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VECTORIZED DIFFERENCE SCHEMES FOR A THREE DIMENSIONAL
ENTHALPY FORMULATION FOR PHASE CHANGE PROBLEMS
M. A. Williams
D. G. Wilson
ABSTRACT
Fully vectorized codes have been writtenn for the CRAY X-MP implementing explicit
and implicit finite difference schemes for enthalpy formulations of three dimen-
sional Stefan-like problems. The implicit scheme is that proposed by C. M. Elliot and
J. R. Ockendon. The explicit scheme is intended to provide a comparison for the results
from the implicit scheme. Vectorization of the code required some ingenuity since material
properties change discontinuously as solidification proceeds. Boolean variables were used
to avoid conditional branches in DO loops. Average vector length was greatly increased by
unfolding three dimensional arrays and treating them as long vectors. This report docu~
ments the development of the code and the vectorization strategies. The iinvestigation of
the tradeoffs between the implicit scheme, potentially capable of taking large time steps,
and the explicit scheme, whose time step size is limited by the stability criterion, has

begun but is not complete.

1. Introduction

Numerical methods for Stefan problems are based on discretization of either the heat
equation or the equations of the enthalpy formulation. Crank [1] and Elliott and
Ockendon [2] survey a number of these techniques. In this paper we present an algorithm
suggested by Elliott and Ockendon [2] and its implementation on the CRAY X-MP. The
algorithm admits both explicit and implicit finite difference implementations. Explicit
solutions can be calculated quickly at each time increment but stability considerations res-
trict the time step size. Alternatively, implicit schemes are unconditionally stable and

thus the time step size is not restricted, but an iterative method must be used to solve the
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non-linear system at each time level. We have developed a computer code to be used in
investigating trade offs between these methods.

We consider the problem of solidifying a three dimensional rectangular parallelepiped
of material initially at its critical temperature. The boundary conditions imposed are the
temperature distribution on the bottom of the box and zero flux on the walls and top of
the box. We first present an enthalpy formulation of a moving boundary problem and the
corresponding numerical formulation. Next, we discuss the method suggested by Elliott
and Ockendon [2] in which self-consistent enthalpy and temperature values are calculated
at each node using Gauss-Seidel iterations and successive overrelaxation (SOR) to solve the
non-linear system. In Section 5, implementation considerations for the CRAY X-MP are
discussed. Red/black ordering of nodes is introduced to eliminate vectorization problems
created by Gauss-Seidel iteration. Boolean variables are introduced to avoid IF statements
within loops since IF statements inhibit vectorization. Finally, results of numerical experi-

ments and graphical output are presented.

2. Enthalpy Formulation
The enthalpy formulation of the two-phase Stefan problem consists of two relations to
be solved simultaneously. The first is given by
fT:c('r)d'r T <T,
e = 0<e < H r=T,

T
Jre@mdr+H#  T>T,

Here e is enthalpy, T temperature, T, the critical temperature, ¢ the heat capacity, and H
the latent heat. Here e is not given as a function of I'. There is an inclusion when

T = T, . Alternately, the enthalpy/temperature relationship may be written



° 4
T,,--fc;—é—)— e %0

T = (T, 0<e < H

T, + e 2 H ,

¢ d
H ¢({)
where now temperature is a function of enthalpy. If the heat capacities are constant in the
solid and liquid, these relations reduce to
s (T~ T,) Tr<T,

e = 0<e<H T =T,
T —-T, )+ H T>T,

and
Ta- + e/Cs e s 0
T = T, 0<e<H
Ty + (e=H)/ey e 2 H

where ¢y and c; are the specific heats of the solid and ligquid respectively. See Figure 1.
The second relation to be solved is an equation relating changes in enthalpy to temperature

gradients and is given by
pe, = divk(T)gradT),

where k(7) is the thermal conductivity, and p is the constant density. This can be

expressed in cartesian coordinates as

pe = k(TIT,), + G(IIT,), + & TIT,), . ey

3. Numerical Formulation

Consider partitioning the rectangular parallelepiped [0,Ix]X [0,Zy 1% [0,2z]. First, con-
sider the intervals 0 <x <Ix and 0 <y <ly. Given positive integers nx and ny. set
Ax =Ix/nx and Ay = ly/ny. We require that nx and ny be odd for reasons explained
in Section 5. We partition the intervals [0,ix] and [0.ly] as follows. Let x; = j Ax for
i=0.1, 2,.., nx and y; = j Ax for j=0,1,2,.., ny. Denote by I; the interval

(xj-1.%;) for j = 1,2,..., nx and by J; the interval (y;_,.y;) for j = 1.2,...ny. Thel
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Figure 1. In the simplest case, the enthalpy-temperature relationship is piecewise linear.
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and J intervals are the intervals for which the model provides approximations for average
enthalpy and temperature values. Denote by L; the interval (x; — Ax/2, x; + Ax/2)
for 1=1,2,.., nx—-1 and by M, the interval (y, —Ay/2. y, + Ay/2) for
m=1,2,.. ny —1. Denote by L, the interval (0,Ax/2) and by L, the interval
(Ix — Ax/2, I,). Similarly, denote by M, the interval (0, Ay/2) and by M,, the interval
(ly —Ay/2, ly). The L and M intervals are intervals for which the model requires
approximate values of the thermal conductivities. Figure 2 shows how the I and L inter-

vals interleave.

Figure 2. Interleaved Intervals I; and L; for j=0,1, ---.

Because we impose a flux boundary condition on the top of the box and temperature
on the bottom, we partition [0,[z] differently. Given a positive integer nz,
set Az=10z/(nz+1/2). Let z; = j Az for j=0,1,2,.., nz. Denote by KX, the
interval (z, — Az /2, zk’ + Az/2) for k=1,2,... nz. Denote by K, the interval
(0,Az/2). The X intervals are the intervals for which the model provides approximations
for average enthalpy and temperature valuss. Denote by P, the interval (z,_,, z,) for
p=0,1,2,.., nz and by P,,,; the interval ({z — Az /2, iz). The P intervals are the
intervals for which the model requires approximate values of the thermal conductivities.
The domain [0.%x]1x [0,2y]x [0.1z] is then partitioned by I; X J; X K} fori = 1,2,...,nx,
ji=12,.., ny and £ =0,1,2,..., nz. Nodes are located in the centers of the three
dimensional cells defined by I; XJ; XK, for i=1,2,.., nx, j=12,.., ny,
and £ = 1,2, ..., nz: and in the centers of the two dimensional cells at the bottom of the

parallelepiped defined by I; X J; X {0} fori = 1,2,..,nx and j = 1,2,...,ny.
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We discretize the problem by replacing the time derivative with the standard forward
difference quotient and the spatial derivatives by second order centered difference quo-

tients of the form

kivw Tiv1— i) — ki (Ty — Ti4)

& (T)T,), = —

where we take k; 4y, to be

k(T + k(Ti4)
ki__j/a = 2 .

A discrete analog of (1) is

p (2)

et — el - i T — TP — [k @i — Ticy I
At Ax?

i omr @igare — T P¥0 — Tk s (Tipe = Tiyy Y0
Ay?

(ki +6(Tijp 41— Tipe D) i [kijt 4 Tiyx — Tipe ) i
Az?

where 8 € [0,1] and
Fr¥ = (1-0)F" + 9F**

Expanding (2) using the above relation and rearranging terms yields

QAL
efifl = vl =3 (TP — TEYD — kP (Thdt — TR0 3)
eAt n+l n+1 n+1 n+1 n+
+ oy’ (el e (TP — T58D — kP2 (T5 TF2))
0At n n n
phz? er e Th Y — T8 — kSR (@adt — T35

+ b;’;k .



where
n —~9)At
Pl = el + %Z;)‘i‘” Uelompe TPaje = THe) = kTl = TPy )]

1-8)At
+ (_;522... (el vr (TP srp = Thed) = ks (The = TP)_12)]

* 72“;‘2‘”[*3»%(2'5“1 = The) = ki a-n (T — T 1)l

For compactness, define

é‘z’;:l = peAAtz (kxn:"/:l.jk + kin-—‘t’al,jk)
+ OM 5 Bl + k2 s)
BAt
+ ol e + R ).

and

9At

ot = b + ——5 (P TP + K1Y, T-—ut)

BAr
* ply? = el Thf e + RSN TE )

8Ar
+ — € 31N ThE4: + ki’jil—% Ti'}?—-x)-
plz

Then, equation (3) can be written as

e+ gt TRt = (2

4. Numerical Solution

(4)

C. M. Elliott and J. R. Ockendon [2] suggest using successive overrelaxation (SOR) to

solve simultaneously for T,jk and e{jk* 1 Let 7 denote the pth iterate of T"+1

again for compactness, define
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0AL
zhe = b + ;K;j' RPrwge TPeage + P30 78550

(kPyme TEyvre + KT 2up T81210)

1
¥ ;——z—(’cfj,&m threr ¥ kR THE- .

and

PAL

pAx?
0At

+ W(k{’“m + k2 us)
AL
pAz?

che = (kPesye + EP3L 50D

+

(Bfren + K5 .

Note that for a given node, temperature and thermal conductivity values are lagged one
iteration at advanced points, but not at previous points. This constitutes a Gauss-Seidel
iteration. Our iterative form of the equation to be solved is

efit + ch T = 2h (5)
Starting with an initial approximation to Tj}!, 7J¢. a candidate temperature, T By is com-

puted for successive p's from

cs T + 2z if 2 — ¢ T €0,
che + cs
TR = T, if 0<zfy — ¢ T < H, (6)
cp T + 25
By + ¢ if 2l — che Tor 2 H

where ¢g and ¢y are the heat capacities of the solid and liquid, respectively. This assign-
ment will be explained below.
Another candidate temperature, 7 , is calculated using SOR from
TE = 1l + 0 (T B — TH). (7
where w € (1, 2) is the relaxation parameter. A discussion of the optimal choice for w can

be found in [2].
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The SOR temperature, 7 5, is chosen if 75! and 77, both lie on the same side of T, ;

the Gauss-Seidel temperature, 7 5%, is chosen otherwise. Precisely stated

TR, if (rh — T@ERN - T,) <0,

rhil =

THY, Of Oy — T)GF R~ T,)> 0.
This choice avoids oscillation about 7. Once the iteration has converged to a sufficient
tolerance, after p = R iterations say, 7% — 7R®~1||_isless than € and we set
T3 = 75, and calculate e} using
et = it - Hr Tt (8)
To explain the assignment of 7/} in (6). we first define f (s) = z, — cf s and
note from (5) that f (r5#) will be the (p +1)th approximation to the enthalpy. It is easy
to show that if f(Te)€ 0. then F(r3*) €0 if 0< f(T,) < H, then
0< f(r8¢") < H and if f (T, ) 2 H, then f (r5#1) > H. Consider the first branch of
(6). Since f (T,) £ 0, we have f (r/*) € 0 and the enthalpy/temperature relationship
is

+1 ~ p4l
efi'= e (v pf' - T,).

Solving this and (5) for 7 £ yields

xr P
Fpre Siat 2
Ik ¢l +
ijk §

The assignments of the second and third branches in (6) can be justified similarly.

5. CRAY X-MP Implementation
The CRAY X-MP carries out identical calculations on long vectors very quickly. Thus,
the longest possible vectors should be created. To insure vectorization is not inhibited,

interdependencies among vector elements and JF statements within loops must be avoided.
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Consecutive numbering of nodes unfolds the three dimensional array into one long vec-
tor. This converts an nx X ny X nz array into a vector of length nx ny nz. Supposei,j,
and k are the row, column and level indices of the three dimensional array. Then the
corresponding index, ! say, of the vector is I =i + (j — 1)nx + (k — Dnx ny. Also,
given the index [ of the vector, i, j.and k are given by

k

Hi

Integer [{ /(nx ny)]+ 1

Integer [ —~ (k ~ ) nx ny Ynx]+ 1

~
il

i

l—(k—VDnxny—( —Dnx .

In the red/black ordering of nodes, odd numbered nodes are thought of as "red" and
even numbered nodes as thought of as "black." We require an odd number of nodes per
row and column. Thus all neighbors of a given node are of the opposite color. This order-
ing eliminates interdependencies among vector elements. In our implementation, red nodes
are updated first using black nodal values from the previous time step. Black nodes are
then updated using the new red nodal values. In effect, we make two Jacobi-type updates
to get one Gauss-Seidel iteration. For a more complete description of red/black ordering
and a discussion of its effects on convergence of Gauss-Seidel iterations, see [3].

Setting thermal conductivities, determining boundary nodes and applying boundary
conditions. and calculating temperatures from enthalpy values all involve a decision-
making process. Since IF statements within loops inhibit vectorization, an alternate tech~
nique is required. We create Boolean variables and replace IF statements with expressions
involving the Boolean variables. In the following discussion, we make extensive use of the

sign function defined in [4] by

lal,if 20,

sign(a.,b) = —lal,if 5 < 0.
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We first describe bow thermal conductivities are computed and used. We calculate z

using

0 At

z=b()+ ;‘K—;;

Rrigne TG +1) + ke TG ~ 1))

)
8 At

+ e (B TG + nx) 4 Kpop, T~ nx))
y

+ fl%(kml”(i + nxny ) + Kpew TG — nxny)).

and ¢ using

0 At
pAx?

(& rigne + kiep)

(10)
6 At
pAy? (& goct + % prone)

0 At
pAz?

+

+

(kabovc + kbdow) .

The subscript right refers to i +%.,j,k in the three dimensional array; left to
i—Y%,j.k:backtoi,.j+%k;:front toi,j—Y, k;abovetoi,j,k + %; and below to
i, j.k — %. The thermal conductivities are computed from

kg if TE)< T, andTG+1) < T,

K righe = ky fTG)2 T, and TG +1) 2 T,
(ks + k; Y2 otherwise,

ks f7G) < Ty and TG +nx) < T,
Kook = kr f7TGE)2 T, and TG +nx) 2 T,
(kg + kz Y2 otherwise ,

etc.
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lgcur = 1~ Integer [1.0 — sign(0.5. T(G)~ T, )],

and

lgrt = 1~ Integer [1.0— sign(0.5, TG +1)~ T, )] .

Then, we define

K rigne = 0.5 [(lgentr + lqrt ) ky + (2 — lgentr — Igrt D ks] . (11)

The results of these calculations are summarized in Table 1.

Table 1
TGE)2T. TG)<T, TG) 2T, TGE)<T,,
and and and and
TG+ 2T, | TG+ <T, | TG+ T, | TG+1) 2T,
lgentr 1 0 1 0
lgrt 1 0 0 1
lgentr + Igrt 2 0 1 1
2~ (lgentr + lgrt) 0 2 1 1
kr +k ki +k
K right kz ks L 5 s) G 5 )

Similarly, for all thermal conductivities in (9) and (10).

Boundary nodes are scattered throughout the vector due to unfolding the three dimen-

sional array. The calculation is modified at these nodes. Consider a right boundary node

with zero flux boundary conditions. For this node, the k%, (TP — 724D term in

(3) should be zero and thus the & ign, 7(i +1) term in (9) would be zero. This is accom-

plished by modifying the thermal conductivities so that &k ;g = O at right boundary nodes,

ks = 0 at left boundary nodes, etc.
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The index of a right boundary node is a multiple of the number of nodes per row.

Thus
ix = i — Integer(i/nx)nx

is zero for a right boundary node. Here i is the running vector index and nx is the

number of nodes per row. Then
nxrt = Integer [(ix + nx — 1Ynx]

is equivalent to

0if ¢ is a right boundary node

nxrt = 1 otherwise .

The thermal conductivity on the right, k., is computed as previously explained except
that (11) becomes
kigne = nxrt 0.5[(gentr + Igrt )k + (2 — lgentr — lgrt ) ks]. (12)
Computations of thermal conductivities at other boundaries aré similarly modified.
‘We next explain how to compute the candidate temperaiure 7 P*1 and the new tempera-
ture 77 *! using Boolean variables. We wish to compute 72 *! as in (6). Consider the fol-
lowing definitions.

my = 1-Integer (1.0 - sign (0.5, ¢ T, = z)).

my = 1 - Integer (1.0 - sign (0.5, z — ¢ T, — H)).
li= (1=my)—mj).

L= 1—1,.

Values of these Boolean variables as functions of z and ¢ are shown in Table 2. Using

these variables, we compute 7 ?* according to

lz(mlcs Ta‘ +z +m2(CL Tcr “"H))

T2t =
(C +mycs + macCy + ll 1.0)

+ 1T,

The possible results of these computations are presented in Table 2.
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Table 2
z—¢T,€0{0<z—¢cT,<H | z—cT, 2H
my 1 0 0
mp 0 0 1
1y 0 1 0
iy 1 0 1
Fpe1 cs T + 2 T agl,.+z—H
c+cg i c+teg

The calculation of 72*! using (7) is straightforward. Finally, to compute 7?7 *! we define

another Boolean variable, m, by

m3= 1— Integer{1.0 — sign[0.5, (T, — TGN G? '~ T,)]}.
and calculate 77 *! using
P = mar P+ (1—my)77 %, (13)
To summarize, enthalpy and temperature at each node are updated as follows.
1. Compute b (i ) for each node using Equation (4).
2. Set7°%G) = T*().
3. Setp = 0.
For each node
4. Compute K igne Kiepts K backs K frone K abover 3N K pesoy. using Equation (12) and
similar equations.
5. Compute z using (9).
6. Compute ¢ using (10).
7. Compute 72 *1(i ) using (13).
Then,

8. Compute tmaxdif = max 7P () — 723G

=
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If tmaxdif > €

Setp = p+1.
Go to Step 4.
Otherwise,

Set 7 *1G) = 72*1(Gi).
Compute e” *1(i ) using (8).
"Red" nodes are updated first and then black nodes. Boundary nodes are not treated

differently from interior nodes. The boundary conditions are handled by setting the

appropriate thermal conductivities to zero as previously described.

6. Test Results

A CFT FORTRAN code was developed to implement the algorithm described in sec-
tion 4 using the techniques outlined in section 5. We present results for the following
test problems:

Box Dimensions: 1.2 m X 1.0 m X 0.8 m.

Initial Conditions: Tg = 0°C H,= 0.2, 8.0, 20.0, and 200.0 kJ/kg.

Boundary Conditions: flux = 0 kJ/m®-5 on walls and top.

T(x.,y)= —10 —3x — 4y?on the bottom.

Physical Constants: Critical Temperature: T, = 0 °C.
Thermal Conductivity
of solid: kg = 1.0X 1072 kJ/m-s-°C
of liquid: %47 = 1.0 X 107? kJ/m-s-°C
Specific Heat: ¢g = ¢; = 1.0 kJ/kg-°C
Density: p = 1.0 kg/m?

Latent Heat: H = (.2, 8.0, 20.0, 200.0 kl/kg

These data do not represent any real material but were used only to verify the program.



-16-

At all points on the bottom of the box the imposed temperature is well below 7, . This
causes all material on the box bottom to solidify initially. One expects the interface sur-
face to be flat at small times. Since the temperature distribution is not uniform,
solidification proceeds at non-uniform rates. The back right corner, where T = -17 °C,
solidifies more quickly than the front left corner where T = -10 °C. At intermediate times
one expects a solid/liquid interface to develop that resembles the temperature distribution
on the bottom. However heat is diffusing laterally as well as upward. This allows a
lateral equilibrium to be established over long time intervals. Thus one expects the inter-
face surfaces to again be flat at large times.

In Figures 3-6, we have plotted the solid/liquid interface when it reaches the middle of
the box for various values of the latent heat, H. These are interface surfaces in the sense
that all material below the surface has solidified and all material on or above the surface is
liquid or mush. When the latent heat is small as in figure 3, the process moves very
quickly. An interface surface that resembles the temperature distribution never really
develops. In figures 4, 5, and 6, we see the interface surface as it starts to develop.
The back right is solidif ying more rapidly than the left front. Also notice the time when
the surface reaches the middle of the box. It takes almost 100 times longer
for the solid/liquid interface to reach this point when H = 200 kJ/kg than it does when
H = 0.2 xJ/kg.

In these experiments, the number of nodes in the x -direction is 7, in y -direction is 5
and in z-direction is 15. We have taken 8 = %, w = 1, € = 107% and A? = explicit
timestep size = 0.089 sec. The coarsness of the plotting grid creates what appear to be
edges and corners in the plotted surfaces. These are artifacts of the plotting and not of the
numerical scheme. As the mesh is refined and more points are added to the plotting grid.
the interface surfaces become smoother. However, these plots become cluttered and
"busy." If the mesh on which computations are performed is refined but the same plotting

grid is used, the appearance of the interface surfaces is unchanged.
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Figure 3. Interface surface when H = 0.2 kJ/kg, t = 1.60 sec.
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Figure 4. Interface surface when H = 8.0 kJ/kg, t = 11.37 sec.
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Figure 5. Interface surface when H = 20.0 kJ/kg, t = 19.89 sec.
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Figure 6. Interface surface when H = 200.0 kJ/kg, t = 159.12 sec.
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