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ABSTRACT: We introduce propagators - advanced and retarded ~ for nonlinear problems and 

show that they generalize the Green’s functions used to solve linear problems. These propagators 

are generated by using the dual operator which plays, for the nonlinear problem, the same role as 

the customary adjoint operator for linear problems. The propagators obey a reciprocity 

relationship and satisfy a closed nonlinear integral equation or, alternatively, a linear integral 

equation that depends parametrically on the problem’s solution. These equations are formulated 

in  a canonical way, independent of dimensionality, boundary conditions and t y p e  of the underlying 

nonlinear problem. 
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We consider a general nonlinear problem represented as 

N ( u ( x ) ; a ( x ) )  := 0, in C4 , (1) 

where N contains integral, multiplicative, and differential operators and 

x = ( x , ,  . . . ,x,) E K R "  is the phase-space position vector. When the problem is 

time dependent, the set (x,, ..., x,) contains 1 as one of the independent variables, and Eq. (1) may 

reduce to an evolution equation. The state vector U G H ,  and its image N ( u )  are consid- 

ered to be scalar-valued functions; H ,  and H 2  are real Hilbert spaces endowed with inner products 

<,> and [,I, respectively. (Distinct Hilbert spaces are chosen to highlight the duality interplay.) 

Furthermore, a ( x )  = ( a l ,  ..., q) is the vector of parameters describing the physical system. 

In general, a set of boundary/initial conditions (B.C.) 

B ( u , a )  = 0, on dQ , (2) 

is needed to specify the problem. Inhomogeneous terms (sources) are represented by the nonzero 

components of N(0,a) and B(0,a). 

A general analytical formalism for solving Efqs. (1) and (2), such as the Green's function 

method in linear theory, is presently unavailable. Also, the known methods, e.g., inverse scattering 

transform, Lax-pair representation,2 group invariance? and similarity, impose (sometimes severe) 

restrictions on N ,  Q, and B. 

This Letter presents a new, canonical, and practical method for solving general nonlinear equa- 

tions by recasting them into a form amenable to treatment by powerful techniques from linear the- 

ory. 

The d u d  operator. - The crux of our method is the construction of an operator N s ( u ) ,  

henceforth referred to as the operator dual to N(u), which will play the role of the customary 

adjoint operator in linear theory. This dual is defined via the relationship 
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[ N ( u ) ,  v ]  := x u ,  N'(u)v> , (3 )  

for appropriate veNZ, and is constructed by using the fundamental theorem of calculus in non- 

linear functional ana~ysis ,~ 

1 

N ( u ,  4- h )  - N(t6,) = J 6N(u, .-I- t h ,  h)de , 
0 

where 6N(u,; h ) :  = dN(u ,  4- th) /de( ,=o is the first Gdteaux variation of N(u) at 16, 

along h. When 6N(u,;  h )  is linear in .la, then 6N(u,; h )  = N'(u,)h,  where N'(u,)  

operates linearly on h and is called the first Gdteaux derivative of N(u) at u," In this case, we 

define the formal adjoint sf N ' ( u ) ,  [ N ' ( u ) ] * ,  via the usual (linear) relation 

where c*(u )v  represents the non-vanishing boundary terms and the braces {,I denotc the 

corresponding bilinear form on the boundary space. The equations 

N ' ( u ) h  = 0, [N'(zc)]*v = 0 are usually referred to as the direct and adjoint variational 

(gradient, tangential) equations associated with Eq. (1). They have been used previously to some 

extent (mostly the direct equation), for investigating the (possibly Hamiltonian) structure of the 

original nonlinear equation.' 3 2 , 3 , 5  We mention also the interesting use of the adjoint variational 

equation in Ref. 6 ,  enabling one to write closed equations for suitable generating functionals of the 

solution. 

Using ( 5 )  and (4) taken at u,=O and h=u,  together with (3j ,  gives the expression of the dual 

operator N + ( u )  as 
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where the overbar denotes complex conjugation, 

I 

L*(u)Y: = J [N'(EU)]*Vd€ , 
0 

and 
1 

Z'(u)v: = JU*(FU)V& . 
0 

Just like the operators [N' (u ) ]*  and u* (u ) ,  the operators L * ( u )  and Z * ( u )  act linearly on the 

vector v (while depending parametrically on ( u )  in a (generally) nonlinear way). The operator 

L * ( u ) ,  which we shall call the predual of N(u), will be used to construct the propagator for the 

Eq. (1). 

Propagators and solutions. - Consider Gi(x,x') to be the unique solution of the h e a r  sys- 

tem 

L * [ u ( x ) ] G :  (x,x') = 6(x-x'), in !J , 

y*[G&,x')] =: 0, on an , 

where the operator y*, acting linearly on Gi, represents B.C. for G: on as specified below. 

Using (6) together with (1 )  and (9) shows that calculating the difference between the inner 

products of N(u) with Gi and of u with L8Gi,  leads to the equation 
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The B.C. represented by y*(Gt) in Eq. (10) are now chosen so as to maximize the simplifica- 

tion of (a) the boundary term appearing on the right-side of (1 1)  and (b)  the procedure needed to 

solve Eqs. (9) and (10) to obtain G:(x,x'). 

The selection of -y*(Gi), which in general is not unique, does not affect the uniqueness of the 

solution u(x) given by (1  1 ) .  Equation (1  1) highlights the role of G:(x,x ' )  as an "advanced propa- 

gator" for the solution u(x) ,  since G: propagates the source term N(0) and the B.C. for I ( ,  from 

u ( x )  to u ( x ' ) ,  just like the customary propagator does for the linear problems in field theory. 

Note, though, that in contrast to these linear problems, the advanced propagator G:(x,x') for the 

nonlinear system represented by Eqs. ( 1 )  and ( 2 )  depends implicitly and, in general, nonlinearly 

on the solution u(.x). 

Since L * ( u )  acts linearly on G:, we can construct its formal adjoint 

1 

L ( u ) :  = JN'(tu)dt , 
0 

which we shall call the antidual of N(u), and consider the system 

L ( u ) G , ( x , x ' )  = 6(x--x') , in Q , 

N u )  = Q, on dQ . 

In (14), the operator y acts linearly on G, and represents B.C. for G, chosen such that 

{G,J*(u)G:}=O when G: and G, satisfy ( I O )  and (14), respectively. 
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Forming the inner products of (13) and (9) with Gi and G,, respectively, and using (IO),  (12) 

and (14) leads to 

Gi(x,x') = GU(x ' ,x )  . 

Equation (15) is the reciprocity relationship betwwn the propagators G i  and G,. Formally, this 

reciprocity relationship is identical to that encountered between the advanced and retarded propa- 

gators for linear problems. Furthermore, it follows from Eqs. (1  1) and (15) that the solution u(x) 

of the nonlinear problem represented by (1) and (2) can also be expressed in terms of the retarded 

propagator G,. 

Integral equations for propagators. - Equation ( 1  1) gives the solution u(x)  of the nonlinear 

system represented by (1) and (2) as an integral equation involving the advanced propagator. 

Both this equation and its equivalent representation in terms of G, are formally similar ta those 

encountered in tinear theory, e.g., field theory. But, in contradistinction to the linear theory, both 

Eq. (10) and its equivalent representation in terms of G, are nonlinear integral equutions for u 

since both the retarded and the advanced propagators depend parametrically on a. The closed 

nonlinear integral equation for u is obtained by solving the linear system (9) and (IO) and replac- 

ing the solution G * ( u )  in (11). Clearly, this procedure requires inverting the operator L*(u) ,  

which is difficult but in principle is possible, since one can apply all the methods of linear theory. 

Alternatively, a useful integral equation for the advanced propagator G: (or, respectively, the 

retarded propagator G,) can be obtained by usinlg a known, but otherwise arbitrary, vector u, in 

Eqs. (13) and (14) (or, respectively, in Eqs. (9) and (10)) to obtain a particular solution Go (or, 

respectively, Gi). Then, substracting the inner product [L(u,)G,,G:] from the inner product 

<G,,L*(u?G:>, using (15), and recalling that L(u) is the formal adjoint of L " ( u )  gives 
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Replacing u everywhere in (16) by its expression (1 1) gives a closed integral equation for the for- 

ward propagator. A similar equation can be obtained for the backward propagator G,. 

In many cases, e.g. KdV-type equations, (16) becomes a purely integral equation. For general 

nonlinear problems, though, both G i  and G, will satisfy nonlinear incegro-differential equations. 

Nevertheless, the order of the derivative(s) in these equations is lower than the order of the 

derivative(s) appearing in the highest nonlinear term of the original equation; this fact is advanta- 

geous for computations. 

Series expansions. -- Consider, as before, that u,(x) represents an arbitrary but known state 

vector and that h ( x )  = u ( x ) - - u , ( x )  represents the difference between u , ( x )  and the solution 

u ( x )  of (1) and (2). The equation for h(x)  can be obtained by applying (4) to (1 1). Furthermore, 

the relationship between the advanced propagator Ci(x,xf) and h(x)  is obtained by applying (4) 

to ( 16) and expanding I, *( u ) in a functional Taylor series in h and u,. This yields 

G,*(x,x') = C~(X,X')  - <G,(x",x), 

where the k-linear operator L * ( k ) ( u , )  is the k-th Giiteaux derivative of L* at u, along h. 

Equation ( 17) represents a nonlinear generalization of the well-known Lippman-Schwinger 

equation and therefore can be used just like the Lippman-Schwinger expansion is used in linear 

problems. Equation (17) is particularly useful when L(u) has a polynomial dependence on u, so 
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that the series involves only a finite number of terms. In addition, Eq. (17) can be used to obtain 

ciosed-form expressions for perturbation diagrams, which is difficult tlo accomplish for nonlinear 

problems by present methods. Moreover, when u, is a nominal solution of the nonlinear system 

(1) and (2), Eq. (17) can be used to perform alii efficient sensitivity analysis7 to assess the varia- 

tions around u, (or any function thereof) induced by variations in the system’s parameters. 

C o d u s i ~ n s .  - This Letter has presented a new and canonical formalism for solving general 

nonlinear equations without restrictions on dimensionality, boundary conditions, or special 

structure (e.g., evolution) of the underlying nonlinear operators. 

The predual and antiduai operators L * ( u )  and L(u) surpass the information contained in the 

variational operators [ N ‘ ( u ) ] *  and N ’ ( u )  in that they incorporate the full nonlinear structure of 

N (observe that L ( u ) u  = N ( u )  - N ( 0 ) ) .  Therefore, G: and 6, also carry the 

information needed to solve the original nonlinear problem as expressed by (1 1). 

The propagators G i  and G, generalize the customary Green’s functions used for solving linear 

problems; in particular, G: and G,  reduce to these Green’s functions if the original problem, 

described by (1 )  and (2), is linear. In such a c a e ,  N + ( u )  becomes the actual adjoint of N(u), 

L * ( u )  becomes the formal adjoint of N(u), and (9) and (IO) describe the problem adjoint to (1) 

and (2). Furthermore, both L and L’ become independent of u, so G becomes the Green’s 

function, while G* becomes the adjoint Green’s function for the linear problem described by (1) 

and (2); of course, G and G* will also be independent of u. 

The propagators Ci and G, are defined as solutions of the linear equations (9)-(IO) and 

( 13)-( 14), respectively, which still contain a (nonlinear) parametric dependence on the solution u. 

This parametric dependence can be eliminated so that C: and G, satisfy closed nonlinear integral 

equations. These integral forms open the way to using contraction principle and fixed point 



arguments for proving existence and uniqueness of the solution u. Furthermore, the integral forms 

facilitate the computation and numerical analysis of the solution. 

The formalism peesented in this Letter has been successfully tested on two problems that admit 

analytical solutions: (a) a Riccati equation with linear and nonlinear B.C. and (b) a heat equation 

with nonlinear B.C. The detailed derivation of the formalism and the analysis of various examples 

will be published elsewhereq8 
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