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Vasilios Alexiades 
Alan D. Solomon 

ABSTRACT 

The free energy of formation and the critical radius fo r  homogeneous nucleation of a 

spherical nucleus in supercooled liquid. a t  given temperature and ambient pressure, ate 

determined. taking fully into account surface area. curvature, and pressure effects. We 

allow the specific heats and densities of the ~ W Q  phases to be different and all thermophy- 

sical properties to be temperature dependent. In the simple case in which classical nuclea- 

tion theory is valid, our results predict a critical radius of about 40% larger than the clas- 

sical value. and an activation energy barrier of almost three times larger than the classical 

value. 

1. Introduction 

The Gibbs free energy. hG , of formation of 8 crystal nwclews in supercooled liquid is 

the most important quantity in nucleation theory. Several other relevant parameters. such 

as critical radius, activation energy barrier and frequency of nucleation can be derived 

from it and some of these are very sensitive to changes in AC (Chalmers [I]. Porter- 

Earterling [2]. Kurz-Fisher [3]). Yet. in classical nucleation theory expressions for A(; 

are derived under rather gross simplifications (some stated explicitly and some only impli- 

citly assumed) disregarding all but temperature and surface area effects. Since our under- 

standing of nucleation strongly depends on theory. due to the inherent difficulty in experi- 

mental observation. it is particularly important that the theory not leave out possibly 

significant effects. 

In this spirit, we determine the free energy of formation of a nucleus at specified super- 

cooling and ambient pressure, taking fully into account surface area. curvature and pres- 



sure effects. We allow the specific heats and densities of the two phases Eo be different and 

all thernophysial properties to be functbm sf the ~ ~ ~ r ~ ~ ~ ~ ~ ~ e  thermodynamk variablex. 

When, for the sake! of obtaining explicit expressions. we make restrictive assumptions on 

thermophysical properties, we state them explicitly. 

The inclusion of pressure and interface (surface area and curvature) contributions to 

the free energy necessitates the derivation of generalized Clageyron-type equations for the 

pressure surfaces (because the classical Clapeyron equation is valid only far a f h l  inter- 

face). These are presented in an Appendix in order t o  make the paper self-contained. 

In section 3, we obtain formulae for the critical radius and the correspnding activation 

energy barrier for the formation of a spherical nucleus. They contain all the effects men- 

tioned above and they can be compared ta the classical values ([l]. [a]. 131) when the 

specific heats and the densities of solid and liquid are a.ssumed q u a l  to each other. We 

find that our critical radius is larger by the factor ==: 1.4 and the critical energy by the 

am@ the interfacial part of the free energy factor (-----I3 

in the classical theory consists of just y A  instead of y{Vw + (A - Ao)}. where y = 

interfacial free energy. A = surface area, V = volume, K = mean curvature of the nuckus 

and A0 = corresponding area for& interface. The term V ~ K  arises from the pressure 

difference Ps - P L  via the Laplace relation, and the term -y(A - A , )  arises from the 

consistent use of reference states (sea: section 2.4). Hence. for B spherical nucleus, instead 

of y . 4 ~ ~ ~  we have y o  {---T..R~~ - + ( 4 7 ~ ~ ’ -  TR~)} = - y o  - - - I P B W ~  (when p L  I- ps. 

17 
12 

17 
12 

2.8. The discrepancy ari 

4 2 17 
3 R 3 

otherwise there are more correction terms. see section 2.3). 

2. Free Energies - 

Consider a pure liquid of density p L  occupying a volume V O  at Eemperature T and 

pressure PL . We assume that the liquid i s  ~srupercooled, that is, T is lower than the equili- 

ature at which liquid and solid with a planar interface can coexist in 



equilibrium at the pressure P L .  Inside this volume consider a small mass m of liquid 

which is transforming into a spherical solid nucleus of radius R a t  temperature T .  lying in 

liquid of ambient pressure PL . The free energy of fwntatbn of the solid from liquid is 

where g L  is the specific Gibbs free energy of liquid. and gs that of solid including the 

interface. We determine each one separately. 

2.1. Free E w g y  of Lipid 

We consider (supercooled) liquid of mass rn a t  temperature T and pressure P L  . Hence 

d g L ( T .  P L )  = -sL dT + v L  dPL , 

with sL = specific entropy. v L  = specific volume = l / p L .  As reference state we choose 

liquid at (Tm . Pam), where Tm is the norrnal solidification temperature at atmospheric 

pressure Pa,,, . Integrating to (T , PL ) we find 

PL 

g L ( T .  P L >  = g L ( T ,  v P a m )  - 1 sL (T .  Pam) di? + 

The temperature dependence of sL  is given by 

(2.21 

with c;(T ) the specific heat at constant pressure (equal to Pam ). 

1 
P 

Far example. if the density p L .  (hence also v L  = T>, and c# are constants then we 

obtain 
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2.2. Free Energy of Solid a d  1nS"ei-face 

Now we consider the same mass rn after it has transformed into a solid nucleus of sur- 

face area A and curvature K at temperature T. The solid nucleus will ~ o e ~ i ~ t  with liquid 

of pressure P L  , so according to the Laplace-Young relation (see (A5) in the Appendix) the 

solid pressure, 2''. must be higher than YL in order to balance the surface tension. Let y 

denote the interfacial free energy per unit area and n = A. /m the  surface area per gram of 

solid. 'I'hen the specific free energy of the solid is a function of T ,  Ps , Q and K ,  whose 

differential is given by (see (A41 in the hppm.dix) 

dgS - s S d T  t- v - ' d P S  4- yda. (2.4) 

For simplicity, we have already dropped the curvature terms (see (,43) in the Appendix) 

because they do not contribute anything for a spherical nucleus. 'The general case: can be 

found in [41. Note, however. that curvature efTeets are still present in (2.4). Indeed. since 

the solid at state (1' , 2'' 1 must coexist with liquid at state (T , P L  ), the pressures have t o  

satisfy the Laplace relation (A5) and the generalized Clapeyron equations (A9-AlO) 

derived in the Appendix. Thus Ps is a function of the remaining thermodynamic variables 

T , Q , and K. Replacing dPs from (AIQ), (2.4) kcomes 

where As = s L  - s s  is the specific entropy of fusion and Av = v L  - v s  i s  the 

difference of specific volumes. Of course, the above are valid only for A v  f 8; the special 

case v L  - - v s  is considered in section 

) , we have 
d(2------- = v s  y K ) -  y K * d ( -  V L  v s  

AV Av 

2.4. Replacing the last term by 

y X - f T  v L  vs jdT 

(2 .6)  
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Now we integrate from the state (Tm. Pm, a = ao, K = 0). namely, solid with planer 

interface at (Tm Perm ), to any state (2". a K )  to obtain 

+ j " 0  I$-.-* dZ . 
K = 4  

Using a subscript 0 to denote evaluation at u = U Q ,  K = 0. we have 

Note that the temperature dependence of the entropies sg and A s o  is similar to (2.21, 

namely, 

where Acp = cp" - cj! is the difference of specific heats. 

2.3. Free Energy of Nuclevs Formation 

From (2.1) and (2.7) we find the specific free energy of formation of (spherical) solid 

of specific area u of curvature K to be 

, 
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Now at (T,,, .. Pam 1, solid with planar interface is  in eqiailibrium with liquid. and therefore 

the free energies gg and gk are qua l .  Substituting A s o  from (2 .8 )  this becomes 

(2.10) 

The specific volumes and the surface tension coeEcient may be considered independent of 

surface area. so that the last integral is: simply ----?(a - a,).  Also, the entrapy of fusion V L  

A v  

at T, is simply the latent heat per gram divided by Tm A so(Tm If complete 

thermodynamic data fo r  the material under Consideration are available. v i  (T , P >. 
i = L , S  and Acp V,Par , , l  will a h  be known a d  therefore all the integrals in (2.10) 

can be evaluated in terms of data. Of course. very little data is typically available in this 

supercooled regime and we refer to [51 where several reasonable approximations for A C ~  

are discussed. Regarding v i  (T.P). it is reasonable to neglect thermal expansion and 

compressibility so that v L  and v s  will be constants. Therefore. under the assnmptions 

= L /Tm 

I v L , v s  are constants. v L  f v s  , 
y is independent of surface area 

(note that y may still depend on T amd K). we obtain the expression 

(2.11) 
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(2.121 
V L  + 7- ( V s  K + (Q - Uo)} , 
AV 

where AT = T, - T is the degree of supercooling at which the nucleus forms, L is the 

latent heat of fusion per gram. and 

is a function of Acp (T, PWm and AT only (see [S]>. 

For a spherical nucleus of radius R . the transforming mass is 

(2.13) 

2 
R '  

the mean curvature is K = - the surface area is A = 4 wR2 and the corresponding flat 

area is A .  = wR2.  Hence, its free energy of formation at supercooling AT = T, - T in 

liquid of ambient pressure PL is given by 

AG ( R . T . P L )  = rn A g  

or 

v L  17 
Av 3 

+ y - - - - w . R 2 .  



This clearly exhibits the effects of h v  f 0. Acp,  P L  i.r: Pmm and surface tension. The 

complencnrtar y 

cal nucleation theory will be made. 

ial case Av = 0 will be considered next and C Q I Z I ~ ~ T ~ S O I I S  with classi- 

2.4. The Specid G s e  p L  = ps 

In the special case of a material with common liquid and solid density. hence 

V L  = V s  CQnStai'lt "1 Y (2.15) 

the development is much simpler. Now (2.4) can be written as 

Integrating from solid at  (T, ,a ~ Q . K  0) t o  any (T .a .K) we obtain 

(2.16) 

which is the analogue of (2.7) for this case. Note that for flat interface at T m m  we have 

PL = 9 s  = Pam andgS = $L. 

Subtracting (2.1) from (2.15) we find 

which, thanks to the LaplaceYoung formula (AS). Ixcomm 

ndemt of a , and using (2.8). we arrive at 

(2.18) 1 L 
Ag = - - A T  f F ( A B C ~ , B T )  4- ~ { v K $ .  (a - ao)), [ Tn2 

with F ( A c , .  A T )  as in (2.13). which is malogom to (2.12). 

The expression in the first bracket. which comes from the entropy of fusion. agrees 

with classical nucleation theory C31. p. 25: [23. p. I87>. but the s~xowd bracket contains 

two t e r m  that do not appear in the classical theory. One is the curvature term. y v K ,  



I 

which arose from the pressure effect via the Laplace-Young relation and the second is the 

flat area term, - y a 0. which arose from the consistent use of reference values. 

For a spherical nucleus of radius R , corresponding to (2.141, we find 

(2.69) 

17 
3 

Observe that the classical theory produces 4 7r instead of - W. 

3. Critical Radius of Nucleation 

The critical radius, R" , is that radius for which the free energy of nucleus formation. 

A G .  has a local maximum. so that nuclei of radius smaller than R* will tend to dissolve 

and those of radius larger than R* will tend to grow. 

It follows that at the critical radius 

d 
- A G I  = O .  
d R  R* 

( 3 . 0  

Applied t o  (2.14) this yields 

(3.2) 
17 2 y v s  

l2 L AT - F ( A ~ , .  A T )  + A V [ P L  - P&,I ' 

R' = - 
Trn 

This is seen to be valid even in the special case of section 2.4 by simply setting 

The corresponding critical value of the free energy of formation (activation energy bar- 

rier for homogeneous nucleation) k then given by 

(3.3) 

whenvL # vS.andby 
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wbenvL = V S  = v .  

For heterogeneous nucleation, this must be multiplied by the shape factor ([2], p. 194) 

s(6 1 == (2 4- COS 8 )  (1 - COS 8 )2/4. 

where 8 is the wetting angle. 

In classical nucleation theory the approximation Acp = 0 is usually made and 

v L  = vs is implicitly assumed; the .critical radius. obtainable from the usual Gibbs- 

Thornson relation. has the value ([l]. p. 37; 121, p- 189; 131. p. 24) 

and the activation energy barrier has the value: (h]. p. 189; p. 377) 

1 
P 

Taking Av = 0, Acp = 0. and v S  =: - in (3.2) and (3.4) we see that 

and 

Thus, OUT critical radius i s  a b u t  40% larger and the critical energy almost three times 

larger than the classical values. 
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Appendix A 

General Clapeyron-Type Equations in the Presence of Curved Interfaces 

Consider a mass rn of a pure material occupying a volume V and consisting of liquid 

and solid with masses m L ,  m s ,  (mL + ms = m )  volumes V, .  V s ,  (VL + Vs = V I .  

pressures P L ,  Ps, and of interface with surface area A .  and principal curvatures ~ 1 .  ~ 2 .  

The system is in thermodynamic equilibrium a t  temperature 2'. 

The energy changes of such a system are determined by (Adamson E71, p. 59) 

dU = T dS - P L  dVL Ps dVs + y d A  + K l d K l +  K z ~ K ~  (AI) 

where S = SL + Ss, +y = surface tension, and K1, Kz are the coefficients of curvatxre. 

From G = U + PL V, f Ps Vs - T S and (Al l  we obtain 

dG = -SdT + VL dPL + V s d P s  + Y d A  f KldKa + K 2 d K 2  (A21 

for the Gibbs free energy G (T, P, A , ~ 1 .  K Z )  of the system. 

We view the system as consisting of liquid and solid + interface. Thus 

dG = dGL + dGs , 

where 

Dividing each one by the corresponding mass we obtain the differentials of the specific 

Gibbs free energies 

dgL = --sL dT + y L  dPL , 

dgs = - ssdT + v S d P S  + y d a  f k l d K 1  + k 2 d ~ 2 .  (A31 

where si and v i  are the specific entropies and volumes. a = A / rns is the specific area and 

k l ,  k2 are the specific coefficients of curvature. Choosing k + k 2  = Q fixes the interface 

at the Gibbs "surface of tension" (Adamson E71 p. 60). Then k l d ~ l  + kzdrcz 

k2) d ( ~ 1  - ~ 2 )  = k l d  ( ~ 1 -  K Z ) .  and for a 1 1 
2 

= - ( ( k i +  k2) d(K1+ K 2 )  + z ( k 1 -  
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1 - 
W' sphere the contributions from this term will vanish at the end since ~p = ~2 = 

Hence. for 8 spherical interface, dg may be taken. simply as 

dgS = - s s d T  4- v S d  P5 + y d  a .  (A41 

The conditions for equilibrium between liquid and solid 4- interface are the Laplace- 

Young relation 

P S - P L =  y u .  (A51 

and the qual i ty  of free energies 

g w .  U L )  = $ S ( T .  9 s  a I I  K) . (A63 

A discussion on the validity of (AS) and relevant references may be found in [6]. Condi- 

tion (A61 constrains the preswures to be functions of the remaining independent variables 

T ,  a ,  and K .  We now derive this dependence explicitly. thus obtaining the analogues of 

the classical Clapeyron equation (which is valid only for planar interfaces). 

From (Ab). at each coexistence p i n t  (T , a K >  we have 

Equating the corr nding partial derivatives and eliminating Ps via (A51 we obtain after 

some rearrangements (see [411 

and then also 

d 
V L  PS - - y K  
BY 

where 

A S  Î  g L  - s ' ,  AY y L  - v s  . 

Note that the contributions of the ciervaturc: differentiah vanish for  the spherical nucleus 

case we are c o ~ s ~ ~ ~ ~ j ~ ~  here. Detailed calculations for the general case (with all the terms 

r in Alexiads - Solomon - Wikon [4]. 



We rewrite (A7) and (A8) in the forms 

These are the desired equations, generalizing the classical Clapeyron equation. Indeed. far 

aflat interface (in which case K~ = K~ again. as for a sphere) we have K ao; 

so only temperature may vary, and P L  = Ps by (A5). Hence. (A91 and (AI01 reduce to 

the single equation 

0 and a 

which is the classical Clapeyron equation ([SI). 

The above equations may be integrated to  yield generalizations of the expressions in 

Landau-Lifshitz (181 p. 5231, and then 8 generalization of the classical Gibbs-Thomson 

relation may also be derived. We refer the interested reader to Alexiades - Solomon - 

son 141. 
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