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A PROGRAM FOR SOLVING THE 3-DIMENSTONAL LAPLACE 
EQUATION VIA THE BOUNDARY ELEMENT METHOD 

L. J. Gray 

ABSTRACT 

A subroutine for solving the interior three dimensional Laplace equation V2  V = 0 by 
the boundary element method is described. The bounding surface is defined by triangular 
elements. each element defined by three nodes (vertices) in appropriate order for calculat- 
ing the outward normal. The boundary data at  a boundary node P is either the value of 

the potential V (P ) or the normal derivative av (PI. The required integrals over the tri- 

angular elements are computed using linear interpolation from the nodal values. This rou- 
tine has been especially tailored in several ways for use in modeling electrochemical 
processes. 

a 2  

I. INTRODUCTION 

The three dimensional Laplace Equation 

together with specified boundary conditions, occurs in many areas of science and engineer- 
ing, and there are many numerical techniques for obtaining the solution. Although finite 
differences and finite elements are the most widely known. the boundary element method 
[2] is particularly effective in the context of computer modeling of electrochemical deposi- 
tion or machining processes. In these simulations, LaPlace's equation must be solved 
repeatedly in regions with possibly irregular boundaries which are evolving in time; thus 
speed of execution and ability to handle arbitrary geometries are important considerations 
in the choice of a numerical scheme. The boundary element method, which replaces the 
differential equation for the potential V by an equivalent integral equation for the unk- 
nown boundary values, i s  well suited to complicated boundaries: furthermore, the algo- 
rithm can be tailored to accommodate the special circumstances that arise in electrochemi- 
cal applications, thereby reducing execution time. A more complete discussion of the 
advantages of the boundary element method with regards to electrochemical modeling can 
be found in reference [SI. 

The program described herein is an implementation of the boundary element approach 
for solving the three dimensional Laplace equation, specifically designed for electrochemi- 
cal applications. There are two principal differences between this algorithm and a com- 
pletely general procedure for solving an interior roblem. First, when the boundary con- 

ditions specify the value of the current density -& = V2 on a node, this value is assumed 

to be zero; in plating applications, a nonpotential surface is always either an insulated or 
symmetry surface, so this assumption is valid. Incorporating this knowledge can greatly 
reduce the number of integrations required and significantly decrease the execution time. 
Second, in order to calculate the electrode polarization efficiently. the finite linear system 
of equations which replaces the integral equation is accumulated in two matrices rather 
than one. Although this procedure nearly doubles the storage required, it results in 
tremendous time savings during the course of a simulation. 

an" 
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The outline of this report is as follows. Section II contains a description of the method, 
along with a discussion o€ the special modifications. Section III describes several sample 
calculations, along with an explanation of the use of "double nodes", and Section IV con- 
tains a listing of the program. The details involved in computing the required integrals 
and a sample main program for calling the subroutine can be found in the appendices. 

XI. BOUNDARY ELEMENT METHOD 

Let D be a closed bounded region in R 3  with boundary aD; a point in R 3  will be 
denoted by X = (n , y . z >. The potential. function V (X satisfies Laplace's Equation 
inside D , and the boundary conditions supply. for each X E a l l ,  either the potential 
V (X or the current density V;(X) (the more general case. wherein a linear relationship 
between the potential and the current density is specified. can also be treated but this 
situation does not arise in electrochemical problems). The fundamental solution or Green's 
function G (X , X o >  is defined by 

where II X - Xo II is the distance between X and Xo. Since G is t,lie potential of a point 
charge at Xo. it satisfies Laplace's equation everywhere except X o ,  and in fact, 

V 2 G  ( x ,  x,> = -% F (x, x,) , (2.2) 

where the differentiation is with respect to X and 8 (X,  XO) is the Dirac delta function. 
Using Green's Theorem, it can be shown that Laplace's equation becomes 

where again the gradient and the surface integration are with respect to the X variable, 
and XO is an arbitrary point on aD - The function $(PI denotes the interior solid angle of 
the surface at P divided by 4 7 ~ .  For example. if the surface is smooth at P, $(PI = $5, 
whereas if P is the corner of a cube. $(PI = 0.125. Eq. (2.3) provides. for each Xo. a 
linear relationship between the values of V and V; on a l l .  and is the starting point for 
the boundary element method. 

A closed form solution of the integral equation (2 .3)  usually cannot be achieved. ,4n 
approximate numerical solution can be obtained by replacing the boundary surface with a 

union of M triangles. bTm ~ where the .K vertices {Y, } of the triangles (henceforth called 

nodes) lie on a l l .  By using "double nodes" if necessary (to be defined below). it can be 
assumed that for each triangle T,, either V or V; is specified at all three nodes of T, I 

When integrating V(X> and Vz(X) over T, , the function values are approximated by 
linear interpolation from the nodal values. Using this approximation and rewriting Eq. 
(2 .3)  in the form 

m=P 
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a linear equation in the K unknown boundary values of V and Vi;. is obtained. provided 
Xo is chosen to be one of the node points. Letting Xo be each of the nodes yields a system 
of K linear equations which, following Eq. (2.41, can be expressed as 

w u = L W  

Here, H and L are K by K matrices and 

where vk = V(Yk and wk = V;;(Yk ). Depending upon which values are unknown, the 
equations can be rearranged in the usual form AX = B . Although the matrices A and B 
can be calculated directly without first forming H and L (and this would in fact reduce 
the computer storage required), for electrochemical applications it is more desirable to cal- 
culate H and L separately, and then do the rearrangement; the reasons for this will be 
discussed below. Having put the equations in the form AX = B .  X is solved for by an 
u/ factorization algorithm. 

The calculation of the matrix H will now be described in detail. the matrix L following 
along similar lines. By definition, the (k , 2) matrix element of H is the coefficient of 
V ( Y l )  on the left side of Eq. (2.4) when XO = Yt . In order to conveniently evaluate the 
surface integrals over the triangles T,. a local coordinate system will be used. Label the 
nodes of T, as 1. 2. and 3, subject to the following two conditions: the node labeled as 1 
is arbitrary unless one of the nodes is Yk , in which case this point is designated to be node 
1; second, if necessary interchange nodes 2 and 3 in order to have the distance from 1 to 3 
greater than or equal to the distance from 1 to 2. Node 1 is taken as the origin of the coor- 
dinate system, the plane of Trn as the z =O plane, and the line from 2 to 3 as the positive y 
direction (see Fig. 1). There is no harm in doing this. with the proviso that one keeps 
track of the outward normal, which is now either the plus or minus z direction. 

In accordance with the linear interpolation assumption. the value of the potential at  
any point (r , 6  ) of T, is taken to be 

V ( r . B ) = c  t m c o s 8  t b r s i n 8 ,  (2.7) 

where (r , 0 )  denotes polar coordinates in the x-y plane. A simple calculation shows that 
the coefficients a, b. c are linear combinations of V I .  V 2 .  V 3 .  the values of V at the nodes 
I, 2, and 3: 



- 4 -  

H e  

where X = ( r 2  r3sin(03--0 2))-1 and (r2. e,), ( ~ 3 . 0 3 )  are the coordinates of the nodes 2, 
3. 

1 
1 

= L  
e 

1 

Note that 
A VG(X,Y,).n” = --p-3 2: 

4T 

0 
0 
e 

e 

0 

(2.9) 

(2.12) 

= 0; 

where 

is the distance from X (r cos0, r sin0 , 0) to Yk , (2 , ;, i 1 being the coordinates of Yk in 
the local system. Thus. if Yk is a node of T,, 2 0. and the integral is zero (this can be 
seen directly: since G(X.Yk) is only a function of the distance from Yk, VG(X,  Ya) 
must be in the direction from Yk to X 1. For 2 f 0, the surface integral can be written as 

(2.11) 

For each of these integrals, the r integration can be performed in closed form, the details 
of which can be found in Appendix A. The 0 integration is evaluated numerically using a 
Gaussian quadrature scheme. Eq. (2.11) together with Eq. (2.8) determine the matrix ele- 
ments of H , with the exception of the term (p(Yk >V (Yk 1 of Eq. (2.4). The value of $(Yk 
could be quite troublesome to compute for nonsmooth surfaces. so fortunately there is an 
easy method due to Brebbia. Note that this is the only term which contributes to the diag- 
onal matrix element h k , k  (if Yk e T,n then the surface integral vanishes). and that the 
matrices I1 and I., while dependent upon the geometry of a D .  are independent of the 
boundary data. Thus, if V is chosen to be identically 1 on the boundary, the solution is 
Vz = 0 and 

Le.. 11 has zero row sums. Consequently, 



The analysis of the integrals 

(2.13) 

(2.14) 

for the computation of the L matrix elements proceeds in exactly the same fashion (the 
details of the I integration fo r  this case can also be found in Appendix A), with one excep- 
tion. If Yk is a vertex of T,, then the integral is not necessarily zero and must be com- 
puted. This integral can be evaluated in closed form (see 111 and Appendix A), thus avoid- 
ing the possibility of numerical problems caused by the singularity of G lying on T, . 

There are two basic modifications of this algorithm which have been incorporated for 
electrochemical modeling purposes. First, as mentioned in the introduction, when the 
value of the current density is specified on the boundary, it is assumed to be zero. Thus, 
for any element T,,, with V, known, the integral in Eq. (2.14) (contributing to the matrix 
elements of L ) is eventually multiplied by zero in the computation of B; hence. this calcu- 
lation may be dispensed with. For many practical problems a significant portion of the 
bounding surface is insulated and a great many integrations can be avoided. 

Second, taking into account polarization at the electrodes requires an iterative calcula- 
tion in which LaPlace’s Equation is solved several times with the same geometry, but with 
different values of the potential on the boundary (the insulated segments remaining insu- 
lated). As mentioned above, H and L , and thus also A are unaffected by such alterations 
in the boundary conditions: only the right hand side matrix B changes. Furthermore, 
since V, always remains zero. B i s  determined by H and the new boundary values of the 
potential. Since L does not enter into the computation of B , the program computes H and 
L separately and then overwrites L with A, which in turn is overwritten by its u/ fac- 
torization. Waving saved H and the LU factors. the iterative process used to obtain the 
polarization can proceed with little additional work: a new right hand side B matrix i s  
computed from the previous solution and the matrix H ,  and then a new solution is deter- 
mined from the I D  factors (the cycle continuing until convergence). Thus, at  each itera- 
tion, obtaining the required solution of Laplace’s equation is essentially reduced to  an 
inexpensive forward and back substitution. This can result in substantial savings of time 
during the course of a simulation. 

I i 

III. TEST RESULTS 

Two sample problems for which the numerical answers can be compared to an exact 
solution will be described. In the first test case. the region D is the unit cube: the specified 
boundary data has V = 0 on one face, V = 1 on the opposing face, and all other faces 
insulated (Le. Vz = 0). This problem was chosen to illustrate the use of “double nodes“ at 
the edges of the cube where the boundary conditions change from potential to insulated. 
Because of the discontinuity in the normal derivative at this edge, special treatment is 
required in order to obtain an accurate result. In the boundary element method, this prob- 
lem is easily handled by making each node on this intersection into two nodes [l]. 
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Two calculations were performed for this insulated cube. one with a minimal number 
of nodes and elements and one with a significantly finer decomposition of the cube surface. 
The data for the crude mesh is small enough to construct by hand and can be completely 
displayed. thus serving as a convenient example of the use of double nodes. The second 
calculation comes closer to an actual problem and available mesh generation software 
(PIGS 141) was employed to obtain the data; as computer generated geometry is the likely 
method for most practical applications. this calculation is an illustration of the automatic 
assignment of double nodes and boundary data. 

The coarse discretization of the unit cube is shown in Figure 2. There are 14 nodal 
points, the corners together with the center of each face, and each face is divided into four 
elements. The y = 0 and y Z= 1 surfaces have the potential specified, with V = 1 and 
V = 0 respectively, and the four remaining faces are insulated. Note that the boundary 
condition at the eight corner nodes (labeled 1 through 8)  is ambiguous, as they could 
either be potential or insulated points. This problem is dealt with by making these nodes 
into double nodes; that is. introducing eight additional nodes (labeled 9 through 16) with 
the same coordinates as the original points (Le. node 9 is the same point as node 1). Which 
node number is used in the definition of a particular element depends upon the boundary 
condition for that element. For example, focusing on the double node [3,S1]. the element 
on the y = 0 face is given by nodes {17.3.4). while the adjoining element on the insulated 
z = 1 face is specified by nodes {20,S2,S1). Similarly. a neighboring element on the x = 1 
surface is given by {19,11,10} because it too is insulated. (A complete list of the nodes 
and elements is given in Table 1; the parameter NODDEF is 0 for a potential node and 1 
for an insulated node). The boundary element algorithm considers each node to be a dis- 
tinct point, and thus the resulting matrix equation is of order 22. 

The results of the calculation, shown in 'Table 1. agree with the exact answer. 
V ( x  , y  , z ) = 1 - y . If the boundary condition is the potential at the node. then the solu- 
tion gives the current density V; at this point and vice versa. Note, for example, that the 
computed value at node 7 (input as a potential node) is -1.0. which is the outward normal 
derivative on the y = 1 plane. whereas the value at its companion node 15 is 0.0, which is 
indeed the potential on this surface. 

The subdivision of the cube surface for the second calculation i s  shown in Figure 3. 
Each edge was divided into five equal subintervals. and these points were used to generate 
a square grid on each face. Every small square was divided into two triangles via a diago- 
nal, resulting in a total of 300 elements and 152 nodes. In the input data, each element 
was identified as being either a potential or insulated surface. Before executing the boun- 
dary element subroutine. the program first constructed the double nodes by checking if 
any node appeared on both types of surface elements; if so, a new node number was gen- 
erated for that point and the element definitions were changed accordingly. The program 
listing for this part o€ the calculation can be found in Appendix C. 

One further comment about the input data is required. The program assumes that the 
order of the node numbers defining the triangular elements specifies the positive orienta- 
tion (Le. outward normal) of the element. (Actually, as long as the surface is consistently 
defined as either inward or outward normal, everything is correct. with the sign of the 
computed current density depending upon which normal is chosen; this follows from exa- 
mining Eq. (2.4). recalling that the term c$(Xo) is calculated from Eq. (2.13). and that all 
supplied values of the current density are zero.) One possible way to assure that the 
boundary is oriented correctly is to compute the inner product of the calculated normal 
with a specific vector; the sign of this inner product will indicate whether or not the 
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orientation of the element is the proper one. An example of this procedure is given in the 
program listing in Appendix C. As with the coarse discretization, the results for this sim- 
ple problem were very accurate (ten digits were printed out and these agreed with the 
known solution). 

The second problem consists of two concentric spheres centered at the origin, the inner 
sphere of radius r = 1 having a potential V = 1 and the outer sphere, T = 2. having a 
potential V = 0. Instead of solving the problem in this form, the symmetry will be util- 
ized in order to reduce the size of the region (also. as indicated above. symmetry surfaces 
require less computation). The region to be considered (see Figure 4) is the 45" wedge 
formed by cutting the top half (z  30)  with the planes y =O and x =y . Thus, in addition 
to the spherical potential segments, the boundary is composed of (pieces of) annular 
regions in the z ' 0 . y  =0, and n=y planes with boundary condition Vi: = 0. The exact 
solution is V = -1 + 2/ r , l < r  <2, and V z ( r )  = 2(--1)"+'/ r2, for r=1.2. 

As with the cube, the double nodes and element orientation were generated automati- 
cally by the main program which calls the Laplace subroutine. The elements were gen- 
erated starting with eight equally spaced nodes along each edge of the boundary. The 
results of the calculation at  several representative points (indicated in Figure 4) are shown 
in Table 2. As might be expected. the answers are less accurate than for the cube: the 
approximation of a spherical surface by planar triangles introduces a geometrical approxi- 
mation not present in the previous example. The calculated potential on the plane of sym- 
metry (point 9) is reasonably accurate, as are the current densities away from the edges of 
the region (points 7 and 8). However. note that the current density solutions at the dou- 
ble nodes (along the intersection of a potential and insulated surface, points 1-6) are 
significantly worse than the other results, with the sharp corners (points 1 and 2) excep 
tionally bad. Aside from the geometry, the other basic approximation in the calculation is 
the linear interpolation, &. (2.7). employed in the evaluation of the integrals given in Eq. 
(2.14). This functional form does not take into account all of the known information 
about the behavior of the current density at  this edge: the function must achieve either a 
maximum or a minimum when crossing an insulated surface. This explains why the 
corners, where there is clearly more constraint on the function, are the least accurate 
points. If this behavior is incorporated into the approximation by using a higher order 
polynomial interpolation, the results can be significantly improved with little additional 
computation. The details of the method will be reported elsewhere. 

IV. PROGRAM LISTING 

C******************************************************************* 
C*THIS SUBROUTINE SOLVES LAPLACE'S EQUATION IN 3 DIMENSIONS USING 
P A  BOUNDARY INTEGRAL METHOD. EITHER THE POTENTIAL OR THE NORMAL 
C*DERIVATIVE OF THE POTENTIAL MUST BE KNOWN FOR EACH NODE ON THE 
CCBOUNDARY, AND THIS ROUTINE SOLVES FOR THE UNKNOWN VALUES ON THE 
C*BOUNDARY. IF THE POTENTIAL IS UNKNOWN, THE NORMAL DERIVATIVE IS 
CCASSUMED TO BE ZERO. 
C***********************************************************r******* 

SUBROUTINE D3LAPL(KEL.MNODES.XYZ,NODES,NODDEF,BV,B.IPOLE) 

DIMENSION XYZ(60 1.3 ).NODES(700,3),NODDEF(SOO).BV(500).P(500) 
DIMENSION H~400.400~.ZL~400.400).IP(4).XNORM(3),B(400.1) 
DIMENSION IIP(3) 

IMPLICIT REAL*8( A-H.0-Z) 
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IP(3) = IT 
SIGN -SIGN 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C*TRANSLATE POINT 1 TO THE ORIGIN. MOVING POINTS 2,3 
C* TO BE RESTORED LATER 
c********************#********************************************* 

20 DO 21 I-2,3 
Do 21 11-1.3 

21 XY(I.II) = XYZ(IP(I).ZI) - xYz(IP(i),II) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CYFAC IS LAMBDA 
P D 1 4  IS SMALL H 
C******************************************************************* 

SUM = 0.M 
DO 25 1-1.3 

D23 = DIST(XYZ,IP(2).IP(3)) 

SUM - O.DO 
DO 26 1-1.3 

25 SUM = SUM + (XY(2,I))*(XY(3,1)-XY(2.1)) 
FAC = -SUM/(D23*D23) 

XYZ(IP(4)J) = XY(2,I)+FAC*(XY(3.I)-XY(2.1)) 
26 SUM - SUM + XYZ(IP(4).I)*XYZ(IP(4),1) 

014 = DSQRTWM) 
C2 = D14/D12 
C3 = D14/D13 
THETA2 = DACOS(C2) 
THETA3 = DACOS(C3) 
IF(FAC.GT.O.DO) THETA2 = -THETA2 
S3 = DSIN(THETA3) 
S2 = DSIN(THETA2) 
D * D12*D13*(C2*S3 - S2*C3) 
D = l.M)/D 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C*CALCULATE UNIT NORMAL XNORM 
C********************************************x'*******************~ 

XNORM( 1 )-XY(2,2)*XY (3,3)-XY( 3.2)*XY(2.3) 
XNORM(Z)=XY(2,3)*XY (3,1)-XY(3.3)*XY(2.1) 
XNORM(3)-XY(2.1 )*XY (3,2)-XY(3 ,l )*XY(2,2) 
Do 30 1-1.3 

30 XNORM(1) = SIGN*XNORM(I)*D 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C*M LOOP MOVES SINGULARITY AROUND THE BOUNDARY 
C*****************************************W*************#********* 

C******************************************************************* 
CYIP(1) IS THE NODE NUMBER OF POINT I. IF THE SINGULARITY IS AMONG 
C*THE ELEMENT NODES, THIS MUST BE POINT 1. 
CYCHECK FOR MULTIPLE NODES 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DO 100 M-1,MNODES 

KSING = 0 
DO 15 b1,3 
J - I  
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DT = DIST(XYZ,IP(J).M) 
IF(DT.GT.1.D-12) GO TO 15 
KSING = I 
GO TO 16 

15 CONTINUE 
GO TO 10 c******************************************************************* 

C**************************************~**************************** 

c**********************************o*******************z*********** 

C*7F SINGULARITY ON THIS ELEMENT AND NORMAL DERIVATIVE IS SPECIFIED 
C*THEN BOTH INTEGRALS ARE ZERO AND THERE IS NOTHING TO COMPUTE 

16 IF(NODDEF(IP(2)).NE.g)) GO TO 100 

C*I 
C*COMPUTE ZL MATRIX ELEIMEN'TS 
C*IF KSINC NOT EQUAL TO ONE, CHANGE GEOMETRY c****************************************************************** 

DO 74 I=l.3 
74 IIP(1) = IP(I) 

SD12 = D12 
SD13 = Dl3  
SD14 = D14 
SD = D 
ss2 = s2 
ss3 = s3 
s a  = c2 
SG3 = c3 
GO TO 50 

IIP(KSING) = IP(1) 

IF(KSING.NE.I) GO TO 62 

62 IJP(I) = IP(KSING) 

c******************************************************************* 

c*** *** ** *** *** ***** *** ** *** II** ** *** *** ** *** *** ** *** *** ** *** *** ** *** C*MAKE 1 TO 3 LARGER THAN 1 TO 2 

SD13 = DIST(XYZ.IIB( 1).IIP(3)) 

IF(SD13.GE.SD12) GO TO 201 
TEMP = SD12 
SD12 = SD13 
SD13 = TEMP 

IIP(2) = IIP(3) 
IIP( 3) -. IT 

~ ~ 1 2  = DIST(XYZ.IIP( 1),11~(2)1 

IT = IIP(2) 

c******II************************************************************ 

c******************************************************************* 
C*TWANSLATE POINT 1 TO THE ORIGIN, MOVING POINTS 2.3 
C* TO BE RESTORED LATER 

201 DO 211 1~2 .3  
Do 211 II=l.3 

211 XY(1,II) = XYZ(IIP(I),II) - XYZ(IIP(l),II) 
C******************************************************************* 

C'FAC IS LAMBDA 
C*D14 IS SMALL H 
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C************C*******#r********************************************* 

SUM = O.DO 
DO 251 1~1.3 

SD23 = DIST(XYZ.IIP(2),UP(3)) 
FAC =e -SUM/(SD23*SD23) 
SUM = 0.DO 
DO 262 I=1.3 
Q = XY(2,I)+FAC*(XY(3,I)-XY(2.1)) 

262 SUM = SUM + Q*Q 
SD14 = DSQRT(SUM) 
SC2 = SD14/SD12 
SC3 = SD14/SDl3 
ETA2 = DACOS(SC2) 
ETA3 = DACOS(SC3) 
IF(FAC.GT.O.DO) ETA2 - -ETA2 
SS3 = DSIN(ETA3) 
SS2 = DSIN(ETA2) 

SD = l.DO/SD 

251 SUM = SUM + (XY(2,I))*(XY(3,I)-XY(2.I)) 

SD * SD12*SD13*(SX*SS3 - SS2*SC3) 

C*****C**************************~*********************************** 
C*ARRIVAL HERE INDICATES SINGULARITY IS POINT 1 AND POTENTIAL IS 
c* 
c* INTEGRATE EXACTLY 
cr*****************u************************************************** 

SPECIFIED ON THIS ELEMENT, ERGO: 

50 XI3 = SD 14*DLOG( (SS3*SC2 +SC2)/(sX=3+SC3*ss2) )/FPI 
XI1 = SD14*XI3/2.DO 
XI2 
ZL(M.IIP( l))=ZL(M,IIP(l ))+XI3 + SD*((SD12*SS2-SDl3*SS3)*XIl 

+ (SD 13 W3 -SD 12*SC2) *x12) 
ZL(M.IIP(2)) = ZL(M.IIP(2)) + SD*SD83*(SS3*XIl- Se3*XI2) 
ZL(MJIP(3)) = ZL(M.IIP(3)) + SD*SDP2*(SC2*XI2 - SS2*XIl) 

e** ..................................... *********** *************-**** 
C*SINGULARITY NOT ON THIS ELElMENT 
C*MOVE SINGULAR POINT 
C***************************~***************************************** 

SD14*SDl4*(( 1 .DO/SC3)-( 1 .DO/SC2))/(2.DO*FPI) 

& 

GO TO 100 

10 DO 41 1-1.3 
41 XYZ(M,I) XYZ(M.1) - XYZ(IP(1)J) 

C******************************************************CI*************** 

CLCALCULATE COORDINATE OF SINGULAR POINT IN LOCAL COORDINATE SYSTEM 
c?L**~*~*********************X***************************************** 

XH = (XYZ(IP(4),1)*XYZ(M.l) + XYZ(IP(4).2)*XYZ(M,2) + 
YH = ((XYZ(IP(3).1 )-XYZ(IP(2),1))*XYZ(M,l) + 
& XY Z(IP(4) .3)*XY Z(M ,3))/D 14 

& (XYZ(IP( 3).2)-XYZ(IP(2).2>)*XYZ( M,2) + 
& 

& XNORM(3)*XYZ(M,3) 

(XY Z(IP( 3 ),3)-XY Z( IP(2) .3 )) *XYZ(M,3))/D23 
ZH - XNORM(l)*XYZ(M.l) + XNORM(2)*XYZ(M.2) + 
DO 22 1-1.3 

22 XYZ(M.1) = XYZ(M.1) + XYZ(IP(l).I) 
BETASQ = XH*XH + YHXYH + ZH*ZH 
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BETA = DSQRT(BI3TASQ) 
C***************************************~********************$******** 
C*IF ZH IS ZERO. SINGULAR POINT ON THE PLANE AND SO GRAD(G)*N = 0 
Ck******$*$*Y********************************************************* 

IF(DABS(ZIII.LT.1.D-15) GO TO 7'77 
AZW -ii I.DO/FPI 
F3INT = DO1BAF(DO1BA%,THETA2,THETA3,NPOINT,F3,IFAIL) 
FlINT = DOIBAF(DOlBAZ,THETA2,THETA3.NPOINT.F1,IFAIL) 
FZIN'P = DOlBAF(DOlBAZ.TPIETA2.THETA3.NPOINT.F2,IFATL) 
XI1 = AZH*FlINT 
XI2 = AZH*F2INT 
XI3 = -AZM*F3INT 
H(M.IP(1)) = H(M.IP(1)) -t- XI3 -I- D*((Dl2*S2-D13*S3)*XIl 

H(M.XP(2)) = H(M.IP(2)) t D*DP3*(S3*XIl - C3*XI2) 
H(M.IP(3)) = H(MJP(3)) + D*D12*(C2*XI2 - S2*X11) 

& + (D13*C3-D 12*C2)*XI2) 

C**$*********************$********************************************* 
C*CALCUI,ATE ZL MATH IX 
C*ARRIVAL HERE INDICATES SINGULARITY NOT ON THIS ELEMENT: 
ca' INTEGRATE NUMERICALLY 
CYF NORMAL DERIVATIVE KNOWN. INTEGRAL IS 0 
C************************************************~********************* 

777 IF(NODDEF(IP(l)).NE.O) GO TO 100 
GlINT = LIOIBAF(W1 RAZ,THETA2,THETA3 .NPOINT.Gl .IFAIL) 
G2INT = DOfBAF(DO1 BAZ.THETA2 .THETA 3 ,NPOINT.G2,IFAIL) 
G3INr = D01BA4F(D01 BAZ.THETA2 ,THETA3.NPOINT.G3 ,IFAIL) 
XI1 = GIlNT/FPI 
XI2 = G21NT/FPI 
XI3 = C3INT/FPI 
ZL(MJP(1)) == ZL(M,IP(I)) -i- XI3 + a*((D12*S2-D13*S3)*XIl 

ZL(M.IP(2)) E ZL(M.IP(2)) + D*D13*(S3*XIl - C3*X12) 
ZL(MJP(3)) = ZL(MJP(3)) + D*D12*(C2*XI2 - S2*XI1) 

& + (Dl 3*C3-D 12*@2)*XI2) 

100 CONTINUE 
101 CONTINUE 

C*******S************************************************************* 

C*CAkCULATE DIAGONAL MATRIX ELEMENTS OF H 
C*REARRANGE EQUATIONS IN FORM AX = U 
C*OVERWRITE ZL WITH MATRIX A 
C*S**********************************************+******************** 

Deb 110 M=l,MNODFS 
SUM = O.DO 

11 1 1x1 .MNODES 
111 SUM = SUM + H(M.1) 
110 H(M.M) = -SUM 

WRXTE(6,408Q) (IJ3(I,I)3 I=l.MNODES) 
7080 FORMAT( 1X. 3(14*2X .F 13 "6) )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C********************************************************************* 
C********************************************************************* 

DO 120 M=l,MNODES 
IrF(NODDEF(M).EQ.O) GO TO 120 
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DO 122 I-1,MNODES 
122 ZL(1,M) = -H(I,M) 
120 CONTINUE 

C********************************************************************* 
C*ALTHOUGH THE FOLLOWING LOOP COULD BE INCLUDED IN THE ABOVE LOOP. 
C*IT IS SPLIT OFF FOR PURPOSE OF RECALCULATING NEW RIGHT HAND SIDE 
C*ORDINARILY EXECUTE 127 ONLY WHEN NODDEFCM) = 0 (I.E. BOUNDARY 
C*VALUE IS SPECIFIED) BUT SINCE WE HAVE ASSUMED NORMAL DERIVATIVE 
P I S  ZERO WHEN IT IS GIVEN. BV(M)-O ANYWAY 
c********************************************************************* 

121 DO 130 M-1,MNODES 
IF(NODDEF(M).NE.O) GO TO 130 
DO 127 I-1,MNBDES 

127 B(I.1) i . ~  B(I.1) + H(I.M)*BV(M) 
130 CONTINUE 

C****************************************************M**************** 
CrSOLVE SYSTEM OF EQUATIONS (ZL)X = B 
C*IF SOLVING FOR POLARIZATION, USE OLD FACTORIZATION 
C********************************************M************************ 

IF(IPOLE.NE.O) GO TO 140 
CALL F03AFF(MNODES.EPS,ZL.NDIM,Dl.IID,P,IFAIL) 

WRITE(6.7080) (I,B(I,l), I-1,MNODES) 
RETURN 
END 
FUNCTION DIST(XY Z ,M 1 ,M2) 
IMPLICIT REAL*8 (A-H.0-2) 
DIMENSION XYZ(601.3) 
SUM = 0.DO 
DO 10 1-1.3 
Q = XYZ(Ml,I)-XYZ(M2.1) 

DIST = DSQRT(SUM) 
RETURN 
END 
FUNCTION F 1 (THETA) 
IMPLICIT REAL*8 (A-XO-2) 
COMMON XH. YH. ZH. BETASQ. D14, BETA 
F = FF(THETA) 
F 1 =  F*DCOS(THETA) 
RETURN 
END 
FUNCTION F2(THETA) 

COMMON XH. YH. ZH, BETASQ, D14, BETA 
F - F'F(THETA) 
F2 = F*DSIN(THETA) 
RETURN 
END 
FUNCTION F3(THETA) 

COMMON XH, YH, ZH, BETASQ, D14, BETA 

140 CALL F04AJF(MNODES,IR,ZL.NDIM.P.B.NDIM) 

10 SUM - SUM + Q*Q 

IMPLICIT REAL*8 (A-H.0-Z) 

IMPLICIT REAL*8 (A-H.0-2) 
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SS p- DSIN(TIIETL4) 
CC = DCOS( THETA) 
ALPHA = XH*CC + YH*SS 
QQ = XH'SS - YH*CC 
BA = ZH*ZH + QQ*Q 
SEC = I.DO/CC 
R = D14*SEC 
X = (W-ALPHA)*(R-ALPHA) + BA 

F3 = ((BETASQ-R*ALPHA)*(ZH/X) - (ZH*BETA))/BA 
RETURN 
END 
FUNCTION FF(THETA) 
IMPLICIT REAL*$ (A-H.0-Z) 
COMMON XH, YH, ZH, BETASQ. D14, BETA 

x = DSQR'X'(X) 

s% = DSIN(THETA) 
ce = D@OS(TI-IETA) 
ALPHA 5;: XH*CC + YH*SS 
QQ = XH*SS - YH*CC 
BA = ZII'ZH + QQ*QQ 
SEC l.DO/CC 
R = D14*SEC 
x = (R-ALPHA)*(R-ALPHA) + BA 
X = DSQRT(X) 
FF = (( (2 .DO*ALPI-IA*ALPHA--BETASQ)*R - BETASQ*ALPHA)*( ZH/X) 
& -t- ZH*RETA*AL,PWA)/BA 
FF = FF t ZI-PDLOC((X+R-ALPHA)*(BETA+ALPHA)/BA) 
RETURN 
END 
FUNCTION Gl(TI1ETA) 
IMPLICIT REAL*8 (A-H.0-Z) 
COMMON XH, YH, ZH, BETASQ. D14, BETA 
G = GG(THETA) 
GI = G*DCOS(THETA) 
RETURN 
END 
FUNCTION Cr2(THETA) 

COMMON XH. YH, ZH. BETASQ, D1 
G = GG(WETA) 
(32 = G*DSIN(THETA) 
RETURN 
END 
FUNCTION G3(THETA) 
IMPLICIT REAL*$ (A-N,C)-Z) 

IMPLICIT REAL*$ (A-H,Q-Z) 

COMMON xpr. YH. ZH. BETASQ, IDI 
CC -- DCQS(T1ETA) 
SS = DSIN('I'HETA) 
ALPHA = XH*@C + YH*SS 

BA = ZW*ZH + QQ* 
SEC = l.DO/CC! 

QQ = X H * S  - YH*CC 

BETA 

BETA 
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R = D14*SEC 
X 5 (R-ALPHA)*(R-ALPHA) + BA 
x = DSQRT(X) 
G3 = X - BETA + ALPHA*DLOG( (X+R-ALPHA)*(BETA+ALPHA)/BA) 
RETURN 
EM) 
FUNCTION GG(THETA) 
IMPLICIT REAL*8 (A-H.0-Z) 
COMMON XH. YH. ZH. BETASQ, D14, BETA 
CC = DCOS(THETA) 
SS = DSIN(THETA) 
ALPHA = XH*CC + Y H W  
QQ Q XH*SS - YHVC 
BA = ZH*ZH + QQ*QQ 
SEC = l.DO/CC 
R = D14*SEC 
X - (R-ALPHA)*(R-ALPHA) + BA 
x = DSQRT(X) 

& DLOG( (X+R-ALPHA)*(BFTA+ALPHA)/BA) 

GG = (R+3.DO*ALPHA)*X - 3.DO*ALPHA*BETA 
GG = GG + (3.M)*ALPHA*ALPHA-BETASQ)* 

GG = GG/Z.DO 
RETURN 
END 
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Figure 1. The arrangement of node numbers on an element used for computing 
the surface integrals. 
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O R N L - D W G  85C-3322 FED 

Figure 2. The coarse discretization of the unit cube surface. 
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Figure 3. The fine discretization of the unit cube surface. 
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O R N L - D W G  8 6 C - 2 4 7 1  FED 

Figure 4. The concentric sphere wedge employed in the test calculation. 
The values obtained at the numbered nodes are reported in Table 3. 
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TABLE 1: INPUT DATA AND RESULTS FOR THE INSULATED CUBE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 
1 

0.0 0.0 0.0 
1.0 0.0 0.0 
1.0 0.0 1.0 
0.0 0.0 1.0 
0.0 1.0 0.0 
1.0 1.0 0.0 
1.0 1.0 1.0 
0.0 1.0 1.0 
0.0 0.0 0.0 
1.0 0.0 0.0 
1.0 0.0 1.0 
0.0 0.0 1.0 
0.0 1.0 0.0 
1.0 1.0 0.0 
1.0 1.0 1.0 
0.0 1.0 1.0 
0.5 0.0 0.5 
0.5 1.0 0.5 
1.0 0.5 0.5 
0.5 0.5 1.0 
0.0 0.5 0.5 
0.5 0.5 0.0 

1.0 
1.0 
1 .o 
1 .o 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
0.0 
0.0 
0.0 
0.0 
0.0 

ELEMENT DEFINITIONS 

1 .oo 
1.00 
1 .oo 
1.00 
-1.00 
-1.00 
-1.00 
-1.00 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
0.00 
0.00 
0.00 
0.00 
1.00 
-1 .oo 
0.50 
0.50 
0.50 
0.50 

~ 

1 2 17 2 3 17 17 3 4 17 4 1 10 14 19 14 15 19 
19 15 11 19 11 10 6 5 18 6 18 7 18 8 7 18 5 8 
21 16 13 21 13 9 21 9 12 21 12 16 12 11 20 11 1520 
20 15 16 20 16 12 10 922 9 13 22 13 1422 14 1022 
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TABLE 2: RESULTS FOR THE CONCENTRIC SPHERES 

COMPUTED EXACT 
RESULT RESULT 

POINT' 

-0.552 
1.878 
1.924 

-0.536 
-0.511 
1.985 
0.228 
2.013 
0.227 

-0.500 
2.000 
2.000 
-0.500 
-0.500 
2 .ooo 
0.231 
2<.000 
0.23 1 

* Point numbers refer to Figure 4. 
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APPENDIX A 

Obtaining the elements of the matrix H requires evaluating the integrals in Eq. (2.11). 
Integration of the r variable can be done in closed form. leaving just the 8 integration to 
be performed numerically. Setting h = 1 P3 - PI I cos 8 (see fig. 1). these integrals are 

h sece h s e d  

[ r ~ - ~ d r  and r2p"dr 
0 0 

where, from &. (2.10), 

and 

(A.1) 

From integral tables, 

We therefore have 

(A.6) 
h see0 

- 81 -ahsec0 + p2 
p2 - a2 (h2sec20 - 2ahsecO + p2)% -l I 1 rp13dr = 

0 
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The corresponding integrals required for evaluating L , when the singularity is not on 
the element. are given by 

h sec9 h see0 1 rp-'dr and 1 r2p-'dr 
0 0 

and can also be computed directly. Thus, 

(A.7) 

(h  2sec2Q - 2ah secQ C p2)% + h sec0 - a 
P - a  

and 

(h2sec28 - 2ah secQ -I- p2)' + h sec0 - a! l -  @--a E(3a2 - P2)log 

When the singularity is on the element. things are considerably simplified and the com- 
plete surface integral over the triangle can easily be accomplished. These integrals are: 

(A.10) 

I secQ + tan0 I sec0 + tanQ 

93 h s d  

[do dr ^^ hlog 
2 0  
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APPENDIX B 

INPUT VARIABLES FOR D3LAPL 

NAME TYPE DESCRIPTION 

KEL 

MNODES 

XYZ 

NODES 

NODDEF 

BV 

B 

POLE 

INTEGER 

INTEGER 

REAL ARRAY 

INTEGER ARRAY 

INTEGER ARRAY 

REAL ARRAY 

REAL ARRAY 

INTEGER 

The number of triangular elements 

The number of nodes 

XYZ(1.J) is the J th  coordinate of node I 

NODES(1.J) is the .Ith node of element I 

NODDEF-0 for a potential node 
NODDEF-8 for an insulated node 

BV(1) is the boundary value at  node I 

B(I), on exit, is the computed boundary value at node I 

IPOLE=O indicates new geometry 
POLE-1 indicates same geometry, new boundary values 
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The following is a listing o f  the main program used to call D3LAPL for the concentric 
spheres problem discussed in section 111. It was found from experience that the data 
obtained from the mesh generating software PIGS often left in nodes that were not used 
by any element. and that the nodes were not numbered consecutively. The first part of 
the program corrects the data if either of these problems i s  present. The next step is to 
identify the double nodes and generate the appropriate boundary condition (RV) and node 
identification (NODDEF) for every node. The last task before calling D3LAPL is to align 
the normal of each element correctly by adjusting the order in NODES. For the concentric 
spheres, the center of the spheres was chosen as a convenient point to align the normal on 
the spherical segments [PT(l,*) and PT(3,*)]. whereas a point inside the region [PT(2,*)] is 
employed to check the normal on the insulaeed surfaces. 

IMPLICIT REAL*8( A-H.0-Z) 
DIMENSION XY Z(60 l,3) ,NODES( 700.3) ,NODDEF(SOO) .BV(500) .B( 4 00.1) 
DIMENSION IPROP(700) .XNORM(3 ),Q( 3.3) 
DIMENSION PT(3 *3) 
DIMENSION NORD(l000). JORD(600) 
READ(5,70) KEE.MNOT)ES 

70 FORMAT(213) 
C*NORD IS USED TO KENerMBW THE NODES FROM 1 TO MNODES***************** 

DO 60 I=l.MNODES 
READ(.5,14) 11. (XYZ( 1.J). J=1,3) 

14 FORMAT(lOX,I3,3El3.5) 
60 NORD(I1) = 1 

DO 20 I=l.KEL 
READ(5.13) IPROP(1) ,NODES(~.l>.NODES(I.2),NODES(I.3) 

13 FORM,4T(50X.I2.f OX ,I3 .lOX.I3/1OX .I3) 
DO 21 J=1.3 

21 NODFSS(1,J) = NORD(NODES(1,J)) 
20 CONTINUE 

IPOLE = 0 

KNODES = 0 
DO 80 M=l,MNODES 
DO 81 1=1 ,KEL 
K 5 (Nol,ES(n,l)-M)*(NODES(J,2)-M)*( NODES(I,3)-M) 
IF(K.EQ.0) GO TO 82 

C*REMOVE UNUSED NODE2 AND REPJUM13EM*$****$*****$**$$Y*******$******$$**** 

81 CONTINUE 
GO 'ro 80 

82 KNODES = KNODES + 1 
NORD(M) = KNODES 
JORD(KN0DES) = M 

MNODES = KNODES 
DO 83 M=l.MNODES 
DO 83 5 ~ 1 . 3  

DO 84 I-1,KEL 

80 CONTINUE 

83 XYZ(M,J) = XYZ(JOKTI(M),J) 
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DO 84 5-1.3 
84 NODES(I.J) = NORD(NODES(I,J)) 

C*INITIALZE BV(I) AND NODDEF(I)**************************************** 

DO 400 I-1,MNODES 
BV(1) = 0.m 
NODDEF(1) = 0 

400 CONTINUE 
PCHECK FOR DOUBLE NODES AND ASSIGN NODDEF AND BOUNDARY VALUES********* 

MN = MNODES + 1 
DO 100 M-1,MNODES 
IFLAG = 0 
Do  200 I-1.KEL 
J - I  
K = (NODES(I,3L)-M)*(NODES(I,2)-M)*(NODES(I,3)-M) 
IF(K.NE.0) GO TO 200 
JPROP = IPROP(1) 
IF(JPROP.EQ.1) BV(M) = 
IF(JPROP.EQ.3) NODDEF(M) = 1 
IF(JPROP.EQ.3) GO TO 250 
IF(DABS(XYZ(M.3)).GT.l.D-3) GO TO 987 
IF(DABS(XY Z(M,2)-XYZ( M,l )).LT. 1 .D-6) GO TO 250 
IF(JPROP.EQ. 1) XYZ( M, 1)-DSQRT( 1 .DO-XY Z(M.2)*XYZ(M32)) 
IF(JPROP.EQ.2) XY Z( M. 1)-DSQRT (4 .DO-XY Z(M ,2)*XY Z(M.2)) 
GO TO 250 

98 7 IF(JPKOP.EQ. 1) XYZ(M,3)=DSQKT( 1 .DO-XY Z(M,l)*XY Z(M, 1 I- 
85 XY Z(M,2)*XYZ(M ,211 

85 XYZ(M,2)*XY Z(M.2)) 
GO TO 250 

200 CONTINUE 
WRITE(6.801) M 

801 FORMAT(1X. ’NODE’J4,’ DOES NOT BELONG TO ANY TRIANGLE’) 
GO TO 100 

250 J 1 =  J + 1 

IF( JPROP.EQ.2) XYL( M,3)=DSQKT(4.JX-XYZ(M, 1 )*XYZ(M.P)- 

DO 300 I=JI.KEL 
K = (NODES( I, 1) -MI* (NODESCI ,2)-M)*(NODES(I, 3 )-MI 
IF(K.NE.0) GO TO 300 
IF(IPROP(I).EQ.JPROP) GO TO 300 
K S - 1  
IF((NODES(I.2)-M).EQ.O) KS = 2 
IF((NODES(I.3)-M).EQ.Q) KS = 3 
NODES(I.KS) = MN 
IF(IFLAG.EQ.1) GO TO 300 
WRITE(6.700) MN. M 

DO 275 II-1,3 

BV(NN) = 0.DO 
IF(JPROP(I).EQ.l) BV(MN) = 1.DO 

IF(IPROP(I).EQ.3) NODDEF(MN) = 1 
IFLAG- 1 

700 FORMAT(lX,’NODE’.I.Q.” IS NODE’J4) 

275 XYZ(MN,II) = XYZ(M.11) 

NODDEF(MN) = 0 



300 CONTINUE 

100 CONTINUE 
MN = MN -t IFLAG 

MNODES = MN - 1 
C*'L:,ND CHECK FOR T)OUBI,E NODES***************************************** 
C*ORIENT NORMAL CORRECTLY 

PT(1.1) = 0.140 
P]r(1,2) = O D 0  
BT4 1.3) = o.no 
Pyr(3>1) = 0.7DO 
PT(3.2) = 0.1190 
P"(3.3) = 1.32287DO 
PT(2-1) = Q.ODO 
PT(2.2) = O.ODO 
PT(2.3) = O.ODO 
DO 610 I=l,KEL, 
Q(2.2) E XYZ(NODES(I,2).2)-XYZ(NODES(I,1),2) 
Q( 3,3) XYZ(NODES(I,?), 3 1-XY Z(NODES( I, 1 ) .3) 
Q(3.2) == XYZ(NODES(I,3),2)-XYZ(NODES(I,l),2) 
Q(2.3) = XYZ(NODE§(I,2),3)-XYZ(MODES(I,1),3) 
Q(3.1 XYZ(NoDEs(I ,3) .1>-XYZ(N~~ES(~, l ) , l )  
Q(2.l) = XYZ(NODES(I,2), l)-XYZ(NODES(I,l ).I.) 
XrvORM(l>=Q(2,2>*Q(3,3)-Q13.2)*Q(2.3) 
XNORM(2)-Q(2,31rQ(3 .1 >-Q(3.3)*Q(2,l) 
XNOKM(3bQ(2.1) *Q( 3.2)-Q(3,1 )*Q(2.2) 
DJR = O.DO 
DO 640 L=1.3 

IF(IPROP(I).EQ.l) DIR = -DIR 
640 D1K = DIR .. (P'lT(IPROP(I).E) - XYZ(NODES(I.l).L))*XNORM(L) 

IF(D1R .GE. 0.DO) GO TO 610 
IT = NODES(I,2) 
NODES(I.2) = MODES(I,3) 
NODES(I.3) = IT 

610 CONTINUE 
C*END NORMAL CHECK*********Sf**************************************** 
C'OU'TPUT: ........................................................... 

WRITE(631) (I, (XYZ(1.J). 5-13), I=l,MNODE3) 
WRITE(6.25) (I.rEPROP(I).(NODES(a,J), J=1,3). I=l,KEL) 
WRITE(6.65) (I,NODDEF(I) ,BV(I). 1-1 ,MNODEB) 

25 FORMAT( lOX,I3.2X,Il.TX,316) 
65 FOKMAT(2(1X,I3 ,2X.I1,2X,Fl O.4.6X)) 
5 1 FORMAT( lOX.13.3E13 3)  

CALL D3LAPL(KEL,MNODES,XY Z ,NBDES.NODDEF .BV .B.IPOI .E) 
C: WKITE(6.67) (I,B(Ll), 1=1 .MNODES) 
C 64 PORMAT(3(1X.I3,2X,F13.6,5X)) 

srop 
END 
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