to the heat transfer between the discharged
hot fluid and the environment. All three mechaniswms are still generat-
ing entropy, but the destruction of availability due to the exiting
fluid coming into equilibrium with the environment begins to dominate.
The following is a brief summary of some of the individual influences

that effect the rtelative magnitude of the three entropy generation

mechanisms during the storage period.
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a. As the dimensionless material aspect ratio, vt

, gets larger the
length of the flow channel gets shorter. All other variables the same,
this results in a shorter fluid-material contact time, less total heat
transferred, and higher fluid outlet temperatures. Qualitatively this
results in less entropy generation in the storage material and flowing
fluid and more in the exiting fluid. An additional effect of increased
values of V' is that it increases the amount of longitudinal conduction
within the storage material. This results in slightly more entropy gen-
eration within the material,

b. Changes in the storage period Biot Number, Bis, éffect the rate
of heat transfer between the flowing fluid and the storage material as
well as the temperature and temperature gradients within the storage
material. A decrease in the value of BiS results in less heat transfer
from the flowing fluid and, therefore, higher fluid temperatures along
the entire length of the flow channel. Accordingly, the fluid outlet
temperature is also greater. A decreased value of Bij, also results in
smaller temperature gradients and lower absolute temperatures within the
storage material. The smaller gradients result in less entropy gener—
ation in the material, but the lower material temperatures and higher
fluid temperatures result in more entropy generation in the fluid. 1In
turn, the increased fluid outlet temperature results in more eatropy
generation due to the exiting fluid reaching equilibrium with the en-
vironment. An additional complication, as equation (2.44c) shows, is
that the entropy géneration in the storage material depends on the

gradient as well as the absolute value of the temperature at a point.
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Thus, it is conceivable that there are combinations of variables that
can result in reduced rates of heat transfer to the material without
significantly changing the total amount of entropy generated.

c. Decreases in the dimensionless mass flow trerm, G:, result in
more fluid entering the system during a given time period. All other
variables the same, this has the effect of decreasing the temperature
drop in the flowing fluid, which results in higher exiting tempera-
tures. This increases the amount of entropy generated as a result of
the exiting hot fluid coming to equilibrium with the environment.

d. Increases in the fluid inlet temperature excess, Tf,i,s/Tm re-
sult in increased rates of entropy generation by all three mechanisms.
An increase in the initial storage material temperature, with all other
variables remaining constant, causes a decreased temperature difference
between the flowing fluid and storage material. This results in less
neat transfer between the fluid and material and higher fluid temper-
atures along the entire length of the flow channel. This produces less
entropy generation in the material and more in the flowing and exiting
fluids.

The complexity of the optimization procedure is now apparent. A
change in a given variable can affect the destruction of pressure and
thermal availability in opposite directions. Decreases in G: and Big
result in lower pressure drops but cause increased amounts of thermal
availability destruction. Increases in vt also result in decreased pres-
sure drops, but increased destruction of thermal availability. In addi-

tion, the relative magnitude of these effects depend a great deal on the
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value of the other design variables. The analysis is further corr
plicated because the figure of merit is a function of ratios rather than
individual generation terms and these ratios are functions of both the
storage and discharge periods. Quite obviously, the complex interac-
tions among system variables make it impossible to anticipate the values
or behavior of the optimization wariables which result in a wminimum
amount of entropy generation for a given design case. Rather than geo-
eralize any further, the final values for the three optimization vari-
ables will be summarized and the discussion will shift to specific re-
sults. Figures 4.1, 4.2, and 4;3 show, respectively, the optimum value
of Fog, G:, and Big for the unconstrained, counterflow cases that are to
be discussed. The behavior of these variables will be discussed in con-

junction with the results,

Unconstrained Counterflow Cases Without a Dwell Periocd

The presentation of the counterflow results begins with an overall
summary of the optimum performance for a storage system then proceeds to
a detailed examination of its entropy generation characteristics. To
simplify the discussion, we will limit the analysis to the design cases
where Tm,o,s/Tm was l.1l. Similar results were reached for the cases
where Tm,o,s/Tm was l.3 and it would be redundant to discuss them in the
sane detail.

The first of these summaries concerns the temperature response of a
nominal, optimized storage unit.:The particular configuration to be ex-
amined is representative of many medium temperature storage systems and

is defined by:



Storage Period Length, Fog

ORNL-DWG--88-4412 ETD

i

N

O= Tf.i'g/Tmr-z.O, V*=0.01
A= Tf’i.s/Tm::Z.O. V*=0.06
v= Tf,i,S/Tm-_-S‘O' V*=0.01
o= Tf.i.s/Tw=3.0, V'=0.05
10‘“'_3 L L ﬁ!f!Ti]_a Al Y ] 571113_1 T 7 5111-!g°
10 10 10 10
Storage Period Mass Velocity, 7g
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a. a Tf,i,s/Tw of 2.0,

b. a Tg of 0.05, and

c. a V¥ of 0.01.

The dimensionless, average storage material and fluid outlet tempera-—
tures for this nominal operating point are shown for a complete storage-
removal cycle in Figure 4.4, The dimensionless temperature
distributions for the material at the end of the storage and removal
periods are summarized in tabular form in Tables 4.14 and 4.15 and shown
graphically in Figures 4.5 and 4.6.

The temperature histories shown in Figure 4.4 are representative of
sensible heat storage units in general and exhibit the expected physical
behavior., The average material temperature increases with time during
the storage period and decreases during the removal period. The fluid
outlet temperature gradually Increases during the storage period re—
flecting the constant fluid inlet temperature and gradually decreasing
fluid-storage material temperature difference. The fluid outlet temper—
ature during the removal period gradually decreases as a result of the
decreasing average material temperature. The storage material temper-
ature distributions shown in Figures 4.5 and 4.6 show the expected re-
sult for the small aspect ratios (i.e., very long compared to the width)
utilized for this study. Specifically, the gradients in the direction
normal to the flow are very steep but are more gradual in the direction
parallel to the flow. In addition, the temperature distribution at the
end of the removal period demonstrates one of the working assumptions of
the study. The removal period is terminated when the average storage

material temperature has returned to its initial value. Because of the
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Table 4.14., The storage material temperature distribution at the
end of the storage pertod for a nominal, optimized, counterflow storage system

Pimensionless Dimensionless longitudinal coordinate

transverse -

covrdinate X = 0,43 X = 0.125 X = 0.250 X = 0.375 X = 0,500 X = 0,625 X = 0.750 X = 0.875% X = 1,04
Y = j.0t 0.9997 U.9713 0. 9424 0,74952 0.6668 $.5357 U.4172 0.3197 0.2458
Y = 6.875 0.9995 0.9682 0.8943 0.7834 0.6526 0.5213 0.4042 00,3090 $.2378
Y = 0.750 $.9993 3.9653 U.8875 U.77130 0.6403 . 5089 0.3930 0,2999 0.2309
Y = U.025 U.9992 0.9630 (.8817 0.7642 0.6300 0.4983 ‘ 0.3836 0.2922 06,2251
Y = U.500 0.9991 0.9609 0.8769 0.7569 0.6211 0.4896 0.3759 0.2860 0.2204
Y = u.375 0.99490 0.9593 0.8731 0.7512 O.6144 0.4828 0.369%99 0.2811 0.2168
Y = 0.2508 0.9989 0,9582 the 8703 0,747} 0.6096 0.4780 0.3656 0.2776 0,2142
Y = 0,125 .9989 0.9575 0.8687 0.7446 0.6067 0.4751 0.3630 0.2755% Q.2127
Y = (Lu? . 9989 0.9573 (. 8681 0.74138 0. 6057 0.4742 0.3622 0,2749 0.,2122

Feonvecrive boundary
2pnsulated boundary
IFlutd intet

“Fluid exit

£l



Table. 4.15. The storage marerial temperature diszribution at the
end of the removal period for a nominal, optimized, counterflow storage system

Dimensionless Dimensionless longltudinal coordinate

transverse

coordinate X = 0.0% X = 0.125 X = (.25 X = 0,375 X = 0.500 X = 0.625 X = 0.750 X = 0.875 X = 1.0%
y o= bl 0. 3104 0.2267 0.1537 .095% 0.0525 0.0245 0.008% 0.0018 0. 0000
Y = u.875 G.3193 0.2344 G, LoD .0999 0.0555 0.02560 0.5(393 0.0020 0.0000
Y = Jd.75%) 0.3271 0.2412 0.1b54 0.1040 (3,0582 0.0275 0. 0100 0.0022 0.0000
Y = U.525 0.333 00,2470 0.1700 0.1074 0.,0604 0.0288 0.0106 0.0024 0.0000
Y = U.500 (3. 1390 0.2517 u.1739 0, 1102 0,0623 0.0299 0.0110 0.0025 0.0000
Y o= i3.375 0. 3632 (0.2554 0.1769 V. H125 0.0638 0.0307 0.0114 04,0026 0.0000
¥ = U.25%) 0. 3463 (.2581 $.1790 0.1145 0,0649 0.0313 0.0117 9.0026 0.0000
Y = 0.125 0.3481 0.2597 0.1803 0.11560 0.0655 0.0317 0.,0118 4.0027 0.06000
¥ o= 0.u2 V. 3487 0.2602 . 1807 0.11573 0.0657 0.0318 0.0119 0.0027 0.0008

gonvective boundary
Zipnsulated boundary
Iriutd exirc

“Riuid inlet

vAR!
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Tenperature distribution in the storage
material at the end of the storage period for
an optimun, unconstrained, counterflow, medium
temperature design case.
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Figure 4.b. Temperature distribution in the storage
material at the end of the removal period for
an optimum, unconstrained, counterflow, medium
temperature design case.
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low fluid inlet temperature and the minimal aﬁOunt of longitudinal con-
duction, the material temperatures in the inlet half of the unit are
always much lower than the outlet half. It is these very low temper-
atures in the inlet half of the unit that force the average material
temperature down. This has the effect of terminating the removal period
before the entire unit has started to approach the initial material
temperature. Thus we may conclude that the assumption of an initial
uniform material temperature is not a good approximation.

Next, those parameters indicative of the overall performance of the
optimized storage system are summarized. The first of these will be the

figure of merit, N and its components; lambda, A, and the individueal

C?

pressure aad temperature entropy generation terms, N and N

AP AT Figure

4.7 shows the figure of merit, N as a function of the three design

CI
variables that were permitted to flcat; To» Te 5 S/Tm” and V¥. The most
2 b

prominent result shown is that N. dincreases for increasing T, and

that Tg has the greatest impact c¢n NC of all the design wvariables.
Other characteristics of optimum performance shown are:
a. For a given Tt and V+; an 1increase in Tf . /T produces a
S y1,8 o0
lower value for Nc’ that is a more efficient storage unit.
b, For a given t_and T, ., ./ T ; an increase in vt results in a
s f,l,& @
larger value for N, that is a less efficient storage unit.

c. For low values of Ty vt is the second most influential vari-

able; but as Ts increases to its maximum value T;

t,i,S/Tm becomes the

second most influential.
Except for the absolute values of the variables, the strong iafluence of

Ts and the behavior of Nc with respect to changes in Tf i Q/T are
b} R A

aan
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identical to the results obtained by Krane [46] for the lumped element
storage system.

Figure 4.8 shows the optimum values of the individual pressure aad
temperature entropy generation teras; NAP and NAT’ As this data show,

the NAP term is always unity. This reflects the requirement that the
fluid must enter the storage unit at a pressure just great enough to
overcome the effects of friction. It also shows that for all combina-
tions of the three floating design variables, the fraction of entering
temperature availability destroyed during a cycle increases as T in~
creases. Other characteristics of thermal availability destruction for
an optimum, unconstrained, counterflow design are that:

a., for the same value of V+, a higher Tf,i,s/Tm reéults in a
smaller fraction of the entering thermal availability being destroyed,
and

b. for the same value of Tf’i’S/T°° a higher value of V' results in
more of the entering thermal availability being destroyed.

To understand the behavior of the NAT term, recall the trends of
the optimization variables shown in Figures 4,1, 4.2, and 4.3 (pp. 108,
109, and 110). Over the range of Ty examined, Fo, increased and G: and
Bi, decreased. These changes combined to force more fluid through the
system for a longer time at a higher outlet temperature which resulted
in a higher percentage of the entering thermal availability being
destroyed.

The optimum behavior of the availability distribution ratio, X, is

shown in Figure 4.9, These data show that for all combinations of

+ . .
Tf,i,s/Tm and V', )\ increases as T increases. As was the case for the
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figure of merit, N T also has the greatest impact of any of the de-

Cc?

sign variables. The reasons for this behavior can best be explained by
examining the components of A. These are the total amounts of pressure

and thermal availabilities;, W and WA of the fluids that enter during

AP T2

the storage and removal periods. The optimum values of these terms are
shown in Figures 4.10 and 4.11. These data show that for low values of

1 1) dominates resulting in low values for \. As T increases, the

s’ TAT

optimum value of W increases until it is the same order of magnitude

AP

as WA The entering pressure availability shows the expected de~-

T'
pendence on vt and T¢ 4 S/Tw less for lower values of V' and more for
| Bl ]

higher values of Tf i S/Tm. The behavior of the entering thermal avail-
? ®

ability 1is consistent with the fact that the optimum storage time in-
. + .

creases and the optimum value of GS decreases for increases in Tge

It is the increasing 4mount of pressure availability that causes

the observed behavior of A. It results from the requirement that the

fluid wmust enter the storage unit at a pressure just great enough to

overcome viscous effects. We conclude that the destruction of increas-

ing amounts of pressure availability as T increases causes the observed

behavior of the figure of merit, N This dependence 1is best

c*
illustrated by examining the components of the figure of merit for a
nominal design case. Typical values for these components are summarized
in Table 4.16 for the same medium temperature case that was summarized

in Figure 4.4 (pp. 112). This data shows that even though NAP is con—

stant and NAT is always increasing; the increasing value of A causes the

figure of merit to increase as T increases., This results in thermal

destruction being the dominant mechanism for low values of Ty and
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Table 4.16. Summary of terms in the figure of merit for an optimum,
medium temperature design case showing the influence of A on
the behavior of the figure of merit

A A 1 1

T > T+ Nab Ta e e Mar T Mar M
0.005 ©0.0043  0.0043 1.0  0.0043  0.9957 0.2126  0.2126  0.2169
0.05  0.2340  0.1896 1.0  0.1896  0.8104 0.2335  0.1892 0.3788
0.5  2.3870  0.7048 1.0  0.7048  0.2952 0.3109  0.0918  0.7966

§Z1
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pressure destruction becoming the primary contributor as T approaches
its upper limit.

With this understanding of the behavior of the figure of merit, it
is now practical to proceed with the analysis of the optimization vari-
ables summarized in Figures 4.1, 4.2, and 4.3 (pp. 108, 109, and 110).
To begin, we make the following observations:

a. for increasing values of Tg» the optimum value of G: and Bis
decrease and the optimum value of Fo, increases,

b. changes in T, appear to have the most influence on the final
value of the optimization variables with vt being the next most in-
fluential variable, and

c. the rate of decrease of all three variables generally increases
as T, approaches its upper value.

The continued decrease in the values of C: and Bis for increasing values
of T, occurs because of the increasing amount of pressure availability
being destroyed. As previously explained, decreases in these variables
reduce viscous effects and it is therefore reasonable to expect this be-
havior. The influence of V' on the absolute value of these two variables
is also consistent with the known physical situation. Increases in V'
result in a shorter flow channel length and therefore one should expect
that smaller decreases in G: and Big are necessary to achieve a minimum
amount of entropy generation. The increase in the rate of change of all
three optimization variables can also be attributed to the increasing
amount of pressure availability destruction. As the pressure destruction
begins to dominate, greater changes in the optimization variables are

required to effect reductions in the amount of entropy generation.
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The optimum storage unit dimensionless size, NTU, for the counger-
flow design cases is summarized in Figures 4.12 and shows very clearly
that the NTU decreases with increasing Tye Except for the value of the
NTU, this is the same result that Xrane [46] reached for the lumped
storage element system. Other optimum size characteristics include:

a. for a given Tf,i,s/Tm increasing v’ results in a much smaller
sized unit, and

b. for a given value of V+, an increase in Tf,i,S/Tm results in a

much larger optimum size.
The behavior of the NTU with respect to T is consistent because G; and
BiS also decrease with increasing Tge Decreases in G; (for fixed fluid
and storage material properties and fixed width of the storage element)
correspond to increased mass flows which cause a decrease in the NTU of
a unit. Decreases in Bij correspond to a decreased heat transfer coef-
ficient which also reduces the value of the NTU. The strdng dependence
of NTU on V' is also consistent with the known physical situation. De-
creases in V' correspond to a3 shorter flow channel length which results
in a reduced heat transfer surface area and therefore a reduced value of
the NTU.

Having summarized optimum seccnd law performance and size charac~
teristics of the storage element, it is onow appropriate to make some ob-
servations concerning the relationship between the optimum NTU and the
corresponding value for N.. Comparing the results shown in Figures 4.7
(p. 118) and 4.12, it can be seen that reducing T from 0.05 to 0.005
always causes an increase in the optimum NTU of the unit and a decrease

in N.. Furthermore, the size of such a change is a strong function of
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vt. For the design cases where V' was 0.01, there was a corresponding
decrease in NC for a given increase in NTU. The same is not true, how-
ever, for the cases where v* was 0.05. For the case where Tf,i,S/Tm was
2.0 and V¥ was 0.0L; reducing T, the indicated amount caused a 44.7 in-
crease in the NTU and a 43.% decrease in N.. For a Tf,i,S/Tm of 3.0 and
the sanme V+; reducing T resulted in a 30.7%7 increase in the NTU and a
32.% decrease in N,. For the case where v" was 0.05 and Tf,i,s/Tm was
2.0, reducing T the indicated amount increased the NTU by only 9.% but
caused N, to decrease by 17.%. For a Tf,i,s/Tm of 3.0 and the same V+;
reducing 13 resulted in a 9.7 increase in the NTU but a 14.% decrease
in N.» Thus, we may conclude tha: for the aspect ratios examined, rte-
ducing T, can result in moderate gains in performance for relatively
small increases in NTU. These results differ from those Krane [46] ob~
tained in that a given increase in NTU for the lumped element system was
not matched by a corresponding reduction in the figure of merit.

A somewhat different result was observed when T, was increased from
0.05 to 0.5. As before, the relationship between decreases in the
optimum NTU and the corresponding reduction in system performance is a
strong function of vt. For the cases where the Tf,i,s/T” was 2.0 and V+
was 0.01; increasing T from 0.05 to 0.5 resulted in a 35.% reduction in
NTU but a totally unacceptable 270.%Z 1increase 1in N.. For the same
Tf,i,S/Tm and a vt of 0.05; dincreasing TS the indicated amount resulted
in a 51.%Z decrease in the NTU, but a 75.7% increase in N.o

The first law efficiencies for the optimum counterflow systems are

shown in Figure 4.13. This data illustrates a fundamental second law
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considerations; that 1is these systems have poor first law effic-
iencies. The stourage system with the lowest figure of merit, and there—
fore the best second law performance, also has the poorest first law ef-
ficiency. As the figure of merit increases (indicating a less efficient
system), the first law efficiency increases. Similar results were
reached by both Bejan [44] and Krane [46]. We note that the first 1éw
efficiency increases while the value of Bi, decreases. Since this term
is directly proporticnal to the average storage material temperature,
this behavior would seen contradictory. It is explained, however, by
the fact that the optimum storage time increases as Bi  decreases. We
conclude that even though the rate of heat transfer decreases as Bi, de-
creases, the total amount of heat transfer increases due to 1increased
storage times.

The distribution of the thermal availability destroyed during the
storage period is summarized in Figure 4.14 for the design cases where
Tf’i,S/Tm was 2.,0. The results for the cases where it was 3.0 have the
same trends and will not be shown here for the sake of brevity. Figure
4.14 shows the fraction of total thermal availgbility destroyed during
the storage period for each of zhree mechanisms: conduction iIn the
storage material, heat transfer between the fluid and storage material,
and heat transfer between the discharged hot fluid and the environ-
ment. These data show that the distribution is not a strong function of
vt and that over the range of T, examined, the contribution due to con-
duction in the storage material: dominates until Ts approaches its upper
limit of 0.50. During the this time, the next largest contribution 1is

from heat transfer between the fluid and storage material followed by
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that due to the discharged hot fluid coming to equilibrium with the en-
viroument. As T approaches its upper value of 0.5, the contribution
due to heat transfer from exiting hot fluid increases and begins to dowm-
inate. As this happens, the coutributions from both the conduction in
the storage material and heat transfer between the fluid and storage
material decrease, with the material conduction fraction always being
larger. Again we note that these trends are consistent with the be-
havior of the optimization variables summarized in Figures;é,l, 4.2, aud
4.3 (pp. 108, 109, and 110). Increases in G: and decreases in Big re-
sult in more fluid exiting at a higher temperature. Also, increased
values of Fog result in a higher percentage of the total availability
destruction occurring in the exiting fluid. We conclude that for all
but the highest mass velocities, entropy generation within the storage
material is a significant contributor to the total entropy generated in
a storage~removal cycle.

There is one other significanz result concerning the operation of
optimum counterflow systems: the distribution of total amounts of en~
tropy generated in the storage and removal periods. An examination of
the data in Tables 4.1, 4.3, 4.5, and 4.7 (pp. 89, 91, 93, and 95) shows
that for the design cases summarized above, the total amount of entropy
generated during the storage period, including that attributable to the
exiting fluid, is approximately twice that generated during the removal
period. Also, there is consistently less entropy generated in the
storage material during the removal period than during the storage
period. It is not known if this behavior accurately reflects the phy-

sical situation or results from the assumption of a uniform material
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temperature at the beginning of the storage period. This disparity how-
ever does not hold for entropy generated by heat transfer between the
fluid and storage element. As Tg increases for a given set of design
variables, the entropy generated in the fluid during the removal period
approaches and in some cases slightly exceeds that of the storage
period. The primary result though is the fact that only one third of
the total thermal irreversibilities of a cycle occur during the removal
period. This raises the concern that as T increases and the influence
of the thermal {irreversibilities on the figure of merit decreases; en-
tropy generation due to heat transfer during the removal period does not
significantly effect the optimization process. This concern will be ex-
plored in more detail during the discussion of the performance of the
mathematical model.

The optimization results for the design cases where the initial
storage material Cemperature excess, Tm,o,s/Tm was 1.3 will now be
presented. As previously indicated, these results are very similar to
those where Tm,o,s/Tm was l.l. The qualitative Dbehavior of the
optimization variables and other descriptions of system performance were
in fact identical., The differences between the cases occurred only in
their actual values. The major result of this analysis was that ia-
creasing the initial material temperature resulted in slightly lower
figures of merit. This behavior is summarized in Figure 4.15 for the

sane set of design variables utilized for the cases where T /T was

m,o,s
l.1. An examination of the data summarized in Tables 4.1 to 4.8 (pp. 89

through 96) shows the following additional differences for an optimum

design with a higher initial material temperature:
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2. lowar values of Fog, higher values of GS+, and lower wvalues of
Bi, were generally required for an optimum system,

b. lower total amounts of thermal and pressure availability were
destroyed as well as smaller fractions of entering therwal availability,

c. there was less entropy generation due to conductien in the
storage material and heat transfer between the fluid and material, and
more due to the discharged hot fluid reaching equilibrium with the en-
vironment,

d. larger NTUS were required, aond

e. first law efficiencies were lower.
We conclude that higher initial wmaterial temperatures result in units
that are slightly more efficient (i.e., lower values of N.) but also

have large NTUs. These are the same qualitative results that Krane [45]

reached for the lumped element system.

Unconstrained Parallel Flow Cases

The parallel flow configuration was optimized with the same set of
medium temperature design variables summarized in Figure 4.4 (p. 112).
The most general result is that this configuration (with and without a
dwell period) resulted in optimum systems with higher figures of merit
than the comparable counterflow cases without a dwell period. These re-
sults are summarized in Figure 4.1!6 and show the figure of merit for the
two parallel flow designs as well as the comparable counterflow case.
These data show that, over the range of T examined, the performance of
the parallel flow cases was consistently worse than that for the
counterflow base case (i.e., the set of design variables summarized in

Figure 4.4). We also note that the figures of merit for both parallel
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cases were essentially the same and the difference between them and the
counterflow case decreased as T approached its upper value. This be~
havior is attributed to the increasing amounts of pressure availability
destruction. As T increases the influence of the thermal
irreversibilities on the value of the figure of merit decreases. It is
not unreasonable then to expect the performance of the parallel designs
to approach that of the counterflow case in those operating regious
where pressure availability destructioun dominates.

-An examination of the optimization results presented in Tables 4.9
and 4.10 (pp. 97 and 98) shows the following additional optimum oper-
ating characteristics of the parallel flow designs:

a. Both designs (i.e., parallel flow configuration with and with-
out a dwell period) generally required loanger storage periods and lower
values of Gs+ and Bis for an optimum system than the counterflow case.

b. Both designs destroyed higher total amounts of pressure and
thermal availability as well as destroying a higher percentage of the
entering thermal availability. The design without the dwell pericd
destroyed the largest perceantage of entering availability.

cs During the storage period, each of the three entropy generation
mechanisms destroyed more availability in the parallel flow designs than
in the counterflow case.

d. The first law efficiencies of the parallel flow designs were
both higher than the counterflow case, with the design without the dwell
period generally having the highest effiéiency.

e, Over the range of g examined, both parallel flow designs re-

sulted in a smaller optimum NTU. The design with the smallest size
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varied as T increased. For low values, the dwell period désign:re~
sulted in the smallest NTU. At the maximum value of Ty the dwell period
design had the largest optimum NTU.

f. The dwell period elapsed dimensionless times were on the order
of 6500. By comparison, the storage period dimensionless times for all
counterflow and parallel cases ranged from 0.5 to about 6.0. The amount
of entropy generated by conductiort in the storage material during the
dwell period averaged 24.%Z of the amount generated during the storage
period and approximately 10.%7 of the total generated for the entire
storage—~removal cycle. Depending on the value of Tgs 8 dwell period in-
creased the total entropy generated during a cycle from 12.% to 67.%
over that for the counterflow case.

We conclude that the parallel flow configuration, with and without
a dwell period, results in optimum systems that are less efficient than
those of the corresponding counterflow design. This was the same qual~-
itative result that Mathiprakasam and Beeson [45] reached during their

simplified second law analysis of thermal energy storage systems.

Constrained Counterflow Cases Withcut a Dwell Period

The constrained optimizations were defined to assess the sensitiv-
ity of the figure of wmerit, N,, to two process parameters that are
closely related to the economic wviability a system design; its size
(NTU) and its first law efficiency. Two cases were executed with the
same set of medium temperature design variables summarized in Figure 4.4
(p. 112). The principle result obtained was that the second law ef-

ficiencies for both cases were poorer than the nominal counterflow

case. These results are summarized in Figure 4.17 and show the figure



Figure of Merit, N,

ORNL-DWG—-86-4428 ETD

= Counterflow Case
4= nz0.90
v= ﬁTUélO.&

10

=

Figure 4.17.

T T IR IR _a L] H ¥ H LRI R —1
10 10
Storage Period Mass Velocity, 74

Optimum values for the figure of merit for the unconstrained and

constrained counterflow design cases.

T | NS SN A A M

10’

09T



141

of merit as a function of T for the two constrained designs as well as
for the counterflow case.

Examining the optimization results summarized in Table 4.11 (p. 99)
shows the following specific resuvlts for the cases where the storage
system NTU was constrained to a maximum value of ten:

a. The optimum values of the figure of merit were greater than the
counterflow case for all values of T examined, This difference, how-
ever, decreased as T approached its maximum value. N, increased ap-
proximately 63.%, 22.%, and 1.5% for values of Ty of 0.005, 0.05, and
0.5 respectively. Corresponding reductions in the value of NTU were ap-—
proximately 81.%, 73.%, and 57.%Z.

b. Compared to the counterflow case, smaller values of Gs+ and Bis
and larger values of Fog were required for an optimum system. The value
of Gs+ decreased approximately 5.6%, 29.%, and 32.% for values of T of

0.005, 0.05, and 0.5 respectively. Corresponding reductions in Bi_ were

80.%, 61.%, and 38.Z respectively. Increases in Fog for the correspond-

+

ing values of T, were 48.%, 27.%, and 12.%7. Reductions in Gy

and BiS
were expected since these are :the two optimization variables that
determine the value of the NTU. Their product must decrease if thé NTU
is to decrease.

cs The first law efficiencies of the constrained systems were con-
sistently higher. Again we note that this behavior is consistent with
the longer storage periods.

d. The constrained systems destroyed essentially the same total

amount of pressure availability but considerably more total thermal

availability than the counterflow base case. For values of T of 0.005,
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0.05, aad 0.5; increases of 160.%, 230.%Z, and 174.%Z respectively werse
calculated.

We conclude that constraining the dimensionless storage unit size
to moderate values results in less efficient units and the degradation
of system performance, as measured by the value of No, is a strong func-
tion of T This raises the possibility that some units could be oper-
ated away from their optimum design point without adversely affecting
their second law efficieacy. Such a move should be considered carefully
though, given the large increases in total thermal irreversibilities
that would accompany such off design operation.

The results for the design where the storage period first law ef-
ficiency was coustrained to a minimun value of 0.90 are summarized in
Table 4,12 (p. 100). Specific observations and conclusions are:

a., The optimum values for the figure of merit were larger than the
counterflow case for all values of g examined. As was the case when
the NTU was constrained, the perforwance degradation was a strong func-
tion of T N. increased approximately 46.%, 15.%, and 1.6%Z as Tg in-
creased from 0.005 to 0.5. The corresponding reductions in the value of
NTU were approximately 1.7, 14.%, and 20.%

b. Smaller values of GS+, larger values of Big, and longer storage
times were requivred for an optimum system. The value of GS+ decreased
approximately 23.%, 4.7, and 24.% as T increased from 0.005 to 0.5.
Corresponding increases in the value of Bi, were 29.%, 10.4%, and
5.6%., Fo, increased approximately 138.%, 101.%, and 15.Z as T in-

s

creased from 0.005 to 0.5. The behavior of G

s and BiS are consistent

with the physical system and the type of coustraint imposed. Larger
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values of Bis increase the rate of heat transfer to the storage
material. Reductions in the wvalue of CS+ increase the temperature drop
in the fluid. This would increase the rate of heat transfer to the
storage material and consequently reduce the exiting fluid temperature.

c. The constrained systems destroyed more total pressure and
thermal availability than the éounterflow case and, like previous re-
sults, this behavior was a strong function of T At the three values
of T examined, the total thermal svailability destruction increased ap—
proximately 356.%, 207a%, and 113.%. Increases in total pressure avail-~
ability destroyed at the same points were 263.7%, 48.%, and 23.%.

We conclude that constraining the storage unit first law efficiency
results in less efficient units (i.e., larger values of N.) and that the
degree of degradation is a strong function of Toe As was the case when
size coanstraints were imposed, this result suggests that the some off-
design operation is possible without significantly affecting the second
law efficiency of the unit. Agéin, this option should be considered in
conjunction with the increased amounts of total availability destruction
that can occur.

Critique of the Mathematical Model

The purpose of this section of the document is to assess the per-—
formance of the mathematical model developed for this study. Three
specific areas will be addressed:

a. the effects of some of the assumptions utilized in the model,

b. the accuracy of the optimization results, and

c. the performance of the GRG2Z optimization routine.
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Given the complexity of the problem, the assumption that the stor-
age period begins with a uniform storage material temperature was made
for the sake of simplicity. It was eventually proven, however, not to
be a good approximation as a substantial temperature gradient existed in
the storage material at the end of the removal period. As a conse-
quence, future analyses should include a procedure involving successive
iterations using the temperature distributions at the end of the previ-
ous removal period as the 1initial condition for the next storage
period. This increased rigor will also permit the identificatioa of the
cause for another interesting operating characteristic. It should be
recalled that the wmajority of the counterflow systems optimized
destroyed more thermal availability in the wmaterial during the storage
period than during the reuwoval period. Given that the fluid mass
velocities;, heat transfer coefficients, and physical geometry were the
same for both periods, the most plausible explanation is that there are
ditferent time averaged, material-fluid temperature differences for the
storage and removal periods. The iterative execution sequence described
above would determine if the characreristic is caused by incorrect stor-
age material temperatures during the storage period or is a valid con-
sequence of the lower entering fluid temperature and severe storage
material temperature gradient during the removal period.

The accuracy of the results for a given design case were verified
by showing that changes in the final value of the optimization variables
produced higher values for the figure of wmerit, N,. To accomplish this,
(n—-1) of the n optimization variables were fixed at the value determined

by GRG2 during the original optimization. The value of the remaining



optimization variable (i.e., the nth variable) was then varied and the

behavior of the figure of merit observed. 1If it increased for all but
the original optimum value, then the original value was shown to be a
minimun.

This procedure was executed for six uncoanstrained, counterflow de-
sign cases, which represented a cross section of the design variables
utilized for the study. The design variables for each case as well as
an indication of how the original optimization was terminated is summar-~
ized in Table 4.17. The termination data are presented now but will be
discussed later. The results of this verification procedure are summar-—
ized in Figures 4.18, 4.19, and 4.20. Figure 4.18 is for the iteration
where only G: was varied, Figure 4.19 where only Bi, was varied, and
Figure 4.20 where only Fo, was varied. Each figure shows a plot of the
figure of merit as function of the particular optimization variable be-
ing varied. The original optimum point for each case appears as a large
asterisk. ©Each figure also shows a vertical line which represents the
initial value of the variable {(i.e., first guess for the optimum value)
that was used in the original optimizatrion.

An examination of these results for each optimization variable
shows that the value of the figure of merit either iacreased away from
each original optimum value or gradually increased or decreased through
the original optimum value. We conclude that GRG2 was successful in
locating a minimum value or, at least, a value in a “"minimum region”
where the figure of merit was changing only slightly. The insensitivity
of GRG2 1in these "minimum regions” 1is attributed to two causes; the in-
tense nuwmerical nature of the problem and the step size that GRGZ used

to calculate the partial derivatives of the figure of merit.



Table 4.17.

Summary of unconstrained, counterflow design cases

used to verify the accuracy of the optimization results

Sxn T VT Tarmipetion e

1 0.50 2.0 0.01 Pl Kuhn—Tucker criteria met

2 0.50 3.0 0.05 1.3 Could not £ind 2 better point

3 0.05 2;0 0.01 1.1 No change in three {3) successive

evaluations

4 0.05 3.0 0.05 1.3 Kuhn—-Tucker criteria met

5 0.005 3.0 0.05 1.3 Kuhn-Tucker criteria met

) 0.005 2.0 0.01 1.1 No change in three {3) successive

evaluations

g%l
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Calculating a value for the figure of merit requires a large number
of individual calculations. For bhoth the storage and removal periods
there are a series of 59 transient temperature calculations. Within
each time ioncrement there are both one and two-dimensional integra-
tions. At the end of each period there are additional one-dimensional
integrations. As previously explained GRGZ was required to calculate
objective function partial derivatives with the same routine which cal-
culated a value for the figure of merit, using a fixed increment size.
Given these circumstances it is reasonable to expect that “"small"” step
sizes would partially obscure any real changes in the value of the
figure of merit because of the errors propagated through the large
number of individual caleculations that had to be performed.

An example of this type of behavior can be seen in case numbers
four and five. GRG2 terminated these runs with its most rigorous status
message; that the final polnt meet the Kuhn~-Tucker criteria. Kuhn~-
Tucker are a set of conditions which indicate that a true local minimnum
point has been found within the tolerance specified by the user. How-
ever, an examination of the results shown in Figures 4.18 through 4.20
indicate that final values of GZ and Fog, can be changed and further re-
duce the value of the figure of merit. Since the termination tolerance
specified for these runs was 1.0 x 10™* and reductions in the figure of
merit greater than this could have been achieved, we conclude that the
increment size used to calculate the partial derivatives was of such a

size as to obscure the real change in the figure of merit.
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Case two illustrates the effect of beginning an optimization run
with improper initial values of  the optimization variables. As previ~-
cusly explained, a set of initial values for the optimizations variables
was defined during the verification effort and used for all subsequent
design cases. As the data in Figures 4.18 through 4.20 shows, using
this set for case two resulted in values of the figure of merit in a
region of the surface with little sensitivity to Big or Fog. As a re-
sult, GRGZ2 could not find a better point after nine complete optimiza-
tion iterations and terminated.. Although a small step size certainly
contributed to the inability of GRG2 to determine which direction to
proceed, this result is primarily due to poor initial values for the
optimization variables.

We conclude that GRGZ2 is capable of optimizing large, complicated
problems but requires considerable preparation to operate properly.
Prior to a run it is necessary to specify appropriate initial values for
the optimization variables, to define an appropriate incremental length
to calculate partial derivatives, and to have correctly scaled the
problem. Since each of these requirements can change between problems,
and even between cases for the same problem, we also conclude that GRG2
is somewhat problem specific and should be reprepared when significant

changes occur in the problem statement.
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5. CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis and results presented, the following obser-—
vations, conclusions, and recommendations can be made about the design
and operation of sensible heat thermal energy storage systems that have
been optimized to minimize entropy production.

a. The entropy generation attributable to material conduction is a
major contributor to the total thermal irreversibilities associated with
the operation of sensible heat storage unit. Over the range of vari-
ables examined, this contribution accounted for between 26.% and 60.% of
the total thermal availability destruction that occurred during a com~
plete storage—-removal cycle.

b. The storage material geometry, specifically the storage element
aspect ratio, V+, has a significant impact on the optimum design of
these types of systems. The effect of v" on the value of N. is exceeded
only by that of the fluid mass velocity, Te

c. The counterflow configuration without a dwell period operates
more efficiently than the parallel flow configuration, with or without a
dwell period. Dwell periods in general were shown to be impractical be-
cause of their extreme length and their negative impact on the figure of
merit. Depending on the value of T,y 2 dwell period increased (over the
corresponding counterflow design) the total thermal entropy generated
from 12.% to 67.%.

de The thermodynamic efficiencies of these types of storage sys-
tems are extremely poor, in that over the range of variables examined in
this study, they destroyed from 20.%Z to 82.% of the entering thermal and

pressure availability.
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e, The optimum figure of merit 1is relatively insensitive to
changes 1n the size (NTU) of the storage unit, but this insensitivity is
a strong function of Tge This agrees with the results of Krane
[46,47]. Operation slightly away from an optimum size should be consid-
ered carefully, however, because of the large increases in total thermal
and pressure availability destruction that can accompany such moves.

These specific results can be generalized to give a generic set of
design guidelines for the type of storage uhit examined in this study.
First, anyone wanting to specify a conceptual design of a storage system
that minimizes entropy generation should consider only counterflow units
that operate without a dwell period. The following guidelines should
then be followed to define a étarting point for the design optimization
study:

a. Nominal values for T and V¥ on the order of 0.05 and 0.05 re-
spectively should bg utilized. These values were shown to produce the
most reasonably sized systems.

bs. Values of 2.0, 0.15, and 6.0 should be used as the starting
values for the optimization variables Fos, ‘G;, and Bis respectively.
These values are representative of all the optimum values at or near the
nominal value of T defined above and as such are excellent starting
points for a design procedure.

The secondary purpose of this study was to demonstrate that it was
practical to counduct a sophisticated design optimization study using in-
dividual temperature and pressure entropy generation terms. The results
presented herein show that such procedures are indeed workable and pro-

vide consistent results. There are, however, two comments concerning
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the mathematical wodel and optimization program that are pertinent to
future studies:

a. The assumption of a uniform initial material temperature for
the start of the storage period was shownm to be not representative of
the physical situation. Large temperature gradlents were found to exist
in the storage material at the end of the removal period. The
mathematical wmodel and its execution should be wmodified in future
studies to iInclude the effects of these large gradients.

be The ability of the GRG2Z optimization program to find wminimum
values of the figure of merit was acceptable given its intensely numer-—
ical nature but required considerable preparation to use. Future
studies should either limit the range of design variables examined or
ensure that GRG2 1s reprepared when wmajor changes are made in the

problem description.

Recommendations for Future Study

The results of this study have also identified areas for future
study. These 1include analyses of heat transfer augmentation devices,
the operation of several storage units in series, and a design optimiza-
tion constrained by economic considerations. These were previously
identified as prospective areas for study by Bajan [14] and Krane [46]
and their validity has been re-established by this study.

For nominal values of the fluid mass velocity (i. e. T, 0.05), a
significant fraction of the total entropy generated during a storage~
removal cycle occurs as a result of heat transfer through finite temper-

ature differences rvather than viscous friction. Relatively simple
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design changes however have the potential to significantly reduce the
effects of two such mechanisms: convective heat transfer within the
flowing fluid and convective heat transfer between the exiting hot fluid
and the surroundings.

a. Convective heat transfer between the flowing fluid and the
storage material accounted for between 24.% to 36.%Z of the thermal ir-
reversibilities generated during a complete cycle. Heat transfer aug-
mentation devices have the potebtial to reduce the fluid-material tem—
perature difference and thus decrease the entropy generation attribut-—
able to this mechanism. The effect that these devices might have on the
other entropy generation mechanisms 1is not clear. In any event, their
net effect on the optimum design and operation of these types of storage
units should be established in some future study.

b. Thermal availability destroyed as a result of the discharged
hot fluid reaching equilibrium with the environment accounted for as
much as 67.% of the thermal irreversibilities generated during the stor-
age period. This destruction could be greatly reduced by connecting
several storage units in serlies. With this flow arrangement, the avail~-
ability coatained in the exiting hot fluid of the first unit would not
be destroyed but would be the availability source for subsequent
units. Thus, an investigation to determine the optimum number of units
and their operation should be carried out.

As pointed out by Krane [46], the optimum design and performance of
a sensible heat storage unit must eventually be defined in econounic

terms. Given the progress made by this and previous studies [14,46,47]
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in defining fundamental, optimum, operating characteristics, it 1is rec—
ommended that future studies concentrate less on the effects of T and
define optimum systems for some nominal mass velocity as a function of
both econowic considerations and the material aspect ratio, vt.  This
variable was shown to have a significant impact on the optimum design,
and 1its effect should be defined in greater detail. Futhermore, it is
recommended that any economic criterion be treated as coamstraints on the
optimum design rather than as the objective function to be minimized.
This has the benefit of allowing a range of constraints, such as differ-
ent 1initial capital costs, to be considered. This approach will also
provide data to quantify Bejan's definition of an optimal thermal sys—

tem; namely "the least ifrreversible system that a designer can afford.”
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APPENDIX A

ENTROP SUBROUTINE GLOSSARY, PROGRAM LISTING,

AND SAMPLE OUTPUT
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The following is a glossary of the names and functions of the sub-~
routines in the ENTROP program. They arvre listed in the same order that
they occur and a listing of the program and some typical outnut is also
included. Although mentioned in the body of the report, it should be
repeated here that the subroutines DECOMP, DGBFA, DAXPY, DSCAL, TIDAMAX,
DGBSL, and DDOT were not written by the author but taken from the CORLIB

public domain computer library.

GCOMP: This is ENTROP's primary subroutine aund the interface to the
GRG2 optimization program. It contains the routing to conduct
the five most basic calculations. The only calculation it per—
forms itself, besides initializing data arrays, is the figure
of merit. This subroutine contains the instructions steps
illustrated in Figure 3.1. ‘

Bl1B2: Calculates the Bl and B2 coefficients of the discretized ma=-
terial conduction equations. These coefficients are defined in
Appendix B.

GUTS: Performs the routing and calls to calculate the fluid-material
transient temperature response for one time increment. This
subroutine contains the iterative sequence illustrated in
Figure 3.2. ’

CUONST: <(Calculates the discretized material conduction equation con-
stant array for each time period.

DECOMP: Decomposes the wall temperature polynomial curve fit coeffi-
cient array by a gaussian elimination procedure.

DEFINE: Defines the coefficient array for the discretized material con-
duction equations and stores this array in DGBFA and DGBSL's
working matrix.

DGBFA: Factors the discretized material conduction equation set work-
ing matrix using a gaussian elimination procedure,

DAXPY: Performs a vector operation needed by the DGBFA and DGBSL sub-
routines. It multiplies a constant times a vector, then adds
the results to a second vector.

DSCAL: Performs a vector operation needed by DGBFA. It scales a
vector by a constant.



IDAMAX:

DGBSL:

DDOT :

ONEDIM:

SGEN:

SOLVE:

SWAP:

TBAR:

TFLINT:

TFLCRV:
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Performs a vector operation neaded by DGBFA, It finds the
index of an element having the maximum absolute value.

Solves the banded system, A*X=B using the factors supplied by
DGBFA.

Performs a vector operation needed by DGBSL. It forms the dot
product of twe vectors.

The 1interpolation routine used to determine material wall tem-
peratures as a part of the fluid temperature solution pro-
cedur e.

Performs the one-dimensional 1integration of discrete data
points. This routine 1is used to integrate rates (i.e., per
unit length) of entropy generation along the flow channel dur-
ing a given time increment and alse the rvates of material,
fluid, and exiting fluid entropy generation at the end of the
storage, dwell, and removal periods.

Calculates the material, fluid, and existing fluid rates of en-
tropy generation for each of the material and fluid nodes, for
each time increment.

Solves the linear system A*X=B. Tt is used to calculate the
coefticlents of the wall temperature polynomial curve fit. In
this system, A is the curve fit equation set coefficient matrix
(that is the summation of the length terms), X is the unknown
coefficient matrix, and B is the matrix of known nodal temper—
atures at the storage mater.dals coavective boundary.

Initializes the material temperature array at the start of each
iteration during the fluid temperature solution procedure. Tt
initializes the material temperature array using the solution
from the previous time step. It is also called prior to the
removal period and 1if a two—dimensional wmaterial temperature
distribution is desired. If a pacrallel flow arrangement is re-
quired, it merely 1initializes the array. 1f a counterflow ar-
rangement is required, it "swaps” the horizontal elements of
the temperature array.

Calculates an average storage material temperature using all
the nodal temperatures.

Solves for the fluld temperatutes using a fourth-order Runge-
Kutta technique. This particular routine determines the wall
temperatures using the interpolation technique.

Solves for the fluid temperatures using a fourth-order Runge-
Kutta technique. This routine uses the results of the poly-
nomial curve fit to calculate the wall temperatures.



THCHW

TWLCRV :

TWODIM:

WCHNDE :

WHCH:

WHCHT:

WRTO1:

REPORT:
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Calculates the coordinate location, that is the (i,j) position,
of a material node given that nodes unique number.

Performs the second—order polynomial curve fit of the wall tem—
peratures., This routine develops the coefficient and constant
matrix as a function of the number of nodes in the X direction,

Performs a two~-dimensiconal integration of discrete data
points. It integrates the rates (i.e., per unit volume) of en~
tropy generation at each of the nodes during each time incre-
ment. :

Determines which particular coefficient array element 1s being
defined in the DEFINE subroutine. It then initializes the ap-—
propriate coefficient for that element.

Using an (i,j) pair, this routine identifies nodal points by
type; such as the (1,1) corner or the Y=0 face.

Determines a unique nodal number for a given (i,j) location.
Writes out a spacially correct material temperature field.

Writes the program output. Although written by the author, it
is called by GRG2 at the completion of an optimization run.
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SUBROUTINE GCOMP (G,X)
PROGRAM AND FILE NAME IS ENTROP.

PROGRAM TO CALCULATE ENTROPY GENERATION CHARACTERISTICS OF A
SENSIBLE HEAT THERMAL ENERGY STORACE DEVICE. IT WAS INITIALLY
CONSTRUCTED BY M.J. TAYLOR DURING 1985.

THE FOLLOWING IS A BRIEF SUMMARY OF THE DATA REQUIRED

PER RUN, IN INTERPRETING THIS DATA YOU SHOULD KEEP SEVERAL
THINGS IN MIND. THESE ARE: (A) ALL AMOUNTS ARE DIMENSIONLESS,
(B) AN "EXCESS” 1S DEFINED AS AN AMOUNT DIVIDED BY EITHER THE
AMBIENT TEMPERATURE OR AMBIENT PRESSURE.

BID (R); BIOT NUMBER FOR DISCHARGE PERIOD

BIS (R); BIOT NUMBER FOR STORAGE PERIOD

CLOSE (R); TEMPERATURE CONVERGENCE CRITERIA

FIPXD (R); FLUID INLET PRESSURE EXCESS FOR
THE DISCHARGE PERIOD

FIPXS (R); FLUID INLET PRESSURE EXCESS FOR
THE STORAGE PERIOD

FITXD (R); FLUID INLET TEMPERATURE EXCESS FOR
THE DISCHARGE PERIOD

FITXS (R); FLUID INLET TEMPERATURE EXCESS FOR
THE STORAGE PERIOD

FNDM (R); TOTAL ELAPSED STORAGE TIME.

GPLSD (R); G "PLUS™ VARIABLE FOR DISCHARGE PERIOD

GPLSS (R); G "PLUS" VARIABLE FOR STORAGE PERIOD

IDIST (1); WHETHER OR NOT A 2-D MATERIAL TEMPERATURE
IS DESIRED FOR THE START OF THE DISCHARGE
PERTOD:
1= UNIFORM TEMPERATURE DESIRED
2= 2-D DISTRIBUTION DESIRED

IGEOM (I); GEOMETRY BEING ANALYZED:
1= FLAT SLAB
2= HOLLOW CYLINDER

[WHCH (I); METHOD TO DETERMINE WALI. TEMPERATURES
DURING FLUID TEMPERATURE SOLUTION:
1= CURVE FIT
2= INTERPOLATION

ISWAP (I); WHETHER OR NOT HORIZONTAL MATERIAL
TEMPERATURE FIELD IS SWAPED PRIOR TO
DISCHARGE PERTIOD:

= DO SWAP
2= DON'T SWAP
M (1); NUMBRER OF NODES IN THE Z DIRECTION.

MITX (R); INITIAL MATERIAL TEMPERATURE EXCESS
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N (1); NUMBER OF NODES IN THE Y DIRECTION.

NTMSS (L); NUMBER OF INCREMENTS FLAPSED TIMES ARE
BROKEN UP INTO

RUOVRCP (R); GAS CONSTANT/ SPECIFIC HEAT FOR THE
FLOWING FLUIDS. ONLY ONE VALUE IS USED
FOR BOTH STORAGE AND DISCHARGE PERIODS.

VPLS (R); 1/2 THICKNESS/LENGTH RATIO OF THE STORAGE
MATERIAL.

IMPLICIT REAL*3(A-H,0~Z)

INTEGER*2 INIT

REAL*8 IMT,MITX,NDFITS,LRGEST,NDFLTD,NSUBS ,NDFIPS,NDFIPD,
NTUS ,NTUD,MDOTS ,MDOTD , MRAT , MATSTR ,MATSS ,MATDB ,MATDE
DIMENSION ZDIST(10),TFL(10),B(100),TWL(10),AVLM(100),
AVLFL(100) ,AVLEXT(100) ,TMIST(100),G(2) ,X(4),AUMTMP(100),
FLEXS(100),FLDS(10) ,MATSTR{100) ,AVLMS(100) ,AVLFS(100),
AVLES(100) ,AVGTSS(100) ,BGHTMP(100) ,APRSS(100),
AVLMSS(100),FLDSS(10) ,MATSS(100) ,MATDB(100) ,FLDB(100),
TAVG(100) ,AVLMD(100) ,AVLFD(100) ,MATDE(100) ,TFLDB(10),
TFLDE(10) ,AVLED(100)
COMMON/RESULT/M,N, LGEOM, ISWAP,IDIST,IWHCH,KCSS, 155 ,KL,
KCDS,IDS,LM,FITKS ,FITXD ,MLTX,

MDOTS ,MRAT ,VPLS ,WPLS ,ROVRCP , TKRAT , PR, CLOSE ,IMT, FNUM,DFOST,
NDFITS,FIPXS,NDFIPS,BIS,GPLSS,NTUS,REYSTO, TOPT, STOMAT , STOFLD,
STOEXT,STORSM,ETSS,ABSS ,DFCSS,AVLSS ,ETDS ,ABNS,

DFOD ,NDFITD,FIPXD,NDFIPD,BID,GPLSD ,MDOTD,NTUD,

REYDIS ,DISMAT,DISFLD,DISSUM,TPL,TP2,BTMl,BTM2 ,ALPHA,NSIUBS,
FSTCMP ,LRGEST ,DISEXT ‘
COMMON/DIM/AVMTMP , FLEXS ,FLDS ,MATSTR ,AVLMS ,AVLFS,AVLES ,AVGTSS,
HGHTMP ,APRSS ,AVLMSS,FLDSS,MATSS ,MATDB,TAVG, FL.DD, AVLMD,
AVLFD ,MATDE ,TFLDB,TFLDE ,AVLED

COMMON/ INITBK/INIT

READ 1INPUT DATA THEN 1NIT[LI7E SOME GLOBAL CONGTANTS
THAT NEVER CHANGE

LFCINIT.EQ.L) READ(5,970) NTMSS,IDIST,M,N,IGEOM,IWHCH,ISWAP
IF(INIT.EQ.1) READ(5,980) PR,FITXS,FITXD,VPLS,MRAT,MDOTS,
MITX,ROVRCP,CLOSE

GPLSS=X(1)/1.D+4

BLS=X(2)/1.D+2

FNUM=X(3)/1.D+2

IMT=(MITX~1.D+0)/ (FITXS~1.D+0)

NDFLTS=1.D+0

NDFIPS=1.D+0

NTUS=GPLSS*BIS/VPLS

A=PR** 667

C=NDFITS*(FLTXS~1.D+0)+1.0+)

D=MDOTS**2
FIPXS=((+1.D+0)+DSORT(1.DB+0+4 . D+O* AXNTUS*C*D) ) /2 .D+0
DBUG=0 . D+0
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DY=1.D+0/ (N~1.D+0)
DZ=1.D+0/(M~1.D+0)

MN=M*N

1¥(DBUG.GT.0.D+0) WRITE(6,1000)
1F{DBUG.GT .0 .D+0 .AND.MN.NE.81) WRITE(6,1010)
1F(DBUG.GT.0.D+0.AND.MN.NE.81) GO TO 9999
ML=N

MU=N

MM=MLAMU+ 1

LDA=2%ML+MU+1

DO 10 I=1,M

ZDIST(I)=DZ*(1-1)
DFOST=FNUM/NTMSS

DO 20 I=1,N

DO 20 J=1,M

TWL(J)=0.0D+0

TFL(J)=1.D+0/J

N1=I+(J~1)*N

B(NL)=IMT

TFL(1)=NDFITS

DO 30 I=1,100

AVLM(I)=0.0D+0

AVLFL(L)=0.0D+0
AVLEXT(I)=0.0D+0

START ACTUAL STORAGE PERIOD

MODE=1

IF(DBUG.GT.0.D+0) WRITE(6,990) MODE

CALL B1B2 (IGEOM,DFOST,VPLS,DZ,DY,B1,B2)
1F(DBUG.GT.0.D+0) CALL WRTO!l (TFL,B,M,N,MN)

JK=1

LCNT=JK

CALL GUTS(M,N,MN,MU,ML,MM,LDA,BIS,DY,BLl,B2,1CNT,
IWHCH , TFL,MODE,ZDIST,GPLSS,VPLS,DZ , TWL,B,0.D+0)
CALL SGEN{VPLS,BIS,FITXS,N,M,MN,TFL,B,DY,DZ,TWL,
MODE, 0 .D+0 ,AVLM(JK) , AVLFL(JK) ,AVLEXT(JK))

FLEXS (JK)=TFL(M)

CALL TBAR(M,N,MN,B,AVMIMP(JK))

1F(JK.LE.10) CALL WRTOL(TFL,B,M,N,MN)

AVLMS (JK)=AVLM(JK)

AVLFS(JK)=AVLFL(JK)

AVLES(JK)=AVLEXT(JK)

JK=JK+1

IF(JK.GT.NTMSS) GO TO 150

GO TO 100

IF(DBUG.GT.0.D+0) CALL WRTOL(TFL,B,M,N,MN)

DETERMINE AVERAGE MATERIAL TEMPERATURE AND AMOUNT OF
ENTROPY GENERATED DURING STORAGE PERIOD
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DO 160 JJ=1,M

FLDS(JJ)=TFL(JJ)

CALL SWAP(M,N,MN,2,B,MATSTR)

TRGET=DFOST

CALL TBAR(M,N,MN,B,TOPT)

CALL ONEDIM(0.D+0,DFOST,AVLM,NTMSS, STOMAT)
CALL ONEDIM(O.D+0,DFOST,AVLFL,NTMSS,STOFLD)
CALL ONEDIM(0.D+0,DFOST,AVLEXT ,NTMSS,STOEXT)
STOMAT=STOMAT/VPLS

STOFLD=(BLS/VPLS)*STOFLD
STOEXT=STOEXT/GPLSS
STORSM=STOMAT+STOFLD+STOEXT
IF(DBUG.GT.U.D+0) WRITE(6,1020) STOMAT,
STOFLD,STOEXT,TOPT

DETERMINE IF A 2-D OR UNIFORM TEMPERATURE IS DESIRED FOR
THE START OF THE STORAGE CYCLE AND ACT ACCORDINGLY

IF(IDIST.EQ.2) AVLSS=0.D+0

IF(IDIST.EQ.2) CALL SWAP(M,N,MN,ISWAP,B,TMINT)

IF(IDIST.EQ.2) GD TO 550

AT THIS POINT WE KNOW A UNIFORM TEMPERATURE IS REQUIRED

PRIOR TO THE START OF THE DISCHARGE PERIOD.

THE FOLLOWING

LOGIC

DETERMINES THE APPROXIMATE TIME REQUIRED TO REACH STEADY STATE.

LRGEST=0,D+0

DO 200 I=1,N

DO 200 J=1,M

N1=1+(J~1)*N

IF (B(N1).GT.LRGEST) NCNT=N1

IF (B(Nl).GT.LRGEST) LRCGEST=B(NI1)
IF(DBUG.GT.0.D+0) WRITE(6,1025) LRGEST,NCNT

IF(DABS((LRGEST~TOPT)/TOPT) .LE.CLOSE) AVLSS=0.D+0
LF(DABS{ (LRGEST-TOPT)/TOPT).LE.CLOSE) GO TO 510

KCSS=0

I8s=1

MODE=2

IF(DBUG.GT.0.D+0) WRITE(6,990) MODE
ETSS=0.D+0

DFO=TRGET

CALL SWAP(M N MN,2,B,TMINT)
IF(DBUG.GT.0.D+0) CALL WRTOl (TFL,B,M,N,MN)
CALL B1B2 (IGEOM,DFO,VPLS,DZ,DY,B1,B2)
ICNT=188

ETSS=ETSS+DFO

CALL GUTS(M,N,MN,MU,ML,MM,LDA,0.D+0,DY,Bl,B2,

ICNT,

LWHCH , TFL ,MODE , ZDIST,GPLSS,VPLS, DZ ,TWL,B,0 . D+0)

ABSS=( B(NCNT)~TOPT)/TOPT
IF(ABSS.LE.CLOSE) GO TO 300
188=18S+1
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IF(ISS.GT.20) GO TO 260

GO TO 250

KCSS=KCSS+1

IF(KCSS.GT.100) WRITE(6,1030)ABSS

IF(KCSS.GT.100) STOP

DFO=DF0*2 .D+0

ISs=1

GO TO 240

IF(DBUG.GT.0.D+0) WRITE(6,1050) KCSS,ICNT,ABSS,ETSS
IF(DBUG.GT.0.D+0) CALL WRTOl (TFL,B,M,N,MN)

USING THIS APPROXIMATE TIME, DETERMINE ENTROPY GENERATED
DURING APPROACH TO STEADY STATE.

MODE=3

IF{DBUG.GT.0.D+0) WRITE(6,990) MODE

KL=1

DFOSS=ETSS/NTMSS

CALL B1B2 (IGEOM,DF0SS,VPLS,DZ,DY,B1,82)
CALL SWAP(M,N,MN,2,TMINT,B)
[F(DBUG.GT.0.D+0) CALL WRTOl (TFL,B,M,N,MN)
LCNT=KL

IRMN=MOD(ICNT,2)

CALL GUTS(M,N,MN,MU,ML,MM,LDA,0.D+0,DY,Bl,B2,ICNT,IWHCH,
TFL ,MODE,ZDIST,GPLSS,VPLS,DZ ,TWL,B,0.D+0)
CALL SGEN(VPLS,0.D+0,FITXS,N,M,MN,TFL,B,DY,DZ,TWL,
MODE,0.D+0 , AVLM(KL) ,AVLFL(KL) ;AVLEXT(KL))
AVLMSS(KL)=AVLM(KL)

HGHTMP( KL )=B{NCNT)

CALL TBAR(M,N,MN,B,AVGTSS(KL))

AB={ B(NCNT )-TOPT)/TOPT

APRSS(KL)=AB

LF(DBUG.GT.0.D+0) WRITE(6,1055) AB
IF(AB.LE.CLUSE.AND.IRMN.EQ.1) GO TO 500
KL=KL+1

IF(KL.EQ.100) WRITHE(6,1070)

IF(KL.EQ.L00) STOP

GO TO 400

CALL ONEDIM(U.D+0,DFOSS,AVLM,KL,AVLSS)

Do 170 KM=1,M

FLDSS(KM)=TFL{(KM)

CALL SWAP(M,N,MN,2,B,MATSS)
AV1.8S=AVLSS/VPLS

IF(DBUG.GT.0.D+0) WRITE(6,1065) AVLSS
IF{DBUG.GT.0.D+0) CALL WRTOl (TFL,B,M,N,MN)
DO 525 I=1,N

DU 525 J=1,M

NL=I+(J~1)*N

TMINT(N1)=TOPT

STORSM=STORSM+AVLSS



o e I

@]

PPN

600

64y
650

660

680

173

NOW WE WANT TO START THE DLSCHARGE PERIOD. BEGIN BY
INITIALIZING SOME VARTABLES.

FIPXMI=FIPXS~1.D+0

NDFITD=( FITXD~1.D+0)/(FITXS-1.D+0)
E=(FIPKMI+1.D+0)/FLIPXML

MDOTD=MDOTS*MRAT
C=NDFITD*(FITKS~1.D+0)+1.D+0
GPLSD=GPLSS/MRAT

BID=BIS*MRAT

NTUD=GPLSD*BID/VPLS

FIPXD=1.,D+0+DSQRT{ (A*NTUD*C*MDOTD**2 .D+0) /E)
NDFIPD=(FIPXD~1.D+0)/(FIPXS~1.D+0)
I1F(DBUG.GT.0.D+0) WRITE(6,1072) NDFITD,NDFIPD
TFL{1)=NDFLTD

TWL(1)=0.D+0

DO 600 J=2,M

KK=J~1

TWL(J)=0,D+0

TFL(J)=TFL(KK)+NDFITD/J

KCDS=0

IDS=1

MODE=4

IF(DBUCG.GT.0.D+0) WRITE(6,990) MODE
ETDS=0.D+0

DFO=TRGET

CALL SWAP{M,N,MN,2,TMINT,B’
[F(DRUG.GT.0.D+0) CALL WRTOl (TFL,B,M,N,MN)
CALL BIB2 (IGEOM,DFO,VPLS,DZ,DY,Bl,B2)
LCNT=IDS

ETDS=ETDS+DFO

CALL GUTS{M,N,MN,MU,ML,MM,LDA,BID,DY,Bl,B2,ICNT,
IWHCH,TFL ,MODE, ZDIST,GPLSD,VPLS,DZ ,TWL,B,0.D+0)
CALL TBAR (M,N,MN,B,AVGT)
ABDS=(AVGT~IMT)/ IMT

IF(ABRDS.LE.CLOSE) GO TO 680

IDS=1DS+1 :

IF(IDS.GT.20) GU TO 660

GO TO 650

KCDS=KCDS+1

LF(KCDS.CT.100) WRITE(6,1075)ABDS
IF(KCDS.GT.100) STOP

DFO=DFO*2 .D+0

IDS=1

GO TO 640

IF(DBUG.GT.0.D+0) WRITE(6,1050) KCDS,ICNT,ABDS,ETDS
IF(DBUG.GT.0.D+0) CALL WRTO! (TFL,B,M,N,MN)

USING THIS APPROXIMATE TIME, DETERMINE ENTROPY GENERATED
DURING DISCHARGE PERIOD
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MODE=5

IF(DBUG.GT.0.D+0) WRITE(6,990) MODE

LM=1

DFOD=ETDS/NTMSS

CALL BIB2 (IGEOM,DFOD,VPLS,DZ,DY,Bl,R2)
CALL SWAP(M,N,MN,2,TMINT,B)
IF(DBUG.GT.0.D+0) CALL WRTOl (TFL,B,M,N,MN)
DO 710 LML=1,M

TFLDB(LML )=TFL (LML)

CALL SWAP(M,N,MN,2,B,MATDB)

ICNT=LM

TRMN=MOD(ICNT,2)

CALL GUTS(M,N,MN,MU,ML,MM,LDA,BID,DY,Bl,B2, ICNT,IWHCH,
TFL,MODE,ZDLST,GPLSD,VPLS,DZ,TWL,B,0.D+0)
CALL SGEN(VPLS,BID,FITXS,N,M,MN,TFL,B,DY,DZ,TWL,
MODE,0.D+0 ,AVLM(LM) ,AVLFL(LM) ,AVLEXT(LM))
AVLMD( LM)=AVLM(LM)

AVLFD(LM)=AVLFL(LM)

AVLED(LM)=AVLEXT(LM)

FLDD(LM)=TFL(M)

CALL TBAR(M,N,MN,B,TAVG(LM))
IF(DBUG.GT.0.D+0) WRITE(6,1053) TAVG(LM)
AB=(TAVG(LM)-IMT)/IMT

IF{DBUG.GT.0.D+0) WRITE(6,1055) AB
IF(AB.LE.CLOSE.AND,IRMN.EQ.1) GO TO 750
LM=1LM+1

IF(LM.EQ.100) WRITK(6,1080)

IF(LM.EQ.100) sTOP

GO TO 725

TF(DBUG.GT.0.D+0) CALL WRTOL(TFL,B,M,N,MN)
DO 760 LMM=1,M

TFLDE(LMM)=TFL(LMM)

CALL SWAP(M,N,MN,2 B ,MATDE)

DETERMINE AMCUNT OF ENTROPY GENERATED DURING DISCHARGE PERIOD

CALL ONEDIM(U.D+0,DFOD,AVLM,LM,DISMAT)

CALL ONEDIM(0.D+0,DFOD,AVLFL,LM,DISFLD)

CALL ONEDIM(O.D+0,DFOD,AVLEXT,LM,DISEXT)
DISMAT=DISMAT/VPLS

DISFLD=(BID/VPLS)*DISFLD

DISEXT=DILSEXT/GPLSD

DISSUM=DISMAT+DISFLD

IF(DBUG.GT.0.D+0) WRITE(6,1085) SUMMAT,SUMFLD,DISSUM

DETERMINE FIGURE OF MERIT FOR THIS CYCLE
TP1={1.D+0/GPLSS)*ROVRCP*DLOG(NDFIPS*(FLPXS~1.D+0)+1.D+0)

*FNUM
TP2=(1.D+0/GPLSD)*ROVRCP*DLOG(NDFIPD*(FIPXS~1.N+0)+1.D+0)
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*  ADFUDFLM
TERMI=NDFITS*{FITXS~1.,D+0)
TERM2=NDFITD*{ FITXS—1.D+0)
BTML=(1.D+0/GPLSS)*(TERM! ~DLOCG(TERML+1.D+0) Y *FNUM
BTM2=(1.D+0/GPLSD )*(TERM2~DLOG( TERMZ+1 .D+0) )*DFOD*LM
TOP=TPI+TP2
BTM=BTMI+BTM2
ALPHA=TOP/BTM
NSUBS={ ALPHA/ (ALPHA+1.D+0) )+ (1 ., D+0/ (ALPHA+ L .D+0) )%
% ((STORSM+DISSUM)/BTM)
G(1)=NSUBS5

DETERMINE FIRS5T LAW COMPARLSON FOR THIS CYCLE., ONLY APPLIES
TO THE STORAGE PORTION OF THE CYCLE

FSTCMP=(TOPT~IMT )/ (NDFITS~IMT)
IF{DRUG.CT.0.D+0) CALL REPORT

FORMAT STATEMENTS FOR THIS ROUTINE

970 FORMAT(10X,12)
980 FORMAT(11X,B11.6)
990 FORMAT(/ /10X, "MODE= ',12)
Y95 FORMAT(S5X, "MODE= ' ,13,2X, *ICNT= *,13,2X,'TOPT= ',D16.10)
1000 FORMAT(//25X,'FROM MAIN')
1010 FORMAT(5X, NOT A 9X9 MATRIX. EXECUTION TERMINATED')
1020 FORMAT(5X,'STURSM= " ,D20.10/5X, ' SUMMAT= ', D20.10/
*  5X, "SUMFLD= ',D20.10/5X, 'SUMEXT= ',D20.10/5X%,
¥ TTOPT= ' ,D20.10)
1025  FORMAT(5X, "LRGEST= ',D20,10/5X, 'NCNT= ',13)
1030  FORMAT(5X,'UNABLE TO GET PROPER STARTINGC POINT FOR STEADY
*  STATE ITERATION.'/S5X,'EXECUTION TERMINATING')
1040  TFORMAT{S5X,'STEADY STATE LTERATION WILL NOT CLOSE'/SX,
* 'EXECUTION TERMINATING.')
1050  FORMAT(5X,'KCOI= ' ,15/5X,"ICNT= ' ,I3/5X,'AB= ',D20.10/
*  5Y,'DFO= ',D20.10)
1053 FORMAT(SX,"TAVG= ' ,D20.10)
1055  FORMAT(5X, *AB= ',D20.10)
1060  FORMAT(5X,'DIFF= ' D20.10)
1065  FORMAT(5X, 'AVLSS= ',D20.10)
LU70  FORMAT(5X,'8S PRIOR TO START OF DISCHARGE CYCLE NOT
* REACHED IN 100 INCRIMENTS.'/5X,'EXECUTION TERMINATING.')
1072 FORMAT(5X,'NDFITD= *',D20,10/5X, NDFIPD= *,D20.10)
1075  FORMAT(5X, 'UNABLE TO GET PROPER STARTING POINT FOR.
*DISCHARGE PERIOD.'/3X,'EXECUTION TERMINATING.'/SX,'ABNS= '
* E16.10)
1080  FORMAT(S5X, "RETURN TO INITIAL MATERIAL CONDITIONS NOT
* REACHED IN {00 INCRIMENTS.'/S5X,'EXECUTION TERMINATING.')
1085  FORMAT(SX, "SUMMAT= ' D20,10/5%, "SUMFLL= ',D20.10/
¥  5X,'DISSUM= ' ,D20.10)
Y999  RETURN
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END
C
c
C
C
C
SUBROUTINE BLB2(I1LGEUM,D¥O,VPLS,DZ,DY,B1,B2)
C
C THIS ROUTINE CALCULATES THE BI AND B2 VARIABLES.
C

IMPLICIT REAL*3 (A-H,0-Z)
IF(IGEOM.EQ.2) GO TO 9999
Bl=(DFO*VPLS*%*2)/(DZ*%*2)
B2=DF0O/(DY*%2)

9999  RETURN
END

[oN®]

OO

SUBROUTINE GUTS(M,N,MN,MU,ML,MM,LDA,BIOT,DY, Bl ,B2,ICNT,
%  TWHCH,TFL,MODE,ZDIST,FLWRT,VPLS,DZ,TWL,B,DBUG)

oo

THIS ROUTINE PERFORMS THE MAJORITY OF THE ROUTING AND
CALCULATIONS FOR THE PROGRAM. IT REALLY IS THE GUTS OF THE
PROGRAM.

Qo a

IMPLICIT REAL*$(A-H,0-Z)

REAL*8 LSTFLU

DIMENSION ABD(28,100),IPVT(100),TMINT(100) ,B(MN),TFL(}M),TWL(M),
*  7DIST(M),BCOF(3),LSTFLU(1O0)

[F(DBUG.CT.U.D+0) WRITE(6,990)

CALL SWAP(M,N,MN,2,B,TMINT)

LF(ICNT.GT.1) GO TO 140

CALL DEFINE(M,N,MN,MU,ML,MM,LDA,BIOT,DY,Bl,B2,ABD)

CALL DGBFA{ABD,LDA ,MN ML, ,MU,IPVT,INFO)

IF(INFO.GT.0) WRITE(6,1112)

I[F(INFO.GT.0) STOP

DEFINE CONSTANT ARRAY FOR THIS TIME PERIOD/FLUID TEMPERATURE
GUESS
AND SOLVE TOR MATERIAL TEMPERATURES.

OO0

ao

140 JCOI=U

150 IF(DBUG.GT.0.D+0) WRITE(6,1000) ICNT,JCOI
DO 400 LJK=1,M

400 LSTFLU(LJK) =TFL( LJK)
CALL CONST(DBUG,N,M,MN,TMINT,B,BIOT,B2,DY,TFL)
CALL DGBSL(ABD,LDA,MN,ML,MU,IPVT,B,0)
[F(DBUG.CT.0.D+0) WRITE(6,1005)
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IF(DBUG.CT.5.D+0) CALL WRTOLI(TFL,B,M,N,MN)
1F(MODE . EQ.2.0R.MODE.EOQ.3) GO TO 9999

SOLVE FOR FLUID TEMPERATURES
DO 200 JK=1,M
N1=N+{JK~1)*N
TWL(JIK)=B({N1)
IF(IWHCH.EQ.2) CALL TFLINT{DBUG,FLWRT,BIOT,VPLS,TWL,
ZDIST M, DZ,TFL)
LF(IWHCH.EQ.1) CALL TWLCRV(DBUG,ZDIST,TWL,M,BCOF)
IF(IWHCH.EQ.1) CALL TFLCRV{DBUG,FLWRT,BIOT,VPLS,BCOF,
ZDIST,M,DZ ,TFL)

SEE LF FLULD TEMPERATURES HAVE CONVERGED.
SUM=0 . 0D+0
DO 300 JK=2,M
SUM=8UM+DABS(TFL(JK)~LSTFLU(JK) )
QUOT=SUM/ (M~1)
LF{DBUG.GT.0.D+0) WRITE(6,1010) QUOT
IF(QUOT.LE.5.D~4) GO TO 8999

S JCOI=JCOI+1

IF(JCOL.GT.45) WRITE(6,2223)

IF(JCOL.GT.45) WRITE(6,2224) MODE,ICNT,QUOT
IF(JCOL.GT.45) STOP

GO TO 150

FURMAT STATEMENTS FOR THILS ROUTINE

FORMAT(//25X, "FROM GUTS")

FORMAT(/5%, " LCNT= ¥ ,12,1X,'JCOI= ', 12)

FORMAT(//5X, "TEMPERATURE SOLUTION FOR THIS ITERATION')
FORMAT(/5X, 'QUOT= ' ,D20.10)

FORMAT(5X, "SINGULAR MATRIX IN MATERIAL TEMPERATURE SOLUTION

*ROUTINE. "/ 5X, "EXECUTION TERMINATED.')

2223

FORMAT(5X, "FLULD TEMPERATUEE ITERATION WILL NOT CLOSE.'/

*5X, 'EXECUTION TERMINATED.')

2224
*

999Y

FORMAT(5X, "MODE= ',13/5X,"ICNT= ',13/3%,

"AVG DLIFFERENCE BETWEEN [TERATIONS= ',D20.10)
RETURN

END

SUBROUTINE CONST(DBUG,N,M,MN,TMINT,8,BIOT,B2,DY,TFL)
THIS ROUTINE DETERMINES THE CONSTANT ARRAY FOR EACH TIME STEP

IMPLICIT REAL*8(A~H,0-2Z)

DIMENSION TFL{(M),B(MN) ,TMINT(MN)
LF(DBUG.GCT,.0.D+0) WRITE(6,1000) ICNT
DO 100 I=1,N
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Cl=0.D+0

IF(L.EQ.N) Cl=1.D+0

DO 100 J=1,M

N1=1+(J—1)*N
B(N1)=={TMINT(N1)+C1*(2.D+0*BIOT*B2*DY*TFL(J)))
IF(DBUG.GT.0.D+0) CALL WRTOL(TFL,B,M,N,MN)

FORMAT STATEMENTS FOR THIS ROUTIKNE

FORMAT(//25X, 'FROM CONST, ICNT= ',13)
RETURN
END

SUBROUTINE DECOMP(NDTM,N,A,COND,IPVT,WORK)

THIS ROUTINE DECOMPOSES A DOUBLE PRECISION MATRIX BY
GAUSSIAN ELIMINATION AND ESTIMATES THE CONDITION OF THE
MATRIX

INTEGER NDIM,N

DOUBLE PRECLSION A(NDIM,N), COND,WORK(N)
INTEGER IPVT(N)

DOUBLE PRECISION EK, T, ANORM, YNORM, ZNORM
INTEGER NM1, I, J, K, KPl, KB, KMl, M
DOUBLE PRECISION DABS, DSIGN

IPVI(N) =1
IF (N .EQ. 1) GO TO 80
NML = N - 1

COMPUTE 1-NORM OF A

ANORM = 0.0DO
DO 10 J = 1, N

T = 0.0D0

DO S I =1, N

T = T + DABS(A(I,J]))

CONT INUE

IF (T .GT. ANORM) ANORM = T
CONTINUE

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

DU 35 K = 1,NMl
KPl= K+l

FIND PIVOT
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M=K
DO 15 1 = KP1,N

1F (DABS(A(I,K)) .GT. DABS(A(M,K))) M =1

CONTINUE

IPVT(K) = M

IF (M .NE. K) IPVT(N) = -IPVT(N)
T = A(M,K)

A(M,K) = A(K,K)

A(K,K) = T

fl

SKIP STEP IF PIVOT IS ZERO
IF (T .EQ. 0.0D0) GO TO 35
COMPUTE MULTIPLIERS
DO 20 I = KP1,N

A(L,K) = -A(I,K)/T
CONTINUE

INTERCHANGE AND ELIMINATE BY COLUMNS

DO 30 J = KPL,N

T = A(M,J)
A(M,J) = A(K,J)
A(K,J) = T

I¥ (T .EQ. 0.0D0) GO TO 30
DO 25 I = KP1,N
A(L,J) = A(1,J) + ACI,R)*T
CONTINUE
CONTINUE

35 CONTINUE

40
45

SOLVE (A~TRANSPOSE)*Y = E

DO 50 K =1, N

T = U.0DO
1IF (K .EQ. 1) GO TO 45
KMl = K-1

DO 40U I = 1, KMI

T =T + A(I,K)*WORK(I)
CONTINUE
EK = 1.0D0
IF (T .LT. 0.0D0O) EK = -1.0DO
IF (A{K,K) .EQ. 0.0DU) GO TO 90
WORK(K) = ~(EK + T)/A(X,K)

50 CONTINUE

DO 60 KB = 1, NMI

- KB

K =N
= 0.0D0

T
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KPl = K+1
DO 55 I = KPL, N
T =T + A(I,K)*WORK(K)
CONTINUE
WORK(K) = T
M = IPVT(K)
IF (M .EQ. K) GO TO 60
T = WORK(M)
WORK(M) = WORK(K)
WORK(K) T
CONTINUE

i

i

YNORM = 0.0DO
po 65 1 =1, N

YNORM = YNORM + DABS(WORK(I))
CONTINUE

SOLVE A*Z = Y
CALL SOLVE(NDIM, N, A, WORK, IPVT)
ZNORM = 0.0DO
DO 70 T = i, N
ZNORM = ZNORM + DABS(WORK(I))
CONTINUE
ESTIMATE CONDITION
COND = ANORM*ZNORM/YNORM
IF (COND .LT. 1.0D0) COND = 1.0DO
RETIRN
l-BY~-1

COND = 1.0DO
IF (A(l,1) .NE. 0.0DO) RETURN

EXACT SINGULARITY
COND = 1.0D+32

RETURN
END

SUBROUTINE DEFINE(M,N,MN,MU,ML,MM,LDA,BIOT,DY,B1,B2,ABD)

THIS ROUTINE DEFINES THE COEFFICIENT ARRAY.

IT STORES THE ARRAY

IN BANDED FORM. REFERENCE IS ORNL CORLIB DGBFA/DGBSL PROGRAM.
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IMPLICLIT REAL*8(A~-H,0-Z)
DIMENSLON ABD(LDA,MN)
DO 20 J=1,MN
JJ=J
11=MAX0{1,J-MU)
12=MINO(MN,J+ML)
DO 20 I=11,12
I1I=1
K=1~J+MM
CALL WCHNDE(II,JJ,M,N,BIOT,DY,Bl,B2,COEF)
20 ABD(K,J)=COKF
9999  RETURN
END

9}

OO O

SUBROUTINE DGBFA(ABD,LDA,N,ML,MU,IPVT,INFO)

o}

DGBFA FACTORS A DUUBLE PRECISION BAND MATRIX BY ELIMINATION

<

INTEGER LDA,N,ML,MU,IPVT(l),INFO

DOUBLE PRECISION ABD(LDA,1)

DOUBLE PRECISION T

INTEGER 1,1DAMAX,10,J,JU,JZ,J0,J1,K,KP1,L, LM, M, MM, ,NML
M=ML + MU + 1

INFO = 0

@}

ZERO INITIAL FILL~IN COLUMNS

Cy &y

i

JO = MU + 2
J1 = MINO(N,M) ~ 1
IF (J1 .LT. JO) GO TO 30
Do 20 Jz = Jo, Ji
10=M+1-J2
DO 10U I = 1o, ML
ABD(I,JZ) = 0.0DO
10 CONTINUE
20 CONTINUE
30 CONTINUE
Jz = J1
JUu =0

oo

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

NMIL = N ~ 1

IF (NMl .LT. 1) GO TO 130
DO 120 K = 1, NM1

KPl1 = K + 1
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RO NEXT FILL-IN COLUMN

= JZ + 1

(JZ .GT. N) GO TO 50
(M, .LT. 1) GO TO 50
40 1 = 1, ML
ABD(1,JZ) = 0.0DO
CONTINUE
NTINUE

NG L = PIVOT INDEX
= MINO(ML,N-K)

= [DAMAX(LM+1,ABD(M,K),l) + M ~ |
VI(K) = L + K - M

RO PIVOT IMPLIES THLIS COLUMN ALREADY TRIANGULARIZED

(ABD(L,K) .EQ. 0.0DO) GO TO 100
INTERCHANGE IF NECESSARY

IF (L .EQ. M) GO TO 60
T = ABD(L,K)

ABRD(L,K) = ABD(M,K)
ABD{M,K) = T
CONTINUE

COMPUTE MULTIPLIERS

T = ~1.0D0/ABD(M,K)
CALL DSCAL(LM,T,ABD(M+1,K),1)

ROW ELIMINATION WITH COLUMN INDEXING

H

JU = MINO(MAXO(JU,MU+IPVT(K)),N)
MM o= M

IF (JU .LT. KP1) GO TO 90

DO 80 J = KP1, JU

L =L -1

MM o= MM - L

T = ABD(L,J)

IF (L .EQ. MM) GO TO 70
ABD(L,J) = ABD(MM,J)
ABD(MM,J) = T

CONTINUE

CALL DAXPY(LM,T,ABD(M+1,K),1,ABD(MM+1,J),1)

CONTINUE
CONTINUE

GO TO 110
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100 CONTINUE
INFO = K

110 CONTINUE

120 CONTINUE

130 CONTINUE

IPVT(N) = N

IF (ABD(M,N) .EQ. 0.0DO) INFO = N
RETURN

END

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

CONSTANT TIMES A VECTOR PLUS A VECTOR.
USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
JACK DONGARRA, LINPACK, 3/11/78.

DOUBLE PRECISION DX(1),DPY(1),DA
INTEGER 1,INCX,INCY,IXIY,M,MP1, N

IF(N.LE.Q)RETURN
IF (DA .EQ. 0.0DU) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS OR EOUAL INCREMENTS
NOT EQUAL TO 1

IX =1
Iy = 1
IF(INCX.LT.0)IX = (~N+I1)*INCX + 1
IF(INCY.LT.0)IY = (=N+1)*INCY + 1

DO 10 I = I,N
DY(IY) = DY(IY) + DA*DX(IX)
IX = IX + INCX
[Y = LY + INCY
10 CONTINUE
RETURN

CUODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOP

20 M = MOD(N,4)
IF( M .EQ. 0O ) GO TO 40
DO 30 1 1,M
DY(I) = DY(I) + DA*DX(I)
30 CONTLINUE

o
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IF( N .LT. 4 )
MPl = M + 1
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RETURN

DO 50 I = MPL,N,4

DY(1) = DY(I
DY(L + 1) =
DY(L + 2) =
DY(L + 3) =
CONTINUE
RETURN
END

SUBROUTINE DS
SCALES A VECTO
USES UNROLLED

JACK DONGARRA,

DOUBLE PRECISI
INTEGER 1,INCX

IF(N.LE.O)RETU

} + DA*DX(I)

DY(I + 1) + DA*DX(I + 1)
DY(I + 2) + DA*DX(I + 2)
DY(I + 3) + DA*DX(I + 3)

CAL(N,DA,DX, INCX)

R BY A CONSTANT.

LOOPS FOR INCREMENT EQUAL TO ONE.

L1NPACK, 3/11/78.

ON DA,DX(1)
,M,MP1 N, NINCX

RN

IF(INCX.EQ.1)GO TO 20

CODE FOR IN

NINCX = N*INCX

DO 10 I = 1,NI
DX(L) = DA*D
CONTINUE
RETURN
CUDE FOR IN

CREMENT NOT EQUAL TO 1

NCX, INCX
X(1)

CREMENT EQUAL TO 1

CLEAN-UP LOOP

M = MOD(N,5)

IF( M .EQ. O ) GO TO 40
DO 30 I = 1,M

DX(I) = DA*DX(L)
CONTLNUE
1IF( N .LT. 5 ) RETURN
MPL = M + 1
DO 50 I = MPL1,N,5

DX(L) = DA*DX(IL)

DX(L + 1) = DA*DX(L + 1)

DX(L + 2) =

DA*DX(L + 2)
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DX(L + 3) = DA*DX(IL + 3)
DX(I + 4) = DA*DX(I + &)
CONTINUE
RETURN
END

INTEGER FUNCTLON IDAMAX(N,DX,INCX)

FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
JACK DONGARRA, LINPACK, 3/11/78.

DOUBLE PRECISION DX(1),DMAX
INTEGER I,INCX,IX,N

IDAMAX = O
IF( N .LT. 1 ) RETURN
IDAMAYX = ]

IF(N.EQ.1)RETURN
IF(INCX.EQ.1)GO TO 20

CODE FOR INCREMENT NOT EQUAL TO 1

IX = 1

DMAX = DABS(DX(1))

IX = IX + INCX

DO 10 I = 2,N
IF(DABS(DX(IX)).LE.DMAX) GO TO 5
IDAMAX = 1
DMAX = DABS(DX(IX))
IX = IX + INCX

CONTINUE

RETURN

i

CODE FOR INCREMENT EQUAL TO 1

DMAX = DABS(DX(1))
DO 30 I = 2,N
IF(DABS(DX(1)).LE.DMAX) GO TO 30

IDAMAX = I
DMAX = DABS(DX(1))
CONTINUE
RETURN
END
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SUBROUTINE DGBSL(ABD,LDA,N,ML,MU,IPVT,B,JOR)

THIS ROUTINE SOLVES THE DOUBLE PRECISION BAND SYSTEM
A*X=B OR TRANS(A)*X=B

INTEGER LDA,N,ML,MU,IPVT(1),JOB
DOUBLE PRECISION ABD(LDA,1),B(1)
DOUBLE PRECISION DDOT,T

INTEGER K,KB,L,LA,LB,LM,M,NML

M=MJ+ M + 1
NMl = N -~ 1
1F (JOB .NE. 0) GO To 50

JOB =0 , SOLVE A * X = B
FIRST SOLVE L*Y = B

IF (ML .EQ. 0) GO TO 30
IF (NM1l .LT. 1) GO TO 30
DO 20 K = 1, NMI
LM = MINO(ML,N-K)
L = IPVT(K)
T = B(L)
IF (L .EQ. K) GO TO 10
B{(L) = B(K)
B(K) =T
CONTINUE
CALL DAXPY(LM,T,ABD(M+1,K),1,B(K+1),1)
CONTINUE
CONTINUE

NOW SOLVE U#*X =Y

DO 40 KB = 1, N
K=N+1- KB
B(K) = B(K)/ABD(M,K)
IM = MINO(K,M) = 1
LA = M - LM
LB = K - LM
T = =B(K)
CALL DAXPY(LM,T,ABD(LA,K),1,B(LB),1)

CONTINUE
GO TO 100
CONTINUE

]

JOB = NONZERO, SOLVE TRANS(A) * X = B
FIRST SOLVE TRANS(U)*Y = B

DO 6Q K = 1, N
LM = MINO(K,M) - 1
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LA =M - LM
LB K- LM

#

T = DDOT(LM,ABD(LA,K),I,B(LB),1)

B(K) = (B(K) - T)/ABD(M,K)
CONTINUE

NOW SOLVE TRANS(L)*X = Y

1F (ML .EQ. 0) GO TO 90
1F (NMI .LT. 1) GO TO 90
DO 80 KB = 1, NMi

K =N - KB
LM = MINO(ML,N-K)

B(K) = B(K) + DDOT(LM,ABD(M+1,K),1,B(K+1),1)

L = IPVT(K)
IF (L .EQ. K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) = T
CONTINUE
CONTLNUE
CONTINUE
CONTINUE
RETURN
END

oG

QOO

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)

FURMS THE DOT PRODUCT OF TWO VECTORS.
USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
JACK DONGARRA, LINPACK, 3/11/78.

DOUBLE PRECISION DX(1),DY(1),DTEMP
INTEGER T,INCX,INCY,IX,IY,M,MPL,N

DDOT = 0.0DO

DTEMP = 0.0DU

IF(N.LE.O)RETURN
IF(INCX.EQ. 1 .AND.INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
NOT EQUAL TO 1

IX =1

Iy = 1

IF(INCX.LT.O)IX = (~N+1)*INCX + 1
IFCINCY.LTLO)IY = (-N+L)*INCY + 1
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it

DO 1u T 1,N
DTEMP DTEMP + DX(1X)*DY(IY)
IX = IX + INCX
1Y = 1Y + INCY
10 CONTINUE
DDOT = DTEMP
RETURN

#

CODE FOR BOTH INCREMENTS EQUAL 1o 1

CLEAN-UP LOOP

20 M = MOD(N,5)
IF(C M EQ. O ) GO TO 40
DO 30 L = 1,M
DTEMP = DTEMP + DX(I)*DY(L)
30 CONTINUE
IF( N LT. 5 ) GO TO 60
40 MPL = M + 1
DO 50 I = MP1,N,5
DTEMP = DTEMP + DX(I)*DY(L) + DX(I + 1)*DY(I + 1) +
*  DX(I + 2)%DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + &)
50 CONTINUE
60 DDOT = DTEMP
RETURN
END

SUBROUTINE INTERP(N,X1,H,Y,M,X0,YVALUE)

THIS ROUTINE INTERPRETS VALUES OF THE WALL TEMPERATURE.
IT IS CALLED DURING THE SOLUTION FOR FLUID TEMPERATURES

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSTION Y(N),Z(10)
M2=(M+1)/2
K=(X0/H)+1

IF(K-M2) 10,10,11
L=K

GO TO 12

IF(N-K-M2) 21,21,20
L=M2

GO 10 12

L=M+1~N+K

MI=M+1

D0 22 I=1,Ml
T1=I+K-L
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Z{1)=Y(11)

AK=K

AL=L

P=(X0~%X1-( AK-AL)*H) /H
DO 24 J=1,M

AJ=J

MI=M+1-J

DO 24 I=1,MJ

Al=1
Z2CL)=((AL-P+AJ-1.D+0) *Z( 1 )+(P-AI+1.D+0)*
Z(I+1)) /AT
YVALUE=Z(1)

RETURN

END

'SUBROUTINE ONEDIM(DBUG,H,Y,M,SUM)

THIS ROUTINE PERFORMS A 1-D NUMERICAL INTEGRATION OF DATA.
1S BASED ON SIMPSONS RULE AND REQUIREKS AN ODD NUMBER OF
DATA SETS. REFERENCE 1S MCCORMICK AND SALVADORI, PP.165

IMPLICIT REAL*8(A~H,0-Z)

DIMENSION Y(M)

IF(DBUG.GT.0.D+0) WRITE(6,990)
NUM=(M~1)/2

Ni=1

SUM=0.D+0

DO 100 I=1,NUM

N2=N1+1

N3=N2+1
SUM=SUM+(H/3.D+0)*(Y(N1)+4.D+0%Y(N2)+Y(N3))
N1=N3

LF(DBUG.GT.0.D+0) WRITE(6,1000) SUM

FORMAT STATEMENTS FOR THIS ROUTINE

FORMAT(//25X, "FROM ONEDIM')
FORMAT(5X,'1-D SUM= ',D20.10)
RETURN

END

SUBROUTINE SGEN(VPLS,BIOT,FITXS,N,M,MN,TFL,B,DY,DZ
TWL ,MODE, DBUG, SUMMAT , SUMFLD ,EXTFLD)

1T
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THIS ROUTINE CALCULATES THE ENTROPY GENERATION TERMS FOR THE
CURRENT TIME PERIOD.

IMPLICIT REAL*3(A-H,0~Z)

DIMENSLON TFL(M),B(MN),TWL(M),SGNMT(100),SGNF(10)
IF(DBUG.GT.0.D+0) WRITE(6,1000)

TRMI=FITXS~1.D+0

TRML2=TRM1%**2

DETERMINE RATE OF ENTROPY GENERATION AT EACH POINT IN THE
STORAGE MATERIAL AND INTEGRATE TO GET A TOTAL FOR THIS TIME
PERIOD.

DO 100 I=!,N

DO 100 J=1,M
I1=1

JJ=J
Nl=I+(J-1)*N
N2=I4+(J=-2)*N
N3=I+J*N
Na=(I-1)+(J~1)*N
N5={I+1)+(J-1)*N

DETERMINE WHICH TYPE OF NODE THIS IS AND BRANCH TO GRADIENT
CALCULATION. NON ZERO GRADIENTS THAT ARE NOT A BOUNDARY
CONDITION ARE CALCULATED USING A CENTRAL DIFFERENCE SCHEME.

CALL WHCH(ILI,JJ,M,N,1WHCH)
IF(IWHCH.LE.4) VOLFRC=.25D+0)
LF(IWHCH.GT «4 .AND.IWHCH.LT.9) VOLFRC=.5D+0
IF(IWHCH.EQ.9) VOLFRC=1.D+0
Go TO (1,2,3,4,5,6,7,8,9), IWHCH
FOR 1,1 CORNER NODE
GRDZ=0.D+0
GRDY=0 .D+0
GO TO 95
FOR N,l CORNER NODE
GRDZ=0 .D+0
GRDY=BIOT*(TFL(J)-B{(N1))
GO TO Y5
FOR N,M CORNER NODE
GRDZ=0.D+0
GRDY=BLOT*{TFL(J)-B(N1))
GO TO 95
FOR 1,M CORNER NODE
GRDZ=0.D+0
GRDY=0.D+0
GO TO 95
FOR Y=U INSULATED FACE. GRADIENT BASED ON CENTRAL
DIFFERENCE SCHEME .
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GRDZ=(B{(N3)~B(N2))/{(DZ*2.D+0)
GRDY=0.D+0

GO TO 95 '

FOR Z=0 INSULATED FACE
GRDZ=0.D+0
GRDY={ B{N5)~B(N4))/(DY*2.D+0)
GO TO 95

FOR Y=1 CONVECTIVE FACE
GRDZ=(B(N3)-B(N2))/(D2*2.D+0)
GRDY=BIOT*(TFL(J)-B(NL))
GO TO 95

FOR Z=1 INSULATED FACE
GRDZ=0) ,D+0
GRDY=(B(N5)-B(N4))/(DY*2.D+0)
GO TO 95

FOR INTERIOR NODES.
GRDZ=(B(N3)~B(N2))/(DZ*2.D+0)
GRDY=(B(N5)=B(N4) )/ (DY*2.D+0)
TOP=(VPLS**2)*(GRDZ**2 )+GRDY**2
BTM=( B{NI1)*TRMl+1.D+0)%#*2
SGNMT(N1)=(TRM12*TOP/BTM)*VOLFRC

INTEGRATE OVER MATERIAL VOLUME TO GET A TOTAL FOR THIS TIMFE
PERIOD. AN ODD NUMBER OF DATA POINTS. ARE REQUIRED

CALL TWODIM(DBUC,SGNMT,DZ,DY,M,N,MN, SUMMAT)
IF(MODE.EQ.3) GO TO 9999

DETERMINE RATE OF ENTROPY GENERATION AT EACH POINT: IN THE FLUID
AND INTEGRATE TO GET A TOTAL FOR THIS TIME PERIOD.

DO 200 KK=1,M

DSTFRC=1 .D+0

IF(KK.EQ.l.OR.KK.EQ.M) DSTFRC=.5D+0
TOP=TRM1 * (TFL(KK)-TWL(KK))
BTM=TFL{KK)*TRM1+1.D+0
SGNF(KK)=((TOP/BTM)**2)*DSTFRC
IF{DBUG.GT.0.D+0) CALL WRTO1(SGNF,SGNMT,M,N,MN)

LNTEGRATE OVER CHANNEL LENGTH TO GET A TOTAL FOR THIS TIME
PERIOD. AN ODD NUMBER OF POINTS ARE REQUIRED.

CALL ONEDIM(DBUG,DZ,SGNF,M,SUMFLD)

DETERMINE AVAILABILITY OF EXITING FLUID FOR THIS TIME PERIOD.
FRST=TRML*TFL(M)

SCND=DLOG(TFL(M)*TRM1+1 .D+0)

EXTFLD=FRST-SCND
IF(DBUG.GT.0.D+0) WRITE(6,1010) EXTFLD
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FORMAT STATEMENTS FOR THIS ROUTINE

FORMAT(/ /25X, 'FROM SGEN')
FORMAT(5X, "EXTFLD= ',D20.10)
RETURN

END

SUBROUTINE SOLVE(NDIM, N, A, B, [PVT)

THIS ROUTINE SOLVES THE LINEAR SYSTEM A*X:=B.
DO NOT USE IF DECOMP HAS DETECTED A SINGULARITY

INTEGER NDIM, N, IPVT(N)

DOUBLE PRECISION A(NDIM,N),B(N)
INTEGER KB, KML, NMl, KPl, I, K, M
DOUBLE PRECISION T

FORWARD ELIMINATION

IF (N .EQ. 1) GO TO 50
NMl = N-l
DO 20 K = 1, NML
KPL = K+l
M = IPVI(K)
T = B(M)
B(1) = B(K)
B(K) = T
DO 10U I = KPL, N
B(1) = B(I) + A(I,K)*T
CONTINUE
CONTINUE

BACK SUBSTITUTION

DO 40 KB = 1,NMl

KMl = N-KB

K = KML+1

B(K) = B(K)/A(K,K)
T = —-B(K)

po 30 I = 1, KMl
B(I1) = B(I) + A(I,K)*T
CONTINUE
CONTINUE
B(1) = B(1)/A(L, 1)
RETURN
END
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SUBROUTINE SWAP(M,N,MN,TSWAP,B,TMINT)

THLS ROUTINE LS CALLED AT THE START OF EACH TIME INCREMENT,
DURING THE FLUID TEMPERATURE ITERATION. IT INITLALIZES THE
MATERIAL TEMPERATURE ARRAY TO THE SOLUTION FROM THE PREVIOUS
TIME STEP.

IT IS ALSO CALLED PRIOR TO THE START OF THE DISCHARGE PORTION

OF THE CYCLE 1IF A 2~D TEMPERATURE DISTRIBUTION IS REQUIRED. 1IF
A COUNTERFLOW CONFIGURATION 1S DESIRED, IT "SWAPS™ THE
HORIZONTAL TEMPERATURE FIELD AS IT INITIALIZES THE MATERIAL
TEMPERATURE ARRAY.

IF A PARALLEL CONFIGURATION IS DESIRED, IT JUST REINTIALIZES THE
MATERIAL TEMPERATURE ARRAY.

ISWAP=1: SWAP HORIZONTAL TEMPERATURE FIELD
LSWAP=2: DON'T SWAP TEMPERATURE FIELD

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION B(MN),TMINT(MN)

DO 100 I=L,N

DO 100 J=1,M

NL=I+(J—~1)*N

JJI=M-(J-1)

N2=I+(JJ~1)*N

IF(LSWAP.EQ.Ll) TMINT(NL)=B(N2)
IF(ISWAP.EQ.2) TMINT(NL)=B(NI)
RETURN

END

SUBROUTLNE TBAR(M,N,MN,B,TAVG)
THIS ROUTINE DETERMINES AN AVERAGE MATERIAL TEMPERATURE.

IMPLICLT REAL*8(A-H,0-2)
REAL*8 IMT

DIMENSION B(MN)
SUM=0,D+0
NVOLS=(M~1)*(N-1)

DO 100 I=1,N

DO 100 J=1,M

[I=1

JJ=J
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CALL WHCH{IIL,JJ,M,N,IWHCH)
IF(IWHCH.LE.4) VOLFRC=.25D+0
IF(IWHCH.GT .4 .AND.IWHCH.LT.9) VOLFRC=.5D+0
IF(IWHCH.EQ.9) VOLFRC=1.,D+0
N1=1+{(J-1)*N
100 SUM=SUM+B{N1 )*VOLFRC
TAVG=SUM/NVOLS
2999 RETURN
END

SUBROUTINE TFLINT(DBUG,GPLS,BIOT,VPLS,TWL,DIST ,M,DZ,TFL)

THIS ROUTINE SOLVES FOR THE FLULD TEMPERATURES USING A 4TH ORDER
RUNGE-KUTTA TECHNIQUE. REFERENCE IS MCCORMICK AND SALVADORI,PP

OO0 0n

o

200

1Louv

245,

IMPLICIT REAL*3(A-H,0-Z)
DIMENSION TWL(M),DIST(M),TFL(M)

DEFINE FUNCTION OF INTEREST
F(Z,Y)=(GPLS*BLOT/VPLS)*(Z~-Y)
F(X,Y)=.50+0% (] .DH+0+X) ¥Y*Y
IF(DBUG.GT.0.D+0) WRITE{6,1000)

KK=1

H=DZ/5.D+0

X=DIST(1)

Y=TFL(1)

DO 200 I=2,M

ARG=X

CALL INTERP(M,DLIST(i),DZ,TWL,KK,ARG,Z)
DELI=F(Z,Y)

ARG=X+, SD+U%

CALL INTERP(M,DIST(1),DZ,TWL,KK,ARG,Z)
DEL2=F(Z,Y+.5D+0*H*DELL)
DEL3=F{Z,Y+.SD+0*H*DEL2)

ARG=X+H

CALL INTERP(M,DIST(1),DZ,TWL,KK,ARG,Z)
DELA=F(Z,Y+U*DEL3)

Y=Y+H* (DEL1+2.D+0*DEL2+2. D+0%*DEL3+DEL4) /6 .D+0
X=X+H

DIF=(X-DIST(I))/DIST(L)
IF(DABS(DIF) . ,LE.1.D~3) GO TO 3

GO TO 1

TFL(I)=Y

LF(DBUG.GT.0.D+0) WRITE(6,1010) I,X,TFL(I)
CONTINUE

FORMAT STATEMENTS FOR THIS ROUTINE

FORMAT(//25X, 'FROM TFLINT")
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FORMAT(5X, *I= ',12/5X,'X= ',D20.15/5%, 'TFL= *,D20.15)
RETURN
END

SUBROUTINE TFLCRY(DBUG,GPLS,RBIOT,VPLS,B,DIST,M,DZ TFL)

THIS ROUTINE SOLVES FOR THZ FLUID TEMPERATURES USING A 4TH ORDER
RUNGE~-KUTTA TECHNIQUE. REFERENCE 1S MCCORMICK AND SALVADORI,PP
245,

INTERMEDIATE FUNCTIONAL VALUES GENERATED BY CURVE FIT

IMPLICIT REAL*8({A-H,0-2)
DIMENSION B(3),DIST(M),TFL{(M)

DEFINE FUNCTION OF INTEREST
F(X,Y)={GPLS*BIOT/VPLS)*({B{1)+B(2)*X+B(3)*X**2)~Y)
F(X,Y)=.50+0% (1 .D+O+X) *Y*y
IF(DBUG.GT.0.D+0) WRITE(6,3i000)

H=DZ/5.D+0

X=DIST(1)

Y=TFL(1)

DO 200 1=2,M

DEL1=F(X,Y)
DEL2=F(X+.95D+0%H , ¥+ . 5D+0%H*DEL1L)

DEL3=F (X+.5D+0%H, Y+ . SD+0*H*DEL2 )
DELA=F(X+U,Y+H*DEL3)
Y=Y+H*(DEL1+2.D+U*DEL242.D+0*DEL3+DELL ) /6 . D+0
X=X+H

DIF=(X-DIST(L))/DIST(1)
IF{DABS(DIF)}.LE.1.D-3) GO T0O 3

GO TO 1

TFL(I)=Y

[F(DRUG.GT.0.D+0) WRITE(6,1010) I,X,TFL(L)
CONTINUE

FORMAT STATEMENTS FOR THIS ROUTINE
FORMAT(//25%,"FROM TFLCRV')
FORMAT(5X, I= ',I2/5X,'X= ',D20.15/5X,"'TFL= ',D20.15)

RETURN
END

SUBROUTINE THCHW(NTH,N,T,J)
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THIS ROUTINE DETERMINES A MATRIX LOCATION FOR A GIVEN UNIQUE
NUMBER.

IMPLICIT REAL*3{A~H,C-Z)
IWHL=NTH/N
IRMN=NTH~IWHL*N
IF(IRMN.EQ.0) J=IWHL
IF{IRMN.EQ.0) I=N
IF(IRMN.GT.0) J=IWHL+1
LF(IRMN.GT..0) I=IRMN
RETURN

END

SUBROUTINE TWLCRV(DBUG,X,Y,M,B)

THIS ROUTINE DOES A 3RD ORDER POLYNOMIAL CURVE FIT OF THE
STORAGE MATERIAL WALL TEMPERATURES. IT WILL BE USED IN THE
ROUTINE TO SOLVE FOR FLUID TEMPERATUKRES.

IMPLICLIT REAL*8(A~H,0-Z)
DIMENSION X(M),Y(M),B(3),COF(3,3),IPVT(3),WORK(3)
IF(DBUG.GT.0.D+0) WRITE(6,1000)
IFLG=U

DO 1U I=1,3

B(1)=0.D+0

DO 1U J=1,3
COF(1,J)=0.D+0

COF(1,1)=M

DO 20 K=1,M
B(1)=B(1)+Y(K)
B(2)=8(2)+X(K)*Y(K)
B(3)=B(3)+(X(K)**2)*Y(K)
COF(1,2)=COF(1,2)+X(K)
COF(1,3)=COF(1l,3)+X(K)**2
COF(2,3)=COF(2,3)+X(K)*=*3
COF(3,3)=COF(3,3)+X(K)*%4
Do 30 1=2,3

DO 30 J=1,2

II=1-1

JJ=J+1
COF(1,J)=COF(IL,JJ)

SOLVE THIS SET OF EQUATIONS. REALIZE THE FOLLOWING:
IN THE DECOMP SUBROUTINE, COF GOES OUT
AS THE COEFFICIENT MATRIX AND RETURNS AS
THE TRIANGULARIZED MATRIX.
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IN THE SOLVE SUBROUTINE, B GOES 0OUT AS THE
CONSTANT MATRIX AND RETURNS AS THE SOLUTION
MATRIX.

CALL DECOMP(3,3,COF,COND,IFVT,WORK)
IF(COND.EQ.1.D+32) IFLG=10C
TF(IFLG.GT.0) WRITE(6,1111)
IF(1FLG.GT.0) STOP

CALL SOLVE(3,3,COF,B,IPVT)

DEBUGGING INFORMATION

IF(DBUG.EQ.0.D+0) GO Tu 9999
WRITE(6,1010) (1,8(1),I=1,3)

po 777 1=1,M
CRV=B(1)+B(2)*X(L)+B(3)*X(1)**2 ,n+0
WRITE(6,888) X(I1),Y(L),CRV

FORMAT STATEMENTS FOR THIS ROUTINE

FORMAT(1X, %= 'D10.53,2%, "TwL= ',010.5,2X,'CRV= ',D10.5)
FORMAT(// 25X, FROM TWLCRV'")

FORMAT(5X, "8(',11,")= ' ,D20.10)

FORMAT (/5X, ’blNFULAR MArRLx IN FLUID TEMPERATURE CURVE FITTIN
ROUTINE. '/5X, "EXECUTION TERMINATED.'//)

RETURN

END

SUBROUTINE TWODIM(DBUG,TSOL,DZ,DY,M,N,MN,SUM)

THIS ROUTINE PERFORMS A 2-D NUMERICAL INTEGRATION OF DATA. IT
1S BASED ON SIMPSONS RULE AND REQUIRES AN 0ODD NUMBER OF DATA
SETS.

REFERENCE [8 SALVADORL AND MCCORMICK, PP 316

IMPLICLIT REAL*3(A-H,0-7)
DIMENSTON NJ(3),NI(3),F(9),TSOL(MN)
IF(DBUG.GT.0.0+0) WRITE(6,1000)
KEL=(M~1}/2
JJL=(N-1)/2
SUM=0 .D+0
NJ(1)=1
NJ(2)=NJ{1)+1
NJ{3)=NJ(2)+1
FOR EACH 7 STRIP
DO 100 KK=1 ,KKL
NI(l)=1
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NIC2)=NI1(1)+1
NLI(3)=NI(2)+1
DO 200 MM=1,3
CALL WHCHT(NI(1),NJ(MM),N,NTH}
F(MM)=TSOL{NTH)
FOR EACH Y BLOCK IN A Z STRIP
pe 80 JJ=1,JJL
po 300 MM=1,3
LCNT=MM+3
CALL WHCHT(NI(2) ,NJ(MM),N,NTH)
F(ICNT)=TSOL{NTH)
DO 400 MM=1,3
L[CNT=MM+6
CALL WHCHT(NI(3) ,NJ(MM),N,NTH)
F(ICNT)=TSOL(NTH)
SUM=SUM+(DZ*DY/9.D+0) *(F(1)+F(3)+F{(7)+F(9)+4.D+0*(
F{2)4F(L)+F(6)+F(8))+16.DH0*F(5))
F(1)=F(7)
F(2)=F(8)
F(3)=F{(9)
NI(2)=NI(3)+1
NL(3)=NIi(2)+]
NJ(1)=NJ(3)
NJ(2)=NJ(L)+1
NJ(3)=NJ(2)+]
IF(DBUG.GT.0.D+0) WRITE(6,1010) SUM

FURMAT STATEMENTS FOR THIS ROUTINE

FORMAT(/ /25X, 'FROM TWODIM')
FORMAT(5X, '2-D SUM= ', ,D20.10)
RETURN

END

SUBROUTINE WCHNDE(LCAP,JCAP,M,N,BIOT,DY,Bl,B2,COEF)

THIS ROUTINE DETERMINES WHICH NODE WITHIN THE STORAGE MATERIAL
IS CURRENTLY BEING DEFINFD IN THE "DEFINE" ROUTINE. IT THEN
DEFINES THE NEIGHBOR NODES AND INITIALIZES THE COEFFICIENT
DEPENDING ON THE VARIABLE JCAP.

IMPLICIT REAL*8(A-H,0-2Z)
COEF=0.D+0

TAIL=(1 .D+0+(BIOT*DY) )
X=2.D+0%*B1

Y:=2.,D+0%*B2
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DETERMINE THE LOCATION WITHIN THE STORAGE MATERIAL NODAL

NETWORK AND INSURE THAT IT IS ACCURATE.

CALL THCHW(ICAP,N,L,J)
NL=I+(J~1)*N

1F(N1.NE.1ICAP) WRITE(6,1111)
IF(N1.NE.ICAP) STOP

DETERMINE NEIGHBOR NODES AND TYPE OF NODE (1,J) IS, THEN

BRANCH .

N2=1+(J~2)*N
N3=L1+I*N
No=(1-1)+(J-1)*N
NS=(I+1 )+ (J~1)*N
CALL WHCH(L,.J,M,N, TWHCH)
co T0 (1,2,3,4,5,6,7,8,9), IWHCH
FOR 1,1 CORNER NODE
{F(JCAP.EQ.N3) COEF=X
IF(JCAP.EQ.NS) COEF=Y ,
IF(JCAP.EQ.NL) COEF=~{1.D+0+2.0+0% (B1+B2))
GO TO 9999 :
FOR N,1 CORNER NODE
1F(JCAPEQ.N3) CUEF=X
1F(JCAP.EQ.N4) COEF=Y
IF(JCAP,EQ,NL)CUEF:-(l,D+0+X+Y*TA1L)
GO TO 9999
FOR N,M CORNER NODE
[F(JCAP.EQ.N2) COEF=X
LF(JCAP.EQ.N4) COEF=Y
1F(JCAP.EQ.NL) COEF=~{ | .D+0+X+Y*TAIL)
GO TO 9999
FOR 1,M CORNER NODE
IF(JCAP.EQ.N2) COEF=X
LF(JCAPEQ.NS) COEF=
IF(JCAP.EQ.NL) COEF=={1,D+0+X+Y)
GO TO 9999

FOR Y=0 INSULATED FACE

IF(JCAP.EQ.N2) COEF=81
[F{JCAP.EN.N3) COEF=Bl
1F(JCAP.EQ.NS) COEF=Y
1F(JCAP L EQ.N1) COEF==(1.D+0+X+Y)
GO T 9999 :

FOR Z=0 FACE
1F(JCAPLEG.N3) COEF=X

IF(JCAP.EQ.N4) COLEF=B2
LF(JCAP.EQ.N5) COEF=B2
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IF(JCAP.EQ.N1) COEF=~(1.D+0+X+Y)

GO TO 9999
C FOR Y=1 CONVECTIVE FACE
/ 1IF(JCAP.EQ.N2) COEF=Bl

IF(JCAP.EQ.N3) COEF=381
IF(JCAP.EQ.N4) COEF=Y
IF(JCAP.EQ.N1) COEF=-(1.D+0+X+Y*TAIL)
GO TO 9999
FOR Z=]1 INSULATED FACE
8 IF(JCAP.EQ.N2) COEF=X
TF(JCAP.EQ.N4) COEF=82
IF(JCAP.EQ.N5) COEF=B2
IF{JCAP.EQ.N1) COEF=-(l.D+0+X+Y)

(@]

GO TO 9999
c FOR INTERIOR NODES
9 IF(JCAP.EQ.N2) COEF=31

IF(JCAP.EQ.N3) COEF=3l
IF(JCAP.EQ.N4) COEF=RB2
IF(JCAP.EQ.NS) COEF=B2
IF(JCAP.EQ.N1) COEF=~(1.D+0+X+Y)

O

FORMAT STATEMENTS FOR THIS ROUTINE

OO0

1111 FORMAT(5X, "WCHNDE ROUTINE 1S NOT RETURNING CORRECT NODAL
*  LOCATION.'/5X,'EXECUTION TERMINATED.')
9999 RETURN

END

¢

¢

C

C

C

SUBROUTINE WHCH(I,J,M,N,IWHCH)

C

c TH1S ROUTINE IDENTIFIES NODAL POINTS BY TYPE.
C

IMPLICLT REAL*8(A-H,0~Z)
IF(I.EQ.1.AND.J.EQ.1) IWHCH=I
IF(I.EQ.N.AND.J.EQ.1) IWHCH=2
IF(I.EQ.N.AND.J.EQ.M) IWHCH=3
IF(1.EQ.l.AND.J.EQ.M) IWHCH=4
IF(L.EQ.1.AND.J.GT.1.AND.J.LT.M) IWHCH=5
IF(I.GT.1.AND.I.LT.N.AND.J.EQal) IWHCH=6
IF(I.EQ.N.AND.J.GT.1.AND.J.LT.M) IWHCH=7
[F(L.GT.1.AND.I.LT.N.AND.J.EQ.M) IWHCH=8
IF(I.GT+l.AND.I.LT.N.AND.J.GT.1.AND.J.LT.M) IWHCH=9
9999  RETURN
END

—~
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C
C
SUBRQUTINE WHCHT(I,J,N,NTH)
C .
C THIS ROUTINE DETERMINES A UNIQUE NUMBER FOR A GIVEN LOCATION IN
C A MATRIX OF N ROWS.
C

NTH=L+(J~1)*N
9999 RETURN

END

C

C

C

C

C
SUBROUTINE WRTO! (TFL,B,M,N,MN)

C

c THIS ROUTINE WRITE OUT SPATIALLY CORRECT TEMPERATURE

C FIELDS :

C . ‘
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION TFL(M),B(MN) ,NTH(9)
WRITE(6,990)

WRITE(6,1000) (TFL(L),I=1,M)
WRITE(6,1010)
DO 100 I=1,N
LI=N~(I-1)
DO 200 J=1,M
200 NTH(J)=I1T+(J~1)*N

100 WRITE(6,1000) (B(NTH{(J)),J=1,M)
WRITE(6,990)

C FORMAT STATEMENTS FOR THIS ROUTINE

990 FORMAT(' ")

1000  FORMAT(3X,9(D13.6,1X))
1010 FORMAT(' ')

Y999  RETURN

END

C

C

C

C

C

SUBROUTINE REPORT (G,X,MM,NN,CON,VAR,X0)

C

C THIS ROUTINE WRITES OQUT THE RESULTS OF THE FINAL OPTIMIZATION
C RUN . ,

C

IMPLICIT REAL*8 (A-H,0-Z)
INTEGER*2 INIT
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REAL®8 MITX,MDOTS,MRAT,IMT,NDFITS ,NDFIPS ,NTUS,NDFITD,NDFIFD,
MDOTD ,NTUD ,NSUBS , MATSTR ,MATSS , MATDB, MATDE , LRGEST

DIMENSION X(NN),G(MM),CON{MM),VAR{NN),XO(NN),CONFG(2),

FLWDIR(2) ,ENDDST(2),TFLSLV(2) ,AVMTMP(100) ,FLEXS(100) ,FLDS(10),
MATSTR(100) ,AVLMS{100) ,AVLF$(100) ,AVLES(100),AVGTSS(100),

HGHTHMP (100 ) ,APRSS(100) ,AVLMSS(100),FLDSS(10) ,MATSS(100),
MATDB(100) , FLDD(100) ,TAVG(100) ,AVLMB{100) ,AVLFD(100) ,MATDE(100),
TFLDB(10) ,TFLDE{10) ,AVLED(100)

COMMON/RESULT/M,N, TGEOM,TSWAP , IDIST ,TWHCH,KCSS, 1SS ,KL,
KCDS,1DS,LM,FITXS,FITXD,MITX,

MDOTS ,MRAT ,VPLS,WPLS ,ROVRCP, TKRAT ,PR ,CLOSE , IMT, FNUM,DFOST,
NDFITS,FIPXS,NDFIPS,RBIS,GPLSS,NTUS,REYSTO, TOPT,STOMAT ,STOFLD,
STOEXT ,STORSM,ETSS,ABSS ,DFOSS,AVLSS ,ETDS,ABDS,

DFOD ,NDFITD,FLPXD,NDFIPD,BID,GPLSD,MDOTD ,NTUD,

REYDIS,DISMAT ,DISFLD,DISSUM,TP1,TP2, BTMI ,BTM2 ,ALPHA ,NSUBS,
FSTCMP ,LRGEST ,DISEXT

COMMON/INITBK/INIT
COMMON/DIM/AVMTME , FLEXS ,FLDS ,MATSTR ,AVLMS ,AVLFS ,AVLES ,AVGTSS,
HGHTMP ,APRSS,AVLMSS, FLDSS ,MATSS ,MATD®, TAVG, FLDD ,AVIMD,

AVLED ,MATDE , TFLDB,TFLDE ,AVLED

DATA CONFC/'FLAT®,'CYLN'/

DATA FLWDIR/'CNTR','PARL'/

DATA ENDDST/'UNFM',' 2-D'/

DATA TFLSLV/'CRFT','INTR'/

START WRITE SUMMARY, BEGIN BY CALLING GRG2 WITH THE OPTIMUM
VARIABLES IN ORDER TO GET A GOOD PRINTOUT.

IF(INIT.EQ.1) RETURN
[F(INIT.EQ.0) CALL GCOMP(G,X)

GRG2 SUMMARY
WRITE(&,500)
WRITE(6,510) CON(1),G(1)
WRITE(6,510) CON(2),G(2)
WRITE(6,520) VAR(L),X(1),X0(1),VAR(2),X(2),X0(2)
WRITE(6,520) VAR{3),X(3),X0(3)

INPUT SUMMARY
WRITE(6,1000)
URITE(6,1010)
WRITE(6,1020) M,N,CONFG{ICEOM),FLWDIR(ISWAP) ,ENDDST(IDIST),
TFLSLV(IWHCH)
WRITE(6,1030) FITXS,FITXD,MITX,MBOTS,MRAT
WRITE(6,1040) VPLS,WPLS,ROVRCP,TKRAT,PR
WRITE(6,1050) CLOSE

MODE 1 (STORAGE) SUMMARY
WRITE(6,2000)
WRITE{6,2010) IMT,FNUM,DFOST,NDFITS,FIPXS
WRITE(6,2020) NDFIPS,BIS,GPLSS,NTUS,REYSTO
WRITE(b,2030) TOPT,STOMAT,STOFLD,STOEXT,STORSM
PCTM=5TOMAT/ STORSM
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PCTF=STOFLD/STORSM
PCTX=STOEXT/STORSM
WRITE(6,2035) PCTM,PCTF,PCTX
WRITE(6,2040)
DO 1u0 I=1,59
AVLMS(1)=AVLMS(I)/VPLS
AVLFS(I)=AVLFS(1)*(BIS/VPLS)
AVLES(I)=AVLES(I)/GPLSS
TOTAL=AVLMS{I)+AVLFS(I)+AVLES(I)
100 WRITE(6,2050) I,AVLMS(1),AVLFS(1),AVLES(1),TOTAL,
*  AVMTMP(I)}, FLEXS(I)
WRITE(6,2060)
CALL WRTO!(FLDS,MATSTR,M,N,MN)
MODE 2 SUMMARY
IF(IDIST.EQ.2) WRITE(6,2070)
IF(IDIST.EQ.2) GO TO 300
WRITE(6,3000) :
WRITE(6,3010) ETSS,ABSS,KCSS,ISS
MODE 3 SUMMARY
WRITE(6,4000)
PCTSS=AVLSS/STORSM
WRITE(6,4010) DFOSS,KL,AVLSS,PCTSS,LRGEST
WRLTE(6,4020)
DO 200 J=1,KL
AVLMSS(J)= AVLMSS(J)/VPLS
200 WRITE(6,4030) J AVLMbb(J),AVGTSS(J),HGHTMP(J),APRSS(J)
WRITE(6,4040)
CALL WRTOI(FLDSS,MATSS,M,N,MN)
MODE 4 SUMMARY
300 WREITE(6,5000)
WRITE(6,5010) ETDS,ABDS KCDS 1DS
MODE 5 (DISCHARGE) SUMMARY
WRLITE(6,6000)
WRITE(6,6010) DFOD,NDFITD,FIPXD,NDFIPD,LM
WRITE(6,6020) BID,GPLSDH,MDOTD,NTUD,REYDIS
WRITE(6,6030) DISMAT,DISFLD,DISEXT,DISSUM
PCTM=DISMAT/DISSUM
PCTF=DISFLD/DISSUM
WRITE(6,6035) PCTM,PCTF
WRITE(6,6040)
CALL WRTOL1(TFLDB,MATDB,M,N,MN)
WRITE(6,2040) '
DO 400 K=1,LM
AVLMD(X)=AVLMD(K)/VPLS
AVLFD(K)=AVLFD(K)*(BID/VPLS) -
AVLED(K)=AVLED(K)/GPLSD
TOTAL=AVLMD{K)+AVLFD(K)
400 WRITE(6,6050) K,AVLMD(K),AVLFD(K),AVLED(K),TOTAL,TAVG(K),
*  FLDD(K)
WRITE(b,6060) ,
CALL WRTOL{TFLDE,MATDE,M,N ,MN)
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FIGURE OF MERIT SUMMARY
WRITE(6,7000)
WRITE(6,7010) TP1,TP2,BTML,BTM2,ALPHA,NSUBS, FSTCMP

FORMAT STATEMENTS FOR THIS ROUTINE
500  FORMAT(48X,'GRG2 CONTROLLED VARTIABLES'/48X,
1

510  FORMAT(3X,A8,'s ',D16.10)
520  FORMAT(3X,A8,'= ',D16.10,3X,'(IV= ',D16.10,')',5X,
* A8,'= '.DIi6,10,3X,'(1V= ',D16.10,')")
10U FORMAT(///43X,'ENTROP PROGRAM GENERATED VARIABLES'/43X,
1

1010 FORMAT{3X,'INPUT DATA SUMMARY'/3X,'-—w=w=w= === ———eeee ")
1020  FORMAT(3X,'M= ',13,5X,'N= ',13,5X, 'GEOMETRY= ',A4,5X,

% 'FLW DIR= ',A4,5X,'MAT TMP @ DIS 1= ', A4,5X,

% 'TFL SOLV TYPE= ',A4)

1030  FORMAT(3X,'FITXS= ',Di6.10,2X,'FITXD= ',D16.10,2X, "MITX=
* DI16.10,2X,'MDOTS= ',D16.10,2X, 'MRAT= ',D16.10)

1040 FORMAT(3X, 'VPLS= ',D16.10,2%, '"WPLS= ',D16.10,2X, 'ROVRCP=
* DI6.10,2X,'TKRAT= ',D16.10,2X,'PR= ',Dhl6.10)

1050  FORMAT(3X,'CLOSE= ',D16.10/)

2000  FORMAT(3X,'MODE ! (STORAGE) SUMMARY'/3X,
% Y v e e oo o e e e e o s s e e s o ')

201U FORMAT(3X, 'IMTI= ',D16.10,2X, ' FNUM= ',D16.10,2X, 'DFOST=
* D16.10,2X,"NDFITS= ',D16.10,2X,'FIPX5= ',D16.10)

2020  FORMAT(3X,'NDFIPS= ',D16.10,2X,'BIS= ',D16.10,2X, 'GPLSS=
* Dl6.1U,2X,"NTUS= ',D16.10,2X,'REYSTO= ',D16.10)

203U FURMAT(3X,'TOPT=  ',D16.10,2X,'STOMAT= ' ,D16.10,2X, " 'STOFLD=
* D16.10,2X,'STOEXT= ',D16.10,2X,'STORSM= ',D16.10)

2035  FORMAT(3X,'PCTM=  ',D16.10,2X,'PCTF= ',D16.10,2X,
*  'pCTIX= ',D16.10/)

2040  FORMAT(B8X,'AVG',12X,'EXITING'/3X, 'TIME',25X,

* 'ENTROPY GENERATION TERMS',29X,'MATERIAL',I1X,

*  'FLUID'/3X,'STEP',6X, 'MATERIAL',11X, 'FLULD',12X,
* 'EXT FLD',12X,'TOTAL',10X,'TEMPERATURE',7X,

* 'TEMPERATURE'/3X,'----',2X,"'~~—————m—mmm oo ',2X,
o e TL2X, e e ',2X,

* Y e e e e e e "ZX" ..................... ',ZX,

* Y e e e e e '/)

2050  FORMAT(3X,13,6(2X,D16.10))

2060  FORMAT(/3X, 'MATERIAL AND FLUID TEMPERATURE DISTRIRUTION',1X,
* 'AT END OF STORAGE PERIOD ARE:')

2070  FORMAT(/3X, 'MODES 2&3 NOT REQUIRED FOR THIS RUN'/

I ) R il '

3000  FORMAT(3X,'MODE 2 SUMMARY'/3X,'—~—= = —=~————= ")

3010  FORMAT(3X,'ETSS= ',D16.10,2X,'ABSS= ',D16.,10,2X, 'KCSS=
*  13,'/100',2X,'15S= ',13,'/20'/)

4000  FORMAT(3X,'MODE 3 SUMMARY'/3X,'~——— = —m==———= ")

4010 FURMAT(3X,'DF0sS= ',D16.10,2%,'KL= 'L13,2%,TAVLSS=s ',

* DI6.1U,2X,"PCTSS = ' ,D16.10,2X,'LRGEST= ',D16.10/)



4020

4030
4040

5000
5010
%

6000
*

6010
%
6020
*
6030
*
6035
6040
*

6050
*

6060
*

7000
*

7010
*
*
*

9999

bX, '"MATERIAL' ,9X, "TEMPERATURE',7X, 'TEMPERATURE',7X,

"DIFFERENCE'/3X, '====" 2K, ' ~=mm e o 12X,

Ve e e TU2K, T e e ',2X,

b e e e et o e e s e e i e '/)

FORMAT(3X,13,4(2%,D16.10))

FORMAT(/3X, 'MATERIAL AND FLUID TEMPERATURE DISTRIBUTION',1X,
* "AT END OF STEADY STATE PERIOD.')

FORMAT(3X, "MODE 4 SUMMARY'/3X,'==== = =—~~—== ")

FORMAT(3X,'ETDS=  ',D16.:0,2X,'ABDS= ,D16.10,2X, "KCDS=

13,'/100" ,2X,"1DS= 'LI13,7/200))

205

FORMAT (13X, 'ENTROPY
"GENERATED'

,11X, "AVERAGE' /3X, "TIME",5X,
,10X, "MATERIAL', 10X, "HIGHEST'/3X, 'STEP',

FORMAT(3X, 'MODE 5 (DISCHARGE) SUMMARY'/3X,

Y e mme e eam i s o e o s e e e o e 1 e A et e o 1)
FORMAT(3X,'DFOD=  ',D16.10,2X, 'NDFITD=
D16.10,2X, "NDFIPD= ',D16.10,2X, 'LM= ',13)

FORMAT(3X, 'BID= ",D16.10,2X,'GPLSD= ' ,D16.10,2X,
DL6.10,2X, 'NTUD=  ',D16.10,2X, "REYDIS= ',D16.10)
FORMAT(3X, 'DISMAT= ',D16.10,2X,'DISFLD=
D16.10,2X, 'DISSUM= ',D16.10)

FORMAT(3X, "PCTM= ,D16.10,2X,'PCTF=  ',D16.10/)
FORMAT(/3X, "MATERIAL AND FLUID TEMPERATURE DISTRIBUTION'

"PRIOR TO START OF DISCHARGE PERIOD.')

FORMAT(3X,13,2X,P16.10,2X,D16.10,2X le 10,2X,D16,10,2X,

D16.10,2X,Dl6. 10)

FORMAT(/JX '"MATERLAL AND FLUID TEMPERATURE DISTRIBUTION'

AT END OF DISCHARGE PERIOD.')

bORMAT(BK FIGURE OF MERLT SUMMARY' /3x

FORMAT(3X, 'PRS AVL, STORACE= ',D16.10,5X,
D16.10/3X,'TMP AVL, STORAGE= ',D16.10,5X,'TMP AVL,
D16.10/3X,"ALPHA= ',D16.1C,3X, 'NSUBS= ',D16.10,3X,
"1ST LAW COMP= ' D16.10///)

RETURN

END

'.,D16.10,2X, ' FIPXD=
'MDOTD=

,D16.10,2X, "DISEXT=

,lX’

1%,

"PRS AVL, DISCHARGE=
DISCHARGE=

1

’

A

!
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41 0.06083024330400 0.17215293930400 08.4234700586D+00 ¢.,3050453824D3088  B.4066 F405650+00 0,21 151008320418
¢ 5.43200%60090+00 D.10931T710600+00 0.45463070280+08 0B.10565554 780208 0,41229625590+30  0.220356008540: 90
43 L.8240591749beB0 6. 20055049870¢00 0.468103853060¢00 O,20573135270208 §,41782973140+00 0.223665502130+0%
et 0.41b%66082310080 0.16384859860+00 O0.27782148000+00 Q. 10587085020601 0.42¥454631540+00 0.22082521 70D+ 33
43 0.4095 1090420400 0. 16120059330+ 00 §.48999615550¢00 0.106071466520¢08 D.42898964520+00 0.230038%0187+04
0 0.408227784430400 3.15802395010+00  0.56241T84420900 Do10633196390+01 ~ 0.4346951563D+00 ' 0,23330499940200
w1 0,3952501 9700080 J.156095405L0000 0.51555790070¢00 0.10645046140001 0.43997308350+70 0,2385822726005 37
o8 0.36842009630400 0.15361593710000 0.32621700690¢00 0.10702531020e81 5 .44562045120¢00 3.239991 1880000
45 S.36050928140¢00 O.15118575050250 0.5%359587120000 O.10745509030+Q) 0.49083812330+00 B, 2436091343803
53 0.,315.6810010+00 0.59880126308+00 0.55529402430:00 G. 1079383990601 0.45422590630+00 B.246875766TDr0C
51 0.3689859030U400 0.16c46009140900 G6.56931342890+00 0.10847395230401 B.46058304440080  2,2503899783030
3¢ B.36279287030¢00 0.14416003210¢00 0.58365213660¢00 §.10906050670¢08 0.4669111752D00  0.25395069510¢%0
53 0.35675996060400 0.34185905500200 0,.59831047820+00 0.10969595140e01 0.472208327130+08 0.2375548819010
5% 0.35065889300¢08 0.13847528850000 0.613287633460¢00 0.11036223150900 0,.47747497150:08 0.28120745513200
53 0.34505185280400 0.13744700680900 0.028%6345440000 Q.11811526160¢31 3,28271G92070+30 2.264233333650+ 97
56 0.33942211240040 0.13533242990930 0.54419635600¢00 0.1118351096D+01 0.48791603050¢30 0,2685374306D¢00
57 0.33341209010400 "0.4332406938D500 0.0b012533840000 0, 1127208923001 3.4930901491036D  0.27241964 T6D¢00
56 0,32642833030200 0.131119686860+00 0.4676368%9921D+00 0.11359L FL85De01 0.49823312820+00 $5,27423168837D239
5% 0323082301007 00 G.129038%04F0 00  0.092%2509500000 0.11450475610001 O.50334482250900 10,28003853230:90
RATEKIAL ARU #RUl0 TEMPERATUKE WISTRIBUIIUN AT END UF STORAGE PERLOD ARE:
8. 100000001 0.9192220+00 0.8156130°03 0. 700970000 D.588542D508 D.0871%8DGH  0.4GI3T0rGH . 0. 3323000400 G, 28G888046H
G.9F56240000 G ouS3TINN00  Q.773596U¢88 0.65057103000 0.5%84030+00 0.4301006000 0.3705750+00 $.3079210e7 3.2621310e00
29522710200 0.5601220000 G, 7421930¢00 0, 623630000 D.5154360¢00 3,42304 20400 8.3482620400 B.2501680+Q0 1,.2492990489
Le990InT0SG0  0.8371500400 O.7143190+8u  6.5948370¢00 0,4885320000 B0.3937528e00 0,3292320:07 . 0.2254860:00 2.23836202C9
0.%924%280480° 0.617051D¢ 00 0.89U2410+00 OG.570170D+00 (.4657293+00 0.3801540400 3.3132820¢ %0 3,263L1370030 0,229347030
0.511923D+00 0.8001340¢00 €.6702080009 0,5498200¢00 0.4470490+80 0.3642050+60 0.3004010+00 3.2532220+408 3.222893D0C
GewdiscTusOl 3.7806820¢00 G.6544190608 5.5338360¢00 0.4325090+00 0.3536550¢00 0,2%0475B+00 0.245381D+00 2.21035580:00
0.0938530+400 0. 776954D+30  0.6430300+08 3,522653D+00 0.%321190+03 0.34396403+00 0.2834360+0G) (.2401930000 D,21262704(0
v 3898450000 L.7709890900 0.636152D0¢0U0 0.5155700+00 3.8158830¢00 0,.3378020+800 0,2792320+03 0.2365850+33 2,2803750+C0
0.20l5710s0 L. T630040000 0.6338520+00 0.5132720400 0.6138060+080 0.3360500606 T.2778340:00 3.2353190433  1,2095230.00
Beued 263 #Ul HEUUIERED FUR THIES ARUN
HUGLE & SURMARY
ETLSs 0.237011444TD¢01  AuDSa -+8301136F860-02 KLD3Ix 27160 iD§= ie/20
HUDE 5 $DISLHARLE D SUMMARY
Ut ou= B.0Q171%21300-01 KDFITD= 0.0 FiPAD= O0.10007226730901 NOFIRD= 0.377350G2692D+03 (4= 53
4 jue 0.630397325680+01 GPLSD» QO.1465G759040+00 HBOTD=  (.50000080006-02 NTUDa 8.20993201260¢02 REYDISx 0.3

DISHATE 0.50287685360¢00 DISFLDs D,3295092849D+00
0.36322223910+00

PLTIN=

0030747 16090+00

PLIF=

DISEXTY= 0,.402089128%0+01

DISSuM= 0,69239611850+00

£0¢



MATERTAL AND FoUED TENMPERATURE DISTRIBUTION PRIOA YO SYARY OF DISCHAAGE PERILD.

0.8197330-01

Ge 1241790600

D.17%358560000

0.2350780¢30

9.0 0.882867D-02 0.2060590-01 D.4884810-03
0.2621370000 0.3079220+00 9.3203760000 BeHSG 100 D0
0.2492590¢09 0.2903680¢00 0.3482620+00 344230470000
0.230366D%0D 0.22%3856D¢00  £.3292020+00 043997500000
0.,22938 D900 ©.2631370400 0.3132820¢00 . 3801540000
0.2221G030030 9.2532020+50 0.3004310¢00 04364205000
D.210554D 00D  0.24553310000  0.2905 750000 0.3518550000
0.2126370400 0.2401940¢00 0.2834360000 $e 3430640000
0.2103050¢00 D.234945D0¢00 9.279232D200 0.3378020¢80
$.2095300¢00 0.2359190000 0, 2778340000 e 336050D¢00
T int ENYROPY GENERATION TERMS
3134 MATERT AL FLLD EXY FLD
1 0.14920370690¢00 0.36647991430¢00 B.43204320250¢01
2 0.17343279960000 0,29995593350s 00 D.4020601 2410018
3 0.23625839i5D¢00 D.27139130280¢00 $.3831032634306+01
o 0.254110632640000 0.25330473560000 G.356529239404 01
5 3.2573119611L¢0D  0.24013401620¢00 0.35086919820+81
o 0.31137035050+00 0.,22992651840¢00 0.33636622020001
7 0.32852759950¢080 J.22142373580000 B.3290223010¢814
¥ 0.33959766%20000 D.21631450580000 0.31973206550v 01
9 0.38583439650+00 0.20705408380¢00 0.331305754790¢012
13 0.34822696320400 0.20352137040¢00 0.30296962950¢ 03
11 0.24835210490¢00 9.19566534790¢00 V. 23523998 700+01
12 0.34492018230¢30 0.19165375700¢00 0.2285 6593530901
i3 0,34099471:50¢09 D.15705139950¢00 0.28118462240001
fa 0320492473000 $.3826699478000 B, 27439453530¢08
15 0.33151278530¢00 0.178982606520200 D3.267716895950e¢08
16 0.32624239570+80 0.1F43654540D200 B.263129258%9De 8L
17 D.320T849a200+00 0.17059831110000 0.2549529265D¢01
1y D.I1524632020000 D.156854 37650000 D 2984037160001
16 C.s0952715210+400 £.31532517035000 D.24264729100+01
20 ©.30602940390¢00 D.15976702200400 D.23566801880001
21 0.2964537265000% 0.1553431807D¢05 $.23079623270+048
2¢ 0.292962781:iDeD0  0.1530303113u¢03 0.23503596558D¢01
23 1.28748471000¢00  0.149986202853+ 30 0.2393743476D002
26 G.28209999270D¢G0 . 1a68 5222420000 0.21331099910008
25 0.2767174635D006 543515531000 00 5.20835829250¢01
26 ©.27153635160¢00 4.314056314730¢00 0.,202996718531De¢ 0}
21 0.26535600670005 $.13762288730¢00 5.19773568353DeD1
24 0.20327196030¢30 0.53473589090¢00 0.392571438%90+ 03
29 0.2562505599D¢00  D.i3193(F7190¢00 0.:8750168%8Ds Gy
3 4,2513014%620¢00 0.1291384721D¢00 De 4 5252674320088
3L 5.240602319903D¢00 0.1206415263000 00 De3I704531540001
32 D.24151059490+¢00 $5.12374251710¢0D G.172858:2250¢01
33 0.23656552170¢838  0,32113527400¢00 0.168162928D+063
3 0.23218593350200 0.3335325225000 Fe 1835595652001
35 D.22156747690900 0.135992275u0D000 3.59904704 95083
36  0.2230113051D¢00 0G.311369302700¢00 D.159062493743D¢ 03
37 0.23185i507420000 D.31103337570000 0.150292204080¢018
35 D.2340774733De00 D.1056120300D¢D0 9.14804827570e01

0..0909730600¢H0

0.1062278235D¢00

B4k 589230890+ 03

G.46377708650000
3. 45480990080¢00
e d6997209210¢00
0.4332857393D¢09
D.4287673229%0 D20
0.42335299450¢D0
$.43 2801555390000
D 4035838920000
0.39501079130400
0.38816207183¢40
0.38043997020¢00
0, 3720382349D¢00
0.35535532:390¢00
3, 3539608954600 00
2.35071 755700400
0, 343559795540 ¢0C
D.3306504348 50O
0.329528650590 G0
0.32208940%9305¢00
(.31592532950+00

0.33878637000¢30
D.33207222680D930
0.323470766909200
0.31897756250000
5.3125915672000
§,30631170930e08
$.302336387ED200
D.29905 435490200
0.26309436496000D
Ga2B2225068450¢30
D.27645526620400
V. 23D73370410400
0.26520915800+00
£.25973041690+G0
0,25534528220430
5.262053%50540¢30
2.24335709270430
0.23874959380+00
9.2337322:560¢00
§.2288034974D¢00

D.5364030¢00 0.8355710600 0, 773598000 0. 8855730+ 00
0.5154360000 2.6234900000 9.7421990400 0.860123De00
$.4585320000 0.5953370¢00  0.7143190¢00 0.83715802020
D.4657290400 0.5703710%00  0.6902910¢30 0,987351D+00
0.44 70490300 ©.5499200¢00 0.6702090¢00 0.800134D¢00
0.6325090400 ©5.5338880¢00 0.6355190¢08 G. 7806820200
0.4221190°00 0.5224530¢00 0.6530350¢99 G.7T56914D830
O.4E58830+00 0,515573D900 0.563615200008 0.7309390+ 60
5.4138040¢08 0.5132720400 $.6338520900 D.7630040¢07
aAvH EXLTING
BATERSAL FLULO
fUYAL TEMPERATURE TEMPERATURE
0.55544361930008 0,692642655390¢00 0.36080030360+¢03
0.4733637824D000 0.482393825460¢00 0.8202195945D¢090
0.4556496992D0¢00 0.47282405310¢30 $.791824613340000
0.5074231844D400 @.48355433890¢00 0.7692855258060¢00
0.52196597730e03 (.45653292100¢30 D.I50423876 P00 00
0.54129695080¢00 $.9457591096030 0.73440228470¢00
0.564995363530400 0.43718726990200 0. 7199392364D¢00
8.5537123750000 0.42877221590%00 0 .703656841469D¢070
0.5%3483867030400  0.42051 284890400 0,69433399210200
0.55024533350+50 ©.61240078700000 D. 682678795504 00
0.56401301290003 G.aU452956150400 0.,67152562540+00
0.53657003930+¢03 0.395653556872D+03 B.651319923020¢90
0.52804591090¢00 D.38399350950r30 3.,45397534920¢ 30
£,51914919500008 0.351660516306+00 $e 0409 709930¢D0
3.5003954504D 10  DL.3798531631H000 G.531096409920400
§,595870735020+00 5.3657562008L+30 D.5213972151De00
0.4913832930D¢00 0.35959158260003 B, 6108395354007
0.48209520240+00 0.35258575420¢00 B.50240 768730437
0.47287386025D000 0.365503859350000 3.59309176710De00

0.593384260560¢03
0.5747797625D¢0
D 5057762553040
D.55b8b% 17 140200
$.54805921190200
G.53932597960:00
B.53059393560¢00
$,5224522258D¢39
$451370024360¢00
9.50533752870¢00
0.49706374330¢N)
D.43887863420¢00
$,4827820090D¢30
C.aT271333 19000
0.464853564030¢00
0.45702315763D¢G3
0.6492777355D¢00
Ded4152373410¢00
0434053536450 00
0.62657321710¢00

n,29843150400

0,9758240400
$.997271De00
0.9435847D¢0C
0.92%93280¢09
0.9319230¢80
0.9915670+00
5,89)313De00
2.8391450000
G, 5aT57TDenD

80¢



A H.20537344530+00
21 $.20130508000+00
%2 D.1808%120540200
A3 G.1%272002140200
%% L.388023102uD200
45 D,884309794004¢00
%5 0.280%6750:00¢080
et 9.175213927580+00
48 B.1I6EFI2360D200
2% 0.16649187550+00
58 8.16253385460¢00
S 0.15672413200400
32 B.195026L19250+00
%3 0.151438374700¢00
54 0.1578869042u400
55 0,149422655%80:00
56 0.14101946420000
5} 0.4370230281000
58 0.13%3804424D+00
59 0.13:1397911D+00

G.L038297906us G0
8.16158702560400
B.99288740356D-01

03704524847 0-G1
G.998329243%- 04
0,92654247620-01
B.9050¥757220-01
3.8456030531D-0%
Q. 865738 75210~61
0.84548672040-01
0.826197812380-0}
0:.80671860630-01
0.78747047190-01
0. To8s8739600-01
0. 14970147760~ 01
0.23130538350-01
G, 28312361300-Q1
B.69521323100-01)
0.6TF5%43L TAD-0%
0.66025026200-01L

HATER AL AND FLUlU TERPERATUKE DESTRIBUYIUN AT EMD OF GISCHARGE PERICD.

6.0

8,2038050+02

.3398710-G2
$.630031D-02
8.7330830-02
2.8261190-02
06,6894 7002
P.9285140-02
$.9415360-02

0.05608800-02

0. 1242880-0¢
0.153005D0~G1L
Ga bl 78962D~-Q)
0. 202 71 10~ 01
0.2208850-93
0.2361%10-0L
0.2472250-91
Q. 2539520~ 01}
J.2562070-01

FIGURE UF HERIT SUMMAKY

PRS AVL, STURALE= 0.29d59235%560-02
Tue ave s STORAGES
Alrhas O.T6052298970-03

3.15700531040¢01
N3UBS= 0.34387319240+00

Q.2%103460-01

G, 310058001
0.3008490~01
0.4062270-03
0.4456%1D-01
0.278699D-01
0. 504823001
0.5237280-01
0.5351630-01
8. 5389990~ 01}

PRS avi,

DISCHARGE= 0,2922676885D-02
Taf Avl, BISCHAKGE: 0.0
157 LAM CONPa 0.41565579120400

Bod3TBL3502T0e 41 0, 3092532843000 0,2239624090D408 B5.419180352500+08
§,83364610800D¢08  0.302672105404+00 0.21920781450¢80 8,41187541850400
G 12994484 7909088  B.296L7994580900 D.21433858630038 8.,40555773700+00
BoA2433199710¢8Y 0. 2697753630000 O0.20%95360770+¢88 9,.3GF52751270+00
G.12240365860681 §,28345708942D500 0.20555176550030  0.33088464460200
B.EEBTSR2TB20v03 $.277225061580¢00 (.20003195530400 0.38352849215:10
8, 5151949875001 0.27307525620400 D.19646930782D+00  5.37665%45390 04
0. 1189640703000 0,2637742841Ds00 B.19248363200+00 0,37036998220+¢60
0.10874018240¢0Y 0,257240298480:03 £.198352008940180 ©.38639516322D:00
0.£8547008490+08 0.251008054750¢00 O0.18429533E1D00 0,3575345119000
B.102294548T0001  0.26513363590¢00 D0.18031418900+00 0,35116030060208
0.99181457930200 0.2393959921D200 0. 1T24037274D600 0.3448¢4667650+00
0.961343498160000 0,2337738396D¢00 0.3725695500D:00 0,3285%593780+¢00
G.93136374090¢00 0.22826731430+00 0.108804%B140000 0.33241690500:00
0:90244109320400 §.22286305200400 0.16531072420+38  $.32631558330:00
0.8360£9%41500¢80 Q(.21755319420+00 0.16148603780230 8.323290932383+0%
0.846282688620000 08.21233180590+00 ©.1579298399000 0,31434310220+400
0.8182271 749080 0.20713855120000 ©.1544412084000 0.306847395320400
Q. 7922468 9740¢00 §,20213991410¢00 O0.1510G3318300+¢30 3,3026836839880+:00
0.76713262370400 . 19716481730+00 $.1676062380630430 0.2965731642D+00
0.4820550-01L ©Q.811379D-01 0.1232090¢00 0.1744550+¢00 0.235399D00
0.3837270~-01 0.%675290-0% 0.31402890+00 0.195064D0G0 0.25821100¢0
B.4584840-01 0.1046820+00 0,1527010200 0.2099785+00 3.2753920:00
Do 7269L80-08 0.3339880+00 O.1636380+00 0.2Z30860+00 0,290658Gy00
0.7823§80-01 0.1210160¢00¢ 0.17130240438 8.2343018+09 £.303332033
0.8301130-08 0,1272880+00 0.1807930+00 0.2835850:00 G.3139338+00
8. 8678020~0) 0.1322190+00 0.186B920+08 0.2508560400 $.322267D0+00
0. 8950030-01 O0,1337710200 ©.1912780400 G.2560790+00 0.3282355.00
0.3114360~01 (.1379140+00 0,1839220+30 $.25%2250000 3,3318280+040
0.%169300~-01L 0.1384300¢00 0.,1946805D¢30 0.2802780+80 2.33332710+00

0.2969738¢00

0.3208330+09
2,3379580+00
7,3529530+00
C.3657750400
J.3T76352088
0.38446320400
0,390574D400
0.,3941520+00
D.39534£004

607



ScLUND LAW OPTINMIZATION OF @ SENSIBLE NEAT STORAGE pEYiICE

NUKBER OF VARIABLES S 3

NUMBEN DF RUNS 3 i

LEIL ING ON HESSIANM IS 3

CEJLENG DM BINDINGL CONSTRASNYS IS i
ALTUAL LEMLTIN GF 1 ARRAY 1S 79

Buy

K i i 1.0000000#02 9,0000000+03

[ 2 2 1.0000000902 1.0000000+04

S 3 3 5.5000000¢41 1.0000000¢93

En

ini

Fute

4.50000000+02  4.0000000D+02 T.00000000+02

L
VAR
LILSS
Bi3
§ HUNM
£l
RURS
u 1
[ $,13]
Fuby
NSUBS H

£6d

PR

IPH 4

Plie -1

END

11A
NoT 3

LMY

[

vy Q. 1 000000-03
END

HEY

o

chi
GL

[P Pl g

(PNEWT = 1.0000D-04 EPINIT =  1.D000D-04 EPSTLP = 1.,0000D-04 E£PPIVY = 1.0000D-03 PHIEPS = 0.0
NOILY = 3 iTiim a 10 LIMSER = 10000

Epm = 4 P4 = -1 PN5 = 0 PHo = 0 PER = O DUMDP = kd

FANGENT VELYURS WiLt B£ WSED FOR INITIAL ESVIRAYES OF BAS 1L VaRIABLES

JhHE FANITE DIFFERENCE PARSH USIMG CENTRAL DBIFFEREMCES wiii B8& USED

DJECTIVE FUMCTIUN witl #HE RiNIAJZIEOD.

01¢



GRAD ARHAY 15

Fub Lt 13

~£:33582E-06 -5,250846-05 1.033056-04%

ingy IS } 2

lve 5 ¢ 0 o

KREDULED GRADEENRT S

~d.33461746D-00 ~4,251844080~0% 1,033245793-0%

PicRAIIUN OCBJELT IVE NO o ENDEIMN, MO SUPER- RUMBER NURR RED, HESSIAN HESS [ AN DEGENMERATE
NMURBER FunTiun CORSTRAENTS BASICS INFEASEHLE GRABIENT COMBETRIUN UPDATE STEPSIIE F3R 34
4] 9.20681250~01 4] 3 g 2.335%D-04 1,0000¢00 ¥ 6.0
[ 3
1 9.20812590-0)
2 s
i %,00000000202 2 4#.00000000¢02 3 7.00000000+02

LHULLSKY FACTUR OF HESSIaN RESET 10 |,
UIRELTION YECTOR |5
©:334620-04 4.25144i05 ~§.033750-0%

A -} C FA [ 4 ] Q
V22751350007 0.548270B+07 V. 6Z28TBLLCOY 0.639466TD00 0.34445960+00 Q. 382163TD00 N.5367576D+07
QUAURAT IL ENTERPOLATION
ATEnAT LN VL JIELTVE NULBIRDEING  NO.SUPER~- HUNMBER NOR# RED. HESSIAN HE SS 1AM DEGENERATE
NURLER FUNCT fisn CUMSTRRAINTS gasiCs INFEASEBLE GRADIENT CONDIT 0N UPORTE STEPSILE STEP
o3 3. 441 6030-01} [+ 3 ] 2. 335004 £.0000+00 [ 5.343D0608
L IS
b 3.44160260-01
L Y
L 1.058450%03003 2 £,273105%000¢ 3 1,47196580¢02

thisy 1S i 2 3
luB 5§ [} 0 4]
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This appendix explains the steps that were taken to enable ENTROP
to define the individual terms of the discretized material conduction
equation coefficient matrix at run time and as a function of the number
of material nodes.

First, it is necessary to define a consistent coordinate system and
nodal numbering sequence. The one developed for this study 1is
illustrated in Figure B.l. It has the standard "i" and "j" axis desig-
nation and a numbering system that gives each node a unigue number.
Figure B.l shows a 4x7 network but the mathematical relationships devel-
oped are valid for any size system. If we define the number of nodes in
the X direction as m and the number of nodeé in the ¥ direction as n,
the following characteristics of zhe nodal system shown in Figure B.l
can be noted:

a. the node number for any given (i,j) node can be uniquely defined
as [i+(j-1)*n],

b. the node directly above any given (i,j) node can be defined as
(i+1,j) and has a unique number given by [(i+1)+(i-1)*nl,

¢, the node directly below it can be defined as (i-1,j) and has a
unique number given by [(i-1)+(j=~1)*n],

d. the one to its right can be defined as (i,j+1) and has a unique
nunber given by [i+j#n], and

@, the one to its left can be defined as (i,i-1) and has a unique
number given by [i+(j~2)*a}.

The coefficient matrix that results from this nodal network has

certain characteristics that are alse of iaterest. The first of these
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Figure B.1l,. Tilustration of the coordinate system and nodal numbering
sequence used 1in the discretization of the material
conduction equation.
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is that the matrix is square with an order equal to nxm. Therefore the
sample 4x7 arrangement shown in Figure B.l would result in a 28x28 co-
efficient matrix. 1In addition, each row of the matrix would represent a
particular material node and the entries in that row would rvepresent
either the particular node or one of its neighbors. This matrix would
also have a unique physical appearance. The non-zero coefficieats would
be arrvanged in a band centered around the main diagonal. These traits
are illustrated in Figure B.2 and the “x's" represent the non-zero co~
efficients. This figure shows a very important characteristic of this
type of coefficient matrix; that is the uppér and lower band widths are
equal to the number of material ‘nodes in the "i" direction.

To understand the requiremeant that we must be able to define each
individual term in the coefficient matrix, it is necessary to examine
the instruction string provided with subroutines DGBFA and DGBSL to load

their working matrix. It is:

M = ML + MU

PO 20 I = 1,N

I1 = MAXO (1,1 — MU)
I2 = MINO (N,I + ML)
DO 20 J = 11,12
K=J~—1+M

20 ABD (K,1) = A(J,L)

where:
ML = Band width below the main diagonal

MU = Band width above the main diagonal
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N = 8ize of the original, large, sparse coefficient matrix, A,

and is equal to nxm

]

ABD = DGBFA's working matrix

The purpose of this inmstruction string is quite simple. VUsing the
total number of nodes plus the upper and lower band width of the
original sparse matrix, it skips over the zero entries and “reads”™ only
the non~zero entries of each row. The "1” counter on the outer loop
causes it to look at each row of the original matrix and represents the
unique number of a particular material node. The "J” counter on the
inner loop represents the unique numbers of the neighbor nodes, that is
the neighbors of the node represented by "1". Therefore once the in-
struction string has defined a particular element, (i.e., an "I" and
"J") it "reads” the value of that elemeat from the original sparse, co~
efficient matrix into DGBFA's working matrix. The operation of this in-
struction string can best be illustrated by calculating the "I7, "I17,
and "I2" counters for a few iterations and then compariag them to the
example coefficient matrix in Figure B.2. The results of these few
iterations, using the nodal network in Figure B.l, are shown in Table
B.1l.

The problem that results is that both the original sparse, coef-
ficient matrix and the working matvix have to be defined. This is un-
desirable because even moderate sized nodal systems requitve larsge
amounts of computer memory. To solve this problem it was necessary to
incorporate the ability to calculate a coefficient array element giwven
any "I", "J" pair. The steps taxen to develop this capability are

described below.



Table B.l. Partial summary
of the operation of the
original instruction
string to read the
banded matvix

Inner loop

Outer loop counter
counter e

Ii 12

1 1 5

2 1 6

3 1 7

4 1 8

5 1 9

6 2 10

7 3 11

8 4 12

23 19 27

24 20 28

25 21 28

26 22 28

27 23 28

28 24 28
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The key to providing this capability is to have a discretized coo-

duction equation with a uniform physical construction that is applicable

to every type of node. The most general form of a discretized, fully

implicit, transient conduction equation for any particular {i,j) node in

the system shown in Figure B.l is:

——<er.‘ .
1,]

with

n+1 n+l n+l
+ = + £3¢ + Ch
Cl> CZGi’j__1 C3Oi,j+1 C481~1,j
(B.1)
n+l ntl
+ C591+1,j c&ei’j

As can be seen, equation (B.l) contains a total of six terms, each

a leading coefficient or associated constant. The six terms are:

ae

bl

Ce

The

function

the temperature of the (i,j) node for the next time period,

the

current temperature of the (i,j) node, and

the current temperatures of the four neighbor nodes.

value of a leading coefficient or associated constant is a

of

the systen,

system under

that

a. the
b. the
c. the
is j=n,
d. the
e. the

the physical location of the particular (i,3}) node within
its neighbor nodes, and the boundary conditiocans. For the
study, there are nine different types of nodes. They ave:
interior nodes,

corner node located at i=1 and j=i,

nodes on the X=0 face but not at a coraer;

i»2, and i<n,

corner node located at i=n and j=1,

nodes on the Y=1 face but not at a corner;
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that is i=n, j»2, and j<m,

f. the corner node located at i=n and j=m,

¢#. the nodes on the X=1 face but unot at a coraner;
that is j=m, i»2, and i<n,

h. the corner node located at i=1 and j=m, and

i. the nodes on the Y=0 face but not at a corner;

that is i=1, j»2, and j€<m.
The leading coefficients and constants for each of the six terms in the
most general equation form and for each of the nine nodes were computed
and are summarized in Table B.2. The actual algebra is quite straight-
forward but very long and involved and will not be repeated here for the
sake of brevity. The reader is invited to read refereace [52] for de-
tails.

With this information, it is now a fairly simple operation to de-
fine any given coefficient array element and this procedure is summar-—
ized as follows:

a. Given the value of the "I" counter aad therefore the unique
number of a node; determine it's (i,j) location.

b. Based on the (i,j) location; deterwmine which one of the nine
types of nodes is represented.

Ce Using the value of the "J" counter; determine which neighbor
node is represented.

d. Finally, with the particular type of node and neighbor iden-
tified, pick the appropriate coefficient from Table K.2.
This coefficient is then loaded directly into DGBFA's working array in

the location desired by DGBFA.



Table B.2. Summary of coefficlents and associated constants for discretized,
non-dimensionalized material conduction equations
cl cé
Nodal .
A bDuring With c2 c3 C4 C5
location dwell convective During dwell Wicth convective boundary
i period
period boundary
(1,1) corner 0 0 2819 0 2BZb —~{1 + 2Bl + 2B2] —[1l + 2Bl + 2B2]}
X=0 face ] 0 0 281 B2 B2 —[1 + 2B1 + 2B2} —-{1 + 281 + 2B2}
(n,1) corner 0 28281407 ! 0 281 2B2 0 —f{1 + 281 + 282} {1 + 2B + 282 {1 + Biay)]
1
+

Y=} face 0 23281AY6? g Bl Bl 2B2 0 ~f! + 2Bl + 2B2} ~{1 + 2Bl + 2B2 (1 + BiAY)]
{n,m) corner 0 2BZBIAY6?H 281 0 282 0  —[{1 + 281 + 2B2] —[i + 2BY + 282 {1 + BiaY)]
X=1 face 0 0 2Bl 0 82 B2 —[1 + 2Bl + 2B2] —[1 + 281 + 2B2]
{l,m) coraer 0 0 2Bl 0 0 2B2 —[1 + 28I + 2B2} —~[1 + 2B1 + 282}
Y=0 face 0 0 8l B1 282 —{1 + 2B} + 7B2} —{1 + 281 + 2m2}
Interior 0 ¢ Bl 81 B2 B2 —f1 + 2Bl + 2B2} —-{1 + 2Bl + 282}

) oyt?

JBL = .A_I‘_OV

4x2
bBZ _ AFo

AY2

YA
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APPENDIX C

DESCRIPTION OF MODIFICATIONS TO PERMIT

INTEGRATION OF DISCRETE VALUES
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The following information summarizes the modifications that were
made to the Simpson’s One~-Third Rule algorithm to permit integration of
discrete data points instead of continuous functions. One~ and two-
dimensional numerical integrations were required at several locations
within ENTROP, and it was decided that it would be more accurate to use
the discrete points rather than a curve fit of the discrete points.

For a one-dimensional integration, the reader will recall that the
traditional procedure has the following preliminary steps:

a. define a continuous function, ¥, and the limits of integration,
A to B,

b. define the number of divisions, D, that the contianvous function
iz to be divided into,

Cos using the limirs of integration and the number of divisions,
calculate the 1length, H, of weach division using the relationship
(B-A)/D, and finally

d. divide the number of divisions by two to determine the number
of “groups of three evaluations™ in the interval from A to B.

The actual integration of the continuous function is accomplished using

this information and the following instructional string:

X1=A
NUM=DIV/2.0
SUM=0.0
DO 100 I=1,NUM
SUM=SUM+H/3.% [F(X1)+4 *F(X1+H)+F(X1+2.*H) ]
100 X1=X1+2.%H

The numerical integration proceeds as the value of the X1 wvariable is
incremented and continues until all the "groups of three evaluations”

have been processed.
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To modify this string to use discrete values, we first do the fol-
lowing:

a. define some number of discrete nodes in the interval from A to
B as M, and specify an odd number of nodes,

b. define a siongle dimensioned array, Y, that contains the values
at each nede,

C. realize that the interval between nodes, dX, is the same as the
length interval, H, used in the traditional technique, and

d. realize that for these definitions, the number of “groups of
three nodes” 1is equal to (M-1)/2.
An illustration of this physical system is shown in Figure C.1 and shows
the original iInterval from A to B discretized with seven nodes. Using
these definitions we can rewrite the traditional instructional string as

follows:

NUM = (M~1)/2.0

Ni=l

SUM=0.0

DO 100 I=1,NUM

N2=N1+1

N3=N2+1

SUM=SUM+ [ (dX) /3. ]*[Y(NL)+4.*Y(N2)+Y(N3) ]
100 N1=N3

This modified sequence then steps through the discrete poiats in the
same order (i.e., the sawme "groups of three nodes”) as the traditional
procedure. The N1, N2, and N3 counters, which are redefined for each
increment of the do~loop, specify the points being processed. The

nunerical integration 1s complete when the last “group of three”™ has
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Figure G.l. Illustration of the physical system used to permit the
one-dimensional integration of discrete values,
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been processed. This modified string was programmed and installed in
the ENTROP program as the subroutine ONEDIM.

A two—-dimensional integration using the traditional one~third rule
proceeds in a similar manner. The only difference is that for each
“"group of three evaluations” in the X direction, it must also evaluate
all the "groups of three evaluations” in the Y direction. The primary
difficulty in implementing such a procedure is defining a methed to kesp
track of which node numbers are being processed at any given time. 1In a
one—dimensional system, the node numbers proceeded in order; that is NI,
N2, N3, then N3, N4, and N5 until the last "group of three” has heen
processed. In & two-dimensional system, the node numbers in a given
direction are not sequential. This 1is due to the nunmbering sequence
used to identify nodes. The reader can review this sequence by refer~
ring to Figure B.l (p. 217). Before discussing the specific modifica—
tioas that were made, it is necessary to briefy summarize the tradi~
tional two-dimensional integration procedure.

The two-dimensional, one-third rule algorithm requires the same
types of information as its one~dimensional counterpart. 1t must have
limits of integration and interval lengths for both the X and Y direc-
tion. The running total, that is the result of the integration, is also
similar except that it sums nine values instead of three and has the

following form:

SUM=SUM+{ HX*HY /9. )*(FI+F3+F/+F9+4 . *(F2+F4+F6+F8)+16 . *¥F5.) {(C.1)
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The nine "F's” in equation (C.l) represent values of the continuous
function at specific X and Y coordinate points. To define these func~
tion values, assume that the integration process has just begun. The
current X and Y values would be the respective lower limits of integra-
tion. Designating these initial values as Xl and Yl and defining HX and
HY as the X and Y interval lengths, we define the following qualitative

relationships for the nine function values:

F1=F(X1,Yl), F2=F(X2,Y1), F3=F(X3,YD)
F4=F(X1,Y2), F5=F(X2,Y2), F6=F(X3,Y2) (C.2)

F7=F(X1,Y3), F8=F(X2,Y3), F9=F(X3,Y3),
where:
X2=X1+HX, X3=X1+2.%HX, Y2=Y1+HY, Y3=Y1=2.%HY. (C.3)

These geometric relationships are illustrated for a hypothetical problem
in Figure C.2. As in the one-dimensional case, the numerical integra-
tion proceeds by summing the function evaluations for given initial
values of Xl and Yl then incrementing their value until all the “groups
of three evaluations” have been processed. The only difference is that
for each X "group of three evaluations”, all the Y "evaluations” have to
be performed before moving on to the next X "group of three evalua-

tions."
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To modify these relationships to accommodate discrete points, it
only necessary to realize two facts. These are:

a. that the X and Y coordinate positions, that is the X1, X2, . .,
XM and the Y1, Y2, . ., YN values, also represent the (i,j) coordinates
of the material nodes, and

b. the (X,Y) coordinates can therefore be used to define a unique
node number using the relationship developed in Appendix B.
With this information, a straightforward computing scheme can be defined
to permit the integration of discrete values. This scheme can be best
explained using the logic diagram in Figure C.3. This diagram was pre-
pared by:

3. assuming an odd number of material nodes in the X and Y direc—
tion,

b. using the same coordinate system and nodal numbering sequence
as shown in Figure B.l (p. 217), and

Ce assuming that the function values to be integrated are coo-
tained in a single subscripted array, T(B); where B represents a unique
nodal number.
The steps outlined in Figure C.3 were programmed and installed in the

ENTROP program as the subroutine TWODIM.
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APPENDIX D

VERIFICATION OF TWO CRITICAL CALCULATIONS
PERFORMED BY THE ENTROP COMPUTER

PROGRAM
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This appendix summarizes the steps that were taken to verify two
critical calculations of the ENTROP computer program: the storage ma-
terial transient temperature distributions and the figure of merit, N..
To verify that ENTROP was correctly calculating storage material transi-
ent temperatures, a comparison was made with a simplified storage system
example problem contained in Schmidt and Willmott's [21] text. The
ability of the ENTROP computer program to accurately calculate a value
for the figure of merit was verified by having it duplicate a design
case that had also been evaluated »y the computer program Krane used for
his lumped storage element study [46].

The accuracy of the storage material two~dimensional transient tem~
peratures as calculated by ENTROP could not be verified directly because
similar temperature data was not available with which to make a compar-~
ison. Even though Szego [22] published results based on such calcula-
tioms, actual storage material temperature distributions were not
included. Consequently, a comparison had to be made using a one~dimen—
sional storage system example problem from reference {21}, This par-
ticular problem was chosen, in part, because it utilized an analytical
solution for the storage material transient temperature distribution
that had been non~dimensionalized with many of the same variables
utilized in this study. This problem described the situation where the
fluid was assumed to have an infinite heat capacity (i.e., constant tem—
perature along the flow channel) and the temperature gradients within
the storage material were not unegligible., The one-~dimensional material

temperature distribution for these conditions can be written as:
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Z sin MJ.
= - — 2
8, = 1.0 2 ST M Ees MY LY oXP [ (Mj ) Fo] cos (MJ,Y)
=1 R h ]
(D.1a)
where:
Tm,o - Tm
0, = T—L“fjﬁf“ (D.1b)
f,i @
and
Mj tan Mj = Bi . (Dolc)

It should be noted that equation (D.1) utilizes a dimensionless temper-
ature different from the one used in this study. This is mentioned here
because it somewhat complicated the verification procedure.

Comparing ENTROP's two-dimensioonal tewmperature distribution against
a one-dimensional distribution was possible only because a small value
for the storage material aspect rvatio, v could be specified. This is
the ratio of the half-—-thickness of a section of storage material to its
length and small values minimize the effects of longitudinal conduc~-
tion. Therefore, once a two-dimensional distribution for a storage unit
with a small value of V' had been calculated, it was reasonable Lo
interpret it as a group of individual one-dimensional distributions.
Each of these groups could then be compared to the one—dimensional dis-

tribution calculated by equation (D.1).
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A compulter program was written to solve equation (D.1) and together
with ENTROP was used to conduct the verification procedure. This se-
quence proceeded as follows:

a. Values for Bi; and Fo, were defined and storage material tem
peratures at 25 equally spaced points, corresponding to an elapsed time
equal to Fog, were calculated using equation (D.1).

b. Using the same Biy and Fo, defined above, dividing Fo_ into 99
equal increments, defining values for Tf,i,s/Tm and T ,0, /T defining a
value for V' as well as the ratib of G: to v*, and specifying a gpecific
material-fluid nodal arrangement, ENTROP was made to solve the one~
dimensional fluid ahd two—dimensional storage material temperature dis—
tributions for these conditions. This resulted in nine dimensionless
fluid temperatures in the longitudinal direction and 25 dimensionless
material temperatures through the thickness of the storage material for
each of the nine flﬁid temperatures.

c» One of the nine dimensionless fluid temperature calculated by
ENTROP was then converted to 1its appropriate dimensional value. This
value, a dimensional ambient temperature, the dimensional fluid temper-
ature used to define Tf,i,s/T;’ and the dimensional initial material
temperature used to define Tm,o,s/Tm were used to coanvert the 25
material temperatures calculated by equation (D.l) to their appropriate
dimensional valae. These dimensional temperatures were in turn non-

dimensionalized with the scheme utilized in this study and then compared

to the corresponding dimensionless material temperatures calculated by

ENTROP.
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Step c was actually performed on two of the nine fluid temperatures
and the results of these comparisons are summarized in Table D.l. These
data show that the agreement between ENTROP and equation (D.l) was on
the order of 2.%. Given that approximate two-~dimensional temperature
distributions were being compared to exact one-dimensional distribu-
tions, the agreement was considered excellent and it was concluded that
ENTROP was correctly calculating transient material tempevature distri-
butions.

It was equally difficult to verify the operation of the ENTROP pro-
gram for a complete storage-remcval cycle. Although individual parts of
the program had been verified separately, no data were available to in-

sure that the figure of merit, N was being calculated correctly. Ac-—

c?
cordingly, it was decided to define a specific set of design parameters
and then have both ENTRCP and the computer program Krane used for his
lumped element study [46] calculate values for lambda, A, and the figure
of werit, N.. This required a considerable effort that consisted of the
following major steps:

a. A hypothetical storage system was defined using air as the
flowing fluid and feolite as the storage material. This design utilized
feolite and air physical properties, arbitrary values for the storage
material half-thickness and length, and a unit width into the paper.
The physical design and operating parameters of this system were spe-
cified to approximate a lumped element,. This was accomplished by
specifying small values of Bi, to approximate a storage material with a
very large thermal conductivity, and small values of GZ to minimize the

teaperature drop in the flowing fluid.
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Table D.l Comparison of storage material temperatures
calculated by ENTROP with those calculated
by Equation D.l

For the dimensionless fluid temperature
calculated by ENTROP having a value of

Dimensionless Y

distance 0.9982 0.9891
ENTROP Eqn. D.1 ENTROP Eqn. D.1
0.0000 0.23406 0.2394 0.2321 0.2373
0.0417 0.2346 0.2395 0.2322 0.2373
0.0833 0.2348 0.2397 0.2324 0.2375
0.1250 0.2352 0.2400 0.2327 0.2378
g.1667 0.2356 0.2405 0.2331 0.2383
.2083 0.2362 0.2410 0.2337 0.2388
0.2500 0.2369 0.2417 0.2344 0.2395
0.2917 0.2377 0.2426 0.2352 0.2404
0.3333 0.2387 0.2435 0.2362 0.2413
0.3750 0.2398 0.2446 0.2373 0.2424
0.4167 0.2410 0.2458 0.2385 0.2436
0.4583 0.2423 0.2471 0.2400 0.2449
05000 0.2438 0.2486 0.2412 0.2463
0.5417 0.2454 0.2502 0.2428 0.2479
0.5833 0.2471 0.2519 0.2445 0.2496
0.6250 0.2489 0.2537 0.2463 0.2514
0.6667 0.2509 0.2557 0.2483 0.2534
0.7083 0.2530 0.2578 0.2504 0.2554
0.7500 0.2552 0.2600 0.2526 0.2576
0.7917 0.2576 0.2623 0.2549 0.2599
0.8333 0.2601 0.2648 0.2574 0.2624
0.8750 0.2626 0.2674 0.2600 0.2049
0.9167 0.2654 0.2701 0.2626 0.2676
0.,9583 0.2682 0.2729 0.2655 0.2704

1.0000 0.2712 0.2758 0.2684 0.2733
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b. Using this hypothetical design, twe equivalent sets of dimean-
sionless design variables were defined: one for ENTROP and omne for
Krane's model.

Both models were rum and the values of A and N. compared. ENTROP
calculated a valve for A of 0.7419 x 1077 and a value for N, of
0.9653. Krane's model calculated values of 0.1920 x 107% and 0.9980
for A and N. respectively. Given that it was not possible to completely

simulate a lumped element, the agreement was considered good and it was

concluded that ENTROP was correctly calculating values for A and N.«
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