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CRITICAL RADIUS FOR NUCLEATION

Vasilios Alexiades
Alan D. Solomon

ABSTRACT

The free energy of formation and the critical radius for homogeneous nucleation of a
spherical nucleus in supercooled liquid, at given temperature and ambient pressure, are
determined, taking fully into account surface area. curvature, and pressure effects. We
allow the specific heats and densities of the two phases to be different and all thermophy-
sical properties to be temperature dependent. In the simple case in which classical nuclea-
tion theory is valid. our results predict a critical radius of about 40% larger than the clas-
sical value, and an activation energy barrier of almost three times larger than the classical

value.

1. Introduction

The Gibbs free energy, AG , of formation of a crystal nucleus in supercooled liquid is
the most important gquantity in nucleation theory. Several other relevant parameters, such
as critical radius, activation energy barrier and frequency of nucleation can be derived
from it and some of these are very sensitive to changes in AG {(Chalmers [1], Porter-
Farterling [2]. Kurz-Fisher [3]). Yet. in classical nucleation theory expressions for AG
are derived under rather gross simplifications (some stated explicitly and some only impli-
citly assumed) disregarding all but temperature and surface area effects. S;nce our under-
standing of nucleation strongly depends on theory. due to the inherent difficulty in experi-
mental observation, it is particularly important that the theory not leave out possibly
significant effects.

In this spirit, we determine the free energy of formation of a nucleus at specified super-

cooling and ambient pressure, taking fully into account surface area, curvature and pres-



sure effects. We allow the specific heats and densities of the two phases to be different and
all thermophysical properties to be functions of the appropriate thermodynamic variables.
When, for the sake of obtaining explicit expressions. we make restrictive assumptions on
thermophysical properties, we siate them explicitly.

The inclusion of pressure and interface (surface area and curvature) contributions to
the free energy necessitates the derivation of generalized Clapeyron-type equations for the
pressure surfaces (because the classical Clapeyron equation is valid only for a flat inter-
face). These are presented in an Appendix in order to make the paper selfcontained.

In section 3, we obtain formulae for the critical radius and the corresponding activation

energy barrier for the formation of a spherical nucleus. They contain all the effects men-

tioned above and they can be compared to the classical values ([1]. [2], [3]) when the

specific heats and the densities of solid and liquid are assumed equal to each other. We

find that our critical radius is larger by the factor -g“ = 1.4 and tbe critical energy by the

factor ( %)3 = 2.8. The discrepancy arises because the interfacial part of the free energy

in the classical theory consists of just yA instead of y{Vk + (4 — Ay)}, where y =
interfacial free energy, A = surface area. V = volume, k = mean curvature of the nucleus
and Ao = corresponding area for flat interface. The term Vyx arises from the pressure
difference PS — PT via the Laplace relation, and the term (A — A,) arises from the

consistent use of reference states (see section 2.4). Hence, for a spherical nucleus, instead

17
3

wR? (when pl = pS,

of ye 4mR? we have yeo {“3"171@3- % + (4wR? — wR?)} = vy.

otherwise there are more correction terms, see section 2.3).

2. Free Energies
Consider a pure liguid of density pL occupying a volume Vg at temperature 7 and
pressure PL. We assume that the liquid is supercooled. that is, 7' is lower than the equili-

brium temperature at which liquid and solid with a planar interface can ceexist in
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equilibrium at the pressure PL. Inside this volume consider a small mass m of liquid
which is transforming into a spherical solid nucleus of radius R at temperature 7', lying in
liquid of ambient pressure PZ. The free energy of formation of the solid from liquid is

AG = G¥ — Gt = m(g® — g%)

where g% is the specific Gibbs free energy of liquid. and g5 that of solid including the

interface. We determine each one separately.

2.1. Free Energy of Liquid
We consider (supercooled) liquid of mass m, at temperature " and pressure PX. Hence
dg?(T.P*) = —stdr + vidrt,

with sT = specific entropy. vZ = specific volume = 1/p’. As reference state we choose
liquid at (7. Pum). where T, is the normal solidification temperature at atmospheric

pressure Py, . Integrating to (I', PL) we find

T pL
gt (. Pr)= gl (Tp. Py ) ~ [ s (T, Puw) dT + ;f vIi(@,p)dp . (1)
» atm
The temperature dependence of s* is given by
L L T o)
ST, Pum) = s (T Popn) + [ L—"dr, (2.2)

with c#(7') the specific heat at constant pressure (equal 10 Z,,, ).
For example, if the density p% . (hence also v1 = —IL—), and c# are constants then we
p

obtain

gX (T . PE)= gt (T, Ppp) — sE(T,y. Py ) elT — T,,]

(2.3)
I

-—c}TlnT

+ (Tm‘—T) + vLo[PL—-Pa,m].



2.2. Free Energy of Solid and Interface
Now we consider the same mass m after it has transformed into a solid nucleus of sur-
face area A and curvature x at temperature 7. The solid nucleus will coexist with liguid
of pressure PL, so according to the Laplace-Young relation (see (A5) in the Appendix) the
solid pressure, PS5, must be higher than L in order to balance the surface tension. Let y
denote the interfacial free energy per unit arez and @ = A /m the surface area per gram of
solid. Then the specific free energy of the solid is a function of T, PS5, a and k. whose
differential is given by (see (A4) in the Appendix)
dgs = —s5dT + v dPS + wyda. (2.4)
For simplicity, we have already dropped tbe curvature terms (see (A3) in the Appendix)
because they do not contribute anything for a spherical nucleus. The general case can be
found in [4]. Note, however, that curvature effecis are still present in (2.4). Indeed. since
the solid at state (7', P5) must coexist with liguid at state (7, P%), the pressures have to
satisfy the Laplace relation (A5) and the generalized Clapeyron equations (A9-A10)
derived in the Appendix. Thus P° is a function of the remaining thermodynamic variables

T.a,and k. Replacing 475 from (A10), (2.4) becomes

do’ = S+"SA dr +
& = d Ay o

v vl 3 i
e + 1 |yda + -~--------‘;---—d(yx), (2.5)

L N

where As = s — 5% js the specific entropy of fusion and Av = vl — vS s the

difference of specific volumes. Of course, the above are valid only for Av # 0; the special

L N

case v~ = v is considered in section 2.4. Replacing the Ilasi term by
vEyS vE S
d( I&-;m-yk) vicod( e ), we have
vIyS vS vl yS§
d gS - Ay YK | = — 55 4 “A'"“; As — yx aéz"; Ay arT
(2.6)
vL _@_ VL VS
+ {1y - 1da .
Av ¥ TYE da ;| Av “
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Now we integrate from the state (T, Pum.a = ao. K = 0), namely, solid with planar

interface at (T, . Pum ). to any state (7. a.x) to obtain

N vEvS s
g5 (T,a.x)— YK = ¢ Tp.ae.00— O

g

a

+ [

2o

S —
—s5 4 -"—~—A:-—0H dT
AV a=a,

vl
Y "’

Using a subscript O to denote evaluation at a

da .
x=0

ap. k = 0, we have

vl y$
g5 (T.a. )= g{ () + IR A

@.n

Note that the temperature dependence of the entropies s§ and As, is similar to (2.2)
namely,

T
Aso(T) = Aso(Tm)+[ Aepo(n) 4,

. (2"8)

2.3. Free Energy of Nucleus Formation

From (2.1) and (2.7) we find the specific free energy of formation of (spherical) solid
of specific area @ of curvature k to be



Ag = g5 — ¢
(2.9)

gg (Tm)— g(I)( (Tm'Patm)

P vy vE oS
1 AsodT 4 i
+ }{; + Ave So Ay YK
a VL PL
y — vl
+ ! Sy da Af (r.pldp .
0 b

Now at (T, . P, ). solid with planar interface is in eguilibrium with liquid, and therefore

the free energies g§ and g§ are equal. Substituting As, from (2.8) this becomes

7 Ac (1)

AsoTR) + [, ———dr

= i

- L
dF — [7 V(T .p)dp
atm

(2.10)

LS a L -
vy v

+ _— d
+ Av Yk %Av’""“ﬂa

The specific volumes and the surface tension coefficient may be considered independent of
vk
surface area, so that the last integral is simply Fy(a — ag). Also, the entropy of fusion

at T,, is simply the latent heat per gram divided by Ty, . Aso(T) = L/T,,. If complete
thermodynamic data for the material under consideration are available, vi(T.P),
i = L.,S and Ac, (I', Py ) will also be known and therefore all the integrals in (2.10)
can be evaluated in terms of data. Of course, very liitle data is typically available in this
supercooled regime and we refer to [5] where several reasonable approximations for Ac,
are discussed. Regarding v! (7, P), it is reasonable to neglect thermal expansion and
compressibility so that v¥ and v will be constants. Therefore, under the assumptions

vl . vS are constants, vl & v¥ ,

v is independent of surface area (2.11)

(note that y may still depend on T and «), we cbtain the expression



L

L - L
S |- AT+ Flac, .AT) = AVIPE = By,

(2.12)
L
+ 7%—;{vsx+ (a — ay)}.

where AT = T, — T is the degree of supercooling at which the nucleus forms, L is the
latent heat of fusion per gram, and

r
Tu

F(Ac,. AT) = f,:

~——-£————-Ac ) dr |dT

(2.13)
T
is a function of Ac, (T, Py, ) and AT only (see [5]).
For a spherical nucleus of radius R, the transforming mass is
= 4 53l
m = -5- TR ‘;‘3" f
the mean curvature is k = =, the surface area is A = 47w R? and the corresponding flat

area is Ag = w R?. Hence, its free energy of formation at supercooling AT = T, — 7T in
liquid of ambient pressure PL is given by

AG (R.T.PL)

= mAlg
= App vt L - L_
= 3 mR e T AT + F(Ac,,AT)— Av[P Pyl
oy AR 2 4 4mR?— wR?)
Av |3 R '

L
AG (R,T,PL) = —;—w v

v L
vS Ay

7o AT+ F(Ac,,AT) = Av[Pr - P,,]

o R3

(2.14)
AN 2
e R° .
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This clearly exhibits the effects of Av # 0, Ac,. PL st P.. and surface tension. The
complementary special casc Av = 0 will be considered next and comparisons with classi-

cal nucleation theory will be made.

2.4. The Special Case p* = o5
In the special case of a material with common liquid and solid density, hence
s

v* = y% = constant =; v (2.15)

the development is much simpler. Now (2.4) can be written as
dlgs — vP¥]= ~55 dT + +da .
Integrating from solid at (T,,.a = agx = 0) to any (T, a,x) we obtain

g5T.a.x)= g5(Th.a0.0) + v [P (T.a.xK) — PS5(T,.a,.0)]

r ~ . (2.16)
- me s§ dT + f%y | xeo d@ ,

which is the analogue of (2.7) for this case. Note that for flat interface at 7,,. we have
PL=pS=p,. andgs = gL.

Subtracting (2.1) from (2.15) we find
T . a
bg= [, Asodl + vI[PS(T.a)— P + [ yl,.odd.
which, thanks to the Laplace-Young formula (A5), becomes
T — a
Ag = frm AsodT + vyx + f%y | wmo 44 . (2.17)

As in (2.11), assuming y independent of @, and using (2.8), we arrive at

L
T

Ag = {— AT + F(Ac, . AT)}+ ylve+ (a — ap)} . (2.18)

with ¥(Ac,, AT) as in (2.13), which is analogous to (2.12).
The expression in the first bracket, which comes from the entropy of fusion, agrees
with classical nucleation theory ([3], p. 25: [2]. p. 187), but the second bracket contains

two terms that do nct appear in the classical theory. One is the curvature term, yv &,
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which arose from the pressure effect via the Laplace-Young relation and the second is the
flat area term, — Yy @, which arose from the consistent use of reference values.

For a spherical nucleus of radius R, corresponding to (2.14), we find

. I 1 P «R3
AG = - 7o AT + F(Ac, ,AT)}e R
(2.19)
+ 7y 137 me RZ .

Quserve that the classical theory produces 4 7 instead of -131 .

3. Critical Radius of Nucleation

The critical radius, R", is that radius for which the free energy of nucleus formation,
AG, has a local maximum, so that nuclei of radius smaller than R will tend to dissolve
and those of radius larger than R® will tend to grow.

It follows that at the critical radius

LG 1, = 0. (3.1)
Applied to (2.14) this yields
. 17 2yv¥
R = Tj— )2 Yy . (32)

7 AT — F(Ac, AT) + Av[PL — Ppp]

m

This is seen to be valid even in the special case of section 2.4 by simply setting

The corresponding critical value of the free energy of formation (activation energy bar-

rier for homogeneous nucleation) is then given by

L
17 l:[&'"”s("s)z
4.3 L (.3)

7o AT = Flac, AT)+ AvIPL — P,, 1)

AG® =

when vL 3 v5, and by
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AG = AT Tyiv? (3.4)
40 3% { L AT F § |
7 AT — F(Ac,, AT)}
m
whenvl = v5 = v,

For heterogeneous nucleation, this must be multiplied by the shape factor ([2], p. 194)
SO)= (2 + cos8) (1~ cosd)¥4,
where € is the wetting angle.

In classical nucleation theory the approximation Ac, = 0 is usually made and

L

v =Vs

is implicitly assumed; the .critical radius. obtainable from the usual Gibbs-

Thomson relation, has the value ([1], p. 37;[2]. p. 189; [3], p. 24)

. 2yTn
R assica) = PLAT

and the activation energy barrier has the value (2] p- 189; {s]. p. 377)

167y T2

AGclassicnl = 3(P""“""'—"—"“’L )ZATz .

Taking Av = 0, Ac, = 0,and v5 = —;)— in (3.2) and (3.4) we see that

» 17 * *
R = -1—2' Rclamical = 1~4Rclassim1 .
and
aG" = A 3 Gt %28 A .
4.3% 16 classica classica.

Thus. our critical radius is about 40% larger and the critical energy almost three times

larger than the classical values.
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Appendix A

General Clapeyron-Type Equations in the Presence of Curved Interfaces

Consider a mass m of a pure material occupying a volume V and consisting of liquid

and solid with masses m%

,mS, (m% + m® = m) volumes V,, Vs, (VL + Vg = V).
pressures PX, PS5, and of interface with surface area A, and principal curvatures &, 3.
The system is in thermodynamic equilibrium at temperature 7",
The energy changes of such a system are determined by (Adamson [7], p. 59)

dU = T dS — PLdv, — PSdVg + ydA + K dx, + K,dk,. (AL
where § = S + S§%, y = surface tension, and Ky, K, are the coefficients of curvature.
FromG = U + PV, + PS5 Vg — T § and (A1) we obtain

dG = —SdT + V. dPT + VgdP® + ydA + K dxi + K,dx, (A2)
for the Gibbs free energy G (T, P, A, k3, x3) of the system.

We view the system as consisting of liquid and solid + interface. Thus
dG = dG* + dG* ,
where

dGLt = =81 dT + V. dP%,

dGS = —S5dT + VgdP® + ydA + K,dr;+ K,dx,.

Dividing each one by the corresponding mass we obtain the differentials of the specific
Gibbs free energies

dgL

it

—s* dT + vidpPL,

dgS = —sSdT + vSdPS + yda + kydwx, + kadxy.  (A3)
where s* and v' are .the specific entropies and volumes, ¢ = A/ m? is the specific area and
k. k. are the specific coefficients of curvature. Choosing k; + k, = O fixes the interface

at the Gibbs "surface of tension" (Adamson [7] p. 60). Then k;dx; + kpdx,

'l(kl— kz) d(Kl“" Kz) = kld(Kl"' Kz), and for a

1
= 5(k1+ kz) d(K1+ Kz) + )
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sphere the contributions from this term will vanish at the end since x; = x, = :%
Hence, for a spherical interface, dg¥ may be taken simply as
dgs = —s5dT + vSd P’ 4+ yda. (A4)

The conditions for equilibrium between liguid and solid + interface are the Laplace-
Young relation
PS5 — Pl = yi, (A5
and the equality of free energies
gt (. PL)= gS(T.P5a.x). (A6)
A discussion on the validity of (A%) and relevant references may be found in [6]. Condi-
tion (A6) constrains the pressures to be functions of the remaining independent variables
T,a, ang k. We now derive this dependence explicitly, thus obtaining the analogues of
the classical Clapeyron equation (which is valid only for planar interfaces).

From (A6), at each coexistence point (T, a. k) we have
dgt (T . P (T,a.x)) = dg5(T . P’ (T.a.x).a.x).

Equating the corresponding partial derivatives and eliminating P¥ via (A5) we obtain after

some rearrangements (see [4])

s s
L Y ele B gr o Y ga v
d\pr vRA e ar + Av da yxd['E \ (A7)
and then also
L z
s ¥ = As Y4 — v
d\P o VK Av ar + A da yud vl K (A8)
where
As = sL — 58 Av = yI — 5,

Note that the contributions of the curvature differentials vanish for the spherical nucleus
case we are considering here. Detailed calculations for the general case (with all the terms

retained) appear in Alexiades - Solomon - Wilson [4].
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We rewrite (A7) and (A8) in the forms

s
dPL = -ﬁ-%dT + Z%da + *Z—-;d(yx). (A9)
dPS= B ar 4 X ga 4 l’id( ) (A10)
Av Av @ Av YK

These are the desired equations, generalizing the classical Clapeyron equation. Indeed. for
a flat interface (in which case Ky = k; again, as for a sphere) we have x = 0 and a = aq:
so only temperature may vary, and PX = P35 by (AS). Hence, (A9) and (A10) reduce to

the single equation

which is the classical Clapeyron equation ([8]).

The above equations may be iritegrated to yield generalizations of the expressions in
Landau-Lifshitz ([8] p. 523). and then a generalization of the classical Gibbs-Thomson
relation may also be derived. We refer the interested reader to Alexiades - Solomon - Wil-

son [4].
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