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M. A. Williams 
D. 6. Wilson 

ABSTRACT 

Fully vectorizad codes have been writteri for the CRAY X-MP implementing explicit 

and implicit finite difference schemes for enthalpy formulations of three dimen- 

sional Stefan-like problems. The implicit scheme is that proposed by C. M. Elliot and 

J. R. Ockendon. The explicit scheme is intended to provide a comparison for the results 

from the implicit scheme. Vectorization of the code required some ingenuity since material 

properties change discontinuously as solidification proceeds.. Boolean variables were used 

to avoid conditional branches in DO loops. Average vector length was greatly increased by 

unfolding three dimensional arrays and treating them as long vectors. This report docu- 

ments the development of the code and the vectorbation strategies. The investigation of 

the tradeoffs between the implicit scheme, gotentially capable of taking large time steps, 

and the explicit scheme, whose time step dze is limited by the stability criterion, has 

begun but is not complete. 

1. Introduction 

Numerical methods for Stefan problems are based on discretization of either the heat 

equation or the equations of the enthalpy formulation. Crank [l] and Elliott and 

Ockendon [2] survey a number of these techniques. In this paper we present an algorithm 

suggested by Elliott and Ockendon [2] and Its implementation on the CRAY X-MP. The 

algorithm admits both explicit and implicit finite difference implementations. Explicit 

solutions can be calculated quickly a t  each time increment but stability considerations res- 

trict the time step size. Alternatively, implicit schemes are unconditionally stable and 

thus the time step size is not restricted. but Bn iterative method must be used to solve the 
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non-linear system at each time level. We have developed a computer code to be used in 

investigating trade offs between these methods. 

We consider the problem of solidifying a three dimensional rectangular parallelepiped 

of material initially at  its critical temperature. The boundary conditions imposed are the 

temperature distribution on the bottom of the box and zero flux on the walls and top of 

the box. We first present an enthalpy formulation of a moving boundary problem and the 

corresponding numerical formulation. Next, we discuss the method suggested by Elliott 

and Ockendon [2] in which self-consistent enthalpy and temperature values are calculated 

at each node using Gauss-Seidel iterations and successive overrelaxation @OR) to solve the 

non-linear system. In Section 5, implementation considerations for the CRAY X-MP are 

discussed. Rediblack ordering of nodes is introduced to eliminate vectorization problems 

created by Gauss-Seidel iteration. Boolean variables are introduced to avoid IF statements 

within loops since IF statements inhibit vectorization. Finally, results of numerical experi- 

ments and graphical output are presented. 

2. Enthalpy Formulation 

The enthalpy formulation of the two-phase Stefan problem consists of two relations to 

be solved simultaneously. The first is given by 

T < T, 

e =  
T = T, 

Here e is enthalpy, T temperature. T, the critical temperature. c the heat capacity, and W 

the latent heat. Here e is not given as a function of T. There is an inclusion when 

T = T, . Alternately, the enthalpy/temperature relationship may be written 



T =  ITw O < e  < H  

T =  

where now temperature is a function of enth.%lpy. If the heat capacities are constant in the 

solid and liquid, these relations reduce to 

T, + e/cs e G O  

T, + (e -H ) /cL e 3 H  
l T w  O < e  < H  

I 

and 

where cs and CL are the specific heats of the solid and liquid respectively. See Figure 1. 

The second relation to be solved is an equation relating changes in enthalpy to temperature 

gradients and is given by 

where k ( T )  is the thermal conductivity. and p is the constant density. This can be 

expressed in Cartesian coordinates as 

p e t  = (R(T)T, ) ,  + ( k ( T ) T , ) ,  + <k(T)T , ) ,  . (1) 

3. Numerical Formulation 

Consider partitioning the rectangular parallelepiped [O, Ix ] X 10. l y  1 X [O. lz 1. First, con- 

sider the intervals 0 < x  < l x  and 0 <y < l y .  Given positive integers ttx and ny . set 

Ax 1: In /nn and A y  = ly /nu. We require that tlx and ny be odd for reasons explained 

in Section 5. We partition the intervals [O.Ix] and [O.ly] as follows. Let xi = j A x  for 

j = 0.1. 2 ,..., tlx and y j  = j A x  for j = 0.1,2 ..... ny. Demote by 1, the interval 

(xi-l, x j  for 1 = 1,2. ..., ILX and by JJ the interval (y, -l,yI for 1 = 1.2. ..., ny . The 1 
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Figure 1. In the simplest case, the enthalpy-temperature relationship i s  piecewise linear 
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and J intervals are the intervals for which tbc model provides approximations for average 

enthalpy and temperature values. Denote by Li the interval (q - Ax/2, XI + Ax 12) 

for 1 = 1.2. .... nx - 1 and by M, the interval 0, - Ay/2. ym + Ay/2) for 

m = 1.2. .... ny - 1. Denote by LO the interval (O,Ax/2) and by L,, the interval 

( lx  - hr /2 .  1, ). Similarly, denote by M the interval (0. A y /2) and by MnP the interval 

(Zy - Ay/2, Zy). The L and M intervals are intervals for which the model requires 

approximate values of the thermal conductivities. Figure 2 shows how the I and L inter- 

vals interleave. 

Because we impose a flux boundary condition on the top of the box and temperature 

on the bottom, we partition [O.Lz] differently. Given a positive integer nz, 

set Az = IL/(nz + 1/21. Let ZJ = j Az for j = 0.1.2. ..., nz. Denote by & the 

interval (zk - Az/2. + Az/2) for k = 1.2, ..., nz. Denote by KO the interval 

(0, Az /2). The K intervals are the intervals for which the model provides approximations 

for average enthalpy and temperature values. Denote by Pp the interval (zp-l, zp for 

p = 0,1,2, .... nz and by P,+1 the interval (22 - Az/2. l z ) .  The P intervals are the 

intervals for which the model requires approximate values of the thermal conductivities. 

The domain [0, 2.x ] X 10. ly 1 X [o. 22 1 is then partitioned by Ii  X J, X & for i = 1.2, ._., nn , 
j = 1.2, ..., ny and k = 0,1.2. ..., nz. Nodes are located in the centers of the three 

dimensional cells defined by Ii X J, XK, for i = 1.2 ,.... n x .  j = 1.2 ,..., ny. 

and R = 1.2, ..., nz : and in the centers of the two dimensional cells a t  the bottom of the 

parallelepiped defined by Z, X J,  X (0) for i = 1,2. .... nx and j = 1,2. .... ny . 
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We discretize the problem by replacing the time derivative with the standard forward 

difference quotient and the spatial derivatives by second order centered difference quo- 

tients of the form 

where we take ki+H to be - 

A discrete analog of (1) is 

where 8 B [0,1] and 

Expanding ( 2 )  using the above relation and rearranging terms yields 

@$1 - A t  [k/&t (T/+;;t - T$') - R / z j t  (T$' - T/<:IL 11 (3) 
p A x 2  
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For compactness, define 

and 

Then, equation (3) can be written as 

e&?1+ &jZ1 ~ @ 1 =  [@1.  

4. Numerical Solution 

C. M. Elliott and J. R- Ockendon [21 suggest using successive overrelaxation (SOR) to 

solve shultaneously for TCfl and e$:'. Let T ( k  denote the pth  iterate of T@' and. 

again for compactness. define 
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' 

and 

Cs To f t f i k  if z f i k  - cf ik  Tm 4 O n 

c f i k  + CS 

Tcr if 0 < t f i k  - c f i k  T o  < H 9 (6 )  

where cs and CL are the heat capacities of the solid and liquid, respectively. This assign- 

ment will be explained below. 

Another candidate temperature. i ,  is calculated using SOR from 

;pi;"'= ?$k  -). @(;fit1- T G k ) ,  (7) 

where o e (1. 2) is the relaxation parameter. A discussion of the optimal choice for w can 

be found in [2]. 



The SOR temperature. i $2'. is chosen if ?$' and ?$k both lie on the same side of T, ; 

the Gam-Seidel temperature, I" @", is chosen otherwise. Precisely stated 

This choice avoids oscillation about T,. Once the iteration has converged to a sufficient 

tolerance, after p = R iterations say, I I T ~  - T ~ - '  Il,is less than € and we set 

T&+' = ?& and calculate using 

e431 = & - 1 -  ~ 4 3 1 .  (8) 

To explain the assignment of 74;' in (6). we first define f ( S I  E z P , ~  - c& s and 

note from (5 )  that f (T$t") will be the ( p  +l)th approximation to the enthalpy. It is easy 

to  show that if f (T,) < 0. then j' (7Pj;') d 0: if 0 < f (T,) < H,  then 

0 C f (T$ ' )  < N and if f (Tw) 3 H ,  then: f (74:') 3 H. Consider the first branch of 

(6). Since f (T,.,) 6 0. we have f (74;') < 0 and the enthalpy/temperature relationship 

is 

Solving this and (5 )  for $2' yields 

The assignments of the second and third branches in (6 )  can be justified similarly 

5. CRAY X-MP Implementation 

The CRAY X-MP carries out identical calculations on long vectors very quickly. Thus, 

the longest possible vectors should be created. To insure vectorinttion is not inhibited, 

interdependencies among vector elements and IF statements within loops must be avoided. 



Cansecutive numbering of nodes unfolds the three dimensional array into one long vec- 

tor. This converts an nn x ny x nz array into a vector of length nx ny nz . Suppose i , j , 

and k are the row, column and level indices of the three dimensional array. Then the 

corresponding index, I say. of the vector i s  I = i  + ( j  - 1)nx + (k - 1)nx n y .  Also, 

given the index 1 of the vector. i , j , and k are given by 

k = Integer [ I  / (nx ny 11 -t 1 

j = Integer [ ( I  - (k - 1) nx ny >/nx I I- 1 

i = I - ( k - 1 ) m n y - ( j - 1 1 ) n x .  

In the red/black ordering of nodes, odd numbered nodes are thought of as "red" and 

even numbered nodes as thought of as "black." We require an odd number of nodes per 

row and column. Thus all neighbors of a given node are of the opposite color. This order- 

ing eliminates interdependencies among vector elements. In our implementation, red nodes 

are updated first using black nodal values from the previous time step. Black nodes are 

then updated using the new red nodal values. In effect. we make two Jacobi-type updates 

to get one Gauss-Seidel iteration. For a more complete description of redjblack ordering 

and a discussion of its effects on convergence of Gauss-Seidel iterations. see [3]. 

Setting thermal conductivities. determining boundary nodes and applying boundary 

conditions. and calculating temperatures f rom enthalpy values all involve a decision- 

making process. Since IF statements within loops inhibit vectorization. an alternate tech- 

nique is required. We create Boolean variables and replace IF statements with expressions 

involving the Boolean variables. In the following discussion, we make extensive use of the 

sign function defined in 141 by 
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k w  = I 

We first describe how thermal conductivities are computed and used. We calculate z 

using 

(&rig& T ( i  +I) + k, T ( i  - 1)) z = b ( i ) +  - 8 A t  
p A x 2  

ks i f T ( i )  < T, andT(i + nx) < T, 
kL i f T ( i )  3 T, andT(i + n x )  3 T, 
(ks + kL)/2 otherwise, 

( k M T ( i  t nx)+ kwrT( i  -m)) + -  8 A t  

P A Y 2  

( k -  T(i + nxny + k&w T ( i  - m y ) ) ,  
0 A t  + -  

p Az2 

andc using 

(9) 

The subscript right refers to i + 34. J ,  k in the three dimensional array; left to 

i - M. j .  k: back to E ' .  j + Yt, k :  front to i .  j - %, k ;  above to i .  j .  k 4- %; and below to 

i , J , k - M. The thermal conductivities are computed from 

etc. 
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T ( i  aT, 
and 

T ( i + 1 )  <T, 

1 
0 

1 

1 

(kL + k s )  
2 

To construct Rright using Boolean variables, we create 

Iqm = 1 - Integer 11.0 - sign(0.5, T ( i  - T, 11 , 

T ( i )  <T, 
and 

T ( i + 1 )  >Tw 

0 

1 

1 
1 

(kL + Rs) 
2 

and 

T ( i )  a T w  
and 

T ( i  + 1 )  >T, 

lqrt = 1 - Integer [1.0 - sign(0.5. T ( i  +1) - T,  )] . 

T ( i )  <T, 
and 

T ( i  +1) <Tu 

Then, we define 

k,i,, zz 0.5 [ ( lq~nh.  f Z@ ) k~ + (2 - Zqcnh. lQrt ks I . (11) 

The results of these calculations are summarized in Table 1.  

Table 1 

l q c m  

lqrt 

lqcntr f lqrc 

2 - (Zqcntr + 2qi-t ) 

k right 

1 

1 
2 

0 

I 1 kL 

0 

0 

0 

2 

kS 

Similarly, for all thermal conductivities in (9) and (10). 

Boundary nodes are scattered throughout the vector due to unfolding the three dimen- 

sional array. The calculation is modified at  these nodes. Consider a right boundary node 

with zero flux boundary conditions. For this node. the ki"+ihljt (T?2fjk - Tf i t ' )  term in 

( 3 )  should be zero and thus the krigk T ( i  fl) term in (9) would be zero. This is accom- 

plished by modifying the thermal conductivities so that k,+ = 0 at right boundary nodes, 

kbfl 2 0 at left boundary nodes. etc. 
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The index of a right boundary node is H multiple of the number of nodes per row. 

Thus 

ix  = i - Integer(i/nx)nx 

is zero for a right boundary node. Here i is the running vector index and nx is the 

number of nodes per row. Then 

l~xrt  = Integer [(ix + nx - ~ Y n x  1 

is equivalent to 

0 if i is a right boundary node 
1 otherwise. 

The thermal conductivity on the right, 

that (11) becomes 

is computed as previously explained except 

kright= ttmtO.5[(lqchtr + I q r f ) k ,  + (2 - lqcn t r - lq r t )ks ] .  (12) 

Computations of thermal conductivities at other boundaries are similarly modified. 

We next explain how to compute the candidate temperature .r" P+' and the new tempera- 

ture rJ'+l using Boolean variables. We wish to  compute ?P+' as in (6 ) .  Consider the fol- 

lowing definitions. 

m l  = 1 - Integer (1.0 - sign (0.5, c T, -- 1: 1). 

m2 = 1 - Integer (1.0 - sign (0.5, z - c I", - H ) ) .  

I = (1 - m l )  (1 - mz). 
1 2 =  1 - 1 1 .  

Values of these Boolean variables as functions of t and c are shown in Table 2. Using 

these variables, we compute 7" P+' according to 

The possible results of these computations are presented in Table 2. 
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Table 2 

I c + CL 

The calculation of ? P 

another Boolean variable, rn3 by 

using (7) is straightforward. Finally. to compute 7" P +' we define 

rn 3 = 1 - Integer 1.8 - sign[0.5, (T, - T ( i  1) G p  - T, )I} , 

and calculate T P + I  using 

TP+1 9. m,;Pfl + ( 1 - r n 3 ) + P + 1 .  (13) 

To summarize. enthalpy and temperature at each node are updated as follows. 

1. Compute b ( i  far each node using Equation (4). 

2. Set r 0 ( i )  = T n ( i ) .  

3, Setp = 8. 

For each node 

4. Compute k. igMB kk,v, k m .  kp,,Je,,, and k w w .  using Equation (12) and 

similar equations. 

5. Compute z using (9). 

6. Compute c using (10). 

7. Compute ~ P + l ( i  ) using (13). 

Then. 

8. Compute trnuxdif I= max IrP(i) - ~ P + ' ( i ) l .  
1% Qn 
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zftmanciif > 6 

Setp  = p S 1 .  

Go to Step 4. 

Otherwise, 

Set Tn+I(i ) = rP% ). 

Compute e n  +Yi 1 wing (8). 

"Red" nodes are updated first and then black nodes. Boundary nodes are not treated 

differently from interior nodes. The boundary conditions are handled by setting the 

appropriate thermal conductivities to zero as previously described. 

6. TestResu1t.a 

A CFT FORTRAN code was developed to implement the algorithm described in sec- 

tion 4 using the techniques outlined in section 5. We present results for the following 

test problems: 

Box Dimensions: 1.2 m X 1.0 m X 0.8 rn. 

Initial Conditions: To = 0°C H o  = 0.2. 8.0,20.0, and 200.0 kJ/kg. 

Boundary Conditions: ux = 0 kJ/m2-s on walls and top, 

T ( x  , y )  = -10 -3x - 4y2 on the bottom. 

Physical Constants: Critical Temperature: T, = 0 "C. 

Thermal Conductivity 

OI solid: ks = 1.0 X lov3 kJ/m-s-"C 

of liquid: kL = 1.0 X lom2 kJ/m-s-"C 

Specific Heat: cs = cL = 1.0 kJ/kg-"C 

Density: p = 1.0 kg/m3 

Latent Heat: H = 0.2. 8.0.20.0. 200.8 kJ/kg 

These data do not represent any real material but were used only to verify the program. 
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At all points on the bottom of the box the imposed temperature is well below T w .  This 

causes all material on the box bottom to solidify initially. One expects the interface sur- 

face to be flat at  small times. Since the temperature distribution is not uniform. 

solidification proceeds a t  non-uniform rates. The back right corner, where T = -17 "C, 

solidifies more quickly than the front left corner where T = -10 'e. At intermediate times 

one expects a solid/liquid interface to develop that resembles the temperature distribution 

on the bottom. However heat is diffusing laterally as well as upward. This allows a 

lateral equilibrium to be established over long time intervals. Thus one expects the inter- 

face surfaces to again be flat at  large times. 

In Figures 3-6, we have plotted the solid/liquid interface when it reaches the middle of 

the box for various values of the latent heat, H. These are interface surfaces in the sense 

that all material below the surface has solidified and all material on or above the surface is 

liquid or mush. When the latent heat is small as in figure 3, the process moves very 

quickly. An interface surf ace that resembles the temperature distribution never really 

develops. In figures 4. 5. and 6, we see the interface surface as it starts to develop. 

The back right is solidifying more rapidly than the left front. Also notice the time when 

the surface reaches the middle of the box. It takes almost 100 times longer 

for the solid/liquid interface to reach this point when H = 200 kJ/kg than it does when 

H = 0.2 kJ/kg. 

In these experiments. the number of nodes in the x-direction is 7, in y-direction i s  5 

and in z-direction is 15. We have taken 8 = 'h, w = 1. E = and A t  = explicit 

timestep size = 0.089 sec. The coarsness of the plotting grid creates what appear to be 

edges and corners in the plotted surfaces. These are artifacts of the plotting and not of the 

numerical scheme. As the mesh is refined and more points are added to the plotting grid, 

the interface surfaces become smoother. However. these plots become cluttered and 

" busy." If the mesh on which computations are performed is refined but the same plotting 

grid is used, the appearance of the interface surfaces is unchanged. 
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Figure 3. Interface surface when H = 0.2 kJ/kg. t = 1.60 sec. 
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Figure 4. Interface surface when H I- 8.0 kJ/kg, t = 11.37 sec. 
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Figure 5. Interface surface when H = 20.0 kJ/kg. t = 19.89 sec. 
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Figure 6. Interface surface when H = 200.0 kJ/kg. E = 159.12 sec. 
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