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ABSTRACT 

Propagation of extraordinary mode waves in nearly parallel 

stratified plasmas (magnetic beach geometry) is investigated. Since 
the plasma is unable to shield out the right circular component of the 
electric field, these waves are very heavily damped. The resonance 
region is treated by a boundary layer expansion which reduces the 
problem to an integrodifferential system in one dimension. It is 

proved analytically that for moderate t o  high density, waves incident 
from the high field side are totally absorbed with no reflected wave. 
A t  very low density some transmission is possible, where the 

transmission coefficients are being given correctly by cold plasma 
theory. Numerical solution of the integrodifferential system shows 
that the power deposition profile can differ significantly from that 
predicted from a local WKB theory. 

V 





1. INTRODUCTION 

In this paper we investigate the propagation and absorption of the 

extraordinary electron cyclotron mode i n  plasmas for which the gradient 

in magnetic field strength, 9, is nearly parallel t o  the magnetic field 

lines (i*e., nearly parallel stratification). Such a configuration 

corresponds to wave damping at a magnetic beach as is found primarily in 

magnetic mirror geometry.' 9 2  The physics involved is much different 

from the situation, extensively studied tokamaks, where YB and One are 

nearly perpendicular t o  lj (perpendicular stratification). Near 

cyclotron resonance, w = Qce, vhere w = wave frequency and 

SZ,, = electron Cyclotron frequency, the electron response to the right 

circular component E- of the wave electric field is very strong, that 

is ,  J- = O[E:/(w - Qcee)]. With perpendicular stratification, kll, the 

component on the wave parallel to E,  is fixed whereas the perpendicular 

component kl varies weakly with Qce near w 5 Pee. Since .J must be 

balanced by a x a x E = O(k2E) in Maxwell's equations, the plasma 

current shields out the right circular polarized component of 8. In the 

cold plasma limit, E- P 0 at cyclotron resonance. As a result, in 

perpendicularly stratified plasmas cyclotron damping is a comparatively 

weak finite temperature effect due to Doppler or relativistic broadening 

of the cyclotron resonance. However, in parallel stratified plasmas kl 

is constant while kll becomes very large near w = QCe. Thus in Maxwell's 

equations, terms O(ktE-1 can balance terms O[E-/(w - Qce)], and the 

shielding out of E- does not occur. As a result, in parallel stratified 

plasma damping of cyclotron waves can be very strong, virtually 

independently of temperature. 
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The feature of strong damping appears at all levels of description. 

In the cold plasma model the wave fields are described by a wave 

equation of the form 

w 4nicrb 
x 0 x - -E = -- a r * E  P 2- C n  C 

where _a is the usual cold plasma conductivity tensor and we have assumed 

harmonic time dependence f o r  e a e-iwt. The dispersion relation 

obtained from Eg. (1.1) for a uniform plasma is of the form 

- 

where 

and 

Q = ck/o . 

Thus one of the solutions of Eq. (1.2) for rill (the extraordinary mode 

root) For 

fixed nI there is an associated cutoff, nll -+ 0, at lower magnetic field, 

Q,, < w ,  given by 

has a singularity that occurs at Qce = w, independent of nl. 
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The extraordinary mode propagates on the high magnetic field side of the 

cyclotron resonance. As the wave approaches cyclotron resonance, nII 

becomes infinite, the parallel phase velocity w/kll vanishes, and the 

group velocity turns perpendicular t o  the magnetic field. 

If one assumes the plasma to be purely parallel stratified along z 

[i.e., go(%) = LBO(z), ne(E) = ne(z)], then Eq. (1.1) reduces to an 

ordinary differential equation that can be cast in the standard form of 

the Budden tunnelling problem’ 

2 2 2  2 
Pe where 

Xo are given approximately by 

5 = w / c  and for small values of w /w , nI the quantities ko and 

(2 - w 2 /w 2 2  )nI 

2(1 - w2 /w2) ’ 
K i = l -  pe 

Pe 

The solutions to Eq. (1.4) can be expressed in terms of Whittaker 

functions, and Stokes parameters giving reflection and transmission 

coefficients are easily derived. One finds that for the extraordinary 

mode incident on the resonance from the high field side, no reflection 

occurs and the fraction of power absorbed is 
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Even for quite modest plasma parameters ( e . g . ,  ne = 10 12 /cm 3 , 
w = 28 GHz, L = [(dB/da)/B]-' = 20 cm as found in EBT-S or THX-U), the 

absorption coefficient differs from unity by less than lo--? the 

cold plasma theory predicts complete wave absorption, and since there is 

no explicit dissipation mechanism included in the model, the absorption 

appears to occur entirely at the point z = 0 where the equation has a 

regular singular point. We obtain no information about the spatial 

absoprtion profile. 

Thus 

Additional insight can be gained by examining the local warm plasma 

kl = 0) dispersion for kll at fixed k . .  For propagation along I& (i.e., 

the Haxwellian plasma dispersion relation takes the simple form 

where v, = (2T,/1n,)~/~, E, = (w - Qc,)/kllve, and Z(E) is the plasma 

dispersion function. Figure 1 shows solutions of this dispersion 

12 3 relation as a function of Pee/@ for parameters ne = 10 /em , 
T, = 300 eV, w = 2n x 20 GMz. Below the cutoff and well above the 

cyclotron resonance, ki s Im(k,,) = 0 and k, = Re(kll) agree with the cold 

plasma result. As cyclotron resonance is approached (i.e., 

(A) - Q,, ,. kIlve), some energetic particles become able to  satisfy the 

Doppler shifted resonanee condition vII = ( w  - Qce)/kll and ki to 

increase, A t  the cyclotron resonance layer, w = Pee, the bulk of the 

distribution satisfies the Doppler resonance condition and damping is 

begins 

very strong, ki - k,. 
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Fig. 1. Real and imaginary parts of k versus Qce/o and z/Ao for 

Magnetic field scale length = lof2 /cm3, d 2 n  = 28 GHz, T, P 300 eV. ne 
is L IL: 12 cm. 
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One can estimate the spatial structure of wave absorption by 

local assuming geometrical optics and inte rating k l l ( 2 )  as given by the 

warm plasma dispersion relation 

Using the plasma parameters listed above and assuming a linear magnetic 

field variation, Qce(z) = ~ ( 1  -I- z / L ) ,  L = 12 cm, one finds that a wave 

propagating from z = = is undamped until z 5 2.4 em (i.e., 

Q,,(z)/w sz 1.2. Also, 95% of the incident power is absorbed by 

z = 0.8 cm (i.e., B,,(z)/w = 1.04) .  Thus t h  wave is completely 

absorbed in 1.6 cm, a length comparable to one free space wavelength, 

= 1.1 cm. In this model the wave power at cyclotron resonance z = 0 

Of course this WKB model would is down from the incident power by 1F6. 

not show wave reflection even if i t  were actually present. 

Although the local warm plasma WKB model gives an indication of the 

power dissipation profile and the spatial structure of E(z), one can, in 

fact, Rave little confidence in its detailed correctness. In the first 

place, the rapid change in the plasma dispersive properties on the 

space scale suggests the possible appearance o f  wave reflection and 

indicates the need for a f u l l  wave solution f o r  the fields. In the 

second place, the plasma current in the local dispersion relation is 

calculated assuming that particles streaming along magnetic field lines 

see a wave field of the form 0~ exp i (kvl l  - w)t] where k,, and vII are 

constant. However, Fig. 1 shows t h a t  k varies significantly on the 

scale and casts doubt an the very concept of a local wave number, a 

fundamentally geometrical optics concept. Also in reality vII varies in 

parallel stratified plasmas due to the uE?3 force. In this paper we 

[ 
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present a self-consistent solution of the Vlasov-Maxwell system avoiding 

a WKB approximation for the wave fields and including the nonlocal 

character of the plasma current. A similar analysis has been carried 

out by Timofeev and Chalkor for the case that makes a substantial 

angle with F. In this case E - remains small, O(Ve/c), and the damping 

is comparatively weak. However, a nonlocal Greens function was found 

which is indentieal t o  the one that appears in our analysis. 

Our analysis confirms the result of cold plasma full wave theory 

that far high field incidence, no wave is reflected, and for moderate to 

high density, the incident power is completely absorbed. Furthermore, 

we are able to prove analytically that for a class of distribution 

functions satisfying certain assumptions o f  analyticity and behavior at 

infinity in vII, no wave is reflected and the transmitted wave (which 

exists only fo r  very low density) is the same as given by the cold 

plasma model. Numerical solution of the integrodifferential equation 

shows that f o r  some cases of interest the wave absorption profile 

differs significantly from that predicted by finite temperature WKB 

theory [Eq. (1,9)]. Even though the power is totally absorbed in a 

short distance, the shape of the absorption profile is of considerable 

practical importance. This is because the energy gain and velocity 

space diffusion experienced by a particle of given energy and pitch 

angle are roughly proportional t o  ]E-} evaluated at the point along the 

field line Zr at which the Doppler resonance condition is satisfied. 

2 

(1.10) 
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Thus, f o r  example, large vll particles that are resonant at large Zr are 

strongly scattered by the full, undamped wave field, whereas small vI1 

particles 

wave fields and are not  heated. Correct calculation of E-(z) is 

essential to correct calculation of quasi-linear diffusion. 

that are resonant near 91sc,(Zr) = CI) experience only the damp 

2. WAVE EQUATION IN THE RESONANCE LAYER 

We start from the Ylasov equation liiiearized about a zeroth order 

distribution function which is isotropic in velocity space 

and from Plaxwell‘s equations written as 

where we have assumed time harmonic dependence of all linearized 

variables of the form exp(iwt), and where the causality condition 

requires that the solution be extendible into the domain Re(iw) > 0 or 

Iincs, < 0 and t h a t  the solution tend t o  zero as In& + - 0 ~ .  For simplicity 

ble assunie an equil.ibrium magnetic field with only x and components 

We assume that all equilibrium quantities vary slowly with respect to 

the free space wavelength c/o, Thus, geometrical optics applies except 
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in the immediate vicinity of the furdamental cyclotron resonance where 

wave absorption is strong. 

The assumption that all equilibrium quantities vary slowly in space 

relative to the free space wavelengrh may be given explicitly by the 

requirement that any equilibrium function of space, say c(x, y, z )  is of 

the form 

c ( x ,  y, 2) = c 6xu/c, Gyw/c, 6zo/c) , ( 

where ti is the usual geometrical optics small expansion We 

specify 6 quite specifically shortly. We must assume that the first few 

derivatives of B(x, y, z )  with respect t o  x, y, and z are all of order 

one in S and in any other small parameters we introduce. Our analysis 

depends on the presence of one other small parameter, namely the ratio 

of the mean electron thermal speed to the speed of light 

parameter. 

Our earlier study of: geometrical optics in plasma at electron cyclotron 

frequencies4'5 required that E be small as well as 6. Here we shall be 

forced to make specific assumptions relating E and ti in order to find 

nontrivial resonance Layer approximations to the system (2.1) and (2.2). 

We consider two distinct cases. In the first we assume that the ratio 

of the electron plasma frequency, t o  the electron cyclotron 

frequency, ace, is zero order in both c: and 6 .  In the second low 

density case, which includes Budden tunnelling, we assume W~~/P,, small. 

The requirement of nontrivial resonance layer equations finally imposes 

specific scaling relationships between E, t i ,  and upe/Slce. Beyond the 
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range of these relationships OUK treatment most likely fails. Before we 

start the resonance layer expansion, it is convenient to recast the 

Vlassv equation in a different form in dimensionless variables. Our 

choice of space coordinates, nondimensional relative to the free space 

wavelength - as opposed t o  charateristic equilibrium gradient length - 
p l i e s  that we have already partially completed the stretching of 

variables typicall of an inner expansion i n  a boundary layer theory. 

Further, in our coordinates we generally expect geometrical optics 

expansions of the form - go(&%, 6 7 ,  &z")exp[i@ (2,  7 ,  3 1 ,  where the 

space variables are x", f ,  and measured in units of the inverse free 

space wave number. Specifically, we introduce nondirnensional space and 

velocity space variables by the definitions 

5 f (./w)g , 

2 and modified distribution functions g(gp y), G(u /2 )  

and no is the local. electron number density. The original 

Vlasov-Maxwell system (2.1) and (2.2) becomes 



and 

(2.12) s c I 

x (TJ x 5) - E - = du g(9, g)(dg)/(iw) P ,J/(iw) . 

We have effectively assumed in (2 .8)  that the equilibrium distribution 

function is spatially independent. This assumption is clearly not 

essential but neither is it restrictive since our analysis is finally 

localized to the neighborhood of a point on the resonance surface. We 

take G ( 5 )  to be the distribution function at that point. 

Proceeding similarly to the analysis of Ref. 6 ,  we introduce 

components of 9 parallel to and perpendicular t o  6 ,  by the definitions 

(2.13) 

where 0 is the angle of the gyrophase and we expand g i n  a Fourier 

series in + 

(2.14) 

When we change the independent variables in the Vlasov equation from (g, 
2) t o  ( g ,  uII , ul 6) and when we employ the expansion (2.14), we f i n d  

that (2.11) becomes the infinite set of coupled equations 
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where 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

and O:, m f 0 are first-order spatial differential operators given in 

Ref. 7 whose specific form we do not need here. We note, however, that 

they contain only spatial gradients of perturbed quantities only in the 

directions perpendicular to bo. In direct analog with (2.17) sand 

(2.181, we may define the II and t components of any vector, in 

particular the current, and 

Examining the Vlasov equation 

small only the n = -1 component 

(2.193 

(2.20) 

in the form (2.15), we see that for E 

is significantly affected by the 



fundamental cyclotron resonance. 

the nonresonant case, 

To leading order in E we find, just as 

and 

1 aG g+l = - -i w / ( w  + Qce) 2 C'P" 

from which we obtain [see (2.19) and (2.20)] 

and 

J, = -i [w&~'(w + Qce)]El . 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

One can verify a postiori that contribwtions to go and g+l from g-l are 

smaller than the terms retained i n  (2.21) and (2.22). Clearly the forms 

(2.23) and (2.24) are exactly the same as given by the cold plasma 

conductivity tensor for the nonresonant components. 

To proceed, we perform a bouadary layer analysis on Eq. (2.15) with 

n = -1 in the fundamental cyclotron resonance region. We mix the 

methods of the geometrical optics approximation in two space coordinates 

perpendicular to  ,9B together with a boundary layer stretching in the 

space coordinate along _OB. A central element of this formal analysis is 

the assumption that the medium is approximately parallel stratified on 

the resonance surface. That j s ,  we assume that 6, and Po are nearly 
- 
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,.. 
parallel on the resonance surface. Further, since k0 and yBO change 

slowly in space, we may take Go and bo as approximately parallel for 

some number of free space wavelengths in the neighborhood of the 

resonance surface. !Je now start the introduction of our resonance layer 

coordinates. For any given point in space (E? 7, E) we construct a 

straight line normal to the resonance surface from that point to the 

resonance surfa~e. Our two transverse coordinates are the quantities 

S(%, 7, E )  and n ( g 9  7 ,  Z) which parameterize the point on the surface at 

the foot of the nornnal. Ve might take as the third coordinate (Qce - 

w ) / w ,  which clearly measures the! distance along the normal, but in view 

of ( 2 . 4 )  we see that (ace - w)/w is of order 8 in the resonance 

layer. Thus, we introduce the stretched coordinate 5 by the definition 

entire 

FqA,6 = Qc, - w * (2.25) 

Hence, we may parameterize space by the coordinates 5 ,  r\, and I;. 

Provided the fundamental resonance surface be smooth, the equilibrium 

quantities are functions of &S,  &Q, and &I; only. In t h i s  coordinate 

system E, = 0 is the resonance surface and l E l  - 1 constitutes the entire 
resonance Payer region. 

The Vlasov-Maxwell systern (2.153 and (2.163 exhibits singular 

behavior at fundamental resonance only in the coordinate E, and it is 

well-behaved in the coordinates C and in which it is slowly varying. 

T h u s ,  we can employ a geometrical opt ics  approximation in these 

coordinates and a / a S  -+ iks, a / a Q  -+ ikn7 and in view of the approximate 

parallel. stratification, a perpendicular wave number vector bl is 

well-defined. Hence lcL, which is 0(1), varies slowly in space and is 

determined by a limiting procedure of geometrical optics as one 
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approaches resonance. When yl is replaced by ilcL, we have reduced our 

system to  one space coordinate & only. If we differentiate (2.25),  we 

find 

and we finally define 6 precisely by 

where S(C, n) is evaluated at a particular point on the resonance 

surface. We may now rewrite (2.15) with n = -1 in the form 

To leading order we may drop all terms on the right-hand side, as these 

terms may be shown, a postiori, to be smaller than the terms retained. 

Thus, 8-1 is determined as the solution of the comparatively simple 

equation 

(2.28) 
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For 5 large the first term on the left-hand side o f  (2.28) dominates, 

and we are back to t h e  cold plasma conductivity tensor. We shall 

consider only t h e  eases &/E - 1 and &/E > 1. For &/E  small our analysis 

most likely does not apply. 

It is convenient to make a last change of variables to obtain a 

compact representation of t h e  solution of (2.28), We set  

and we may write the unique causal solution of (2.28) as 

so that 

(2.30) 

We see from (2.23), (2 .241,  and (2.30) that near resonance J, is of 

order E o 2 /cn\, Jll is of order E l l ~ p e / ~ ,  2 while J is of order 
I -t De 

E-[(~;~/w)/deB]. Thus, except when E- is much smaller than E, or E l l ,  J- 

is nsuch larger than 9, and J,, . 
We now turn t o  Maxwell's equations. In the resonance layer we - 

replace !I by kl and we find easily to leading order 



(2.31) 

(2.32) 

(2.33) 

We have omitted in (2.31)-(2.33) all terms involving spatial derivatives 

of equilibrium quantities. 

The system (2.31)-(2.33) simplifies considerably in the limit of 

small kL. Then Eq.  (2.31) describes electron plasma oscillations and 

Eqs. (2.32) and (2.33) decouple to give the ordinary mode and 

extraordinary mode, respectively, 

Pe E+ .= 0 (ordinary mode) 
0 [:) + [1 - W(O + Qce) 

and 

i % + E = - - J (extraordinary mode) . 
0 -  - act 

TQ this order, ordinary mode waves propagating nearly 

magnetic field are completely unaEfected by finite 

(2.34a) 

(2 e 34b) 

parallel to the 

temperature. For 
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arbitrary kl the system (2.31)-(2.33) has two distinct forms depending 

on whether U s  is O(1) or large. Tn either case we may solve (2.31) for 

Ell to obtain 

ldhen Q/F is large, we infer from (2.32) 

--(E 1 k -I- E-k+)k.+ 

+ 1 - kf - ape/" 2 2 '  
_-_ 2 + -  E =  

(2.35) 

(2.36) 

which we may solve for E+ and finally substitute into (2.33) to obtain 

( 2 . 3 7 )  

where 

and 

(2.39) 
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90 that 

(2.40) 

Note that Eq. ( 2 . 3 7 )  reduces to ( 2 . 3 4 b )  as K~ + 0. The condition for 

the validity of the approximations is &/E: large, or 

$e/”2ce > EK , 

and K is a dimensionless 6: 

( 2 . 4 1 )  

nstant of order one. 

When &/e  is of order one in 6 or e, we may still employ (2.35), but 

we must reexamine ( 2 . 3 2 )  and ( 2 . 3 3 ) .  We see that the left-hand side of 

( 2 . 3 3 )  is nominally of order one vhile the right-hand side of ( 2 . 3 3 )  is 

of order ( (A$, /$~~,)E- / (ES)~’~.  Thus, in order that both sides of (2.33) 

be of the same order of magnitude, we require that 

2 w 
KLJE6 = O(E) = o(8) . T ”  

Qc, 

&/E = L = O ( 1 )  , (2.42) 

Clearly (2.42) implies that the density is low. The system ( 2 . 3 2 )  and 

( 2 . 3 3 ) ,  after substitution of (2.35), then reduces in lowest order to 

( 2 . 4 3 )  
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( 2 . 4 4 )  

and again J(E') is given by (2.38). 

The system ( 2 . 4 3 )  and (2.44) has two distinct classes of solutions 

corresponding to the usual ordinary (0) and extraordinary (E) modes of 

propagation. For the 0 mode, E,, = 0 and E, is given by (2.43) [or 

(2,44)] with E- s 0. Far the E mode, both E, and E- are nonzero while 

E- is given by the result o €  eliminating E+ from (2.43) and ( 2 . 4 4 ) :  

(2.45) 

while E, is given by ( 2 . 4 3 )  once E- is known. 

Ell is given by (2.35). 

do not study it further. 

For either X or 0 modes, 

The 0 mode is unaffected by the resonance and we 

In summary, in higher density systems E- is given by (2.37) while d 

and 8 are constrained by Eqs. (2.40) and (2.41), while in lower density 

systems E- is given by ( 2 . 4 5 )  and the physical constraints are ( 2 . 4 2 ) .  

3. ANALYSIS OF THE INTEGRAL EQUATIONS 

I n  this section we examine the integrodifferential equations for 

the high density, (2.37), and low density, (2.45), cases. We show that 

the cold plasma model gives many, b u t  not all, of the properties of the 

solutions of (2.37) and ( 2 . 4 5 ) .  We show that for the high density case 



a wave incident from the high field side is totally absorbed. That is, 

no wave reflection occurs at resonance. We present in Sec. 4 the 

results of numerical solutions of this system given electric field, 

energy flux, and energy absorption profiles for different cases. For 

the low density case we show that a wave incident from the high field 

side suffers no wave reflection but is partially absorbed in and 

partially transmitted through the resonance layer. The transmission 

coefficient is found eo be exactly the same as in the cold plasma model 

analysis of Budden tunnelling.2 These results are proved with some 

precision. I n  the low density case and for waves incident from the low 

field side, our method of analysis fails. But subject to far more 

stringent hypotheses and in the spirit of a purely formal proof, we show 

that the transmission coefficient f o r  waves incident from the low field 

side equals the transmission coefficient in the case of high field side 

incidence. We are unable to give any information on the reflection 

coefficient. The equality of the! two transmission coefficients is also 

a cold plasma model result. Similar results on the transmission and 

reflection coefficients were found at fundamental resonance in a 

perpendicularly stratified mediums6 

The method of proof we emp1o:i is an extension of the techniques 

used in the case of a perpendicularly stratified We recast the 

integrodifferential equation as an integral equation in which we compare 

the solution to that i n  the cold plasma model. We extend the equations 

into the complex plane under the assumption that the solution is 

extendible in the complex plane in a particular way. Finally, we show 

that within a particular class of functions the integral equation has a 

unique solution. Further, thfLs solution has an asymptotic expansion 

valid for large argument which matches the solution of the problem in 
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the cold plasma model. The method works only for  waves incident from 

the high field side as only this solution satisfies our hypotheses. 

This analysis shows us that f o r  high field side wave incidence, no wave 

is reflected and the transmitted wave (which exists only in the low 

density case) is the same as in the cold plasma model, In the low 

density case o f  low field side incidence, we obtain the transmission 

coefficient from a generalized Wronskian relation. We cansider reduced 

distribution functions which are analytic in uII in appropriate domains 

and which satisfy other hypotheses. A wide class of distribution 

functions is ineluded, but the  assumption is restrictive and it is 

critical. Without it we cannot obtain the results presented here. 

Before we proceed to the two distinct integrodifferential 

equations, we obtain a few general properties of our system applicable 

in either case. We recall that our equations possess solutions that are 

analytic in the domain h{w} < 0. In view of the definition (2.25), we 

see that we may expect our solutions to be analytic in Im{E} > 0. Since 

the solutions must tend to zero as h ( w )  + -=, it is tempting to assume 

a comparable property of the solutions as Im{t} 3 -+m. This property is, 

however, false. The parameter (nr occurs in the integrodifferential 

equation in other places besides the combination (2 .25) .  Thus, 

Irn{~] -+ -m is riot equivalent to I m { t J  -+ +-. Nonetheless our solutions 

are analtyic in Im{Q > 0, and our ethod of proof applies only to those 

ssluti~ns (if any) which tend to zero as Im{S) + P. En other problems6 

where we have calculated numerically those solutions which are large as 

Im(l;} + +-, we have found that they are not approximately given by the 

cold plasma solutions. Thus, we suspect that with the analysis and the 

Wronskiaw relation we have extracted the maximum analytic information 

poSSitale* 
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We first examine the integral kernel (2.38) that occurs in both 

problems. After we perform the ul and Q, integrations we may define a 

reduced distribution function 

normalized and scaled so that 

m OD 

The basic integral kernel then becomes 

(3.3) 

or 

W (I) 

On a purely formal basis, if we integrate by parts two times with 

respect to 5 we find 
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For (3.5) to be valid we require only that E - ( C t )  be sufficiently 

differentiable that the function and its derivatives do not grow too 

rapidly at infinity and that the integrands be defined at all points on 

the path of integration. Ve shall shortly extend the path of 

integration into tho complex plane and restrict the class of functions 

E-(%) so as to assure the validity of (3.5). We note in passing that 

the f i rs t  term on the right-hand side of (3.5) gives rise to the usual 

cold plasma conductivity. 

The properties of the integral kernel M are largely determined by 

the properties of the functions 

for n = +.I. For a general smooth, but not necessarily analytic, 

distribution function In(X) possesses an analytic continuation iiito 

Irn{X) > 0 and for large 1x1 and n 2 1, and if g(uII) has N integrable 
derivatives, then 

The estimate ( 3 . 7 )  and analytic continuation into h ( X )  > 0 are not 

adequate to complete our proof. For a Maxwellian distribution, 



25 

g(u,,) = (1/d2n)exp(-A u i ) ,  we may obtain much stronger estimates. In 

this case it is easy to show directly from ( 3 . 6 )  that f o r  any 6 > 0, 
In(X) is analytic in 

2 

( 3 . 8 )  
3 R  
4 

larg X - n / 2 (  = (arg(-iX)I < -- - 6 

and in that sector and for 1x1 2 1, 

where OL and f3 are functions of n and 6 .  In fact, In(X) is analytic in a 

larger domain, but the estimates (3 .8 )  and ( 3 . 9 )  are adequate for  our 

purposes. If we were to multiply the Maxwellian by any given polynomial 

in (u,,), ( 3 . 8 )  and (3.9) would atill hold with new values of a and 6. 

In our proofs we assume that (3 .8 )  and ( 3 . 9 )  hold. With no great 

additional effort we could consider distribution functions g(ull), which 

are analytic and which f o r  large lull I satisfy 

g(ull ) - P(q )@XP(-IU~! I 1 +r] , Y > C, and ~ ( ~ 1 1 )  a polynomial in uII . In 

this case, I,(X) would be analytic in a (arg(-iX)) < (n /2 )  + 6‘ 

for some 6’ > 0 and would satisfy an estimate there of the form (3.9) 

with (-iX)2’3 replaced by (-iX) hi ’)’h2). We res trict ourselves to 

Maxwellians and the estimates (3 .8 )  and (3.9) although some limited 

generalization is possible. 

domain 

In terms of the function In(X) j u s t  introduced, if we change the 

variable of integration in ( 3 . 4 )  and (3.5) from F; to x = E - E’ and for 

simplicity of notation we replace E’ by <, we obtain 
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(3.10) 

and after formal. integration by parts, 

/I1(x 2 + 2xC) . 

(3.11) 

If E-(Q is analytic in the upper half-plane and grows no faster than a 

polynomial in C at infinity, then (3.10) provides an analytic 

continuation of the operator M for complex 5 and (3.10) is justified in 

I m ( l ; )  > 0. We next address a change in the path of x integration in 

(3.10) and (3.51). 

We have examined the analytic functions I,(X), but we see that in 

(3.10) and (3.11) the argument of In(X) is the more intricate entity 

+(x2 + a x e ) .  In order to apply the estimate (3.9), we must 

the argument of x2 + 2xC.  We start by consideration of 

analytic function 

where B = dr + iai. We see that on the curves ai = 0 and 

IIIP(JI) = 0, while! in the curves (or + 1)2 - ai = 1, Re{$) -- 0 (see 

Fig. 2). In Fig. 2 Im{$] changes sign across a dotted line, while 

determine 

the simple 

(3.12) 

tJr e -1 A ?  
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Fig. 2. Contours Im[p) ZI 0 and Re{$) = 0 in the complex u plane 

g.J = a(a + 2). 

changes sign across a solid line. It is also useful to describe the 

curves arg $(a) = const, which we give in Fig. 3 for Re[$) > -1. The 

curves for Re(a) < -1 are the mirror image of those shown. The curves 

arg p = const are all rectangular hyperbolas given by the relation 

It is easy to show that for any value of tan[arg(g)] the corresponding 

rectangular hyperbolas are asymptotic t o  lines which make angles of 

arg(9) ? kn and arg(q) 2 (k + 1 / 2 ) ~  with the real axis. 

The argument of I+ - may be expressed as 
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Fig. 3 .  Contours of arg(+) = canst in complex d plane. 

so that 

Thus, f o r  any S, = IClexpIi a r g ( b ) ] ,  in order to obtain the ~ U K V ~ S  of 

constant phase of +(x, S,) in the complex x plane, we add 2 arg(5) t o  the 

phase of 9 as given in Fig. 3 and we rotate Fig. 3 i n  a positive, 

(counterclockwise) sense by an angle equal to arg t. For Z real and 

positive, Fig. 3 applies. For C pure imaginary, the corresponding 

figure (with only critical curves shown) is given in Fig. 4.  

Far 5 real and negative, we show the critical lines of constant 

phase in Fig. 5. In Figs. 3 through 5 we have adjusted the phase such 

that f o r  1x1 large arg(+) - 2 arg x ,  
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imaginary. 

I 

4 .  Contours of arg(+) = const in complex x plane, 5 
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1 

is pure 

Fig. 5. Contours of arg(4) = const in complex x plane, C, real and 
negative. 
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We now return to the consider tian of the integral kernel given by 

(3.10). Since I,l(X) is exponentially bounded by (3.9) in the sector 

-n/4 < arg X < 5n/4, it is easy t o  see from Figs. 3 through 5 that for 

all T; ,  Irn{C) 2 0 it is possible to deform the integrals in (3.10) into 

the upper half-plane and yet maintain the argument +2x(x + C) in the 

appropriate sector. In this process each integral in (3.10) or (3.11) 

must be treated separately, and each integral yields a distinct contour 

o f  integration. Once we have moved the  paths of integration into the 

upper half-plane, it i s  then trivial to integrate by parts twice and 

obtain (3.11) as the expression f o r  the integral operator, where it is 

understood that the path o f  integration is in the upper half-plane and 

on a contour in which arg[t-x(x + 25)] is uniformly in the correct sector 

and the path of integration is such that 

- 

Additionally, on the paths o f  integration we may also assume 

Thus, on the paths of integration 

(3.12a) 

(3.12b) 

(3.13) 

for some E for all x and all 5, 2 1. 
We may finally recast our integrodifferential equation in the form 

E" c [a + h1(2C)]E = bMZoE , (3.14) 
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where we have replaced E-(<) by E(<) and we have defined 

MoE = bE/(2<) + M ~ o E  9 

and 

In the -gh density case, a 

(3.15) 

(3.16) 

2 ,g2 )] ( 2 2 )&/2&-3/2 - Upe ce 

(3.17a) 

is set t o  zero since c/6 tends to zero, 

while in the low density ease, ( & / t i )  is O(1) and uie/PEe is small so 

that 

(3.17b) 

and each factor in ( 3 . 1 7 b )  is O(1). In (3.14)-(3.17) we have a unified 

form for both the high density and low density cases. We now examine 

(3.14) in Im(Q 2 0. 

Our proofs require that we distinguish the two cases and we treat 

first the high density case in which a = 0 and b > 0. Two linearly 

independent solutions of u” + b/(2t)u o 0 are 51/2Hf1)(J2bt) and 

51’2H$2)(J2b?3. Clearly the first solution is exponentially small in 5 

for n 2 arg < > 0, while the second solution is exponentially large 

there. We set 

(3.18a) 
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(3 .18b)  

where we select E SO that the Wronskian of u1 and u2 is one. An 

1 equation equivalent to the differential equation (3.14) is 

(3.19) 

Ye show that the integral equation (3.19) is well defined and that €or 

large @ I C )  = ul(S)[l + o ( 1 ) l .  We will then have shown that a wave 

incident from the right-hand (high field) side is totally absorbed, 

since a n l ( < )  describes such a wave. Since u2(5) is exponentially large 

in the upper half-plane, it is not at all obvious that the integrals in 

(3.19) are well defined. We must select a domain in the upper 

half-plane, show that f o r  all (= there the equation is defined, and then 

show that Picard iteration converges. The choice of proper paths of 

integration in (3.11) and in (3.19) is essential in this activity. 

We are finally ready t o  specify our class of functions. Since we 

expect E(<) t o  behave asymptotically like ul(C), we expect for (C) large 

The integral operator MloE involves not only the function E but also i ts  

first two derivatives. Thus, we define the function norm 

e -iJ2b< 1 '  
(3.20) 



33 

where E(Q is analytic in the upper half-plane and D is as yet an 

unspecified subset of the upper half-plane. We prove convergence of 

Picard iteration f o r  (3.19) only for IC1 > R for some R. Further, we 

require that each point in D have the two contours of integration in the 

definition of M1 in D as well. Thus, we have a domain whose shape is 

indicated in Fig. 6 .  We finally pick R when we complete our estimates. 

Suppose E(<) has finite norm according to (3.20), then for some C1 

> O  

ORNL-DWG 86-2056 FED 

DOMAIN D 

Fig. 6 .  Domain of definition of 1yI in complex < plane. Domain 

consists of all points P having two convergent contours of 
integration, each point of which lies outside I T ; I  

1 

R. 
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we see that 

where or = B/JZb and u = x / C .  Since Id1 + u - 11 2 1 ~ 1 " ~  we see that 

for large enough, O K  R large enough, the integral in (3.21) exists 

and is clearly independent of E, so that 

We now return to the inte ral equation (3.19) and we select the path of 

integration to be from C t o  5 + i m along a ray parallel to the 

imaginary axis. It now follows that 

(3.23) 

(3.24) 

If we finally rewrite the integral equation (3.19) as 

then it follows trivially from the definitions and from (3.23) and 

( 3 . 2 4 )  that 

Hence for R large enough that C5/R 'I2 < 1, N defines a contractive 

mapping and (3.25) possesses a unique solution in the class of functions 
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of finite norm given by (3.20). The estimate (3.26) further indicates 

that for large the solution obeys 

(3.27) 

and (3.27) applies uniformly in D. Thus, we have shown that the 

incoming wave is totally absorbed without any wave reflection. 

We now turn to the low d.ensity case corresponding to the 

integrodifferential equation given by (3.14) with bath a and b nonzero. 

Our aim is to recast this equation into a pure integral equation of the 

form (3.19). To this end we must select the functions ul(S) and u2(5), 

which we take in this case t o  be solutions of a special case of the 

confluent hypergeometric equation 

for which two linearly independent solutions are (see Ref. 7 )  

where 

p = ib/(4Ja) . 

Thus we take 

u1 = W+p,"2 (-2i~at.) , 

for which the asymptotic expansion valid in Im[Z) 2 Q is 

(3.28) 

( 3 . 2 9 )  

(3 .30 )  
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We note that the choice of functions here is different from that in 

Ref. (7) ,  since our functions are analytic in the upper half-plane 

instead of being analytic. in the lower half-plane as in Ref.  (7). The 

so lut ion u1 is exponentially small. as ImC5) + +m. 

We take as the second solution 

(3.31) 

where g is chosen so that the Wronskian of u1 and u2 is one. The 

B of validity of asymptotic expansions of W (2 )  is the 

sector Jarg(z)l < II - 8 ,  but the standard integral representations of 

these functions indicate that t h e  range of validity o f  these expansions 

is, i n  fact, (arg(z)( < -- 6. The lines arg(z) = 2: are Stokes lines 

across which the expansions are discontinuous. Thus, in 

0 5 ary 5 5 TI - zl 

k,m 

3n 

( 3 . 3 2 )  

If we duplicate the analysis found in Ref. (7) concerning analytic 

continuation of Whittaker functions, we find that in n/2 + 6 < arg 5 5 R 

(3 .33)  

where the explicit value of h is of 110 interest here. Except in the 

neighborhood of the negative real axis, the term proportional t o  h is 

exponentially small compared wtih the first term. On the negative real 

axis, both terms are comparable. 
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With u l ( Q  and u2(<) defined by (3.29) and (3.311, we may rewrite 

the equation (3.14) in the form (3.19). For functions analytic in the 

upper half-plane, we define 

We can now easily parallel the first proof. 

now find, far more easily, 

Corresponding to (3.22), we 

so that 

and 

(3 .36)  

(3.37) 

where (3.36) and (3.37) correspond to (3.23) and (3.24). The integral 

operator N for this problem, see (3.35), then satisfies the estimates 

Thus, 

I I 

for R > E5, N generates a contractive mapping. Within the class 

of functions with finite norm according to (3.34), the 

integrodifferential equation has a unique solution and for this solution 

... 
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Mow the solution u1 corresponds to a wave incident from the field 

side with no reflected wave and with transmitted amplitude 

T = exp - b a / ( 2 d a ) ] ,  exactly as in cold plasma theory and geometrical 

optics. The energy absorption is 1 - T ,  and the problem is essentially 

what one would f i n d  in a cold plasma model. 

high 

e 

We next turn t o  the case of waves incident from the law field side. 

We cannot apply the previous analysis since the solution must have the 

asymptotic form of u2' which is exponentially large in the upper 

half-plane. In this case we apply a Wronskian relation, and we work on 

the real axis onby, We must hypothesize rather s t rong  conditions on the 

solutions. We believe the hypotheses are reasonable, but we cannot be 

sure that the hypotheses hold, For two solutions of the 

integrodifferenrial equation (3.141, E(<) and F(C,), we hypothesize 

( 3 . 4 0 )  

exists 

may write 

and may be treated without coneern for convergence problems. We 

HOE = i 1' dx E ( J C ) I - ~ ( < ~  - x2) c i dx E(x)Xel(x2 - C2) , 
-z T; 

and it is then trivial to show that 

(3 .41)  

Since we have the estimate on MI. (3.35) it is quite likely that the 

interchange of integrations implied to o b t a i n  ( 3 . 4 1 )  is valid. If we 

return t o  the differential equation ( 3 . 1 4 ) ,  we readily conclude 
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so that 

l i m  [F(A)E' ( A )  - Ff (A)E(A) - F( .B)E' (B)  + F' (B)E(R)] = 0 . 
A* 
B+-" 

(3 .42 )  

If we now assume that there is a solution of (3.14) which as S .$ -a has 

the expansion 

while for 2, 3 +OD 

( 3 . 4 3 )  

( 3 . 4 4 )  

and if we apply ( 3 . 4 2 )  with E(<) as the solution previously obtained for 

the high field side incidence prohlem, we conclude 

T L " T  ? (3.45) 

where TL is the transmission coefficene for low field side incident 

waves. are unable to offer any information concerning RL, which we 

believe must be calculated numerically. 

We 
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4 .  NUMERICAL COMPUTATION OF STRONGLY DAMPED WAVES IN DENSE P U S  

In t h e  case of extraordinary mode waves propagating nearly parallel 

to the magnetic field or f o r  finite kJ. w i t h  8 and S satisfying the 

condi t ions  of Eq. (2.39), the e q u a t i o n  for E reduces t o  the simple form 

n 

where J(<) is given by Eq. (2.38) and K i s  given i n  (2.39). When the 

unperturbed distribution is Maxwellian, G(g) = e~p(-u~)/(n)~'~, the 

velocity space integrals can be performed and the plasma current 

expressed as a convo lu t ion  integral 

where the Green's function H ( x )  is 

( 4 . 2 )  

( 4 . 3 )  

The first integral in Eq. ( 4 . 2 )  arises from particles streaming from low 

field to high  f i e l d  [i.e ., ull < 0 in Eq. (2.38)] whereas the second 

es from UII > 0. 

Before presenting the! numerical solution of Eq. (4.1), it i s  of 

interest t o  examine the structure of H(x) and t o  compare the nonlocal 

plasma response given by ( 4 . 2 )  to t h a t  predicted by local, warm plasma 

theory. Figure I shows the  1 and imaginary parts of M(x). At x = 0 
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Fig. 7. Real part (solid curve) arid imaginary part (dashed curve) 

of Greens function H(x), Eq. ( 4 . 3 ) .  

there is a logarithmic singularity [H(x) - -In x - 3y/2 - Ki/2 as 

x -+ 01, and for large x there is an asymptotic expansion of the form 

which is exponentially damped and rapidly oscillating for  large x. Thus 

the nonlocal contribution t o  the current is negligible f o r  - 

C2(  2 10. the 

plasma current, the part in phase with E - . From Fig. 7 we see that 

Re(H} is singular near E, = 2, and so t h e  dissipation is approximately 

The real part of €i gives rise to the dissipative part of 
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local. However, since Re(Hl] oscillates negative in the approximate 

range 0.5 < x < 5.0, it is possible to have local ne ativc dissipation 

for .some electric field profiles. This is actually found to occur in 

the numerical solutions. 

The per tu rbed  plasma current as predicted by local, warm plasma 

theory i n  the present scald variables is obtained by replacing a /a<  by 

ik and treating < as a constarlt parameter in Eq. (2.38). For a 

Naxwellian distribution, one obtains 

- 

where Z(x) is the plasma dispersion function. We now calculate the 

perturbed current fo r  an asstimed incident wave field of the form 

Figtare 8 shows the real parts of J(<) (solid) and Jlocal. (<) (dashed) for 

an unclarnped plane wave i nc iden t  from large < k, = 1.0, ki = 0.0. At 

large values  of C,, C >, 8 both profiles agree with the cold plasma 

result, J 01 E-(<)/<, For Z, 2 7 these is a small difference, primarily a 

phase shift with J (<)  lagging Jlacal. However, if one plots  the profile 

of power dissipation, PD 0~ Re@* J } ,  shown in Fig. 9, a much more 

significant difference i s  seen, Initially the dissipation is negative, 

4.5 < < < 7, the nonlorlal dissipation increases more rapidly than 

the prediction of local theory. If one takes the incident wave to be 

damped, these features of negative dissipation followed by rapid 

positive dissipation are increased. This is shown i n  Fig. 10, where k 

was Although the complex b was included in 

- - 

then 
H C  

- 
- - 

taken t o  be k = -2 - 0.5io 
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J 

Fig, 8. Real part of nonlocal current profile (solid curve) and 
local current profile for a specified undamped plane wave electric 
field. 

Eq. ( 4 . 4 ) ,  the shape of PD local ( E )  is almost unchanged by including 

damping. We conclude therefore that nonlocal effects can be important 

in determining the perturbed current and that these nonlocal effects are 

sensitive to the wave field profile in the resonance region. 

The numerical solution of the system (4.1)-(4.3) has been carried 

out in a previous workS where the same system appeared in the 

investigation of ion cyclotron heating in tokamaks. The numerical 

methods of solution are discussed in detail in that reference. 
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P i g .  9. Power dissipation profile PD = Re{E * J} for nonlocal 

current response (solid curve) and local current response. E i s  a 

specified undamped plane wave, k = -2. 
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Fig. 10. Similar to Fig. 9 except electric field is specified to be 

a damped plane wave, k = -2 - 0.5i, 

Figure 11 shows the real part of E (<) (solid) and, for comparison, the 

real part of the solution of the cold plasma equation [Eq. (1.4)] for 

- 

the particular case K = 21. Ue remind the reader that in the scaled 

variables 

............ -..... 
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F i g ,  11. Computed e l e c t r i c  f i e l d  p r o f i l e  E , real part ( s o l i d  

f i e l d  S whec k = 21.  Also shown are the scales in R,,/w and Z/X, for 
curve) ,  imaginary par t  (dashed C I I ~ V ~ )  versus sealed - l ength  a long  the  

t h e  p a r a j ~ ~ t e r  ne = 2 x 1O1*/cm3, T, = 300 eV, L = 12 C I I ~ .  

where 6 1-- diiiiensional d i s t ance  along the f i e l d  from the  resonance layer 

and For the  simple case kL = 0. 

A set  of parameters of i n t e r e s t  t o  TMX-IJ o r  EBT-S f o r  which K = 21 is a 

reasonable value is P = 28 G H ~ ~  (w /J  =: 0.21, 2 
Pe ne = 2 x 1012/,,3 
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T, = 300 eV (E = 0.034)  and L 1% cm. Figure 11 is identical to 

Fig. lb of Ref. 6 except that is is plotted in our present scaled 

variables and also in terms of the free space wavelengths, Xo P 1.07 cm, 

for the above set of plasma parameters. The warm plasma and cold plasma 

results are in agreement for large C, < I 8.0. However, for 5 < M 8 the 

amplitude of the warm plasma decreases and a phase shift develops with 

the wavelengths of the warm plasma solution decreasing more rapidly than 

the cold plasma results. 

Figure 12 shows the electromagnetic Poynting flux obtained from 

Fig. 11 and the flux obtained from warm plasma, local WKB theory by 

integrating ki [Eqs. (1.8) and (1.9)]. We notice that the Poynting flux 

for the nonlocal calculation initially increases as might be anticipated 
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Fig. 12. Profiles of electromagnetic power flux obtained from 
computed full wave electric field and from local WKB calculations. 
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from the region of negative Re(R(x)) seen in Fig. 7 and the region of 

negative dissipation seen in Figs. 8 and 9. The absorption prediced by 

the nonlocal, f u l l  wave theory is more rapid than that prediced by WKB 

theory. 

in the full wave theory. 

The half power point occurs at about 309;: higher 

4 .  DISCUSSION 

In this paper ve have studied the absorption of extraordinary mode 

waves propagating nearly along the magnetic field where the magnetic 

geometry has OB nearly parallel to E ,  I n  such geometry E - is not 

shielded o u t  by the large electron conductivity, and damping is very 

strong. I n  order to account for t h e  strong damping and the fact that no 

well defined KII exists, an integrodifferential system is solved. 

Assuming S = Ao/L and e = Wth/c to be small parameters confines the 

resonance interaction to a. thin boundary layer near the Qce = o surface 

within which the equations can be greatly simplified. In particular, 

the ordering used permits the vl dependence to be separated reducing the 

problem to one in vII and 5. It should be noted that in third ordering 

the variation of particle vII due to v V f 3  forces is neglected [these would 

enter through order E terms on the right side of Eq.  (2.27)J. There is 

an boundary layer at vII = 0 ,  p = 0 where upon the first two 

terms on the left o f  Eq. (2.27) vanish. This is of no consequence for 

the cases considered here since the wave energy is effectively gone by 

the point t --- 0 .  Calculations af quasi-linear diffusion and energy gain 

f u r  single particles (such as given by Howard') have shown that vOB 

force is important for single particles mirroring near the resonance 

additional 
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layer. However, our calculations show that their contribution to the 

plasma current does not affect the wave propagation, at least the 

distribution function is Maxwellian. Of course in a strongly heated 

plasma with a non-Maxwellian group of energetic particles turning near 

resonance, this may no longer be true. 

when 

The analytic calculations presented in Sec. 3 show that the 

complete wave absorption seen in cold plasma theory and in warm plasma 

WKB for sufficiently dense plasmas also holds kinetically for a 

wide class of smooth equilibrium distribution functions. Also for low 

density plasmas for which there can be some transmission through the 

resonance, the transmission coefficients for both high and low field 

incidence are correctly given by the cold plasma results. 

theory 

In order to obtain profiles of E - and power absorption, it is 
necessary to solve the integrodifferential system numerically. Again, 

the calculations presented in See. 4 confirm the absence of a reflected 

wave and the complete absorption of the incident power. For the plasma 

paramaters used in the example presented, the nonlocally calculated 

power deposition profile differs quantitatively from a local WKB 

calculation. An interesting feature shown in Figs. 10 and 11 is the 

negative absorption as the wave first enters the resonance region. This 

is to be expected from the form of the Greens function (Fig. 8 ) .  

Physically this is the result of particles with vII > 0 having the 

correct phase relation to return energy to the wave at large 5 ,  which 

had been absorbed from the wave in the region of strong interaction. A 

similar effect is seen in other situations where the wave carries a 

kinetic energy flux. in 

perpendicularly stratified plasmas .’ 9’’ 

An example is in minority ion cycloton heating 
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In Fig. 11 the absorption is seen to b e  somewhat more rapid than is 

predicted by the local WE) theory. Although there is probably little 

practical consequence of whether the power is absorbed spatially at 

slce/w = 1.07 V~KSUS 1.13, through the Doppler shifted resonance 

condition, Eq. (l.lO), this translates into a difference in the location 

in velocity space a t  which the wave energy is deposited. The velocity 

space behavior of the quasi-linear diffusion operator can be very 

crucial depending on the location of loss cones or  the neoclassical 

confinement characteristics of various regions of velocity space. Work 

i s  under way to evaluate the quasi-linear operator for the 

self-consistent electric field obtained here. However, because of the 

strong damping and the rapid variation of effective K,,, the usual 

stationary phase methods used to  evaluate the quasi-linear operator in 

spatially varying plasmas cannot be applied. 



51 

REFERENCES 

1. T. H. Stix, The Theory of Plasma 
1968). 

- -__I_ 

Waves 
__I 

(McGraw Rill, New York, 

2 .  D. €3. Batchelor, Plasma Phys. -. 22, 41 (1980). 

3. 

4 .  

5. 

6 .  

7. 

8. 

9. 

10. 

For a recent review with copious references see M. Bornatici, 
R. Cano, 0. DeBarbieri, and F. Engelman, Nucl. Fusion I 23, 1153 
(1983). 

A.  V. Tirnofeev and G. N. Chulkov, Sov. J. Plasma Phys. - 5, 712 
(1980). 

D. B. Batchelor, R. C. Goldfinger, and H. Weitzner, IEEE Trans. 
Plasma Sci. - PS-8, 78 (1980). 

A .  Fruchtman and 8 .  Weitzner, submitted to Phys. Fluids. 

H. Weitzner, Phys. Fluids - 26, 998 (1983). 

J. E. Howard, Plasma Phys. - 23, 597 (1981). 

P. L. Colestsck and R. J. Kashuba, M u d .  Fusion 23, 763 (1983). 
K. Imre and H. Weitzner, Phys. Fluids I 28, 3572 (1985). 





5 3 

ORNL/TM-10020 
Dist. Category UC-20 g 

INTERNAL DISTRIBUTION 

1-6. D. B. Batchelor 
7. C. 0. Beasley 
8 .  33. A .  Carreras 
9. M. D. Carter 
10. E. C. Crume 
11. N. 0. Dominguez 
12. R. A. Dory 
13. C. L. Bedrick 
14. S. P. Hirshman 
15. J. T. Hogan 
16. W. A .  Houlberg 
17. B. C. Howe 
18. E. F. Jaeger 
1 9 .  C. S. Lee 
20. J. I?. Lyon 

21. J. A .  Rome 
22. K. C. Shaing 
23. J. Sheffield 
24. D. A. Spong 

25-26, Laboratory Records Department 
27. Laboratory Records, OWL-RC 
28. Document Reference Section 
29. Central Research Library 
30. Fusion Energy Division 

Library 
31. Fusion Energy Division 

Reports Office 
31, ORNL Patent Office 

EXTERNAL DISTRIBUTION 

32. 

33. 

34 * 

35. 

36. 

37. 

38 I 

39 

40. 

41. 

42. 

Office of the Assistant Manager for Energy Research and 
Development, Department of Energy, Oak Ridge Operations Office, 
P. 0. Box E, Oak Ridge, TN 37830 
J. D. Callen, Department of Nuclear Engineering, University of 
Wisconsin, Madison, WI 53706 
R. W. Conn, Department of' Chemical, Nuclear, and Thermal 
Engineering, University of California, Los Angales, CA 90024 
S .  0.  Dean, Director, Fusion Energy Development, Science 
Applications, Inc., Gaithersburg, MD 20760 
R. K. Forsen, Bechtel Group, Inc., Research Engineering, P. 0. Box 
3965, San Francisco, CA 94105 
A. Fruchtman, Courant Institute of Mathematical Sciences, New York 
University, 251 Mercer Street, New York, NY 10012. 
R. W. Gould, Department of Applied Physics, California Institute 
of Technology, Pasadena, CA 91125 
D. G. McAlees, Exxon Nuclear Co., Inc., 777 106th Avenue, NE, 
Bellevue, WA 98009 
K. Riedel, Courant Institute of Mathematical Sciences, Mew York 
University, New York, NY 10012. 
H. Weitzner, Courant Institute of Mathematical Sciences, New York 
University, New York, NY 10012. 
P. J. Reardon, Princeton Plasma Physics Laboratory, P. 0. Box 451, 
Princeton, NJ 08544 



54 

43 a 

44 a 

45 0 

46 e 

47 * 

48 " 

49. 

50 * 

51. 

52 * 

5 3 .  

54 a 

55 e 

5 5 .  

57. 

58 .  

59. 

60. 
61. 

62. 

6 3 .  

64 

65. 

66 .  

w. n. Stacey, School. a€ Nuclear En ineesing, Georgia Institute of 
Technology, Atlanta, GA 30332 
G. A .  Eliseev, I. V. Rurchatov Institute of Atomic Energy, P. 0. 
Box 3402, 123182 Woscow, U . S . S . R .  
V. A .  Glukhikh, Scientific-Research Institute of Electro-Physical 
Apparatus, 188631 Leningrad, U . S . S . R .  
I. Spighel, Lebedev Physical Institute, Leninsky Prospect 53, 
117924 MOSCQW, U.S.S.R., 
D. 19. Ryutov, Institute of Nuclear Physics, Siberian Branch of the 
Academy of Sciences of the  U , S . S , R . ,  Ssvetskaya S t .  5, 630090 
Navssibirsk, IJ. S. S. R. 
V. T. Tolsk, Kharkov Physical-Technical Institute, Aeademical 
St. 1, 310108 Kinarkov, U . S . S . R .  
R. Varna, Physical Research Laboratory, Navangpura, Ahmedabad, 
India 
Bibliothek, Nax-Plamk Insti tut fur Plasmnaphysik, D-8045 Garching 
bei Nunchen, Federal Republic of Germany 
Bibliothek, Institut f u r  Plasmaphysik, KFA, Postfach 1913, D-5170 
Julich, Federal Republic of Germany 
Bibliotheque, Centre des Recherches en Physique des Plasmas, 21 
Avenue des Bailis, 1007 Lausanne, Switzerland 
Bibliotheque, Service du Confinement des Plasmas, CEA, B.P. No. 6 ,  
92 Pontenay-aux-Roses (Seine), France 
Documentation S . I . G . N , ,  Departement d e  la Physique du Plasma et de 
la Fusion Contralee, Centre d'Etudes Nucleaires, B.P. 8 5 ,  Centre 
du Tri, 38041 Cedex, Grenoble, Prance 
Library , Culham Laboratory, IIKAEA, Abingdon, Oxon, OX14 3DB, 
England 
Library, FOM-Hnstituut voor Plasma-Fysica, Rijnhuizen, Jutphaas, 
The Ne therlands 
Library, Institute of Physics, Acade ia Sinica, Beijing, Peoples 
Republic of China 
Library, Institute of Plasma Physics, Nagoya University, Nagoya, 
Japan 
Library, International Centre f o r  Theoretical Physics, Trieste, 
I taPy 
Library, Laboratorio Gas Ionizatti, Frascati, Italy 
Library, Plasma Physics  Laboratory, Kyoto University, Gokasho Uji, 
Kyoto, Japan 
Plasma Research Laboratory, Australian National University, 
P.O. Box 4 ,  Canberra, A.C.T. 2000, Australia 
Thermonuclear Library, Japan Atomic Energy Research Institute, 
Tokai, Naka, Ibaraki, Japan 
J. F. Clarke, Associate Director far Fusion Bner , Office of 
Pusian Energy, Office o f  Energjr Research, U.S. Department of 
Energy, Mail Stop G-256, Washington, DC 29545 
D. B ,  N ~ S X I ,  Acting Director, Division sf Applied Plasma Physics, 
Office of Fusion Energy, Office of Energy Researchp 
U.S.  Department of Energy, Mail Stop G-256, Washington, DC 20545 
W. Sadowski,  Fusion Theory and Computer Services Branch3 Office of 
Fusion Energy, Office of Energy Research, U.S. Department of 
Energy, Mail Stop G-256, Washington, DC 20545 



55 

67 e 

68. 

69 

70. 

71 * 

72 * 

7 3 .  

74 * 

75 I) 

76 " 

77. 

78. 

79. 

$0. 

81. 

82. 

83. 

04 I) 

85. 

$6 

87. 

89 * 

Ips, A .  Davies, Tokamak Systems Branch, Office of Fusion Energy, 
ffice of Energy Research, U,S.  Department of Energy, Mail Stop 
-256, Washington, DC 20545 
e Oktay? Tokamak Systems Branch, Office of Fusion Energy, Office 

sf Energy Research? U.S.  Department of Energy, Mail Stop G-256, 
Uashington, DC 20545 
MiI.  N. Rosembluth, University of Texas, Institute for Fusion 
Studies, RLM 11.218, Austin, TX 78712 
Theory Department Read Pile, c/o D. W. RQSS, University of Texas, 
lnstitute f o r  Fusion Studies, Austin, TX 78712 
Theory Department Read File, c/o R. e. Davidson, Director, Plasma 
Fusion Center, NW 16-202, Massachusetts Institute of Technology, 
Cambridge, MA 02139 
Theory Department Read File, c / o  F. W. Perkins, Princeton Plasma 
Physics Laboratory, P.O. Box 451, Princeton, NJ 08544 
Theory Department Read F i l e ,  c / o  L. Kovrizhnikh, Lebedev Institute 
of Physics, Academy of Sciences, 53 Leninsky Prospect, 117924 
Moscow1 U.S.S.R. 
Theory Department Read File, c/o B. B. Kadomtsev, I. V. Kurchatov 
Institute of Atomic Energy, P.O. Box 3402, 123182 MOSCOW, U . S . S . R .  
Theory Department Read Pile, C/O T. Kamimura, Institute of Plasma 
Physics, Nagoya University, Nagoya, Japan 
Theory Department Read File, c/o C. Mercier, Euratom-CEA, Service 
des Recherches s u r  la Fusion Controlee, Fontenay-aux-Roses 
(Seine), Prance 
Theory Department Read F i l e ,  c / o  T. E. Stringer, JET Joint 
Undertaking, Culham Laboratory, Abingdon, Oxon OX14 3DB, England 
Theory Department Read File, c / o  K. Roberts, Culham Laboratory, 
~ b i n ~ ~ o n ~  Oxon OX14 3DB, England 
Theory Department Read File, c / o  D. Biskamp, Max Planck Institut 
f u r  Plasmaphysik, D-8046 Garching bei Munchen, Federal Republic of 
Germany 
Theory Department Read F i l e ,  c/o T. Takeda, Japan Atomic Energy 
Research Institute, Tokai, Naka, Ibaraki, Japan 
Theory Department Read File, c/o C. S. Liu, GA Technologies, Inc., 
P.Q. Box 81608, San Diego, @A 92138 
Theory Department Read File, c / o  L. D. Pearlstein, Lawrence 
Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 
Theory Department Read File, c / o  R. Gerwin, CTR Division, Los 
Alamos National Laboratory, P.0. Box 1663, Los Alamos, NM 87545 
T. Amanos Institute of Plasnia Physics, Nagoya University, Nagoya, 
Japan 
C. D- BoPay, Fusion Power Program, Building 207C, Argonne National 
Laboratory, Argonne, IL 60439 

Dnestrovskii, 1. V. Rurchatov Institute of Atomic Energy, 

J. Gaffey, IPST, University of Maryland, College Park, MD 20742 
R. J. Hawryluk, Princeton Plmma Physics Laboratory, P.O. Box 451, 
Princeton, MJ 08544 
W. W. Bfeiffer, GA Technologies, Inc., P . O .  Box 81608, San Diago, 
CA 92138 

ox 3462, 123182 Moscow, U.S.S.R. 



56 

90. D. E. Post, Princeton Plasma Physics Laboratory, P.6. Box 451, 

91. A. Ware, Physics Department, University of Texas, Austin, TX 78712 
92. J. Wiley, University of Texas, Institute for Fusion Studies, 

Princeton, NJ 08544 

Austin, TX 78712 
93. S. K. Gong, GA Technologies, Inc., P.O. Box 81608, San Diega, CA 

92138 
9 4 .  S. Yoshikawa, Princeton Plasma Physics Laboratory, P.O. 

Princeton, NJ 08544 

95-248. Given distribution as shown in TID-4500, Magnetic Fusion Energy 
(Distribution Category UC-20g, Theoretical Plasma Physics) 


