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Concepts of nonlinear functional analysis are employed to investigate the mathematical. fnamn- 
dations underlying sensitivity theory. This makes it possible not only to ascertain the ~ ~ ~ ~ t a ~ ~ o n ~  
inherent in existing analytical approaches to sensitivity analysis, but alsa to rigorously formulate a 
considerably more general sensitivity theory for physical problems characterized by systems of 
nonlinear equations and by nonlinear function& as responses. Two alternative formalisms, the 
Forward Method and the Adjoint Method, are developed in order to evaluate the sensitivity of the 
response to variations in the system parameters. The forward method is formu~ated in normed lin- 
ear spaces, and the existence of the Gkeaux differentials of the operators appearing in the prob- 
lem is shown to be both necessary and sufficient for its validity. irkis method is conceptually 
straightforward and can be advantageously used to assess the effects of relatively few parameter 
alterations on many responses. On the other hand, for problems involving many parameter altera- 
tions or a large data base and comparatively few functional-type responses, the alternative adjoint 
method is cornputationally more economical. However, it is shown that this method can be 
developed only under conditions that are more restrictive than those underlying the validity of the 
forward method. In particular, the requirement that operators acting on the state vector and can 
the system parameters must admit densely defined Gateaux derivatives is shown to be of funda- 
mental importance for the validity of this formalism. The present analysis significantly extends 
the scope of sensitivity theory and provides a basis for still further generalizations. 

There are physical systems where a critical p i n t  of a function that depends on the system’s 
state vector and parameters defines the location in phase-space where the response functional is 
evaluated. The Gateaux differentials giving the sensitivities of both the functional and the critical 
point to changes in the system’s parameters ate obtained by alternative formalisms, The forward 
method is the simpler and more general, but may be prohibitively expensive for problems with 
large data bases. The adjoint method, although less generally applicable and requiring several 
adjoint calculations, is likely to be the only practical approach. Sensitivity theory is also extended 
to include treatment of general operators, acting on the system’s state vector and parameters, as 
response. In this case, the forward method is the same as for functional responses, but the adjoint 
method is considerably different. The adjoint method requires expanding the in keet effect term, 
an element of a Hilbert space, in terms of elements of an orthonormal basis. Since as many calcu- 
laticrns of adjoint functions are required as there are nonzero terms in this ~ ~ ~ ~ ~ s ~ ~ n ,  careful eon- 
sideration of truncating the expansion is needed to assess the advantages of the adjoint method 
over the forward method. 

The sensitivity theory for nonlinear systems with responses defined at critical 
tion of the system’s state variables and parameters is applied to a protected transient with scram 
on high-power level in the Fast Flux Test Facility. The single-phase segment of the fast reactor 
safety code MELT-IIIB is used to model this transient. The response analyzed i s  the maximum 
fuel temperature in the hot channel. For the purposes of sensitivity analysis, a complete charac- 
terization of this response requires consideration of both the numerical value of the response at the 
maximum, and the location in phase space where the maximum oc.curs. This is because variations 
in the system parameters alter not only the value at this maximum but also alter the location of 
the maximum in phase space. 

V 
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Expressions for the sensitivities of the numerical value of this maximum-type response and 
expressions for the sensitivities of the phase-space location at which the maximum occurs are 
derived in terms of adjoint functions. The adjoint systems satisfied by each of these adjoint func- 
tions are derived and solved. It is shown that the complete sensitivity analysis requires (a)  the 
cornputation of as many adjoict functions as there are nonzero components of the maximum in 
phase space, and (b) the computation of one additional adjoint function for evaluating the sensi- 
tivities of the numerical value of the response. The same computer code can be used to calculate 
all the required adjoint functions; once these adjoint functions are available, the sensitivities to all 
possible variations in the system parameters are obtained by quadratures. The sensitivities 
obtained by this efficient method are used to predict both changes in the numerical values of the 
maximum fuel temperature and the new phase-space location at which the perturbed maximum 
occurs when the system parameters are varied. These predictions are shown to agree well with 
direct recalculations using perturbed parameter values. 

Finally, we present an efficient method for calculating the sensitivity of a mathematical 
model’s result to feedback. Feedback is defined in terms of an operator acting on the model’s 
dependent variables. The sensitivity to feedback i s  defined as a functional derivative, and a 
method is presented to evaluate this derivative using adjoint functions. Typically, this method 
allows the ~ ~ d i y ~ d ~ ~ l  effect to many different feedbacks to be estimated with a total additional 
computing time comparable to only one recalculation. It is anticipated that this method a€ 
estimating the effect of feedback will be useful for more complex models where extensive recalcu- 
lations for each of a variety of different feedbacks is impractical. 
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Modelling complex physical phenomena tias led to the development of a variety of large com- 
puter code systems. The large nunnber of ~ ~ ~ i ~ ~ c a ~  effects treat irr these codes and their high 
running costs make these c d e s  ill-suited to applications of a parametric or survey nature. To 
address important and difficult tasks such as assessing confidence levels and uncertainties in calcu- 
lated design parameters and determining the effcets of changes in the input data on the results of 
complex calculations, it i s  essential to have a sensitivity analysis methodology that can efficiently 
treat the complex systems with many parameters -- encountered in practice. 

The simplest and perhaps the most common procedure for sensitivity analysis of a code consists 
of varying selected input parameters, rerunning the code, and recording the corresponding changes 
in the results (Le., responses) calculated by the code. The model parameters responsible for the 
largest relative changes in the responses are ther classified to be the nisst important. For complex 
models, though, the large amount of computing time needed by such recaiculations severely res- 
tricts the scope of this sensitivity analysis proceclure. In practice, this means that the modeler can 
investigate only a few parameters that he judges a priori to be important. 

A way of investigating sensitivities to more parameters is to consider simplified modells 
obtained by developing fast-running agproxirnatlons to complex processes. Although this makes 
rerunning less expensive, the parameters must still be selected a priori, and consequently impor- 
tant sensitivities may be missed. Also, it is difficult to demonstrate that the respective sensitivities 
of the simplified and complex models are the same. 

To obtain as much information as possible from a limited number of recalculations, statistical 
techniques have been used to develop sensitivity and uncertainty analysis methods known as 
"response surface methods." The use of response surface methods involves (a) selection of a small 
number of model parameters that are thought hy the modeler to be important, (b) a strategy to 
select design points, in the space of model parameters, at which the computer code calculates the 
responses of interest to sensitivity/uncertainty analysis, (6) recalculations using altered parameter 
values, (d) use of these recalculated results tc construct "response surfaces," which are simple 
approximations representing the behavior of t i e  response as a function of  the chosen model 
parameters, (e) use of' the response surface thus obtained to replace the original model for subse- 
quent statistical studies (such as Monte Carlo and moment matching) to estimate sensitivities and 
uncertainty distributions for the responses. 

The application of response surface methods to sensitivityluncertainty analysis of computer 
codes is conceptually straightlorward and requires relatively little developmental work. Therefore, 
the use of response surface methods has gained popularity in several application areas. 
despite progress towards reducing the number of' recalculations used to map the response surfaces, 
the response surface methods remain expensive and limited in scope since, in practice, (a) the 
number of model parameters is very large, so only a small subset can be selected for 
sensitivity/uncertainty analysis, (b)  information about data importance is required prior to initiat- 
ing the analysis, ( e )  the data importance is largely unknown, and a considerable probability of 
missing important effects exists, and (d) sensitivities can only be estimated, but not calculated 
exactly. 

As the need systematic sensitivityluncertainty analysis gained recognition, other sensitivity 
analysis techniques were developed - most notably in conjunction with applications to chemical 
kinetics, system theory, and reactor physics and shielding. For example, three sensitivity analysis 
methods developed in conjunction with applications in chemical kinetics and system theory are the 
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Fourier Amplitude Sensitivity Test (acronym FAST'), the direct method, and the Green's function 
method. The FAST technique gives statistical mean values and standard deviations for model 
responses, but requires a very large number of calculations (despite its acronym, it is not a fast 
running technique). 

In contrast to the response surface method and the FAST technique, the direct method and 
Green's function method are deterministic (rather than statistical) methods. The direct method, 
for example, involves differentiation of the equations describing the model with respect to ;i 

parameter. The resulting set of equations is solved for the derivatives of all the model variables 
with respect to a parameter. The resulting set of equations is solved for the derivative of all thc 
model variables with respect to that parameter. Note that the actual form of the differentiated 
equations depends on the parameter under consideration. Consequently, for each parameter :I dif- 
ferent set of equations must be solved to obtain the corresponding sensitivity. 

For models that involve a large number of parameters and comparatively few responses, sensi- 
tivity analysis can be performed very efficiently by using deterministic methods based on adjoint 
functions. The use of adjoint functions for sensitivity and analyses appeared as early as the 
1940's; these analyses were either based on perturbation theory or based on variational 
approaches. In reactor theory, for example, the first use of perturbation theory is attributed' to 
Wigner,2 while the variational principles arc considered' to have evolved from works of Levine and 
Schwinger4 and Wous~opolos.~ The scope of both the variational formulation and the perturbation 
theory approach has subsequently been generalized and extended (see e.g., Refs. 6-12). The great 
potential of adjoint-function based approaches to sensitivity analysis of several linear problems 
encountered in reactor theory has been demonstrated in the comprehensive reviews given by 
Stacey3 and Greenspan." These successes have generated considerable interest in extending and 
applying such approaches to sensitivity analysis of several. inherently nonlinear problems in other 
 area^.'^‘'^ Higher-order perturbation theories have also been proposed" for sensitivity analysis of 
neutronics problems involving linear operators. Developments through 1979 in adjoint-operator 
based approaches to sensitivity and uncertainty analyses have been comprehensively reviewed in 
Ref. 19. 

To date, several alternative theoretical approaches to adjoint-based sensitivity equations have 
evolved, the three prominent being: 

1 . variational appro ache^,^*',^^'^.'^ 

2. perturbation theory approaches, including "generalized perturbation t h e ~ r y , ~ ' ~ ~ ~ ~ ' ~ ~ ' ~ , ' ~ , ' ~  

3. differential 

All of these approaches have been focused on deriving expressions for the sensitivities of the 
system responses (Le., system performance parameters) to changes in the input parameters. The 
system responses considered in these approaches have been particular forms of functionals, and the 
sensitivities have been defined as the derivatives of these responses with respect to the input 
parameters. However, the necessary and sufficient conditions underlying the validity of these 
approaches have not been rigorously analyzed. Consequently, questions have been raised2' regard- 
ing the applicability of these approaches to sensitivity analysis of problems that are more complex 
than those treated so far; of practical interest are, for example, thermal-hydraulics problems 
involving discontinuous state functions and parameters. 

More recently, Cacuci et a/ .  2 1  have introduced and employed concepts of nonlinear functional 
a n a l y ~ i s ~ ~ - ~ ~  in an attempt to set sensitivity theory on a more rigorous mathematical foundation, 
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and to extend the scope sf the theory. In ~ ~ ~ ~ t ~ o ~ ,  they have also presented a sensitivity theory 
formulation for a class of discretized nonlinear sysxm~, and have enlarged the type of functionals 
considered as responses. Although, rigorous within ~ ~ ~ ~ ~ i ~ ~ t ~ ~  stated limitations, their derivations 
repeatedly required the existence of the Frechet derivatiuJes22-26 of the various operators, without 
providing an analysis of the motivations underling the necessity of these requirements. Since 
operators that are not Frechet differentiable can also be encountered in practice, an investigation 
of the aforementioned question of necessity was undertaken by Cacuci,28 who provided a detailed 
and rigorous investigation of the mathematical concepts underlying sensitivity theory. 

These lecture notes present the main aspects underlying the rigorous mathematical ~ o r m ~ ~ a ~ ~ o n  
of deterministic sensitivity theory for nonlinear systems; the presentation of this formulation i s  
based on the work by Cacuci28 and employs concepts and methods of nonlinear functional 
analysis.22-z6 As these lecture notes are intended to be self-contained, the functional analytic con- 
cepts underlying sensitivity theory are briefly reviewed in Sec. 11. 

The rigorous formulation of sensitivity theorj, for nonlinear systems is presented in Sec. 119. 
This section is divided in  three main parts. Thtis, Sec. I1I.A. presents the sensitivity theory for 
nonlinear systems with operator-type responses. The system of nonlinear operator equations and 
thc  associated response, itself a general nonlinear operator, are introduced and described in Sec. 
II1.A. 1.; altogether, they are iintended to be suffiziently general to include -- as particular cases 
the mathematical representation of a large number of problems in a wide variety of fields. The 
problem is formulated here in  normed linear spaces over the scalar field of real numbers. This 
choice of space is sufficiently general for the purpases of this study: 

1. i t  provides the framework for the clear expDsition of the necessary and sufficient conditions 
underlying the sensitivity theory formalisms presented in Sec. III.A.2., 

2. it opens the possibility to establish the limitations inherent in the previous approaches (by 
direct comparison with the present approach), 

3. i t  provides a basis for still further extensions of the theory. 

The formulation of the sensitivity theory presented in Sec, 111. is centered on evaluating the 
Giteaux differential of the response; this quantity is considered to be "the most general measure of 
the sensitivity of a response to variations in the system  parameter^."^^ Consequently, Secs. 
111.A.2.a and IlI.A.2.b are devoted to the presentation of the two alternative methods for evaluat- 
ing this Gateaux differential. The conceptually and computationally straightforward method i s  
labeled the Forward Method and i s  dealt with in Sec. III.A.2.a. The alternative method, labeled 
the Adjoint Method is presented in Sec. 1II.A.Z.b. The motivation underlying the development of 
this Adjoint Method is well k n ~ w n , ' - ~ ~ ~ ~ ~  and this method is a great deal more economical to 
apply, if possible, to the broad class of practical problems characterized by large data bases and 
comparatively few responses. However, the present analysis also reveals the fact that the Adjoint 
Method can be formulated onfy under conditiom that are more restrictive than those ~ n ~ e r ~ ~ ~ ~ ~  
the formulation of the Forward Method. The limitations inherent in  the previous approaches'"'9y21 
to sensitivity theory are assessed in Sec. 1II.A.J. by examination of their underlying assumptions 
and by comparison to the formalisms presented in  Sec. III.A.2. 

Section 1II.B. presents the development of the sensitivity theory for nonlinear systems with 
responses defined at critical points of a function of the system's state vector and parameters. Such 
responses are characteriixd both by the numereal value at the maximum and lay the position En 
phase-space where the maximum occurs. In this case, varying the system parameters alters not 
only the value at this maximum but also alters the position of the rnaximun in phase-space. The; 
sensitivity theory presented in Sec. 111.5. allows treatment of a general response c ~ ~ p ~ ~ s ~ ~ g ,  a5 
particular cases, the representation of maxima, minima, and saddle points. 
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Section III.B.6 presents the application of the sensitivity theory formulated in Secs. 1II.B.  1 
through III.B.5. to the single-phase modules of the MELT-IIIB fast reactor safety code, emphasiz- 
ing, in particular, results regarding the sensitivity of the locations ( in  phase space) of two impor- 
tant responses - the maximum fuel temperature and the maximum normalized reactor power 
level. Section III.B.6.a. describes the mathematical representation of the physical problem and the 
responses. The sensitivity theory developments, including the derivation of the appropriate adjoint 
systems and the expression of sensitivities in terms of adjoint functions, are presented in Sec. 
III.B.6.b. The numerical results obtained for the sensitivities are discussed in Sec. Ill.B.6.c. 
Finally, the summary and conclusions presented in See. III.B.6.d. highlight the practical usefulness 
of applying the Adjoint Method to perform sensitivity analysis of realistic reactor safety problems. 

Section II1.C. presents sensitivity theory for nonlinear systems with feedback. Feedback occurs 
when quantities that are normally input in the mathematical model of the physical process ( e . g . .  
parameters or data) are allowed to depend on the model's output (Le., the dependent variables). 
Such parameter variations can no longer be prescribed a priori since they depend on the model'b 
output; therefore, the term sensitivity to feedback i s  defined in Sec. III.C.2. I t  is then shown that 
this sensitivity to feedback provides an estimate of the actual effect of feedback correct to first 
order in the strength of the feedback, and it is shown how this sensitivity can be efficiently 
obtained using the Adjoint Method. Finally, Sec. IV. summarizes and highlights the main points 
uriderlying deterministic sensitivity theory for nonlinear systems and discusses the potential of 
using functional analytic concepts to extend further the scope of this theory. 
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1I.A. VECTOR SPACE 

The vector space axioms are suggested by the dgebraic properties of vector addition and multi- 
plication by scalars for three-dimensional Cartesiari vectors. 

1I.A. 1 Definition 
I -- 

Let V be a non-empty set, and suppose that any pair of elements f , g E V  can be combined by 
an operation called addition to give an element S i - g  in V. Assume that for any f ,g,h E V :  

i. f f g x g - t - f :  

i i .  f + ( g  -1- h ) = cf + g  ) 4- h ; 

iii. there is a unique element 0 (called zero) in Y such that f+O=J for all f E V ;  

iv. for each f~ V there is a unique element (-f, in Y such that f+( -f)=O. 

I n  the following the scalars will either be the: real numbers R or the complex numbers C. Suppose 
any J E  Y and any scalar a can be combined to give an element af in V, and assume that for any 
scalars a,  P; 

Then V is called a vector space (or a complex vector space) if the scalar field is C or a real vector 
space if it is R. The members f , g , h ,  ... of V are known as points, elements, or vectors depending 
on which seems most appropriate in the context 

11. A-2. Definition 
-II 

Let Y be a vector space. A Jinite set S =[f,\y=;ll of vectors in V is called linearly dependent iff 
(if and only i f )  there are scalars a ] ,  . . . ,a, not all of which are zero such that zajf j=O, 
otherwise S is said to be linearly independent. An arbitrary set S of vectors in V is linearly in&- 
pendent iff every finite non-empty subset of S is linearly independent; otherwise it is ~~~~~~~~ 

dependent. 

I f  there is a positive integer I? such that 1’ contains n but not n+ 1 linearly independent vectors, 
V is said to be finite dimensional with dimension n. V is infinite dimensional iff if it is not finite 
dimensional. The finite set S of vectors in V is called a basis of V iff S is linearly independent 
and each element of V may be written as 5.f- for some a1, . . . ,a,EC and 

f l ,  . . . , f , E S  (of course n is the dimension of V ) .  J J  
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From the p i n t  of view of applications by far the most important vector spaces are those whose 
elements are functions. To illustrate thc natural laws of combination, consider the set V of com- 
plex valued functions defined or1 an interval [ a , b ] .  For / . g ~ r /  and U E C ,  define new functions 
f -t g and luf by requiring the following relations to ho!d for all ?I ~ [ o , b ] :  

O f  course C f - t g ) ( x ) , ( a f ) ( x )  denote the values of the functions (J+g),oif respectively at .x; these laws 
of combination are described as pointwise addition and multiplication by scalars. I t  is easy to check that 
the vector space axioms are satisfied, and Y is a (complex) vector space. The real valued functions siniillirly 
form a rea). vector space. Obviously V is infinite dimensional. 

1I.B. NORMED VECTOR SPACE 

II.B.1 Delinitio 

Let V be a vector space, and suppose that to each element ~ E V  a non-negative number is 
assigned in  wch a way that for all f , g t z V :  

i. IlfII -0 iff f-0; 

11 .  IIaf I1 =Iaylllfll for any scalar lu; 

111.  \If -t g 1) I l f l l  - I -  llg 11 (the triangle inequality). 

.. 

... 

The quantity l l f  11 is called the norm off ,  and V is known as a normed vector s 

1I.C. BANACH SPACE (Complete Normed Vector Space) 

Although it is possible to obtain meaningful generalizations of many of the concepts useful in 
finite dimensions to infinite dimensional normed vector spaces, analysis cannot be carried out satis- 
factorily in every space of this type. The reason is that the convergence of sequences which is of 
fuiidarnental importance in analysis - can pose problems which are extremely intractable. 
Roughly this is because sequences which "ought" to be convergent do not always turn out to be so. 
To make substantial progress with analysis, it is essential to restrict the space further. Out of the 
various possibilities, one strategy which has achieved considerable success is to impose the condi- 
tion of 'lcoinpieteness" on the norm, and to study complete normed vector spaces (or Banach spaces 
as they will be called); this will he the course followed here. It will appear as we proceed that the 
assumption of completeness significantly simplifies the abstract analysis and at the same time is 
satisfied by a wide range of normed vector spaces. Completeness is indeed one of the most impor- 
tant concepts in functional analysis, and the contents of this section, which consist of a study of 
this property and related ideas and of thc illustration of these ideas in specific spaces, are funda- 
mental to the later development. 

Let V be a normed vector space. A sequence cf,) in V is said to be Cauc 

linl l l fn-fmll  = 0, 
m.n -eo0 

that is, iff for each t > 0 there is an no such that ]If,,-- f,\I<e whenever m,rz>rio. 
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A set S in a normed vector space V is said to be complete iff each Cauchy sequence in S con- 
verges to a point of s. V itself in known as a complete normed vector space or a Banach space iff 
it is complete. 

1I.D. HlLBERT SPACE 

Hilbert spaces are the simplest type of infinite dimensional normed spaces to play a significant 
role in functional analysis. Their relative simplicity is due to an additional structure - called an 
inner product which is imposed on the space; a Banach space with an inner product is a Hilbert 
space. The inner product is itself a generalizatim of the scalar product of elementary Cartesian 
vector analysis. The scalar product is usually defined in terms of the components of the vector, 
but in accordance with the standard tactics in hnctional analysis, the algebraic properties of the 
scalar product are taken as axioms in the abstract context. 

The presence of this additional algebraic structure much enriches the geometrical properties of 
the space. Most significantly, it is possible to define a notion of perpendicularity for two vectors, 
and the geometry corresponds in several fundamental respects with Euclidean geometry. The 
effect of the inner product on the analytical (as opposed to the geometric) properties is more suh- 
tle. Basically, as in Banach spaces, the main problems in Hilbert spaces are connected with their 
infinite dimensionality. However, in some respects there can be considerable simplification. This 
will be seen later in this section when bases of Hilbert space are considered. From the point of 
view of applications perhaps the most importanl. 
operator may be given in Hilbert space and a 
developed. 

1i.D. 1. Definition 
_I_ - 

Let Y be a vector space. An inner product 

fact is that a sensible definition 
powerful body of theory based 

of a self adjoint 
on this concept 

is a complex valued function { .  , .) on Y X V 
such that for all f ,gJ E V and a6C the followirig hold: 

i .  C f f ) S = = O ,  and ( f f ) = O  iff f - Q ;  

ii. cf,g + ) = C f X )  + CfJ 1; 
... 
111. c f , g ) = m ,  where the bar denotes the complex conjugate; 

iv. (qf-,g 1 = a( f , g  1. 

II.D.2. Definition 

A space V equipped with an inner product is known as a pre-Hilbert space (the term inner 
product space is also used in the literature). if V is a real vector space, and the inner product i s  
real valued, a real pre-Hilbert space is obtained. 

I I. D.3. Definition 

A pre-Hilbert space which is complete with respect to the norm IlfII=CfJ")~ is called a 
Mitbert space. We shall denote this Hilbert space by M. 
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II.D.4. Definition 

A set K of vectors in H is said to be clompkte (the reader should be warned that the terminol- 
ogy in this area of Hilbert space theory is not uniform in the literature) iff  (f.&)-O for all 4t-A' 
implies that f =O. A countable set K = { & i z Z r  is called ~ ~ t h ~ ~ ~ ~ ~ a i  iff (& ,$m)=&n, , ,  for all 
rn,n%I.  The numbers Cf,&,> are known as the ~o~~~~~ coefficients of f (with respect to K ) .  and 
the ~~~~~~~ series off is the formal series X ( f , & ) & .  

1I.D.S. Definition 

n 

f = X f , & M n  . 
n 

This expansion is of course the Fourier series of .f (Definition II.D.4). 

1I.E. SOME BASIC TERMINOLOGY OF OPERATOR THEORY 

Let V and W be vector spaces. 1x1 A be a mapping defined on some subset D ( A )  of V ,  and 
assume that A assigns to each element f of D ( A )  a unique element Af in W (in the initial stages 
D ( A )  will usually be the whole of V ) .  

II.E.1 Definition 

The set D ( A )  (sometimes denoted just by D if there is only one mapping under discussion) is 
called the domain of A .  For f c D ( A )  , the element Af is known as the image off. Likewise the 
image A(S)  of a set S C D ( A )  is the set of the images of all the elements of S. I n  particular the 
image of D ( A )  is called the range of A and will be written as K ( A ) .  The yaeimage of a set 
S I C  W is the set A - ' ( S , )  = {f:f E D ( , ~ ) , A ~ E S , \ .  

II.E.2. ~~~~~t~~~ 

A is called an Q P ~ ~ ~ ~ ~ ~  or a function from V into W. The notation A:S  --W 
will mean that A is an operator with domain S and range in W, and we say that A m a p  S into 
W. 

The following points arising from these definitions should be noted. First, an operator is 
always single valued in that it assigns exactly one element of its range to each element i n  its 
domain. Second, the statement that A is an operator from V into W allows the possibility thal 
D ( A )  is a proper subset of V;  in  contrast A: V - W nieans that D ( A )  = V. Lastly, although 
there is no strict distinction between "operator" and "function", it is customary to reserve "function" 
for the case when V and W are finite dimensional and to use "operator" otherwise. I n  view of its 
importance one particular type of operator is given a name of its own. 

II.E.3. Definitio 

Let V be a complcx (respectively real) vector space, and suppose that W == C (respectively R ) .  
Then an operator from V into W is known as a f ~ n ~ ~ ~ ~ ~ ~ l .  
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BI.E.4. Definition 

Let A and A ,  be operators from Y into W. A and A ,  are said to be uai iff D ( A )  -- D ( A , )  
and A $ = A  If for all f in H A ) .  A 1. i s  said to be an extensbn of A (written A C A  I ), and A to 
be a restriction of A I ,  iff D ( , ¶ , ) I ) D ( A )  and Aj‘=A,f for all f~ H A ) .  The extension i s  
described as proper iff D ( A  ! ) # D ( A ) .  

lI.E.5. Definition - 
L,et V and W be normed vector spaces, and suppose that A is an operator from V into W. A i s  

said to be continuous at the point f o ~ D ( A )  iff one of the following pair of equivalent conditions 
holds: 

i .  For each t> 0 there is a D 0 such that IIAj”-cifo/l<~ if f ~ D q . 4 )  and Ilf-foll<6; 

i i .  For every sequence (j,) in D(A)  with limit so, lim Afn=fifO. A is said to be continuous 
iff it is continuous at every point of HA) .  

II.E.6. Definition 

Let V and W be vector spaces, and let D(L)  be a linear subspace of IT. An operator L from V 
into W with domain D ( L )  is said to be linear iff 

I, (fff + p g )  = .Lf +pcg 

for all o r , @ ~ C  (or R if V and W are real spaces) and all f , g d l ( L ) .  (The restriction that D(k) 
be a linear subspace is obviously necessary if the definition is to make sense; note that R(L)  is  also 
a linear subspxe).  

The space of continuous linear functionals defined on a Banach space B is called the dual of B 
For f E B  and f* ~ R * f * ( f )  will denote the complex number assigned to and is denoted by B*. 

f by the n a p p i n g p .  

II.E.7. The Riesz Representatisn Theorem. 

Corresponding to every element g* of the d u d  H*of a Hilbert space M, there is a unique ele- 
ment g of H such that g* ( j f )  L- Cf,g) for all f E- H .  Also 11g* I[ = I(g 11. 

Note that Hilbert spaces are self-dual, i.e., N * = H .  

II.E.8. Definition. 

Let H be a Hilbert space, and suppose that L E 2 ( H ) ,  i.e., L is an element of the (linear) 
spacc of linear operators from M into H. The reiation 

required to hold for all fI g E H defines the bounded linear operator L* E 2 ( N )  called the ( 
bert space) adjoint of L. 
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II.E.8. Definition. 

A ~ ~ l ~ ~ " ~ ~ ~ e ~  (Y is an n-tuple (cxl,...,cx,t) of non-negative integers. We write 
1 1 -  ff uI + ...+ a,; this conflicts with the notation for the Euclidean distance in R", but 
the meaning will always be clear from the context. Multi-indices will be denoted by a and 8. 

A point in R" will be x = ( x I .  ..., x,) with hi2 = Xxj. and 

We white oj = a/axj and D" = of1 ... 0:". With these 0 ,  a" x u  = X I  ... x,. 
conventions the notation for a partial differential equation may be simplified by writing 

Assume that for SQITW multi indices a,P with JaJ = 101 = m, there exist complex valued 
variable coefficients paS# 0, such that for all a , & p a D ~  Coo(Q). For q 5 ~  C2", define the foams 

I is called a formal partial differential o erator of order 2m; lP is known as the principal part of 
1. 

The operator I*, where 

is called the formal adjoint of 1; I is said to be formally ~ ~ l ~ - a ~ ~ ~ ~ ~ t  iff I = I * .  

1I.F. SOME ASPECTS OF DIFFERENTIAL CALCULUS IN VECTOR SPACES 

1I.F.I. Definition 
.-- 

Let X and Y be normed real spaces and k/ an open subset of X .  Let x0eU and h be a fixed 
nonzera element in X. Since U i s  open there exists an interval I - (  --T,T) for some T>O such that 
if ~ E I ,  then xoi-Zh E U. defined by @ ( t )  = F ( x o - t  t h )  has a 
derivative at r - 0, then W ( 0 )  is called the Gateaux variation of F at xo with increment h and is 
derioted by GF'(x,;h ), i.e., 

If the mapping @: I-X 
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Note that this equation may be used to define 6 F ( x ~ ; h )  when X is any linear space, not necessar- 
ily normed. Note also that the operator 6F(xo;h)  i s  not necessarily linear nor continuous in h. 

II.F.2. Theorem 

Suppose that F has a GAteaux variation at  xo. A necessary and sufficient condition for 

i .  to each h corresponds a d(h) such that l t ) G  implies 1/F(xo+th)-F(x0)IldMIIthIl, 

i i .  F( xO+ th + t h 2 ) - F ( x o +  th )-- F(xo+ t h , )  S F ( x 0 )  = o( t  1. 

GF(xo;h)  to be linear and continuous in h is that F satisfies the following two conditions: 

where M does not depend on h, and 

ii.F.3. Definition. 
I_ 

F has a Giiteaux differential at xo if b F ( x o ; . )  is linear and continuous. In this ease 6 F ( x o ; . )  
is denoted by D F ( x o )  or F'(xo)  and is called the GOteaux derivative. 

Note that some authors refer to the variation BF(x;h)  as the GQteaux differential, and then use 
the Dhrase '"linear Giteaux differential" whenever dF(x;.) is linear. 

11. F.4 Definition. 

Let X and Y be normed real linear spaces and let f . ( X , Y )  denote the space of all continuous 
linear operators on X to Y, with the usual norm. A map F:U+Y, where U is an open subset of 
A', is said to be FrCchet differentiable at x O € U  if there exists a continuous linear operator 
L(xO):X-.Y such that the following representation holds for every h E X  with xoCh EU,  

F( X0-k h )-F(xQ)=L( x o ) h  + r(x0;h ) , ( a )  

where 

The unique L ( x o ) h  in (a )  is called the Frechet differential of F at xo and is denoted by d F ( x Q ; h ) .  
The operator F ' ( x o ) ~ L ( X , Y )  defined by h--dF(x , ;h)  i s  called the FrCchet derivative of F at XO; 

we write d F ( x o ; h )  = F ' ( x o ) h .  

II.F.5 Definition. 

Let X be an open subset of the product space II= E l  X...XE,. 
bounded linear operator L ( x I ,  ..., x,; .) such that for all hig'Ej with 

(XI,  ..., Xi . -1 ,X i  + h i , X j + l  ,... & ) E X  

Let F:X-.Y. If there exists a 

. 
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where 

then L ( x I ,  ..., x,;h,)  is called the F r ~ ~ ~ ~ ~  ~a~~~~~ jfferential and is denoted by diF(xl,...,x,;hi). j7 

i s  said to be tataly ~ i ~ ~ e ~ ~ ~ ~ ~ ~ b ~ ~  if it is Frechet ~ ~ f ~ ~ ~ ~ n t i ~ ~ ~ e  considered as a mapping on 
X C E I X  ... XE, into Y, that is if there exists an L ( x ; h ) ,  x = ( x ,  ,..., x , ) E X ,  h = = ( h l  ,..., h , ) ~ n ,  
which is linear and continuous in h such that 

L ( x ,  y...,x,,;A,,...,h,) is called the total Frkchet ~ ~ ~ ~ ~ r ~ ~ t i a l  of F and is denoted by 
dF(x  I ,...) x,,;im 1 ,... ) hn) .  

An operator F : X C I I  --+ Y which is totally differentiable at XI, ..., x, is partially differentiable 
with respect to each variable, and its total differential is the sum of the differentials with respect 
to each of the variables. 

Let X be an open subset of the product space II = E I X  ... XE,. Let F:X-+Y.  If there 
exists a bounded linear operator DiF(x  l,...,x,,;.):Ei--Y such that 

F ( x l  ,..., Xi-l,Xi + h i , X i + I  ,... J,) - F(x1,  ..., x,) 

= DjF(X1, ..., x&) I- R ( x  I , . . . ,  x,;hj) 

then DiF(x1, ..., x, ;h i )  is called the Gateaux partial differential. 
totally Giteaux differentiable at x if F, considered as a mapping on X C n  into Y, is Giteaux dif- 
ferentiable at x. This means that 

The operator F is said to bt: 

F(x1 + h l ,  ..., x, + h,) -. F ( x  ,,..., x,) 
= L ( x ~  ,..., x,;hl ,  ..., h,)  -f- R(x1 ,..., x, ;h l ,  ..., h,)  

where I .  is a continuous linear operator in h = (h1, ..., A,), and 

lim t - ' 4 i (x l  ,..., x,; t h ,  ,..., th , )  _I= 0 . 
1 - 4  
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111. RIGOROUS MATHEMATICAL ~0~~~~~~~~~ OF THE FORWARD AND ADJOINT 
METHODS OF SENSITIVITY THEORY FOR NONLINEAR SYSTEMS 

1II.A. NONLINEAR SYSTEMS WITH OPERATOR-TYPE RESPONSES 

The material presented in Sec. I I I A  is largely based on the following works: 

a. D. G. Gacuci, "Sensitivity Theory for Nonilinear Systems. I. Nonlinear Functional Analysis 
Approach," J. Math. Phys. 22( 12), 2794-2802 ( 198 1 ). 

b. D. G. Cacuci, "Sensitivity Theory for Nonlinear Systems. 11. Extensions to Additional 
Classes of Responses," J. Math. Phys.,22( 12), 2803-28 12 ( I98 1). 

III.A.1. Mathematical Representation of the Physical Problem 

Consider, for the sake of generality, that the physical problem under consideration is 
represented by the following system of K coupled nonlinear equations written in operator form as 

The quantities appearing in Eq. ( 1 )  are defined as follows: 

1. x = (x,, ..., xJ) is the phase-space position vector x t ? Q C R J ,  where 112 is a subset of the 
J-dimensional real vector space RJ, 

2. u ( x )  = [ u l ( x )  ,...,u d x ) ]  is the state vector; u ( x ) ~ E , ,  where E ,  is a normed linear space 
over the scalar field A of real numbers, 

3. a ( x )  = [ a I ( x )  ,...,al( x ) ]  is the vector of system parameters; ~ E E , ,  where E ,  is also a 
I n  practical applications, E,, may be one of the Hilbert spaces L2 or 12; normed linear space. 

occasionally, the components of a may simply be a set of real scalars, in which case E ,  is R', 

4. Q [ a ( x > , x ]  = [ Q l ( a , x ) ,  ..., QK(a,x)IT is a (column) vector whose elements represent inho- 
mogeneous source terms (the symbol T denoted "transposition"); QEEQ, where EQ is again a 
normed linear space. The components of Q may be operators (rather than just functions) acting 
on a ( x )  and x, operators (rather than just functjons) acting on a ( x )  and x ,  

5. the components of the (column) vector FJ = [Nr(u .a),..., N ~ ( u , a ) ] ~  are nonlinear operators 
acting, in general, not only on the state vector u ( x ) ,  but also on the vector of system parameters 
d x ) .  

In view of the definitions given above, N represents the mapping N : SCE-*EQ, where 
S = S, X Sa, S,CE,, S,CE,,  and E = E, X E,. Note that an arbitrary element eEE is 
of the form e = (u,a) .  Even though in most practical applications E and EQ will be Hilbert 
spaces (e.g., the space Lz, the Sobolev spaces P), this restriction is not imposed at this stage for 
the sake of generality. In the same vein of generality, the components of N are considered here to 
be defined in terms of operators such as differential, difference, integral, distributions, or infinite 
matrices. The domain S of N is, of course, intimately related to the characteristics of these opera- 
tors. Thus, if differential operators appear in Eq. (l), then a corresponding set of boundary 
and/or initial conditions which is essential IO define S - must also be given. This set can be 
represented as 
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[ N u , a )  - A ( ~ ) ] , I o  0 , ( 2 )  

where A and B are operators and dR is the boundary of a; the operator A[(Y] represents all 
inhomogeneous boundary terms. 

To be definite, u ( x )  is considered to be the unique nontrivial solution of the physical problem 
described in Eqs. ( 1 )  and (2). This requirement is usually fulfilled (or assutued to be fulfilled 
when rigorous existence and uniqueness proofs are lacking) in  most problems of practical interest. 
The following purposes are accomplished as consequences of imposing this requirement: 

1. elimination from further consideration of those points in nonlinear problems where bifurc:t- 
tion (Le., branching) of solutions occurs, 

2. inclusion of the treatment of source-free problems as a special case of Eq. ( I  ), 

In  this vein, Eq. ( 1 )  is considered to include any equality constraints that u ( x )  might be 
required to satisfy. The specifications introduced so far are sufficiently general to allow Eqs. ( I )  
and ( 2 )  to include, as particular cases, the mathematical modeling of a wide range of problems of 
practical interest in many diverse fields. 

The system's response, (i.e., performance parameter) R associated with the problem modeled 
by Eqs. ( 1 )  and (2)  must also be specified. 'The most general type of system response, which 
includes phase-space dependent mappings of the system's state vector u and parameters cy, i s  the 
operator 

R(e) : D C E  - E ,  , ( 3 )  

where E R  is a normed vector space. 

III.A.2. Sensitivity Theory 

The most general and fundamental concept for the definition of the sensitivity of a response to 
variations i n  the system parameters is the Gateaux (G)-differential. The G-differential VR(e",h ) 
of R(e) at e" with increment h,  is defined as 

lim[R(eo + t h )  - ( e " ) ] / t  = V R ( e " ; h )  ( 4 )  
1-0 

for t E h ,  and all (Le., arbitrary) vectors ~ E E ;  here, h = (hw,ha) ,  since E = E ,  X E ,  

The (3-differential yR(s";h) is related to the total variation [It(@ 3- h )  W(e")] of 
through the relationship 

R(e";h) -- R(eo) = VR(eO;h) + A ( h )  , ( 5 )  

where 

lirn[A(lh)/t] = 0. 
I -0 
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It is important to note that, in view of the proprtks  of the G differential, need not be con- 
tinuous in u and/or a for MR(e9.h) to exist at e' = (u",ao), and that VR(e4.h) is not necessarily 
linear in h.  It thus becomes apparent that by defining 6/R(eo;h) to be the sensitivity oJ the 
response R, the definitions of sensitivity encountered in the previously mentioned works'-19 are 
considerably generalized and extended. With the present definition, the concept of sensitivity also 
becomes meaningful for certain types of physical problems and responses (e.g., involving discon- 
tinuities) which could not have been treated within the framework of the previous approaches. 

Thus, the objective of sensitivity theory is to evaluate V R ( P ; h ) .  To achieve this objective, 
two alternative formalisms - the "Forward Method" and the "Adjoint Method" are developed and 
discussed in the foliowing. 

IiI.A.2.a. The Forward Method 
_I_____ 

It  is observed that, given the vector of "changes" h, around the "base-case configuration" a", 
the sensitivity VR(eo;h) of R(e) at e" can be evaluated only after determining the vector h,, since 
h,  and h,, are not independent. A relationship between h ,  and h,  is obtained by taking the 4;- 
differentials of Eqs. ( I )  and (2). This gives 

and 

respectively. Of course, the above system of equations - which will subsequently be referred to 
as the "forward sensitivity equations'' - - - -  is meaningful if and only if the respective G-differentials 
of the operators N, B, Q, and A exist. Note again that these C-differentials need not necessarily 
be linear operators in either h, or h,, and that their existence does not require the operators N, B, 
Q, and A to be continuous in u or a at eo. 

For a given vector of "changes" k, around NO, one must be able to solve the system given in  
Eqs. (6) and (7)  to obtain h,; otherwise, of course, it would be impossible to perform sensitivity 
analysis of the given physical system. [However, a detailed analysis of the conditions under which 
Eqs. ( 6 )  and ( 7 )  can be solved for h,  is not within the scope of this work.] Once A, is determined, 
it can be employed, in turn, to evaluate the sensitivity VR(e";h) of R(e) at eo, for a given vector of 
"changes" ha. 

I t  should be noted here that the "Forward Method" i s  characterized in a fundamental sense by 
the fact that the solution h, of the h,-dependeqt 'forward sensitivity equations'- [vk., Eqs. (6) and 
( 7 ) ]  is needed to evaluate VR(e";h). Consequently, from the standpoint of computational costs, 
the "Forward Method" is advantageous to employ only if, in the problem under consideration, the 
number of different responses of interest exceeds the number of input parameters. However, a 
large number of problems of practical interest are characterized by very large data bases (Le.> a 
has many components) and comparatively few responses. In such situations, it is not economical 
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to employ the "Forward Meth " to answer all sensitivity questions that might arise in practise, 
since it becomes prohibitively expense to repeatedly solve the ha-dependent "forward sensitivity 
equations" to determine h ,  for all possible vectors ha. Hence, it is clearly desirable to devise ( i f  
possible) an alternative procedure to evaluate VR(e";h), to avoid the necessity of repeatedly solving 
the "forward sensitivity equations." 

III.A.2.h. The Adjoint Method 
I_ . .. 

The practical motivation underlying the development of this alternative method for sensitivity 
analysis is to avoid the need for repeatedly solving Eqs. ( 6 )  and (7). This goal can be achieved i f  
we can eliminate all unknown values of h, from the expression of VR(eo;h). This elimination can 
be accomplished by constructing an adjoint system that is (i) uniquely defined, ( i i )  independent 
of the vectors h, and h,, and (iii) such that its solution can be used to eliminate all unknown 
values of h,  from the expression of VR(e";h). 

Adjoint operators can only be introduced uniquely for densely defined linear operuiors i n  
Banach spaces. However, at this stage, VN(e";h), VIB(eo;h), and VR(eo;h) are not necessarily 
linear in h, and E is not necessarily complete. It follows that developing the Adjoint Method 
requires the introduction of restrictions in addition to those underlying the validity of the Forward 
Met hod. 

There are several equivalent theorems giving necessary and sufficient conditions in order that a 
nonlinear operator F(e) with domain in E and range in another normed linear space admit a G 
differential VF(eo;h) at eo that is linear in h. A set of such conditions is provided by Theorem 
II.F.2: 

Theorem: the G-differential VF(e';h) of F at eo is linear in h g E  i f f  

F ( e )  satisfies a weak Lipschitz condition at e", and: 

Thus, W ( e " ; h )  and VB(e';h) are linear in h if N and B satisfy, in turn, conditions identical to 
those stated in Eq. ( 8 )  for F(e) .  For the purposes of subsequent derivations, VN(e";h) and 
D(e";k)  are henceforth considered to be linear in h, and denoted by DN(eo;h) and D 
respectively. Recalling now that, in our case, E = E ,  X E,, it further follows that 

and 

In the above expressions, N'Je") and lBfU(eo) denote, respectively, the partial G-derivatives at eo 
of W and B with respect to u, while N',(eo) and B',(eo) denote the partial @-derivatives at eo of N 

IB with respect to a. Note that Nlu(eo) and Blu(eo) are linear operators in h, with domain in 
E, and range in EQ [Le., N'U(eo), B'Je L(Eu,EQ)] ,  and are independent of h,; similarly, 
N',(e'), B',(e')EL(E,,EQ), and are indepe nt of h,. The explicit representation of N',(eO) 
and Nla(eo)  are matrices whose elements are the partial G-derivatives at e" of the components of u 
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and the components of a. 
obtained in a sirndar manner,] For example, Nfrri;eQ) is represented by the matrix 

[The elcments of the matrices representing &,(e") and Bfa(eoB are 

In view of Eqs. (9) and ( I O ) ,  the "forward sensitivity equations" [given in Eqs. ( 5 )  and (7)] 
become 

and 

Although N',(e"),B',(e")Fa,(E.,EV), further progress toward constructing the desired adjoint 
system can be made only if N',(e") is densely defined and the underlying normed linear spaces are 
complete. (Otherwise, of course, adjoint operators cannot be uniquely determined.) Since the lack 
of an inner product i n  a general Banach space gives rise to significant conceptual distinctions 
between the adjoint of a linear operator on a Banach space and the adjoint of a linear operator on 
a Hilbert space, the choice of space becomes important for subsequent derivations. To motivate 
the choice to be made here, it  is recalled that all of the previous approaches to sensitivity theory 
made use of real inner products. Therefore, clarification of the conditions underlying the validity 
of these approaches is facilitated by the simplifying properties of Hilbert spaces. Specifically, the 
spaces E, and Eq are henceforth required to be real Hilbert spaces, denoted by H ,  and H e ,  
respectively. The inner products on H ,  and NQ are denoted by < , > and ( , respectively. 

Since Hilbert spaces are self-dual, the following relationship holds for a vector U E  Ha:  

I n  the above equation, the operator Id*(@) is the K X K matrix 

obtained by transposing the formal adjoints of the operators &,(eo), and (P[h,,v]j,,, is the associ- 
ated bilinear form evaluated on dQ. The domain of L* is determined by selecting appropriate 
adjoint boundary conditions, represented here in operator form as 

These boundary conditions are obtained by requiring that 

I .  they be independent of h,,h,, and G-derivatives with respect to a, and 

2. the substitution of Eqs. (13) and (16) into the expression of {P[h , ,u ] )dn  must cause all terms 
containing unknown values of h ,  to vanish. 



This selection of the adjoint boundary conditions reduces { P [ ~ , , v ] / , ~ ~  to a quantity designated here 
by a[h,,v;e"l, where f' contains boundary terms involving only known values of h,,,u, and (possibly) 
e". I n  general, f' does not automatically vanish as a result of these rnanipulati~ns.~' although it  
may do so in particular instances. Hence, Eq. (14) can also be written as 

The above equation can be further transformed by recalling Eq. ( 12);  then Eq. ( 17) becomes 

At this stage in  the development of the Adjoint Method, we first examine the special case 
when E R  is simply the field of reach scalars, denoted by A, so that the system's response reduces 
to the nonlinear functional (rather than operator) R:D *A.  This will facilitate the subsequent 
generalization to the operator case R:D---*ER. 

Ill. A. 2. h. (i) System Kesponses: Functionals 

When R:D+A, the sensitivity VR(e";h) also reduces to a functional that takes values i n  A.  
We now note that the right-hand side of Eq. (18) does not contain any values of h,. Thus, if i n  
the functional VR(e';h) the h, dependence could be separated from the h ,  dependence, and the 
quantity containing this h,  dependence could be expressed in terms of the left-hand side of Eq. 
(18), then the construction of the Adjoint Method would be concluded. However, <L*(e")u,h,> is 
linear in h,, while in general, VK(e';h) is not. For VR(e";h) to be linear in h (and, consequently, 
i n  h,), it becomes apparent that R ( e )  must be required to satisfy the same conditions as thosc 
required of F ( e )  in  Eq. (8). Then, the linear G differential VR(e";h) is denoted by DR(e".k),  and 
can be expressed as 

where R / , ( e " )  and R',t(eo) are, respectively, the partial G derivatives at e" of R(e) with respect to 
u and a. 

As desired, the h,  dependence has been separated from the h, dependence. Note here that, 
historically, quantities corresponding to the functions R ' , ( P ) h ,  and R',(e")h,,  have been referred 
to as the "indirect effect term" and the "direct effect term," respectively. This terminology reflect\ 
the fact that in the previous works1-'' the response was considered to depend on CY both "directly" 
and "indirectly" via the state vector u, Le., the response was considered to be a mapping from 
the space of the input parameters into the real numbers. Although this interpretation of the 
responsc is in  contradistinction with the concepts introduced and employed i n  this work,  i t  is still 
convenient to continue to use this traditional terminology when referring to 
Rfu(eo)hu and R',(eo)h,. 

Since the functional A",(e')h, is linear in h, and since Hilbert spaces are self-dual, the Riesz 
representation theorem ensures that there exists a unique vector Y",R(e')EH, such that 
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At this stage, it can be required that the right-hand side of Eq. (20) and the left-hand side of 
Eq. (18) represent the same functional. Then, the Riesz representation theorem ensures that the 
relationship 

holds uniquely, where v satisfies the boundary conditions given in Eq. (16). 

The construction of the desired adjoint systeni - consisting of Eqs. (21) and (16) has thus 
been completed. Furthermore, the desired elinination of the unknown values of h ,  from the 
expression giving the sensitivity DR(eQ;h) of R ( e )  at e' to variations of ha has also been accom- 
plished, since in view of Eqs. ( 18)-(21)9 

Once the single calculation to determine the adjoint function u is performed, Eq. (22) provides the 
most efficient means to obtain the sensitivity DR(e";h) of R(e) .  However, it is important to reem- 
phasize that Eq. (22) holds if and only if all the requirements imposed in this section on the 
various operators are satisfied. 

111. A. 2. b. (ii) System Responses: Operators 

The analysis presented in the previous section -- of the necessary and sufficient conditions 
underlying the validity of the Adjoint Method for responses that are functionals also establishes 
the guidelines for treating operator responses; in  this case, the sensitivity r/R(eo;h) is itself a n  oper- 
ator. From the developments presented in III.A.2.b.( i), the following guidelines emerge for 
developing the Adjoint Method for operator responses: 

(G.l) isolate the h ,  dependence of VR(eo;h) from the functional dependence of VR(e';Fa) on the 

((3.2) express the quantity containing this h, dependence in the farm of linear combinations of 
remaining quantities, 

functionals that are themselves linear in h,, 

( G . 3 )  employ the Adjoint Method for funlctionais to evaluate the functionals determined in 
item (G.2) above. 
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The development of these guidelines into a rigorous formalism will necessarily involve the use 
of adjoint operators. Since adjoint operators in Hilbert spaces are more convenient to deal with 
than adjoint operators in Banach spaces, the subsequent developments are facilitated by taking 
advantage of the simplifying geometrical properties of Hilbert spaces while still retaining sufficient 
generality for practical applications. In  this vein, the spaces E,,Eq, and E R  are henceforth 
considered Hilbert spaces and denoted a5 Nu(Q).H~(R) and HR( &j, respectively. The elements of 
H,(Q) and H g ( Q )  arc, as before, vector functions defined on the open set RCR' with the smooth 
boundary do. The elements of HR(RR) are vector or scalar functions defined on the open set 
QRCH",I d rn d J ,  with a smooth boundary dQR. (Of course, if J = 1 ,  then dQ merely consists 
of two endpoints; similarly, if wz = 1, then dQ consists of two endpoints only.) The inner products 
on HI,,(S2).HQ(Q), and N R ( Q R )  are denoted by [ , 1, < , >, and { , 1, respectively. 

I n  view of the foregoing guidelines (G.1) and (G.2), it becomes apparent that further progress 
is possible only if VR(e";h) is linear in h. Applying Theorem II.F.2 readily shows that VR(e";h) is 
linear in h if and only if 

R(e) satisfies a weak Lipschitz condition at e", and 

R ( e o + t h I + r h Z )  - R(eo+rhI)  - R ( e ' + t h z )  + R(e") = o ( t ) ;  h l , h z E H ,  X H ( c ; t E , i  (23)  

I n  such a case, PX(e";h) is denoted by DR(e";h), and R(e) admits a total G derivative at e" = 
( uo,cuo). It follows that the relationship 

holds, where R',(P") and R'Je') are the partial G derivatives at eo of K(e) with respect to u and CY. 

With the derivation of Eq. (24), the task outlined in guideline (G.1) has been completed, and 
Eq. (23) gives the necessary and sufficient conditions underlying this completion. Note also that 
R',(e") is a linear operator form H ,  into H R ,  Le., R ' , ( e " ) € L ( H , ( n ) , H , ( n . ) ) .  By analogy to the 
particular case when the response is a functional [cf. Eq. (19) et seq.] ,  it is still convenient to refer 
to the quantities R',(eo)hu and Rr,(eo)ho appearing in Eq. (24) as the "indirect effect term" and 
thc "direct effect term", respectively. 

The direct effect term can be evaluated efficiently at this stage. To proceed with the evalua- 
tion of the indirect effect term, consider that the orthonormal set { 4 k I k E K ,  where k runs through an 
index set K ,  is an orthonormal basis of f f R ( R d .  Then, since R ' , ( e " ) h , E H R ( R R ) ,  it follows that 

The notation Z; is used to signify that in the above sum only an at most countable number of ele- 

meiits are different from zero, and the series extended upon the nonzero elements converges 
unconditionally. According to customary terminology, the functionals {Rru(eo)hu,$k} are called the 
Fourier coefficients (in this case, of lu(eo)hu) with respect to the basis {&I. These functisnals are 
linear in h ,  since R(e) was required to satisfy the conditions stated in Eq. (23). Thus, the deriva- 
tion of Eq. (25) has completed the task outlined in guideline (G.2). 

k e K  
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To accomplish the task outlined En guideline ( G . 3 ) >  it  is first recalled that the Adjoint Method 
for functionats required the indirect effect term tcr be represented as an inner product of h, with 
an appropriately defined vector in H ,  [cf, Eq. f,20)]. This indicates that progress can be made 
here only if each of the functionals in Eq. (25) is expressed as an inner product of kr, with a 
uniquely defined vector in fb,(itj yet to be detesrniaed. 

The construction of the aforementioned inner products can readily be accomplished with the 
help of the operator adjoint to Ep',(eo). Since R',(e")EL(H,(n),rr,(QR)), and since Hilbert spaces 
are self-dual, the adjoint of R',(e") is the operato:" M ( e U ) E L ( H R ( Q R ) ,  H , ( Q ) )  defined by means of 
relationship 

The operator M(eo) is unique if R',(e') is densely defined. 

The adjoint sensitivity formalism for functional can now be used to' construct the adjoint sys- 
tem whose solution will subsequently enable the elimination of unknown values of h, from the 
expression of each functional [h,M(e',L&j,k~K. To construct this system, the necessary and suffi- 
cient conditions underlying the validity of Eqs. (12) and ( 1 3 )  must be satisfied. Then, for every 
vector z k ,  E H Q , k c K ,  the following relationship holds: 

where L*(e") is the operator formally adjoint to Nlu(eo), and {P(h,;zk)]aQ is the associated bilinear 
form evaluated on 8Q. The adjoint boundary conditions which determine the domain of L*(eo) are: 
obtained by requiring that they satisfy criteria analogous to the criteria satisfied by the adjoint 
boundary conditions given in Eq. (16). From this requirement and from the fact that Eqs. (27)  
and ( 1  5 )  are formally identical, it follows that the desired adjoint boundary conditions are for- 
mally identical to the boundary conditions given in Eq. (1 5 )  and can be expressed as 

As before, selecting the adjoint boundary conditions given in Eq. (28) reduces the bilinear form 
~ P ( ~ , ; Z ~ ) \ , ~ ~  appearing in Eq. (27) to a( ha,zk;eo). In  view of this and Eq. ( 12), Eq. (27) becomes 

Comparing the left-hand size of Eq. (29) with the right-hand side of Eq. (26) shows that 

This relationship holds uniquely in view of the Riesz: representation theorem. 
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The construction of the desired adjoint system, coaisisting of Eq. (30) and the boundary condi- 
tions given in Eq. (28) has thus been completed. Furthermore, Eqs. (24), (25), (26), (29), and 
(30) can now be used to obtain the following expression for the sensitivity DR(c";h) of R(e) at e": 

This accomplishes the desired elimination of all unknown values of h, from the expression giving 
the sensitivity of R(e) at eo. Note that Eq. (31) includes the particular case of functional-type 
responses. In such a case, the summation 2 would only contain a single term, and the deriva- 

tions presented in this section would reduce to those presented in the previous section. 
k EK 

To evaluate the sensitivity DR(eo;h) by means of Eq. ( 3 1 ) ,  it is required to compute a s  many 
adjoint functions Z k  from Eqs. (28) and (30) as there are nonzero terms in  the representation of 
Rru(eo)hu given in Eq. (25). talthough the linear combination of basis elements 4r given in  Eq. 
(25) may, in principle, contain infinitely many terms, obviously only a finite number of the 
corresponding adjoint functions Zk can be CalcUhted in practice. Therefore, special attention is 
required to select the Hilbert space HR(QR) .  a basis {f$k/kcK, and a notion of convergence to best 
suit the problem at h a r d  This selection is guided by the need to represent the indirect cffect term 
Wru(eo)hu as accurately as possible with the smallest number of basis elements; a related considera- 
tion is the viability of deriving bounds and/or asymptotic expressions for the remainder after 
truncating Eq. (25)  to the first few terms. 

arative D~SCMSS~QI~  of Previous A ~ p ~ ~ ~ ~ ~ ~ ~  to Semi tivity ......... Analysis ..... .......... ...... 

I n  all ot' the works based on the d i f f e re r~ t i a l l~ .~~  and the generalized perturbation 
t h e ~ r y ~ . ~ ~ ' ~ , ' ~ ~ ' ~ , ' ~  approaches to sensitivity analysis, the probleins were a priori considered to 
depend explicitly and implicitly through the state functions on the system parameters. [The  termi- 
nology "generalized perturbation theory" is customarily used in works on reactor theory3 to denote 
that the perturbation estimate obtained accounts not only for effects resulting directly from the 
alteration of the system parameters (ix., "perturbation theory") but also for indirect effects arising 
from the changes in the state function (Le., the dependent variable) due to the system alteration, 
without explicitly calculating the altered state function. 1 This would conceptually correspond to 
interpreting the problem under consideration (including the response) as a complicated mapping of 
a subset D,CE,  into the set A of real numbers. 

Consequently, in order to obtain expressions for the sensitivity coefficients, the respective 
derivations must rely explicitly and/or implicitly on the existence and uniform continuity of the 
derivatives of the operators and the state functions with respect to the system parameters (and, 
possibly, with respect to the phase-space variables). 

I n  the works dealing with nonlinear problems, it was further stated that the "differentiated 
e q i ~ t i o n s " ' ~ , ' ~  (obtained by formally differentiating the nonlinear operator equations and response 
with respect to an arbitrary input parameter) or, correspondingly, the "equations for the altered 
state functions"'3-'6 (obtained by formal first-order perturbatinn theory expansions around the 
"base-csse configuration" of the state functions and iuput parciceters) are linear. I n  fact, these 
equations correspond conceptually to our "forward sensitivity equations" given in Eqs. (6) and (7). 
This correspondence makes the conditions underlying the validity of the "differentiated equations" 
or the "equations for the altered state functions" become evident: as derived,"~ '~- '~  these equations 
are rigorously valid only if the input parameters are real scalars, if the derivatives of the various 
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state functions with respect to these input parameters are u ~ i ~ o ~ m ~ ~  continuous, and if all opera- 
tors (including the response) appearing in the f , ~ r ~ ~ ~ a t ~ o n  of the ~ r o ~ ~ ~ m  under c o n s ~ d e r a ~ ~ ~ n  
admit Frtchet derivatives22,2s with respect to the state functions. It should also be mentioned that, 
in these  work^,'^-'^ the adjoint system was always assumed to exist, and was introduced in a heu- 
ristic manner with initially unspecified source terms. These source terms were s ~ ~ s e ~ u e ~ t ~ y  i 
fied with the "derivatives of the response with respect fo the state functions" by making use of 
inner products. Again, linearity of this "response ~ ~ ~ ~ v ~ t ~ v e ~ ' 1 5 ~ ~ ~  (or, correspondingly, linearity of 
the "response perturbation" with respect to the "perturbations in the state hnctions""~."') was 
implicitly assumed. Furthermore, the uniqueness of the end products {e.g., adjoint systems, sensi- 
tivities) was assumed but not actually demonstrated. 

The variational appro ache^^*^*'^**' relied on cclnstructing an appropriate variational functional, 
which was subsequently required to satisfy a stationarity condition for the base-case values of the 
state functions and system parameters. Expressions for the sensitivity coefficients then resulted 
from this requirement. In  the earlier formulations [see, e.g., Ref. 3 ,  p 61, an unspecified function 
appeared in the expression of the variational functional to be made stationary. This function was 
subsequently identified with the "adjoint" function that satisfied an "adjoint system" whose exist- 
ence was a priori assumed. Significant advances were made (see, e.g., Stacey's review3) in modi- 
fying earlier variational principles by using Lagrange multipliers so that restrictions which are 
mathematically necessary to impose on the class of trial functions correspond to the physical con- 
ditions associated with the original problem and, just as important, so that the constraints are 
directly incorporated in the variational principle. Although considerable ingenuity i s  always 
required to construct an appropriate variational functional whose explicit form depends on the 
problem under consideration - these variational approaches did not require (in principle) the exist- 
ence of derivatives of the state functions with respect to the system parameters. In this sense, the 
assumptions underlying these variational approaches- are less restrictive than the assumptions 
underlying the previously mentioned differential and generalized perturbation theory approaches. 
IIowever, derivatives of the various oprators with respect to the state functions and the system 
parameters were still needed. Although the exact nature of these derivatives (and, consequently, 
the necessary and sufficient conditions underlying their existence) were not generally analyzed, 
Stacey defines and employs a quantity referred to in his work3 as the "variation of a functhna!an' 
In  the light of the concepts of nonlinear functional a n a l y s i ~ , ' ~ ~ ~ ~  it becomes apparent that his defi- 
nition is in  fact the definition of the Frtchet differentiat of that functional. This implies that the 
"functional derivatives" encountered in these variational approaches3*14 must be interpreted as 
FrGchet derivatives. 

I t  is noted that these approaches'-'' to sensitivity analysis were developed to analyze specifk 
practical problems encountered in reactor physics, shielding, depletion, and heat transfer. These 
specific problems involved sufficiently well-behaved operators, and the parameters considered for 
sensitivity analysis were, in fact, real scalars. Therefore, even though the derivation underlying 
these approaches are mathematically not entirely rigorous, the end results are essentially correct. 

In  reformulating both the differential and the variational approaches to sensitivity analysis of 
nonlinear systems of equations, Cacuci el aL2' considered a typical nonlinear problem as a map- 
ping defined on a product space corresponding to E = E , X E ,  as defined in Sec. III.A.1. (Note, 
however, that these spaces were considered at the outset to be Hilbert spaces.) This completely 
eliminated the need for the existence of derivatives of the state vector with respect to the system 
parameters. In  addition, the definition of sensitivity of a response was generalized to allow consid- 
eration of system parameters that were functions rather than just scalars. By requiring the exist- 
ence of partial Frtchet  derivative^^^,^' of the cperators with respect to the state vector and the sys- 
tem parameters, the existence of an appropriate adjoint system was ensured. A ~ t h o ~ ~ h  this work 
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generalized atid extended the scope of the previously available sensitivity theory formulations, the 
existence of partial FrCchet derivatives is not actually essential for sensitivity analysis; as shown i n  
Sec. 11I.A.2, the existence of the G differentials ~ for the Forward Method or of the partial 
derivatives with respect to the state vectors only - for the Adjoint Method are both necessary 
and sufficient. 

Although the concept of an inner product has been essential to forniulating the existing 
adjoint-function based appro ache^'-'^,^' to sensitivity analysis, the implications associated with the 
particular use of this concept in these works have not been generally discussed. Clearly, the pre- 
requisite for employing an inner product is that the problem under consideration rnust be formu- 
lated in an appropriate Hilbert (or at least pre-Hilbert) space. Furthermore, since a single defini- 
tion for the inner product was used in each of these works when introducing adjoint operators, the 
underlying implication is that the problem being analyzed can only involve operators with ranges 
in the same Hilbert space to which the state vector belongs. By contrast, the Adjoint Method 
developed here makes use of two distinct inner products [cf, Eq. ( 14) et sey. 1; this allows sensitiv- 
ity analysis of problems involving operators whose ranges may be in a Hilbert space that differs 
from the Hilbert space to which either the state vector or the system parameters belong. Also, i t  
is noted that no distinctions were made in previous regarding the fundamental mathe- 
matical differences between the requirements underlying the "adjoint" formulations of sensitivity 
theory. The present work provides a basis for assessing the potentially important practical conse- 
quences of these differences. 

The forgoing discussion has highlighted the major aspects regarding the specific uses of pzrtur- 
bation theory and variational approaches for applications to sensitivity analysis. For such applica- 
tions, the common scope of these approaches is to obtain sensitivities. I n  reactor theory, for 
example, some a ~ t h o r s ~ , ~ ~  regarded perturbation thcory as an application of variational methods in 
the sense that a variational formulation "is employed to derive a generalized perturbation theory 
for estimating the change in the physicel quantity of interest which would take place if the proper- 
ties of the system were to be altered" (Ref. 3 ,  p. 18). But the general uses of either perturbation 
theory or variational methods are not limited to deriving sensitivity functions. Similarities as well 
as distinctions between the perturbation theory and the variational approaches to sensitivity analy- 
sis, and the contributions that this work brings to sensitivity theory can be further clarified by 
briefly analyzing the relationships between perturbation theory, variational methods, and func- 
tional analysis from a broader perspective. 

Perturbation theory and variational methods are not sharply defined disciplines; they are bodies 
of knowledge unified more by the respective method of approach than by clear-cut demarcation of 
their respective provinces. For example, the terminology "perturbation theory" is also encountered 
in celestial mechanics and in nonlinear oscillation theory. However, although these "perturbation 
theories" study systems deviating slightly from an ideal system for which the complete solution is 
known, the problems they treat and the tools they use are quite different from those used to derive 
sensitivities. I n  reactor theory, for e ~ a r n p k , ~ ~  this latter use of pcrturbation theory has evolved 
from the work of Rayleigh on vibrating systems and of Schrodinger in quantum mechanics. 

The works based on perturbation theory to derive sensitivities for problems involving linear 
operators tacitly assume that the eigenvalues and eigenvectors admit series expansions in a small 
parameter that measures the deviation of the "unperturbed operator" from the "unperturbed" onc. 
Without a proof that the series actually converges, it is difficult to decide whether the first term of 
the series gives an adequate picture introduced by the perturbation, a fact well known in reactor 
theory,35 for example. For applications to sensitivity analysis of problems involving linear opera- 
tow, the underpinnings of the perturbation theory approach lie in linear functional analysis. 
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Although a systematic presentation of perturbation theory for linear operators is now available,36 
further work remains to be done to fully exploit these functional-analytic techniques for sensitivity 
analysis. 

Variational methods, just like perturbation theory, are not developed specifically for sensitivity 
analysis, although the variational principles developed for this purpose are, of course, very useful. 
But variational principles, even those restricted to limited classes of variations, are difficult to fos- 
mulate and for many nonlinear problems of interest (e.g., thermal hydraulics, heat and mass trans- 
fer) variational principles are not yet available. 17 Furthermore, a systematic and general treat- 
ment of variational principles for problems involving nonlinear operators must necessarily rely on 
the differential concepts of nonlinear functional analysis, i.e., Gateaux and Frtchet differentials 
and derivatives. 

The present work attempts to provide a general framework for systematic sensitivity analysis of 
both linear and nonlinear systems. The scope of the theory formulated here is to derive sensitivi- 
ties, to be used not only for predicting the behavior of the response when the system parameters 
are altered, but also for ranking the importance of these parameters, and for performing uncer- 
tainty analysis by combining the sensitivities with the appropriate parameter covariances. 

The link between a rigorous perturbation theory (and/or variational) approach to sensitivity 
analysis and the sensitivity theory presented in this work is provided by functional analysis. I n  
particular, the similar overall strategy and the use of adjoint operators stem from functional- 
analytic concepts. In this sense, the greater general validity and applicability of the present sensi- 
tivity theory also contributes to the development of perturbation theory for applications to non- 
linear systems. Finally, it is noted that whenever the variational, differential, and perturbation 
theory approaches are rigorously applicable, the end results for the sensitivities are identical to 
those produced by the sensitivity theory presented in this work. 
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III.B. NONLINEAR SYSTEMS w m  RESPONSES DEFINED AT CRITICAL POINTS 

1II.B. 1. Introduction 

Concepts of nonlinear functional analysis have been employed in Sec. 1II.A to formulate a 
rigorous and comprehensive sensitivity theory for physical problems characterized by systems of 
coupled nonlinear equations. The formulation of this theory is centered on evaluating the Giiteaux 
(G) differential of the system’s response (ix., performance parameter) associated with the physical 
problem. This G-differential is a general and fundamental concept for defining the sensitivity of a 
response to variations in the system parameters. 

As shown in Sec. III.A, a nonlinear functional can be used as a general representation for 
any response that is solely characterized by a numerical value. Note that only this numerical 
value changes when varying the system parameters. However, responses which cannot be charac- 
terized solely by a numerical value are often encountered in practice. In reactor safety and 
design, for example, responses of considerable interest are the maximum temperature in the clad- 
ding, the maximum power density, and the maximum normalized reactor power level (if point- 
kinetics equations are used in  the transient reactor analysis code). Such responses are character- 
ized both by the numerical value at the maximum and by the position in phase-space where the 
maximum occurs. In this case, varying the system parameters alters not only the value at this 
maximum but also alters the position of the maximum in phase-space. This is illustrated i n  the 
following section, where sensitivity theory is extended to allow treatment of responses that com- 
prise, as particular cases, the representation of maxima, minima, and saddle points. 

Although the responses treated in this section differ from those treated in Sec. III.A, the 
physical problem is the same as in that section. It is helpful to recall that, in the operator nota- 
tion used in Sec. IILA, the problem i s  represented by the system of K coupled nonlinear equa- 
tions 

subject to houndary and initial conditions represented as 

where A and B are operators and dR is the boundary of Q; the operator A ( a )  represents all inho- 
mogeneous boundary terms. 

111.8.2. System Response: A Functional Defined at a Critical Point of a Function of the 
System’s State Vector and ParamX-irs 

.-II_ _.... 

Consider the system response R to be a functional of e = ( u p )  defined at a critical point 
y ( n )  of a function F ( u , x , n ) .  Such a response can be represented as a functional of the form 
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The quantities appearing in the integrand of Eq. ( 3 )  are defined as follows: 

1.  F is the nonlinear function under consideration. 

2. 6(x) i s  the customary "delta'v functional. 

3. ~ E R ' ,  i.e., the components ai,i = 1, ..., 1, are restricted throughout this section to be real 
numbers. 

4. y(n) = [ y , ( a ) ,  ...,yM( a ) ] ,  M d J ,  is a critical point of F. This critical point is defined 

a. If the G-differential of F vanishes at y ( a ) ,  then y ( a )  is a critical point defined implicitly 
as the solution of the system of equations. 

here in one of the following two ways: 

(aF/ax,I,,,, = 0; i = I , . .  ,J. (4 )  

I n  this case, y ( a )  has J components, (Le., M = J ) ,  and n : i M + , 6 ( x , - z , )  = 1 in  
the integrand of Eq. (3 ) .  Note that, in general, y ( a )  is a function of a. 

b. Occasionally, it may happen that aF/ci,Ic, takes on nonzero constant values (Le., values 
that do not depend on x) for some of the variables x,, j = N -E 1, ..., J.  Then as a 
function of these variables x j ,  F attains its extreme values at the points x, = z , , z , ~ d R .  
Evaluating F at z,, j = A4 + ],..+I, yields a function G which depends on the remain- 
ing phase-space variables x,, i = 1,. . ,M;G may then have a critical point at 
y ( a )  -- [ y , ( e )  ....,,t~,,,(cr)] defined implicitly as the solution of 

With the above specifications, the definition of R ( e )  given in EQ. ( 3 )  is sufficiently general 
to include treatment of extrema (local, relative, or absolute), saddle, and inflexion points of the 
function F of interest. In  practice, the base-case solution path, and therefore the specific nature 
and location of the critical point under consideration, are completely known prior to initiating the 
sensitivity studies. 

I t  is thus apparent that in the formulation of a complete sensitivity theory, the components 
y,(a),i = 1, ..., M ,  must be treated as responses in addition to R(e). Hence, the objective of this 
sensitivity theory is twofold: 

1. to determine the G-differential VR(eo;h ) of R(e) at the "base-case configuration point" 
eo = (uo,ao), which gives the sensitivity of Rfe) to changes h = (h,,h,) in  the system's state 
functions and parameters, and 

2. to determine the (column) vector Vy(ao;h,) = ( V y I ,  ..., V y M )  whose components Vy,(ao;h,) 
are the G-differentials of y,(a) at a', for m = I , . . . ,M.  The vector Vy(ao;h,) gives the sen- 
sitivity of the critical point y ( a )  to changes ha. 

To achieve the above objective, the "Forward Method" and the "Adjoint Method" will be 
developed along the same general lines as discussed in detail in Sec. I K A .  
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Applying the definition of the G-differential to Eq. (3)  shows that 

The last term on the right side of Eq. (6) vanishes, since 

in view of the well-known definition of the 6' functional and in view of either Eq. (4) if M = J, 
or of Eq. (5) if M < J. Therefore, the expression of VR(eo;h)  simplifies to 

Thus, the sensitivity VR(eo;h)  of R(e) to specified changes h ,  can in principle be evaluated once 
the vector h, is determined from the "forward sensitivity equations," is., 

As already mentioned, the sensitivity of the location in phase space of the critical point is given 
by the G-differential Vy(ao;h,)  of y ( a )  at a'. In  view of either Eq. (4) or Eq. (51, each of the 
cbrnponents y I ( a ) ,  . . . , y ~ (  a) of y ( a )  is a real-valued function of the real variables 
a l ,  . . . ,a I ,  and may be viewed as a functional defined on a subset of R'. Therefore, each 
G-differential Vym(ao;h,) of y,(a) at ao is given by 

0 i f [  :; la<, Yy,n(a ;ha)  = - ' h a  = 2 ha,; m = 1 ,..., M ,  

provided that dy,/ifcui,i = 1 ,...,I, exist at a' for all m = I ,..., M .  
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The explicit expression of Vy(ao;h,) is obtained as follows. First, it is observed that both 
Eq, (4) and Eq (5) can be represented as 

( 1  1 )  M J 

&(dF/&Y,)fl a[%, -J5(n)]  n K ( X ,  -z,)dx =o; rn = 1, ..., M. 
I = l  j = M t l  

Taking the G-differential of Eq. ( 1  1 )  at eo yields the following system of equations involving the 
components Vym: 

M J 

&{a(F;h, + ~ 2 , ) / ~ x , l , o  fl s ix ,  -y,(a0>1 n 

- ’2: VyJ(aO;h,)~~aFli)x,J,oB’[x, -v,(aO)l pI 6[x, -r,b0)1 

b(x, - Z J d X  

i -  I J=hf+l  

M M 

S - l  I = I .I f s 

J 

j = M + I  

“(xi -- 2 j ) d X  =- 0; m = 1, ..., M. 

The above system is algebraic and linear in the components Vy,(ao;h,); therefore, it can be 
represented in matrix form as 

by defining @ = [4,.$] to be the M X M matrix wiih elements 

and by defining r to be the M-component (column) vector 

where 

and 

Notice that the definition of the 6’ functional has been used to recast the second integral in 
Eq. ( 1  2 )  into the equivalent expression given in Eq. (14). 
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At this stage, the quantities &,$ and f,, can be evaluated most efficiently by directly using 
Eqs. (14) and (16). It is of interest to observe here that if M = J ,  then (f, is the Hessian of F 
evaluated at the critical point y(ao);  alternatively, if M .I, then (f, is the Hessian of the func- 
tion C [considered i n  Eq. (5)] evaluated at the respective critical point. 'The quantities gm 
defined i n  Eq. (17) can also be evaluated, since h, will have already been determined to compute 
the sensitivity VR(eo;h)  given in Eq. (8). IJpsn completing the computation of the elements of 
(P and I?, Eq. ( I  3) can be solved by employing methods of linear algebra to obtain 

As underscored by the derivations presented so far, the availability of the solution h ,  of the "for- 
ward sensitivity equations" given in Eq. (9)  is essential to evaluate both VH(c>' ;h )  ;md 
Vy(ao;h,). This is a distinctive characteristic of the Forward Method which, from an economical 
standpoint, makes this formalism ill-suited for sensitivity analysis of problems with large data 
bases (i.e,, when a has many components). 

III.B.4. The Adioint Method 

Since most of the problems encountered in practice are characterized by large data bases, the 
development of this formalism is motivated by the need for a tool to perform sensitivity analyses 
of such problems economically. To this end, the development of this formalism is centered on 
eliminating the explicit appearance of the unknown values of the vector h, from Eqs. (8) and 
(181, and hence on circumventing the need to repeatedly solve Eq. (9). However, as detailed in 
Sec. III.A, h ,  can be eliminated if and only if (iff) the following conditions are satisfied: 

(C. I ) the partial G-derivatives at eo of R(e) with respect to u and a exist, 
(C.2) the partial G-derivatives at eo of the operators N and 1B with respect to tc and (Y exist, 
(C.3) the spaces E, and EQ are real Hilbert spaces, denoted by H, and HQ,  respectively. For 

u ~ . u ~ E N , ,  the inner product in H, will be denoted by [ u I , u 2 ]  and is given by the integral 
&u1*uZdx.  The inner product in MQ will be denoted by a,>. 

Hence, condition (C. l )  is 
satisfied, and the H,-dependent component of VR(eo;h) ,  i.e., the "indirect effect term," can be 
written in inner product form as 

An examination of Eq. (8) shows that V R ( e o ; h )  is linear in h. 

(19) M J 

&Fi(eo)h, rIs[x,  -y , (ao)  JJ a(xJ - z,)dx = [ ~ , , ~ ( e O ) , h , l ,  
1 - 1  J ' M  t 1 

where 
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The adjoint system is constructed by following the procedure set forth in Sec. II1.A. (For 

brevity, details are omitted here.) Thus, condition (G.2)  makes it possible to write the system of 
equations given in Eq. (9) as 

Nl(ea)h, = VQ(a0;h,)  - Nk(eo)ha (21) 

Next, in view of Eq. (21) and condition (C.3), the following relationship holds for a vector 
V E ' H Q  : 

where L*(e*) is the operator formally adjoint to Nl(eo), and { P [ ~ , ; V ] ~ , ~  is the associated bilinear 
form evaluated on dR. The domain of L*(eo) is determined by selecting appropriate adjoint 
boundary conditions, represented here in operator form as 

{E$*( ,;eo) - A*(eo)/,n = 0. (24) 

These boundary conditions are obtained by requiring that 

1. they be independent of h,,h,, and G derivatives with respect to a, and 

2. the substitution of Eqs. (22) and (24) into the expression of { P [ ~ , ; V ] ] , ~  must cause all terms 
containing unknown values of h,  to vanish. 

This selection of the adjoint boundary conditions reduces {P[ hu;v]]acl  to a quantity designated here 
by ;(h,,v;eo)* where_P contains boundary terms involving only known values of h,,u, and (possi- 
bly) eo. I n  general, P does not automatically vanish as a result of these manipulations, although it 
may do so in particular instances. Hence, Eq. (23) can be written as 

[L*(eo )v ,h , ]  = <v,VQ(a';;h,) - Ni(e 0 ) ha - i+h,,v;eo), (25) 

where Eq. ( 2 1 )  was used to replace Nl(eo)h,. 
the right-hand side of Eq. (19) shows that 

Comparing the left-hand side of Eq. (25) with 

L*(eo)v := V,R(eo). (26) 

Note that the uniqueness of the above relationship is ensured by the Riesz representation theorem. 
This completes the construction of the adjoint system. Furthermore, Eqs. (19), (25), and (26) 
can be used to express Eq. (8 )  as 

(27) 
M J 

VR(eo;h)  = J;,F,(eo)han {?[xi -yi(aO)] n 6(xj  - zi)dx 

+ <P'Q(ao;h,) - NLXeo)h,,v> - P(ha,v;eo). 

i = l  j = M +  1 
n 
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The desired elimination of the unknow:] values of h, from the expression giving the sensitivity 

V R ( e o ; h )  has thus been accomplished. Next, in view of Eq. (21 )  and condition (C.3), tile fol- 
lowing relationship holds for a vector VE'H~: 

Unknown values of h,  can be eliminated from the expression of V y ( a o ; h a )  given in Eq. ( 1  8) ,  
only if they can be eliminated from appearing in Eq. (17). Examination of Eq. ( 1 4 )  reveals 
that each quantity g, is a functional that can be expressed in the equivalent form 

( 2 8 )  
M J 

g m  = &Fl(eo~h,8'(X,-ym) n &(XI -yl) 1;I Nx, z l ) d ~ .  
1 = I , I  f m / - M + I  

by employing the definition of the 6' functional. 
the inner product 

In turn, the above expression can be written as 

g,, = [r,,(e0)&,l9 ( 2 9 )  

where 

T 

. . . . .  
3 

j - M + l  

x n " X j  - 2 j )  

The desired elimination of the unknown values of h, from Eq. (29) can now be accomplished by 
letting each of the functions r,(eo) play, in turn, the role previously played by V,R(eo) [cf. Eq. 
(20)], and by following the same procedure as that leading to Eq. (27). The end result i s  

g ,  = <VQ(a0;h,) - Ni(eo)hapwm> - >(ha,wm;eo), (31) 

where each function w, is  the solution of the adjoint system 

for II? = I ,  .... M .  

It is important to note that L*(eo),B*(eo), and A*(eo) appearing in Eq. (32 )  are the same 
operators as those appearing in Eqs. (26) and (24). Only the source term y,(eo) in  Eq. ( 3 2 )  
differs from the corresponding source term C,R(eo)  in Eq. ( 2 6 ) .  Therefore, the computer code 
employed to solve the adjoint system given in Eqs. (26) and (24) can be used, with relatively 
trivial modifications, to compute the functions w, from Eq. (32). Comparing now the right 
sidesAof Eqs. (25) and (31)  reveals that the quantity P(h,,v;eo) is formally identical to the quan- 
tity P(harwm;e0) ,  and that the function VQ(ao;h,)  - Ni(eo )h ,  appears in both the inner products 
denoted by <,>. This indicates that the computer program employed to evaluate the second and 
third terms on the right side of Eq. (27) can also he used to evaluate the functionals 
g,,m=I, ..., M, given in Eq. (31). Of course, the values of v required to compute VR(eo;h) are 
to be replaced by the respective values of w, when computing the g,,'s. 
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In most practical problems, the total number of parameters I greatly exceeds the number of 
phase-space variables J, and hence M, since M < J.  Therefore, if the Adjoint Method can be 
developed as described in this section, then a large amount of computing costs can be saved by 
employing this farmalism rather than the: Forward Method. In this case, only A4 + 2 "large" 
computations (one for the "base-case," one for the adjoint function vt and M for the adjoint func- 
tions w I ,  ... ,wy) are needed to obtain the sensitivities VR(eo;h)  and Vy(ao;h,) to changes in all of 
the parameters. By contrast, I + 1 computatims (one for the "base-case," and I to obtain the 
vector h , )  would be required if the Forward Method were employed. 

111.8.5. Discussion 

Note that, as shown in Eqs. (6)-($), the contributions to VR(eo;h) arising from the 
a-dependence of y(a) vanish only because y ( a )  is a critical point of F. An important conse- 
quence of this fact can be demonstrated by considering lhe point y not lo be a function oj-cy. The 
response would then take on the form 

I n  -he above equation, the subscript 1 indicates that the mathematical characteristics of H ,(e) 
diff:r from those of R ( e ) ,  although both responses take on identical values at e =e0, Le., 

Rl(eo)  = R(eo). (34) 

C s l d a t i n g  the (;-differential VRl(eo;h)  of H l ( c + )  at eo gives 

Comparison of Eqs. (35) and (8) shows that 

Consider now the total variations of R ( e )  and R , ( e )  at e = eO,i.e., 
R ( e o +  h )  - R ( e o )  = VR(eo;h)  + A ( h ) ,  where 

lirn, +[A( th  )/f ] = 0, 

and 

R ] ( e o  4- h ) - R l ( e o )  Vh! ,(eo$) -I- A,(k ), where 

lim, 4[Al(th)/tl/ =O. 

( 3 7 )  

Subtracting Eq. (38) from Eq. (37) and taking into account Eqs. (34) and (36), yields the rela- 
tionship 
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The result given in Eq. ( 3 9 )  can be readily strengthened if R is Frtchet differentiable [i.e., if 
VR(eo;h)  is continuous and linear in h at eo, and is continuous in e at e o ] .  In  such a case, R ,  i s  
also Frtchet differentiable; hence, lim,-.o[A(th)/t] = 0 in Eq. ( 3 7 )  and lirn, + [ A , ( r h ) / t ]  = 0 in 
Eq. (38) hold uniformly with respect to h on the set {h;] lh\ l== l } .  Consequently. 
lim,-+[c(lh)/~] = O  in Eq. (39 )  also holds uniformly with respect to h on lh: l )hl l= 11, and can 
be written in the equivalent form limb+[ !It( h )ll/llh 111 -- 0. 'Thus, the stronger result 

holds if R is Frtchet differentiable at e = eo. 

A simple illustration of the distinctions between R ( e )  and R l ( e )  is shown in Fig. 1. There, 
the critical point yI(cy) of F ( u , x , c Y )  is a maximum occurring in the (one-dimensional) direction 
xl .  Changes h = (h, ,h,)  would cause the new maximum of F' to take on the value R ( e o +  h )  at 
y I ( n o + h , ) .  The sensitivity VR(eo;h)  of R ( e )  at eo is given by Eq. (8) [or Eq. (27)], while 
the sensitivity VyI(ao;h,) of y l ( a )  at ao is given by Eq. (18). However, if y l  is considered noi 
to be a function of a, then R l ( e o - t  h )  would be the altered value of the functional K , ( e ) .  
Nevertheless, the sensitivity V R I ( e o ; h )  of R , ( e )  at eo is the same as the sensitivity V R ( e o ; h )  of 
R ( e )  at eo, as shown in Eq. (36). This is only because y,(cr) is a critical point of F(u,x,ar) .  

Fig. I .  Illustration of the distinction between R ( P )  and R l ( e ) .  
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111.5.6. Illustrative Applieatiorn: Sensitivi 
Extremum-Type Respomses in Reactor Safety I-- - 

Iln the following, we present the applicatio of the sensitivity theory formulated so far in 
ELT-IEIB fast reactor safety code. In partic tion 1II.B to the single-phase modules of the 

we present results regarding the sensitivity of the locations (in phase-space) of two important 
responses -- the maximum fuel temperature and the maximum normalized reactor power level. 
The following derivations are based on the work by D. G. Cacuci, P. J. Maudlin, and C .  V. Parks, 
“Adjoint Sensitivity Analysis of Extremum-Type Responses in Reactor Safety,” NucL Sci. Etzg. 
83, 112-135 (1983). 

I I I .  B.6.a. Problem Description 

To determine the distribution of dependent variables, the MELT-EIIB code solves the f o ~ ~ o w ~ n ~  

1. thermal-hydraulic equations, for each channel type j (j= I ,  ... JVC), describing the 
average channel fuel pin and surrounding single-phase coolant 

2. an equation describing the primary-loop hydraulics 

3. neutron point-kinetics equations describing the reactor power. 

neutronic/therrnal-hydraulic system of equations. 

This system of coupled nonlinear partial differential equations can be represented in operator 
form as 

where U ( x )  satisfies boundary and initial conditions represented also in operator form as 

The quantities appearing in Eqs. ( 1 ) and (2) are defined as follows: 

1, The quantity x = ( r , z , t )  is the phase-space position vector whose components are the 
radial, axial, and time-independent variables, respectively. 

2. The quantity U = ( T ,  T , ,  T , ,  P,  u, n, C1, ..., CNc;) is the state vector whose c ~ ~ ~ Q ~ ~ ~ ~ ~  
are the dependent variables. Note that the vectors T,  T , ,  T , ,  P ,  and u (whose components are 
thermal-hydraulic dependent variables) are channel dependent; therefore, each of these vectors has 
NC components [e.g., T = ( T I ,  ..., Tj,..-,TN,-), where Ti refers to the temperature in the j’th elhan- 
nel]. Thus, U is an M-component (column) vector, where M = NG -1- 5 X MC I- 1. The desig- 
nation of each component of U is given in the NOMENCLATURE presented in Section 111. 

3. The quantity a! is an I-component (column) vector whose components are the system 
parameters. (Here, I denotes the total numbel- of these parameters.) Although the components of 
a may, in general, inciude functions of n and/or U, these components are restricted in this work to 
be real scalars. Such scalar system parameters include coefficients, scale factors, and initial condi- 
tions. 
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4. The quantities N and Q are M-component colrirnn vectors. The components of N and 5 
are differential and algebraic operators acting on components of U and a. The components of Q 
and A represent inhomogeneous source and boundary terms, respectively. For convenience, their 
explicit expressions [and, consequently, the explicit form of Eqs, ( 1 )  and (2) ]  are given in 
Appendix A. 

5. The domain Qi is the set Qi = {r,z,tlr E ( 0 , R f )  U (R, ,R);  z E (0,L); t E (Q, t , ) { ,  and its 
boundary t3Qj consists of the set of points dQi = {r I- 0, Rf, Rg, R; z = 0,L; t =z Q,z,-]. Thus. x 
E Qj  for the thermal-hydraulic equations, since these equations describe the physical behavior of 
the average channel fuel pin, surrounding coolant, and structure for each channel of type j .  Simi- 
larly, x E d Q j  for the boundary and initial conditions associated with these thermal-hydraulic 
equations. Note that there are N j  pins in each channel j .  

By contrast to the thermal-hydraulic equatwis, the point-kinetics equations and the primary- 
loop hydraulics equation apply to the total reactor domain; thus, these equations are time depen- 
dent but are channel independent. The total reactor domain, henceforth denoted by R, consists of 
the iinion of all the (pin) domains Q j ,  Le., 

NC 

i = i  

Q = = U Q j .  

Thus, integrals over 52 are related to integrals over Qj  through the relationship 

Let e = (U,cr) denote the concatenation of the state vector U and the vector a of system 
parameters. From the viewpoint of sensitivity theory, the maximum power response and the max- 
imum fuel temperature response in any channel J are considered to be functionals of e, and are 
denoted by R,(e) and R,(e), respectively. Also, an examination of Eqs. (A.l), (A.6), (A.7), and 
(A.9) of Appendix A reveals that n ( t )  and T ( x )  are continuous; in particular, their first derivatives 
with respect to the independent variables exist at the locations where n(1) and T ( r )  attain their 
respective maxima. 

'The maximum power response can be represented as 

R,(e)  = K JQ n ( t ) d [ t  . - - - ln (a) ]dQ,  

where the constant 

I 
serves as a normalization factor, and where t ,(a) represents the phase-space location of the max- 
imum; t ,(a) is defined implicitly as the solution of 
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Since all operators (including the responses) appearing in the mathematical formulation of the 
present problem can be generically represented by a nonlinear operator S ( e ) ,  the definition of the 
G-differential VS(e";h) of S(e) at eo becomes 

where t is a real scalar, and =: ( h , , h , )  represents a fixed, but otherwisc arbitrary, vector of 
"changes" around the base-case configuration eo = (U",  a'). The vectors l a , ,  and h, ,  have the 
same number of components as U and a, respectively; for example, h l  - 

( ~ T , h , ~ , A T , , h p l h . , t t n , k c , ,  . . . ,hc,,).  Note that a G-differential V S ( e o ; h )  that is linear in  
h is customarily denoted by L>S(e";h). Necessary and sufficient conditions for VS LO be linclir i n  h 
[i.e., for VS(eo;h) = DS(eo;h)] are known, and their importance to sensitivity theory has been 
generally discussed in the previous sections of these lectures. As will soon become apparent (see 
also Appendix B), all operators acting on p/ satisfy these necessary and sufficient conditions, and 
therefore admit (;-differentials that are linear in h. Consequently, the notation DS(eo;ls) i s  hen- 
ceforth used to emphasize this important fact. Note also that the G-differential D S  is related to 
the total variation [S(eo + I t )  - S(e")]  of S(e")  at eo through the relationship 

1 S ( e " + h ) - § ( e " )  = D S ( e " ; h )  f A ( h )  , 

where 

lim [A(&)/€] = 0 

[Equation if 3 )  actually holds in the most general case, ;.e., with 

The G-differential of &(e)  at eo1 which gives the sensitivity 
applying the definition given in Eq. ( 1  2) to Eq. (4). This gives 

DH,(e" ;st) 

VS( eo$)  replacing DS(e" ; h ) ] .  

of R,  to changes h, is obtained by 

Using the definition of the 6' functional, i.e., 

j- f ( x ) f i ' ( x - x o ) d x  = -J ( d f / d x ) 6 ( x - x o ) d x  , 

and recalling Eq. ( 5 ) ,  the last term appearing on the right side of Eq. (14) can be shown to van- 
ish, i.e., 
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J no(t)a'qr--t,)d92 I- -[dn(t)/Bt]," = Q . 
n 

Thus, Eq. ( 14) simplifies to 

The sensitivity DRT(eo;Ir) of R T ( ~ )  at eo is determined by using Eq. ( 6 )  and by following the 
same procedure as that leading to Eq. (17). The result is 

The sensitivities of the critical points t,(a) and xT(cy)  to changes h ,  are given by the respec- 
tive 6-differentials of t , ( ~ )  and x r ( a )  at a". In view of Eqs. ( 5 ) ,  (8),  and (IO), each of the 
quantities t,, z T ,  and r T  is a real-valued furction of the real variables cyI, . . . ,al and can 
therefore be regarded as a functional defined on a subset of 3'. Applying now the definition given 
in Eq. ( 1 2 )  to the functionals t,,(a), t r (a ) ,  and tr(a) yields 

In  view of Eqs. (8), ( l l ) ,  (20), and (211, the sensitivity of the critical point x T ( a )  to changes h ,  
around (YO is given by the three-component column vector 

The explicit expressions for Dt,, DzT, and D t ,  are obtained by applying the general procedure 
outlined in Sections i I I .B .3  and III.B.4. Thus, to determine Dt,, Eq. ( 5 )  i s  recast in  the 
equivalent form 

Taking the 6-differential of Eq. (23) [by app'ying E¶. (12)1 gives 
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The explicit expressions for DzT and Dt ,  are obtained by following the same procedure as that 
leading to Eq. (243, i.e., by writing Eqs. (lob) and (1Oc) as 

and 

by taking G-differentials at (YO of the above equations and hy simultaneously solving the resulting 
equations for DzT and D t T .  The result can be written in vector form as 

where 

and 

It is observed that for a given vector of changes b,, the sensitivities DR,,  DRT, D x T ,  and Dt, 
given, respectively, by Eqs. (17), (18), (22)? and (24), can be evaluated only after determining thc 
vector h U ,  since ha,  and hU are not independent. The (first-order) relationship between h,,  and 
k, is obtained by taking G-differentials of Eqs. ( 1 )  and (2)  at eo. An examination of Eqs. ( 1 ) 
and ( 2 )  (see Appendix A) shows that each of the components of N(e) ,  Ma), B(e), and A ( a )  satis- 
fies the necessary and sufficient conditions to admit G-derivarives at eo (this is illustrated in  
Appendix B). If a typical operator appearing in Eq. ( 1 )  or (2 )  is denoted by S(e), then the G- 
derivative of S(e) at eo i s  the operator Se(eo)  defined by the relationship 

D S ( e " ; h )  = S' , (eo)h , ( 2 8 )  

where DS(e";b) is the linear G-differential. Furthermore, since h = (h, ,h,) ,  the following rela- 
tionship holds: 

S e ( e o ) k  = S'u(eo)hu + S' , (eo)h ,  , (29) 

where S U ( e o )  is the partial G-derivative at eo of S(e)  with respect to U, and S n ( e o )  is the partial 
G-derivative at eo of S(e) with respect to a. In view of Eqs. (28) and (29), the result of taking 
G-differentials at eo of Eqs. (1 )  and (2) is 
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The explicit representation of N'vCeo) is the M X M matrix whose elements are the partial G- 
derivatives at eo of the components of W with respect to the components Uj of U, Le., 

NfU(e") = [ L i j ( e o ) ]  ; Lij(eo)  = (Ni)'U,(e*) ; i , j==l , - . . ,M . (32) 

The representation of Nfa(eo )  is the M X I matrix whose elements are the partial 6-derivatives at 
eo of the components of N ( e )  with respect to the components of a. The elements of the matrices 
representing W'u(eo), Q'Jao), and A f a ( a o )  are obtained in a similar manner. Note that 
NfU(e0)hU and B'U(e")kU are linear in hU and are independent of ha; on the other hand, 
N'a(eo)k ,  and Bfn(eo)h ,  are linear in K,, and are independent of ItLr. 

For a given vector of changes ha,  Eqs. (30) and (31) could be solved to determine h,; kU 
could then be used to evaluate the sensitivities DRT, DR,, D x T ,  Dt,. However, due to the large 
number of system parameters, it would be prot,ibitively expensive to repeatedly solve Eqs. (30) and 
( 3 1 )  for all vectors ha of possible interest to the sensitivity analysis of the problem at hand. An 
alternative procedure that avoids the need to repeatedly solve Eqs. (30) and (3 1)  can be developed 
to evaluate the above-mentioned sensitivities by using adjoint operators. 

Each of the functionals DR,, DR,, Dt,, DzT,  and DIT, [see Eqs. (17), ( I $ ) ,  (24), and (25), 
respectively] is linear in !tu. Considering no& that hu E H ,  where N is a Hilbert space equipped 
with the inner product 

the Riesz representation theorem ensures that each of the functionals DR,, D R T ,  Dt,, DzT, and 
Dtl- can be written as the inner product of hv with a uniquely defined vector in I%. Thus, the 
functional DR, given by Eq. ( 17) can be represented as 

where the M-component vector 5'; is defined as 

S i  = K6[r  - t , (a")]  ( O , Q , O , O , O ,  1,0 ,..., O ) T  . 

Similarty, the functional DRT given by Eq. ( 18) can be represented as 

where the M-component vector S> is defined. as 
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The definition of the 6' functional given in Eq. ( I  5 )  is used together with Eq. (33)  to express Eq. 
(24) in the inner product form 

Dt, <k~,G*>/(d*n/dl'),"(,U, , ( 3 8 )  

where 

Similarly, Eq. (25) can be expressed as 

(39 )  

(40) 

where 

To proceed with the construction of the appropriate adjoint system, recall that both Eqs. (30) 
and ( 3 1 )  are linear in h,.  Consequently, the following relationship holds for an arbitrary vector V 
E M: 

<Y,N',(eo)hU> == <h,,L*(e")Y> + [ ~ ( I ~ , ; Y ) I ~ Q  . (43) 

In  Eq. (43), L*(eo) is the operator formally adjoint to N',(e"), and [ P ( h U ; Y ) l a n  represents the 
associated bilinear form that consists of terms evaluated on the boundary dCl of R. Note that the 
use of Eq. ( 3 3 )  in conjunction with Eq. (43) will require the introduction of appropriate normali- 
zation constants for those components of Nfu(e")hu that are functions of only some, rather than 
all, of the independent variables (r,z,r). 

The explicit form of L*(e") is the M X M matrix 

L*(eo) = (/..I ; I ,  = LJi , ij = 1 ,..., M , IJ 
(44) 

obtained by transposing the formal adjoints of the operators L.,(e") given by Eq. (32). The expli- 
cit representation of each component of L*(e")V is given in Appendix C. The domain of L*(e") is 
determined by selecting appropriate adjoint boundary conditions, represented here in operator 
form as 

These boundary conditions are obtained by requiring that 

1. they be independent of hU, ha, and G-derivatives with respect to a 

2. substitution of Eqs. (31) and (45) into the expression of [ f ( h U ; V ) ] , ,  must cause all 
terms containing unknown values of bU to vanish. 
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The selection of the adjoint b o ~ n ~ ~ r ~  conditions reduces [P(hu;V>]an to a quantity designated 
here by ?(ha,Y;eo), where @ contains boundary terms ~ ~ ~ ~ ~ v ~ R ~  only known values of ha, V, and 
eo.  [The explicit expressions for the adjoint ~ o ~ ~ ~ ~ a r y  conditions represented by Eq. (45) can be 
found in Appendix C . ]  Hence, Eq. ($3) can be written as 

where Eq. (30) is used to replace the quantity ?Vu(e0)hl,. 

Equations (45) and (46) hold for all (Le., arbitrary) vectors V E H.  Five such vectors [is.. ,  
each vector being an element of W and satisfying Eqs. (45) and (46)] will now be selected in a 
unique manner to successively eliminate the vector hu from Eqs. (341, (361, (38), and (40), so 
that alternative expressions for the sensitivities DR,, DRT, Dt,, and D x T  can be derived. 

The alternative expression for DR, is obtained by using Eq. (34) and by considering Eqs. (45) 
and (46) as written specifically for the vector V,* E H ,  ix., 

and 

Comparing the left side of Eq. (47) with the right side of Eq. (34) shows that 

Equations (34), (47), and (49) can now be used to express DR,, as 

With the derivation of Eq. ( S O ) ,  the unknown values hU that appeared in the original expression 
of DR, [see Eq. (34)] have been eliminated. Now, once the single calculation to determine the 
adjoint vector V i  [by solving the adjoint system given by Eqs. (48) and (4911 is completed, Eq, 
( S O )  provides the most efficient means to obtain the sensitivity DR, of & ( e )  to changes h ,  
around c y o .  

To derive an alternative expression for DR,, the same procedure as outlined in the foregoing 
paragraph is applied to Eqs. (36), (45), and ( 4 4 ) .  This gives 

where the adjoint function V i ,  satisfies the adjoint system 
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subject to 

B*(Y.F;eo) = A * ( ~ o )  , x E KI, , (53) 

Repeating the above procedure, an alternative expression is obtained for DI,  by using Eq. (38), 
and by considering Eqs. (45) and (46) as written specifically for the vector Y* E H. The ensuing 
result is 

where Y* satisfies the adjoint system 

L*(eO)Y* = G* , x E $2, , 

subject to 

B*(y*;eo )  = A * ( e o )  , X E m j  . 

( 5 5 )  

The same procedure is repeated once again to derive an alternative expression for the left side 
of Eq. (40). The final result is 

where W ;  E N satisfies the adjoint system 

L*(eo)W; = F ;  , x E Q ,  , 

subject to 

B * ( W ; ; e o )  = ,4*(e0) , x E d f i j  , 

and where CV; E H satisfies the adjoint system 

L*(e")W; = F ;  , x E Rj  , 

subject to 

Note from Eq. (57) that each sensitivity DzT and DtT depends on both W ;  and W ; .  Thus, two 
adjoint calculations are needed to evaluate the sensitivity DxT [see Eq. (22)] of the critical point 
x (where the fuel temperature attains a maximum) for all changes h ,  around a'. 
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Note that the same operator, namely L*(e*b, appears on the left sides of QS. (49)' (52), ( 5 5 I p  
(58 ) ,  and (60); only the source terms appearing on the right sides of these equations differ from 
one another. Furthermore, as evidenced by a comparison of Q s .  (481, (53)' (561, (59)' and (til), 
the adjoint functions V l ,  V;3 W', W ; ,  and W'; satisfy formally identical boundary conditions. 
Therefore, apart from the relatively trivial modifications required to accommodate the distinct 
source terms S:, S;, G",  F ; ,  and Fi, the same computer d e  can be used to solve all the 
respective adjoint systems to determine the functions V i ,  V;, Y', W;, and W;. AA examination 
of the right sides of Eqs. (50), (511, (541, and (57) reveals that the function 
[Q'a(ao)-N'a(eo)]RaA appears in all of the respective inner products denoted by <, >; further- 
more, the quantities P appearing in these equafions are formally identical. Therefore, the com- 
puter code used to evaluate the sensitivity DR, can also be used to evaluate the sensitivities DRT, 
Dr,, and D x T .  Of course, the values of V i  required to compute DR, are to be replaced by the 
respective values of v;, Y*,  w;, and w;. 

In  reactor physics, the adjoint function has traditionally been interpreted as an "importance 
function." For the problem at hand, the compments of the adjoint functions V,*, V; ,  Y', W ; ,  
and W ;  can also be interpreted as importance functions. For this purpose, it is noted that each of 
these adjoint functions can be represented generically as the M-component vector 

Y = ( H * , H , ' , H j , p * , m * , n ' , ~ ,  . . . 

Thus, when evaluating the response sensitivities DR, and DRT, V represents V i  and V ; ,  respec- 
tively. in this case, a dimensional analysis of Eqs. (50) and (51 ) shows that the dimensions [ V,]  
of each component V,(j = 1, ..., M )  of V are 

[response] 

[j-th forward] [ region of ] [ normalization 
equation integration constant 

terms in the 

(63a) 
1 

Similarly, V represents Y",  W ; ,  and W ;  when waluating the critical point sensitivities Dr,, Dzr7 

and DIT, respectively. In this case, a dimensional analysis of Eqs. (54) and (57) shows that 

[ response]/[component of critical point] 

j'th forward region of normalization 1 equation 1 [integration] [ constant 1 
(63b) 

The considerations leading to Eqs. (63a) and (63b) hold generally for any maximum-type 
response. According to Eq. (63a), each component of the adjoint function used to compute 
response sensitivities can be viewed as a measure of the importance of the physical quantity 
described by the corresponding forward equation in contributing to the response. Furthermore, 
according to Eq. (63b), each component of the adjoint function used to compute critical p i n t  sen- 
sitivities can be viewed as a measure of the irnprtance of the physical quantity described by the 
corresponding forward equation in contributing to the response movement in phase space. 
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Consider, for example, the coolant temperature equation for channel j [see Eq. (A.4)] and the 
corresponding component I$, of V. The dimensions of the terms i n  this equation are 
[J.cm-'-s'-']. The respective region of integration is volume and time, with dimensions [cm3.s]. 
The dimension of the appropriate normalization constant, is . ,  1 / T ( R +  - f i2  + R j ) ,  is [cm - 2 ] .  

Thus, Eq. (63a) gives 

[response] ...... ........ - __ 
___I__ [response] - 
[J.cm'-'.s-'] [cm'.s] [cm2] [ J I  

For the responses R, and RT, the dimensions of Hf/ are [MWJJ] and [K/J] .  respectively. For 
the critical point t,, Eq. (63b) indicates that Nfi has units of [MW.s-- . ' /J] ,  while the units of H:, 
corresponding to the components zT and tT of the critical point x T  are [K.cm-'/J]  and 
[ K.s-'/J],  respectively. This dimensional analysis shows that Kj is a measure of enthalpy impor- 
tance in the coolant region of the j'th channel. Similar analyses indicate that, for each channel, 
the components of H * ,  H J ,  m * ,  and p *  are measures of enthalpy importance in the fuel pin 
region, enthalpy importance in the structure region, coolant mass importance, and momentum flux 
impcrtance, respectively. Furthermore, n* and Cy, ..., CkG are measures of power importance and 
precursor amplitude importances, respectively. 
henceforth be referred to as adjoint enthalpy, adjoint mass, etc. 

Therefore, the adjoint variables N * , 

The distinctions between the concepts underlying the derivations presented in this section and 
those underlying the derivations presented in work based on "perturbation theory" stem from dis- 
tinctions between the concept of G-differentiation of an operator in a linear vector space and the 
concept of partial differentiation, in the elementary calculus sense, of a real-valued function of I 
variables. The concept of G-differentiation significantly generalizes the concept of differentiation 
customarily used in finite-dimensional calculus. For example, in the elementary I-dimensional cal- 
culus, the total differential of a real-valued function Ax) defined on an open subset Y C 91' is 
expressed as 

I 
df  = (df /dxi)dxi  . 

1 - 1  

On the other hand, the same function f is viewed in nomlinear functional analysis as the functional 
f Y  C 91' * !It. Elementary considerations show that if the G-differential V'x;k) exists for all x 
in an opcn neighborhood of a point xo E inf( Y) and if, for all fixed h E R', V J x ; k )  i s  continuous 
in x at xo, then 

(Obviously, the components of k can be taken to be the differentials dxi,  of arbitrary magnitudes, 
of the independent variables x i . )  

In  works that use perturbation theory, the response and the dependent variables are considered, 
at the outset, to be real-valued functions that depend (explicitly and implicitly) on a real scalar 
parameter a; a stands, in turn, for each scalar system parameter (i.e., a represents any one of the 
components of the vector 01 used in this work). The sensitivity of the response R to a variation da 
in any parameter CY is then simply the customary derivative dR/da; the expression of dR/da is 
determined by using partial differentiation (in the elementary calculus sense) of the response and 
of the equations describing the problem. Of course, this approach must a priori assume that the 
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above-mentioned differentiability and continuity conditions are satisfied by all the mathematical 
expressions describing the problem, including the response R. Consider now that all parameters 
a,, i= 1, ... , I ,  are simultaneously varied by amounts 6ai around the base-case values ato. Then the 
total variation in the response, i.e., the total sensitivity, would be given (to first order) by the sum 

1 

i = l  
(dR/dai)dai 9 

where dR/dai includes both the "direct effects" (i.e., contributions of the type dR/8ai) and the 
"indirect effects" [i.e., contributions of the type (dR/8V,) ( d V j / 8 a i ) ,  where Vj represents a depen- 
dent variable]. But 

I 

i =  I 
(dR/dai)6ai 

is precisely the quantity that gives the linear G-differential DR(e";h) as used in this work (the 
variations hai are interpreted as the components of h ) .  

Since the G-derivative can be defined under conditions that are: much weaker than those 
required for defining derivatives in the elementary calculus sense, the derivations presented in this 
work are considerably more general than those presented in works based on perturbation theory. 
Although the advantages offered by this generality have not been fully exploited in the course of 
the application presented in this work, the simplicity of using G-derivatives in a practical sensi- 
tivity analysis has nonetheless been highlighted. In  Section III.A, we have discussed in detail the 
important practical advantages of using functional analysis concepts, such as the G-derivative, in 
sensitivity analysis. In  particular, the use of G-derivatives opens the possibility of treating prob- 
lems involving discontinuities and parameters that are functions (depending, for example, on space 
and/or time variables) rather than scalars. 
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III.B. 5. c. Sensitivity Analysis: Results _--............... 

For a numerical illustration of the theory presented i n  Sec. III.IB.6.b, a suhprornpt-critical 
excursion in the Fast Flux Test Facility (FFTF) was selected for sensitivity analysis. This analysis 
uses the MELT-MELTADJ code system, which solves the forward (Le., the original, nonlinear) 
and the appropriate adjoint systems of neutronic/thermal-hydraulic equations (given i n  Appen- 
dices A and C, respectively). The geometry of the FFTF is modeled with a two-channel represen- 
tation of the reactor flow path. Channel two (for which J = 2 )  is designated 3s the hot channel 
and consists of 227 pins. Channel one represents the remainder of the FFTF core and consists 01' 
15 624 pins. Only one flow loop is considered. The dimensions of the outer radii for the fuel, gap, 
and cladding are Rr = 0.249 cm, R, = 0.254 cm, and R = 0.292 cm. The channel 
height is L = 800 cm; the bottom of the core is located axially at z = 105.16 cm. and the 
core length is 9 1.44 cm. 

The subprompt-critical excursion is a protected transient involving a 0.23 dollar/s ramp reac- 
tivity insertion with scram that trips the control rods and primary pumps on high-power level. 
The power profile for this transient is given in Fig. 2. Although the high-power level for trip is 
attained at f o  = 0.518 s, a time delay of Af = 0.19 s postpones the actual control rod 
insertion and pump shutdown until 0.708 s after initiation of the transient conditions. Just after 
this time, the power n ( t )  attains its maximum value of 467.7 MW. Note that the scram compo- 
nent F , y c r o m ( t )  of the system's total reactivity F(f) is just a reactivity ramp po that is switched on 
at t o  + &, i.e., 

where 

0, f<O I 1, fd0 
1 + ( f ) = =  

is the customary unit-step functional. The large magnitude of po and the discontinuous time 
derivatives of Prcran, are the main cause of the highly nonlinear behavior of the power n(r  ) and of 
the asymmetric shape of its maximum (see Fig. 2). 

An examination of the temperature distribution T ( t , z , t )  for this transient shows that the fuel 
temperature in  the hot channel attains a maximum value of 2734.1 K. Spatially, this maximum 
is located at rT = 0 and z r  = 155 cm, Le., at the center of the fuel rod and just above the core 
midplane. The time variation of the temperature at this spatial location is plotted i n  F'ig. 3.  
which shows that the maximum occurs in time at tT = 0.870 s. Note that this maximum fuel 
temperature occurs later in time than the maximum power (see Figs. 2 and 3 )  due to the time 
delay in  the power-to-thermal energy integration. 
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Fig. 2. Power profile for the kineties/thermal-hydrau~ic transient with reactor Scram on high- 
power level. 

Fig. 3. Time variation of the temperature at the spatial location r T = O , z T ( ~ O )  = 155 cm. 
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The sensitivities of the numerical value of rhe rnaximum fuel iemperature response R,( e )  are 
calculated using Eq. (51), where the adjoint function V; is the solution of the adjoint system 
represented by Eqs. (52) and (53). Numerical values for the quantities appearing in the source 
term S; defined by Eq. (37) are x T ( a o )  = (0, 155, 0.870), N ,  = 227, and gJ = (0,I ). 

Table I presents sensitivity results for those parameters that have the largest impact on the 
numerical value of the maximum fuel temperature response, Isr .  Note that, for every value of the 
indcx i, these results correspond to a vector of changes h, whose components are all Lero except 
for Ita,. The parameters are ranked in order of decreasing absoiute magnitude of relative sensitiv- 
ity. Rased on these relative sensitivities, it can be concluded that the numerical value of the maxi- 
mum fuel temperature -is practically insensitive to variations in any of the system parameters 
except for variations in T, no, and kYuel. 

The results presented in Table I also serve to illustrate the use of sensitivities for predicting thc 
effects of parameter variations on the response. The basis for using sensitivities to predict the 
effects of parameter variations k, on these responses i s  the general relationship expressed by 
Eq. (13), which takes on the particular form 

~ 

i 
1 
2 
3 
4 

5 
6 
7 
8 

9 
I O  
I I  

- 

- 

TABLE I 

Sensitivities for the Maximum Fuel TemDerature Re 

Relative 
Sensitivity" 

0.146 
0. I55 

-0.128 
-0.0 1 5 

0.01 3 
-0.0 1 2 
0.008 
0.007 

~ ...... ___ .~~  

-0.007 
-0.006 
-0.005 

Fractional 
Parameter 
Variation, 

,/QP 
( % I o )  _____..... 

0.5 
0.3 
5.0 
1 .o 

1 .o 
5.0 

10.0 
1 .o 

0.4 
5.0 

10.0 

_..._____ 

Predicted 
Change' 

in Response 
Value 

( K )  
10.20 

I .21 

-0.4 1 
-11.5 

0.35 
-1.58 
2.23 
0.20 

-0.08 
-0.82 
-1.29 

onse Rr(e)* 
___I__ - _  

Recalculated 
Change in 

Response Value 
( K )  

RT(eo + h )  -- R ,  (e*) 
10.0 

1.3 
- 17.0 

-0.4 

_____ _ _  

0.2 
-1.5 
2.3 
0.2 

-0.1 
-0.4 
-8.8 

*The base-case value is RT(eo) = 2734.1 K, occurring at xT(ao) = (0, 155, 0.870). 
"Relative sensitivity = [DRT(e0;6)/R,(eo)](,o/h,,) 
'Predicted change (in maximum value) = DRr(eo;h>. 



The O<llh,I12) terms in Eq. (65) result from the facts that (a)  DRT is linear in h, and (b) the 
vectors hll and ha are liriearly related via Eqs. (30) and (31). As Eq. ( 6 5 )  indicates, the sensi- 
tivity DKT predicts changes (is.,  deviations frori the base-case value) that occur in the numerical 
value of the response RT when the base-case parameter values a' are varied by ha. These predic- 
tions, though, do not take into account effects of second- and higher order terms in h,. For each 
specific fractional variation ha,/$, the fifth column of Table I correspondingly lists the 
(sensitivity-based) predicted changes in the numerical value of the response HT. 

On the other hand, the results presented under the heading "RT(eo -4- h )  - RT(eo)" are the 
actual differences, obtained by direct recalculatims, between the he-case  numerical value of the 
response, i.e., RT(eo) ,  and the numerical value of the new maximum, Le., RT(eo+h),  that is 
attained at x T ( a o  + hey). Thus, for each specific ha/@:, these results represent the corresponding 

numerical value taken on by the left side of Eq. ( 5 5 ) .  Note that for each a*, the results 
presented i n  th,e fif th and sixth columns of Table I are in close agreement. This close agreement 
indicates that the nonlinear terms in ha, [see E?, (6511 have relatively little practical impact on 

the numerical value of the maximum fuel temperature response, and highlights the usefulness of 
sensitivities for predicting the actual numerical value of the "perturbed" response RT(eo f h).  

Sensitivity analysis results for the critical point xT(ru), at which the fuel temperature atiuins 
its nilxximum in phase space, are discussed next. As shown in Eq. (22), the sensitivity 
Dx7(ao;h,)  has two nonzero components, namely QzT and Dt,. These components are evaluated 
using Eq. (57).  The adjoint functions W ;  and W;, which must be determined prior to using 
Eq. (57), are obtained by solving the adjoint systems represented by Eq. (58) and (59) and by 
Eqs. (60) and (61), respectively. Just as in the case of Eq. (37), the source terms F; and Fi  
[see Eqs. (41) and (42)]  are calculated by using NJ = 227, zT(aQ> = 155 cm, t,(ao) = 

0.870 S, and gJ (0,l). 

When the numerical calculations based on Eq. (57) were performed, it was found that. all of 
the sensitivities DzT and most of the sensitivities Dt, are negligibly small. Several of the sensitivi- 
ties Qt,, though, were found to be quite large. This implies that variations in the system parame- 
ters will affect almost exclusively the time component f ~ ( m )  of +(a); they will have negligible 
effects o n  the axial component z r ( a ) ,  and, ips discussed in Sec. III.5.6.b, they have no effects on 
the radial component rT.  

Table ill presents sensitivity results for those parameters that have the largest impact on ir(al. 
Just as in  Table I ,  these results correspond to a vector of changes h, whose components are zero 
except fur the irh component ha,. The paramems are ranked in order of decreasiilg absolute 

magnitude of  relative sensitivity, a process equivalent to ranking the importance of their effects on 
f&4. 
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TABLE I 1  

Sensitivities lor the Time C'a.l!ponent rr(a) o f x r ( a ) *  

I 
2 
3 
I 

5 
6 
7 
8 

9 
I O  
1 1  

Relative 
Sensitivitya 

4.828 
4.598 

-3.448 
1.149 

0.575 
-0.575 
-0.552 

- 0.322 

4 . 2 7 6  
0.230 

-0.1 15 

.-__.___ 

Fractional Parameter 
Varia t1011. hallor; 

(C/O) ___ ___ 

0.5 
0.3 
0.4 
1 .o 
I .O 
5 .o 
5 .o 
5 .o 

10.0 
10.0 

I .o 
-- 

Predicted Changeb 
(S)  

~. . 

0.02 I 
0.017 
0.0 1-1 
0.0 1 

0.005 
- 0 . 0 3  
-0.024 
~ 0 . 0  14 

-0.0 2 4 
0.07 

-0.00 1 

0 07 
0 0 I 
(1 01 
0.0 1 

0 01 
0.03 

-0.02 
0.01 

0.07 
0.07- 
0.00 

*The base-case value is fr(a7 = 0.870 s 
aRelative sensifivity [Qfr(a";k,)/rT(a3](o;91~,i). 
bPredicted change Dt~(a";lh,). 
CRecalculated change ir(a" + b r a )  - tr(a"). 

The relative sensitivity results presented in Tables I and I 1  indicate that, in both tables, the 
largest relative sensitivities involve the parameters T and no. Thus, if varied, 7 and no would have 
the largest impact on the numerical value of the maximum fuel temperature response, and would 
also cause the largest time shifts in  the phase-space locatjon of the resulting (i.e., new) maximum. 
Since all the relative sensitivities (in 'Tables I and 11) to T and no are positive, it  follows that when 
a positive variation in T and/or no is affected, the resulting maximum fuel temperature is both 
larger and occurs later in time than the original. (ix., the base-case) maximum fuel temperature. 

Comparing the second and third-columns in Table I to the respective columns in Table 11. it 
becomes apparent that, except for T and no, the parameter ranking in Table I differs from the 
rainking in  Table 11, although the same ranking procedure was used for both tables. The impli- 
cations of this fact can be illustrated by considering the system parameters kf,,, and T,n.  I n  
Table I ,  kjurl is ranked ahead of Tin, but this ranking is reversed i n  Table 11. Consequently. a 
fractional variation in kfuc,  causes a larger change in the numerical value of the maximum fuel 
temperature, but causes a smaller time shift of the maximum than does the same fractional varia- 
tionin Y,". 

Comparison of the relative sensitivities in Tables I and I 1  also shows that, in  general, the 
parameters affect the time location of the maximum fuel temperature significantly more than they 
affect the numerical value of this maximum. This conclusion is clearly illustrated by examining 
the two sensitivities to the initial value n of the neutronic power amplitude. It becomes readily 
apparent that a variation in n is of practically no importance to the numerical value of the maxi- 
rnurn fuel temperature, but is of significant importance to f T ( a ) .  
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The sensitivities presented in Table I1 were used to predict the time shift [Le., the difference 
between the time location t (ao + La) at which the perturbed maximum &?*(eo + k) occurs, and the 
time location t ( ( ro )  = Q.870 s at which RT(eo) occurs] that is caused by each of the fractional 
parameter variations shown in the fourth column. The results for these predicted time shifts are 
presented in the fifth column. These predicted changes are in good agreement with the actual 
changes presented in the last column of Table II. These actual changes were obtained by direct 
recalculation of the fuel temperature, using the respective fractional parameter variations. It is 
informative to mention that, in  all "forward" calculations, results are only printed at 0.01-s time 
intervals, although the actual time step used in such calculations is not fixed to 0.01 s, but varies 
as cornputed internally by the MELT-IIIB code. 

ill. B.6.d. Summary and Discussion of Results 

The sensitivity theory for nonlinear systems with responses that are nonlinear functionals 
defined at critical points (e.g., maxima, minima, and saddle-points) has been developed in  
Sec. I1I.B by using concepts of nonlinear func-ional analysis. For the purposes of sensitivity 
analysis, the complete characterization of such responses requires consideration of both the numer- 
ical value of the response at the critical point and the phase-space location of the critical point. 

This sensitivity theory has been successfully applied in Sec. III.B.6 to a problem of interest in 
reactor safety, namely a protected transient with scram on high-power level in the FFTF. 'To 
determine the base-case distribution of the dependent variables for this problem, the entire single- 
phase segment of the fast reactor safety code MELT-IfIR has been used, including 

I .  thermal-hydraulic equations, for each channel type, describing the behavior of the average 
channel fuel pin and surrounding coolant 

2. an equation describing the primary loop hydrzulics 

3.  neutron point-kinetics equations describing the reactor power level. 

Two extremum-type responses have been considered - the maximum power response and the 
maximum fuel temperature response in the hot channel. Expressions for the sensitivities of the 
respective numerical values of these responses and expressions for the sensitivities of the phase- 
space locations at which the respective maxima wcurred have been obtained in terms of adjoint 
functions, The adjoint systems satisfied, in turn, by each of these adjoint functions have been 
derived and solved. It has been shown that the complete sensitivity analysis of each (extrernum- 
type) response requires the computation of as many adjoint functions as there are nonzero com- 
ponents of the respective critical point (e.g., maximum) in phase space, and of one additional 
adjoint function to evaluate the numerical value of the response. Once these adjoint functions 
have heen computed, the sensitivities to a11 possible changes in  the system parameters can be 
obtained by simple quadratures. For the problem at hand, a total of five adjoint calculations suf- 
ficed to perform the complete sensitivity analysis of the maximum fuel temperature and maximum 
power responses. 

Note, though, that only the source terms in these five adjoint systems differ from one another; 
the form of the respective partial differential equalions and corresponding boundary and final-time 
conditions is the same for all of these adjoint systems. Consequently, all five adjoint functions can 
be calculated by using the same code; only minor programming is required to implement the 
numerical calculation of the distinct source terms for the adjoint equations. 
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The results obtained for the sensitivities of the phase-space location (comprising time. axial, 
and radial components) of the maximum fuel temperature response show that variations in  the 
system parameters affect mainly the time component of this maximum; such variations do not 
affect the radial component and produce negligible effects in the axial component. These sensitivi- 
ties have been used to predict the phase-space location at which the new maximum fuel tempera- 
turc occurs when the system parameters arc varied. As has been shown, these predictions agreed 
well with direct recalculations using the perturbed parameter values. Similarly, the sensitivities 
obtained for the numerical value of the maximum fuel temperature response have been used to 
predict the numerical value of the perturbed maximum; these predictions also agreed well w i t h  
direct recalculations. 

‘rhe applicatioll presented has also highlighted the simplicity of using G-differentials and (i- 
derivatives for sensitivity analysis of practical problems. The significant additional generality that 
stems from using such concepts in sensitivity analysis opens the possibility of treating problems 
which involve discontinuities and paratneters that are functions rather than scalars. 

iii.R.6.e. Appendix A: Mathematical Representation of the MELT-IIIB Model 

’The thermal energy conservation equations for the average channel fuel pin, surrounding cool- 
ant, and structure are 

aTS 
at 

AspsCps- - 2rhR,(TC - 1;) ;= 0, 

Mass and momentum conservation equations for each 

dPC a(Ac P c  u ) 
at a2 

__ f- 

( A . 3 )  
2 E (0,L ), t E (OJJ) .  

coolant channel are 

(A.4)  = 0, 

( A . 5 )  

and 

where z ~ ( 0 , L )  and i e(O,t,). 
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Point kinetics equations are 

and 

for f E ( O , f J ) ,  and i = 1 ,..., NG. 

Initial and boundary conditions for Eqs. (A.l) through (A.7) are 

T ( f  =O) = T, - 

(A. 10) 

(A. 11) 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 

(A. 1 4 )  

(A. 17) 

(A. IS) 

(A. 19) 

(A.20) 
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and 

(A.21) 

The loophydraulics equation provides a relation between Eqs. (A.  18) and (A.  19): 

where 

( A . 2 3 )  

As already mentioned, Eqs. (A.  1 )  through (A.5) together with the corresponding initial and 
boundary conditions [is.,  Eqs. (A.8) through (A.1911 refer to the jth channel, but the channel 
subscript j ,  j - 1 ,  ..., NC,  was suppressed for notational simplicity. Thus, there are a total of NC 
sets of equations of the form ( A . l )  through (A.5) and (A.8) through (A.19). Alternatively, Eqs. 
(A .1 )  through (A.5)  together with Eqs. (A.8) through (A.19) may be viewed as vector equations 
that are satisfied by the NC-component vectors T, T,, T, ,  P ,  and a. Note that coupling 
among the various channels occurs solely through Eq. (A.22) and is specifically due to the mass 
flow rate IY defined in Eq. (A.23). 

Thus, the left sides of Eqs. (A.1) through (A.7) constitute the components of the (column) vcc- 
tor N, which appears on the left side of Eq. (1).  Correspondingly, the right sides of Eqs. (A.1) 
through (A.7) form the components of the source Q(a) of Eq. (1).  Similarly, the left and right 
sides of Eqs. (A.8) through (A.22) are the components of B(U,a) and A ( a )  [namely, Eq. (Z) ] ,  
respectively. 
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III.B.6.J 
in the MELT-IIIB Model 

Appendix B: The 6-Differential and the G-Derivative of a Nonlinear Operator 

If a (nonlinear) operator F(e) has a G-differential DF(e*; R) at eo that is linear in R, then the 
operator F'( eo) that satisfies the relationship 

DF(eo;h) = F(eo)b (a. 1) 

is by definition the G-derivative of F at eo. Thus, an operation F admits a G-derivative at e* if 
and only if (iff) its G-differential is linear in b; on the other hand, DF(eo;R) is linear in R iff2' 

1. F satisfies a weak Lipschitz condition at eo, (B.2) 

2. F ( e o f e R 1  +eRz)-F(eo+eihl)-  F(eo+tR2)+F(eo)=O(e)  , (B.3) 

where is a real scalar, and L1 and h2 are vectors in the same space as h, e, and eo. An operator 
F ( e )  is said to satisfy a weak Lipschitz condition at eo if to each unit vector L there corresponds a 
b ( R ) > O  such that if 1e/<S, then 

where C does not depend on h. 

Each of the components of Nre), B(e), Q(u), and A ( w )  (whose explicit expressions have been 
given in Appendix A)  can be shown to satisfy Eqs. (B.3)  and (B.4). Consequently, these opera- 
tors admit G-differentials that are linear in h and, hence, they admit G-derivatives. This assertion 
is illustrated in the following by considering the operator 

which appears in one component of N(e) [see Eqs. (A.1) and ( I ) ] .  Again, the channel subscript is 
omitted for notational simplicity. 

Thus, consider that 

where e = fl/pa) and Ih = (hu,h,). Note that F operates only on the components hT and hk of 
h,, and R,,, respectively. Also note that h T =  h T ( r , z , t )  and hk = h k ( r , z , f ) ,  Le., hk can represent 
spatial- and/or time-dependent changes in k (  T ) .  
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The following demonstration proves that F(e) satisfies &. (B.3): 

F(eo + ~ l h  + ER *) - F(eo + ~h ,) - F(oo + tdi *) + F(eo) 

Therefore 

F ( e o + t k ,  +t lhZ)-F(e0+ck~)-  F(eo+ch2)+ F(eo)=Q(t) , 

which demonstrates that Eq, (B.3) is satisfied. 

where 

flz - - - [ r h k T ]  E a  ahT , 
r ar 

and where DF(eo)  is a vector of the same dimension as R. 
ponents of DF(eo> are 

Note that the only nonzero corn- 

- ! L [ r k o y ]  and - [ - r [ ] T ; - ]  i a  a T O .  , 
r dr r a P  

these nonzero components correspond, respectively, to the components hT and hk of h. 

Thus, there exists s(h)>O so that for E <&?I the inequality 

I IHe0+ - - ~ ~ ~ O ~ l l ~ l ~ l ~ I l ~ ~ ~ e o ~ l I  + ~ I I I ~ I I =  c l l~~ I I  (B.7) 

is satisfied. This proves that F ( e )  satisfies Eq. (B.4). 
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proving that F ( e )  satisfies the necessary and sufficient conditions stated in Eqs. (B.2) and 
the foregoing derivations constitute a nonconstructive proof that the operator F ( e )  defined 
(B.5) admits a G-derivative at 8. Alternatively, a constructive proof that F ( e )  admils a 

G-derivative at eo can be devised by apply ng Eq. (12) to Eq. (B.5) to determine the 6- 
differential of F ( e )  at eo, and by subsequently showing that the resulting operator is linear in k. 
Thus, applying Eq. (12)  to Eq. (B.5) gives 

Clearly, Eq. ( R . 8 )  is linear in h; hence, 

VF( eo$) = DF( eo;&) = F'( eo)h, 

where F'(eo) is the G-derivative of F ( e )  at eo . Explicitly, F'(eo) is in  this case the 
( M  + /)-dimensional column vector 

F'(P') = (0 ,..., O J 7 , O  ,... ,O, 0, ..., O f k , O  ,..., Q)T - v / -  < 

Dimension of h, = M Dimeitsion of ha = I 

whose nonzero components 

and 

(B.10) 

(B.11) 

(B .12)  

occupy [in Eq. (B. lO)]  the same positions as occupied, respectively, by hT and h k  among the com- 
ponents of h. Furthermore, 

F'(eo)h = F&eo)hU + Fh(eo)h,, 

where FL(eo) is the partial G-derivative at eo of F ( e )  with respect to U, and is represented by thc 
M-dimensional column vector 

(B.13) 

and where Fi(eo)  is the partial G-derivative at e* of F ( e )  with respect to a, and is represented by 
the I-dimensional column vector 

Note that F'(eo) [given in Eq. (B.13)] and the quantity DF(eo) that was used to obtain Eq. (B .7 )  
are, in fact, identical. Of course, this relationshii:, was not yet known at that stage. 
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The adjoint systems given in Eqs. (491, (52), (55), ( 5 8 ) ,  and (60) are all of the form 

where 

is a generic representation of the vectors V : ,  VF, Y*, W ; ,  and W ; ,  and 

i s  a generic representation of the vectors Si, S;, C", F ; ,  and F;. The explicit form of Eq. ( (2.1) 
is 

z E I0.L) . ( C . 3 )  

a T ,  
+ A, p,C,,, 7 ff: = S, : 

z F r ' ( 0 . L )  , I E(O. f r !  . 

=s, , z E (0.L) , f E (O.f,) , a P  * 
a z  

-~ 



...- ' ' I *  - p-p ) I *  - E N j  { 1 $H*2xrdrdz 
/ = I  

d t  A 

i =  1 . . . .  . N G  , t E ( O , i f )  

The superscript O is used in Eq. ((2.2) to explicitly denote that the components of L*(/) depend 
on the base-case value eo of e = (V,a) .  Although the explicit display of this dependence was sub- 
sequently omitted for notational simplicity, it should be understood throughout this Appendix that 
all e-dependent quantities are evaluated at eo; thus, these quantities are just coefficients whose 
values are known from the base-case solution. Also, note that the term involving 6( t - to j  in Eq. 
(C.7) is due to the particular problem (i.e., a protected transient with scram on high power) 
analyzed in this work. Other types of scram initiators or switches are discussed in Ref. 15. 

The adjoint boundary conditions and final-time conditions for Eqs. (C.2) through (C.8) are 

((2.1 1 )  
(C.12) 

(C.13) 

(C.14) 

(C.15) 

and, for thej'th channel, 



(C. 16) 

Of course, there is a one-to-one correspondence between Eqs. (C.2) through (C.8) and Eqs. 
(A.l) through (A.7). Thus, just like in the case of Eqs. (A.l) through (A.5), Eqs. (C.2) through 
(C.6) are actually vector equations (in that they refer to NC distinct channels) although, as writ- 
ten here, this fact was not explicitly indicated. Note that coupling between channels in the adjoint 
system occurs solely via Eq. (C.16); this is explicitly indicated in Eq. (C.16) by the use of the 
index j .  



III.B.6. h. Nomenclature 

cross-sectional area of ~ ~ a n t / s t ~ M c t u r e ,  m2 

precursor amplitude for group i, MW 

adjoint precursor amplitude for group i, 
(response ~ ~ ~ ~ n s i o ~ ) / ~ ~  

heat capacity of fud pin/eoolant/structure, 

equivalent diameter for coolant channel, m 

one-dimensional substantial (i.e., total) derivative operator 

channel friction factor 

Imp friction multiplier, (Pa/kg/s)2 

gravitational constant = 9.807 m/s2 

cold leg pressure head, Pa 

adjoint enthalpy of fuel pin/cwlant/structure, 
(response dimensiori)/.? 

heat transfer coefficient for gapjcoolant, W/m* K 

pressure head loss coefficient for an abrupt area change 

thermal conductivity in fuel pin/coolant, W/m2 K 

length of coolant channel, m 

adjoint mass, (response dimension)/kg 

number of pins in channel j 

number of coolant channels 

number of precursor groups 

neutronic power amplitude, MW 

adjoint power, (response dimension)/M W 

gamma-ray heating power amplitude, MW 

trip power level for reaction scram, MW 

pressure drop across pump, Pa 

coolant channel pressure, Fa 

inlet plenum pressure, Pa 

exit plenum pressure, Pa 

adjoint momentum flux, (response dimension/(kg m/s/m2]) 

outer radius of fuel/gas/cladding, m 

J/kg K 



z 

inner radius of structure, m 

fuel pin radius variable, m 

temperature in fuel pin/coolant/structure, K 

inlet coolant temperature, K 

time variable, s 

final time value (also used to initiate adjoint calculation), s 

trip time of reactor scram, s 

time delay between scram trip and scram reactivity insertion, s 

time delay between scram trip and pump coastdown, s 

channel coolant velocity, m/s 

reactor mass flow rate, kg/s 

axial direction variable, m 

Greek Symbols 

Pi = delayed neutron fraction for precursor group i 

i - l  

prompt neutron generation time, s 

precursor decay constant for group i, s-I 

density in fuel pin/coolant/structure, kg/m3 

total reactivity 

programmed input reactivity 

programmed scram reactivity 

Doppler and other feedback reactivity 

normalized power shaping function, which includes the 
coolant regions, W/(m3 MW) 

Subscripts 

rn = coolant channel abrupt area change m 

Superscripts 

- -  - steady-state quantity 

* -  adjoint quantity 

O = base-case value 



1II.C. NONLINEAR SYSTEMS WIT 

The material. presented in this section is largely based on the following article: D. 6. Cacuci 
and M. C. G. Hall, "Efficient Estimation of' Feedback Effects with Application to Climate 
Models," J. Arm. Sci., 41 ( 1  31, 1984. 

III.C.l. Introduction 

A simplification that frequently occurs in large computer models is the use of experimentally 
observed values for what should be prognostically determined variables (Le. dependent variables). 
Such a simplification is useful because the interactive modeling of a particularly complicated or 
ill-understood process can be postponed, while it is still possible to make physically meaningful 
comparisons between experimental observations and quantities that remain prognostically deter- 
mined. When a computer model is used predictively, the experimentally prescribed quantities are 
in reality subject to change due to forcing influences. When the effect of such a change i s  taken 
into account, this is usually referred to as including the effect of feedback because quantities that 
are normally input in the model be.g., parameters or data) are allowed to depend on the model 
output (Le ,  the dependent variables). 

When there is more than one plausible way of incorporating feedback in a model, it is useful to 
experiment with various forms of the feedback. But for more complex models, recalculation for 
each of several different forms of the feedback can be prohibitively expensive. However, the 
Adjoint Method cannot be applied directly to estimate the effect of feedback because the varia- 
tions in the parameters are not prescribed, but depend on the output of the model. Consequently, 
in Section III.C.2. the use of the term sensitivity tofeedback is defined and justified. It is then 
shown how this sensitivity can be estimated using the Adjoint Method. 

III.C.2. Definition and Estimation of Sensitivity fo Feedback 

We consider, as before, that the physical process is modeled mathematically by: 

where the meaning of the various variables is the same as in Section 1II.A. 

For clarity, a simple one-dimensional climate model illustrates the following general development. 
This illustrative model is described by the equations 

1 du/& + a l u 4  + a2 = 0 

u ( a )  - u, = 0 

For this model, the only independent variable is time t which varies from a to 6,  the only depend- 
ent variable is the temperature u(t ) ,  and the two parameters QI = (al ,a2)  are constants that 
depend om the physical properties of the system such as heat capacity, incident radiation, albedo 
and emissivity. The initial value of u, is u,. 
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A scalar result R of a model described by ( 1 )  can in general be expressed as a functional of u 
and a. For example, the average longwave radiation in  the illustrative model described by ( 2 )  is 
proportional to the functional 

In the following, a' denotes the parameters' nominal values, and uo denotes the nominal solution 
of (1). Thus the nominal solution satisfies 

and the nominal result is R(u',ao). 

Feedback can be introduced into the model by allowing some of the parameters a to depend on 
the components of u. Without loss of generality, this feedback can be specified by adding an oper- 
ator A(M) to the parameters' nominal values a'. Thus, in the presence of feedback, the parameters' 
values become a' -t A(u), and the solution uf with feedback satisfies 

The result with feedback is R[uf,ao + A(uf)]. In the illustrative model, feedback can be 
introduced by allowing the emissivity to depend on temperature. For example, when the value of 
cyI is allowed to be a? + h(u ua), where X is a constant specifying the strength of the 
feedback, then the feedback operator A(u)  is the vector 

A(u) = [ h ( u  - u,),O]. 

The solution uf with feedback now satisfies 

dUf/df + [a? -5 X(uf -- u , ) ] ( u f ) 4  + a; = 0 

& a )  - u, = 0 

and the result (3)  with feedback is 
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The difference 

gives the actual effect of the feedback A on the result R(uQ,ao). In practice, this difference can 
be evaluated exactly only by introducing feedback into the model explicitly, calculating uf, and 
re-evaluating the result. For more complex climate models such as atmospheric general circula- 
tion models, rerunning the m d e l  more than once can be prohibitively expensive. This provides the 
motivation to develop a more efficient method of evaluating (7). 

Note that the Adjoint Method developed in Sec. 1II.A cannot be applied directly to the evaluation 
of (7) because, with feedback, the variation A ( d )  in cyo is not prescribed but depends on uj .  The 
purpose of the following development is to provide an approximate expression for (7) that can be 
evaluated efficiently using the adjoint method. 

The functional vRA(h) is defined by 

where h is an arbitrary set of increments to the dependent variables uo, and t is a real number. 
The functional hRA(h) is defined by 

Note that if the arbitrary value of h is chosen to be UT - uo, then (9) can be written 

Thus for h = u' - uo, ARA(h) is the discrepancy between the actual effect of feedback 
(7)  and the functional (8). 

The properties of the functional (9) can be determined as follows. Since both A and h are 
arbitrary in (9) they can be replaced respectively by eA and th to give 

The definition in (8) shows that VR,,(&) = tVRA(h), and so dividing ( 1 1 )  by c and letting 
t-0 gives 
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'This equation shows that AR,(h) contains no first-order terms in A or h. Thus, for 
h = e/-u', (IO) and (12) show that the functional V R A ( h )  given by (8) is an estimate of 
the actual effect of feedback (7) correct to first order in A and h. Consequently, V R A ( h )  can be 
called the sensitivily of R tofeedback A. 

In  practice, it i s  more convenient to use the following definition of V R A  which is equivalent to 

(8): 

For nearly all physical models, performing the differentiation in ( 13) gives 

where is; and K; denote, respectively, the partial Gateaux derivatives at (uo,a")  of R ( u . a )  with 
respect to its first and second arguments. For example, with the result R defined by (3)  and the 
feedback A defined by (6), VRA is obtained as follows: 

Note that for this model R ;  is the operator 

and R; is the operator 

To evaluate the sensitivity to feedback given by (14), Eqs. ( 4 )  and (5) are needed to determine 
'. Subtracting (4) from (5) gives 
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Relationships equivalent to (10) hold for the operators N and B; applying these relationships to 
(15) gives 

where 

Also, relationships equivalent to ( 14) hold for VNA and VN,; applying these relationships to { 16) 
gives 

(18) I N;h + N;A(u0) + ANA(h) = 0 

B;h 4- S;A(uo) f AB,(h) = 0 

For the illustrative model, with N and B defined by ( 2 )  and A defined by (6), V N , ( h )  and 
V B , , , ( h )  can be obtained as follows: 

Note that for this model, N ;  is the operator 

N ;  is the operator 

and the boundary conditions in ( 16) and ( 18) become 
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The problem of efficiently evaluating the sensitivity (14) where A(uo) is known and h is deter- 
mined by ( 1 8 )  is precisely the problem addressed in Sec. I1I.A in the development of the adjoint 
method. 
ing h, thereby avoiding the need to solve (18) anew for every different feedback A(u").  The 
adjoint method starts by defining an operator L* adjoint to N as follows: 

The purpose of this method is to evaluate the sensitivity (14) without explicitly cv. '1 1 uat- 

where q and r are arbitrary functions of x, <qb> denotes the scalar product of q and r i n  thc 
region of physical interest R, and P(q. r) is a term evaluated on the boundary of this region. t:or 
the illustrative model, the scalar product is 

For this model, (20) can be written 

Thus L* is the operator 

L* = [ - d/d6 -!- a P 4 ( ~ ~ ) ~ ] ,  

and P ( q , r )  is the term 

'The adjoint solution v(x) is the solution to the system of equations 

B*v L * v = s  -0 1 ( 2 1 )  

where s is a source term defined by 

and B* is an operator representing the adjoint boundary conditions that will be defined later. For 
the illustrative model, (22 )  becomes 

b b 



Thus s is the term aP4(~')~, and the first of Eqs (21) becomes 

The adjoint method concludes by expressing the sensitivity VR, in terms of an adjoint solution 
as follows: 

where 

The adjoint boundary conditions are chosen to e h i n a t e  the unknown values of h from u( 
(24). For example, with the illustrative model Eq. (24) becomes 

The value of Ala) in this equation is known from the initial conditions (19). Thus the only 
unknown value of h, i.e., h,(bJ, can be eliminated from ( 2 5 )  by choosing the adjoint boundary con- 
dition 

The advantage of the adjoint method is that the adjoint solution is independent of the fccdback 
being considered, and all values of h for VRA are known without having to solve (18). Thus, once 
the adjoint solution v has been calculated, it is pxsible to estimate the effect of many different 
feedbacks without solving any additional differential equations. This advantage of the adjoint 
method can be seen for the illustrative model. Thc3 adjoint equations (23) and ( 2 6 )  do not contain 
any tzrms arising from the feedback operator. Moreover, the equivalent of (25) can be derived 
from (24)  for a general feedback operator [ A  , ( u ) , A 2 ( u ) ] ;  

Thus, once (23) and (26) have been solved, the above equation can be used to estimate the ef€cct 
of any feedback where the A terms are neglected. 
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IV. SUMMARY AND coNcrmwNs 

The methods and concepts of abstract analysis have been employed to formulate a sensitivity 
theory for physical problems described by systems of coupled nonlinear equations, and nonlinear 
responses. Greater generality has been achieved by considering the problem and the  response ;IS 
mappings defined on the product space E=E,XE, .  Consequently, it has been possible to cir- 
cumvent the need to assume a specific form for the response R(e). The scope and versatility of the 
present formulation of sensitivity theory have also been extended by defining the sensitivity of the 
response to variations in the system parameters (a) as the G-differential V R ( c o ; h )  of R ( e ) a t  e". 

Two alternative formalisms have been developed to evaluate the sensitivity VR(e";lr ) of Mk): 
the Forward Method and the Adjoint Method. As has been shown, there are clear distinctions 
between the necessary and sufficient conditions required for the validity of each formalism. On 
the one hand, it has been demonstrated that the Forward Method can be rigorously formulated in 
normed linear spaces, and that the existence of the G-differentials of all operators appearing in the 
original nonlinear equations are the necessary and sufficient conditions underlying the validity of 
this formalism. It has also been emphasized that these G-differentials are not linear operators. 

On the other hand, it has been shown that the necessary and sufficient conditions underlying 
the validity of the Adjoint Methad are more restrictive. Most prominent among these conditions 
is the requirement that all operators acting on the state vector u must admit densely defined par- 
tial G-derivatives at e'= ( uo,ao) with respect to u. Furthermore, the underlying normed linear 
spaces have to be complete in order that the Adjoint Method be unique and generally valid. By 
setting the development of this formalism in Hilbert spaces, the Riesz representation theorem was 
shown to play a fundamental role. Although this theorem does not hold in general in a pre- 
Hilbert space [e.g., V,R(e') in Eq. (20) of Section 1II.A. may not exist], in many practical appli- 
cations it may do so. Thus, the Adjoint Method may still be applicable to certain problems which 
fit naturally in a pre-Hilbert space that may not be convenient to complete in practice. (Theoreti- 
cally, of course, pre-Hilbert spaces can always be completed.) 

Note that the need to introduce any derivatives of operators acting solely on the systcm 
parameters a, or derivatives of the state vector with respect to a, has been completely eliminated. 
As has been shown, the existence of the 6-differentials YQ(a0;h, )  and VA(ao;h,)  is both neces- 
sary and sufficient. Furthermore, the use of distinct inner products makes it possible to treat 
problems involving operators whose range is not in the same Hilbert space as the state vector. 
Finally, the results obtained by employing the previous approaches ' - 1 9 * 2 1  to sensitivity theory can 
be recovered as particular forms of the results obtained here. Altogether, these factors contribute 
to the greater generality and applicability of the Adjoint Method presented here. 

It is of practical interest to mention that, in particular applications, additional conditions may 
need to be imposed on the operators N,B,Q, and A, in order to solve Eqs. (1) and ( 2 )  of Section 
1II.A. by some particular numerical procedure. For example, several of the most widely used 
numerical methods31 for solving nonlinear operator equations require the existence of Frichct 
derivatives of N and B at eo; in such cases, the conditions underlying the validity of the Adjoint 
Method would automatically be satisfied. 

The sensitivity theory presented in Section III.A.2.b.(i). has been restricted to responses that 
are functionals in order to highlight the intimate connection between the construction of the 
adjoint system and the mathematical nature of the response. This connection is underscored hy 
recalling the essential role played by the Riesz representation theorem when identifying the sensi- 
tivity of the response with an inner product [cf., Eqs. (20 and (22) of Section III.A.1 
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Sensitivity theory has also been formdated in Sectiai rIi.A.Z.b.(ii). for nonlinear systems with 
general operators as responses. It has been shown that there are essentially no conceptual and 
computational differences between the treatment of operators and the treatment of function& as 
responses within the Forward Method. However, there is a considerable difference between the 
treatment of these two types of responses within the Adjoint Methad. Thus, the Adjoint Method 
can be developed only if the h,-dependence of the G-differential giving the sensitivity of the 
operator-typc response is expressible as a linear combination of linear functionals of h,. For this 
purpose, it has been necessary and sufficient to consider the response R(e] to be an element of the 
Hilbert space N,(9tR),  to introduce an orthonormal basis for H R ( Q R ) ,  and to require the exist- 
ence of the G-derivative of R(e) at e'. The indirect effect term has then been expressed as a lin- 
ear combination of basis elements, each of these elements being multiplied by a h e a r  functional 
of h,  which contained the entire h,-dependence of the response sensitivity. This A,-dependence 
has in turn been eliminated from the expression of each of these functionals by using adjoint func- 
tions satisfying appropriately constructed adjoint systems. 

When derived via the Adjoint Method, the exact expression of the sensitivity of an operazor- 
type response contains as many adjoint functions as there are non-zero terms in the linear combi- 
nation of basis elements. This linear combination may, in principle, contain infinitely many terms. 
To minimize the computation of adjoint functions, it becomes important to select a basis and a 
notion of convergence to represent the indirect erfect term as accurately as possible with the smal- 
lest number of basis elements. It is also desirable to derive, if possible, bounds and/or asymptotic 
expressions for the remainder after truncating the linear combination expressing the indirect effect 
term. 

I t  has already been established (in many works on sensitivity analysis) that the Adjoint 
Method i s  the most economical to use, whenever possible, if the physical problem involves a large 
data base (or many alterations in the data) and comparatively few functional-type responses. For 
operator-type responses, however, the specific needs of sensitivity analysis, the number of system 
parameters and responses and the characteristics of each response must be examined to determine 
whether computational costs warrant the use of the Adjoint Method. 

Section 1U.B. presented the formulation of sensitivity theory for nonlinear systems with 
responses that are functionals defined at a critical point of a function F ( u , x , a )  of the system's 
state vector and parameters. In practice, this critical point may represent any extremum, saddle, 
or inflexion point of F ( u , x , ( Y ) .  It has been shown that changes in the system parameters affect 
both the numerical value of the response and the critical point itself. Expressions for the sensitiv- 
ity of the numerical value of the response and for the sensitivity of the critical point Rave been 
obtained within the context of the Forward Method by directly applying the definition of the 
differential. However, since it is expensive to use this method to answer all sensitivity questions 
that might arise in practice, the Adjoint Method has been developed to yield alternative expres- 
sions for the desired sensitivities. This method requires the computation of as many adjoint func- 
tions as there are components of the critical poirt in phase-space, and of one additional adjoint 
function to evaluate the sensitivity of the numerical value of the response. Once these adjoint 
functions have been computed, the sensitivities to d l  possible changes in the system parameters 
can be obtained by simple quadratures. This makes the Adjoint Method the most cost-efficient 
method to use whenever possible, although, as has been discussed, the necessary and sufficient 
conditions underlying its validity are more restrictive than those underlying the validity of the For- 
ward Method. 

... 
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’The sensitivity theory presented in Secs. III.B.1. through 1II.B.4. has been applied in Sec. 
III.B.6. to a problem of interest in reactor safety, namely a protected transient with scram on 
high-power level in the Fast Flux ‘Test Facility (FFTF). To determine the base-case distribution 
of the dependent variables for this problem, the entire single-phase segment of the fast reactor 
safety code MELT-IIIB has been used, including (i) thermal-hydraulic equations, for each channel 
type, describing the behavior of the average channel fuel pin and surrounding coolant, ( i i )  an 
equation describing the primary loop hydraulics, and (iii) neutron point-kinetics equations descrrb- 
ing the reactor power level. 

Two extremum-type responses have been considered the maximum power response and the 
maximum fuel temperature response in the hot channel. Expressions for the sensitivities 0 1  the 
respective numerical values of these responses and expressions for the sensitivities of the 
phase-space locations at which the respective maxima occurred have been obtained in terms 0 1  
adjoint functions. The adjoint systems satisfied, in  turn, by each of these adjoint functions have 
been derived and solved. I t  has been shown that the complete sensitivity analysis of each 
(extremum-type) response requires the computation of as many adjoint functions as there are 
non-zero components of the respective critical point (e.&., maximum) in phase space, and of one 
additional adjoint function to evaluate the numerical value of the response. Once these adjoint 
functions have been computed, the sensitivities to all possible changes in the system parameters 
can be obtained by simple quadratures. For this illustrative reactor safety application, a total of 
five adjoint calculations sufficed to perform the complete sensitivity analysis of the maximum fuel 
temperature and maximum power responses. Note, though, that only the source terms in these 
five adjoint calculations differ from one another; the form of the respective partial differential 
equations and corresponding boundary and final-time conditions is the same for all of these adjoint 
systems. Consequently, all five adjoint functions can be calculated by using the same code; only 
minor programming is required to implement the numerical calculation of the distinct sourcc 
terms for the adjoint equations. 

Section II1.C. has presented the theoretical formulation of an efficient sensitivity analysis 
method for estimating the effect of feedback in a mathematical model. A feedback operator act- 
ing on the model’s dependent variables defines a feedback mechanism by modifying the values of 
parameters or data in the model. Although the effect of prescribed variations in the parameters 
can be evaluated efficiently using the Adjoint Method, this method cannot be applied directly to 
estimate the effect of feedback; this is because the parameter variations are not prescribed but 
depend on the output of this model. Therefore, we have defined a quantity called sensitivity lo 

feedhack that can be estimated using the Adjoint Method. It has been shown that the sensitivity 
to feedback is an estimate of the actual effect of feedback correct to first order in the strength of 
feedback, and it has also been shown how the sensitivity can be estimated using the Adjoint 
Method. The principal advantage of this application of the Adjoint Method is that, once the 
adjoint solution has been calculated, the effect of a variety of different feedbacks can be estimated 
with minimal additional computing time. The cornprehcnsive sensitivity theory presented in Sec. 
I11.C. for estimating the effect of feedback is likely to be useful for models where extensive recal- 
culation with a variety of feedbacks is impractical. An approximate yet quantitative indication of 
the effects of a wide range of potentially important feedbacks will help identify sour~cs of uncer- 
tainty in model predictions, and will indicate for incorporating feedbacks rigorously. 

The theoretical advances which this work contributes to sensitivity theory were made possiblc 
by the use. of concepts of nonlinear functional analysis. Nonetheless, the potential of using such 
concepts to extend further the scope of sensitivity theory warrants more research. Present 
research is divided between developing sensitivity theory and applying existing theory to new areas. 
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An important but presently open question regarding sensitivity theory is the effect of the higher- 
order G-differentials of the response. The possibility of using concepts of nonlinear functional 
analysis to estimate this effect is currently being researched. The incorporation of this e f h t  into 
an uncertainty analysis formalism would result in a reliable and efficient tool for comprehensive 
sensitivity and uncertainty analyses of complex physical problems. 
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