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This article deals with the problem of factoring a large sparse psi t ive definite matrix on a 
multiprocessor system. The processors are assumed to have substantial local memory bus 
no globally shared memory. They communicate among themselves and with a host 
processor through message passing. Our ;primary interest is in designing an algorithm. 
which exploits parallelism. rather than in exploiting features of the u ~ d e ~ l y ~ n ~  topology of 
the hardware. However. part of our stuc-y is aimed at  determining, for certain sparse 
matrix problems. whether hardware based on the binary hypercube topology adequately 
supports the communication requirements for such problems. umerical results from 
experiments running on a multiprocessor sirnulator are included. 
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Ideally, every processor in the system should be able to send a m a a g e  directly to 
any other processor. However, for large p , economics make building machines with such a 
capability infeasible, so most local-memory nnultiprocmcm provide physica 1 
communication links among only a few nearest neighbors in same geometric layout. 
(Comnnon topologies include the ring, the two-dimensional regular grid and Ehe binary 
hypercube.) A consequence is tbaE a message to be sent from processor i to ~ ~ O C C S S Q ~  j 
may have to traverse several. physical links, and be forwardled by processors along the 
transmission path. 

It is therefore useful to distinguish between logical and physical! data trafic. By the 
logical traffic Prom processor i to processor j ,  we mean the amount of data originated 
from processor i that must be received and utilized by processor j .  On the other hand. 
we use physical traffic from i to 4 to refer to the total amolrnP of data traffic that actually 
flows on the physical link (assuming it exists) from processor -I to j in the multiprocessor 
network. If there i s  no direct link between ~* .~C~XSQI=S  i and j .  the arlount of physical 
traffic will always be zero even if there i s  some logical data trafic between them. In this 
case, data originated from processor i and required by processor j bas to trave! through 
one or more intermediate processors in some transmission path before reaching j . 

It i s  clear that logical tra c is determined by the way in which the E Q t d  computation 
has beera. distributed across the processors. and physical traffic further depends on the 
underlying hardware topology and routing strategi - Loosely speaking. logical traffic i s  a 
function of the algorithm only, while physical tra c i s  a function of both the algorithm 
and the hardware. 

An outline of the paper is as follows. In Section 2,  we review the basic Cholesky 
algorithm for the dense matrix case. and examine the effect of ordering for the sparse case. 
Although we defer the discussion of a parallel. algorithm for computing an ordering until a 
later paper. the choice of the ordering can have a drastic effect on both the sparsity of the 
triangular factor and the degree of parallelism that can be exploited in computing it. For 
the numerical. experiments reported in this paper. the ordering is computed by a standard 
sequential algorithm. The design and implementation of the parallel algorithm for sparse 
numerical factorization are presented in Section 3, and the results of our numerical 
experiments in Section 4. 

2. Sparse moleskg Farctori.Eation 

2.2. Dense Case: the Basic A l p r i t h  

algorithm, described in the following algorithmic form. 
We begin by providing a column-oriented version of the basic Cholesky factorization 



Thus. in terms of these sub-tasks, the basic algorithm can be expresse 
fQllQWing COndenS€!d fQrm. 

for j := 1 to pe. do 
begin 

fork := 1 to  j-I do 

cdiv (r" 1 
end 

consider the potential fox g"'"1eIkm in the a ve formulation o f  the 
d and &-ut operations 

are atomic in the sense that we do mot ~.ttempt to exploit parallelism within them, 
although wch exphitation is clearly possible 

( i . k )  h3.S been cOIllple&ed far  dl 

implicitly assume throughout this paper that the 

Note first that c d 1 ~ 4 j 3  cannot begin until c 

k " c j .  and eolenm 
been completed. very there is no restriction on the order in which the c 
aperatiam are ex 
concurrently. For exampie, after cdiv (13 has csmp%eted, rianod @,I)  and. c 
execute in parallel. These precedence relations are depicted in Fig., I .  

n be wed to modify mbsquent  columns only after d i v  ( j  1 has 

and cnwd operaticas for differenn. colrtmrrs can be performe 



CmOd(jdr-2,j) . . .  tonod(rz , j )  cmod ( j -4- I 2) 

cmod (jJ) 
. . .  @mod ( j 3 2 )  

Fig. 1: Subtask precedence graph for column- Cholesky. 

2.2, HP~dkl S p m ~  Cdu~1~1-Ch0l~ky a d  the EEwt S€ O E - ~ W ~ Z  

The main difference between the sparse and dense versions of the algorithm stems 
from the fact that for sparse A ,  column j may no longer need tii be modified by ate 
columns k C 4 .  Specifically. colunnin j is modified o d y  by columns k for which l j k  &I. 
and after c d i v ( j >  has been executed. colurnn j needs to  bc macle available only to tasks 
Tcd( r  > for which I ,  a. This can be understosd easily by examining thi. bssir: form of 
the algorithm displayed at the beginning of section 2.1. If ajk=O,  it is obviously 
unnecessary to execute the loop on 2 ,  since it has no ef f r i t .  

Ideally, we would like to choose an ordering for the matrix A which achieves a 
number of objectives. First. just as in the use of serial. machines, we -.would like to 
preserve sparsity and obtain a low arithmetic sprat ion count. In addition. the ordering 
should allow a high degree o f  parallelism. and allow the distrihutim of the computation 
across the procemoas in a wsy that allows the parallelism to be exploited without 
requiring an inordinate amount of cornlmexnication. 

Fortunately. these objectives turn out to be nutually complenicntatj.. In order to 
gain insight into this problem, it is useful to introduce the mtion of elimination trees for 
sparse Cholesky factors [3,15]. 

Consider the structure of the Cholesky factor E .  For each coluiiin j < t c ,  if column 
j has eff-diagonal nonzeros, define $ j  1 by 

y [ j ]  = min { i I l i j  $0.  i > j  } 
that is. y [ j ]  is the row subscript of the first offdiagonal imiizci-o in column j of E .  If 
column j has no off-diagonal nonzero, we set y [ j  1 

; 

j . (Hence ybn ]=n .> 
We now define an ekimirecltbn tree correapnding io  the structure of L . The tree has 

n nodes, labelled from 1 to n . For each j , if y [ j  1 > j  . then node y [ j  1 is the parent of 
node j in the elimination tree. and node j is one of pcssibly sever21 chiLQ nodes of node 
y [ j ] .  We assume that the matrix. A is irri?dz4h.e. so that PL is the only node with 



y [ j  ] = j and it is the of tlie tree. Thus, for I G j <n 7hl.j 1 > j . (If A is reducible. 
then the elimination t efined above is actually a forest which consists of several trees.) 
There is exactly one path from each node to the root of the tree. If pl~de i lies on the path 
from node j to the root. then node i is an awestor of node j I( and node j is a descendant 

An example to illustrate the notion of elimination trees is provided by the structure 
of the Cholesky factor shown in Fig. 2 .  with the associated elimination tree being sbown in 
Fig. 3. Elimination trees have been used eithzr impIicit%y or explicitly in nurner~us articles 
dealing with sparse symmetric factorization ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ” ~ ~ , ~  4 . 1 1 6 , 1 ~ , ~ ~ , ~ ~ * ~ ~ ~ ,  idn particular. 
the paper [I81 uses the elimination tree. as a model to study the parallel sparse Chdesky 
factorization algorithm in a shared-memot y multiprocessor. 
exploring the use of elimination trees in the parallel ~ m ~ l e ~ ~ ~ t a ~ ~ o ~  of multifrontal 
methods. 

Of node i . 

Xn addition, 

X 
X 

B E  

X X ’ K X X X  
.E x L =  

K X X H j  

Fig. 2: Structure of a Cholesky factor. 

. 3: The elimination tree associated with the Cholesky Partas in Fig. 2. 

The elimination tree provides precise in Formation a”raaut the ccrlzlmn 
Specifically, cdiv (i  
nodes j OB node i .  

y. as shown in Fig. 4. Thus. the representation requires only a single vector of size IE . 

cannot be executed until cdiv ( j  1 bas completed for d l  descendant 

The elimination tree has simple structure that can be economically represented. using 
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Fig. 4: Computer representation of the t rec  3f Fig. 3 .  

In order to see the role that elhination trees might play in identifying paralklism. 
we now consider two different orderings of the same problcm, and study their 
corresponding elimination trees. Consider a 3 by. 3 grid problcrr,. wherc the 9 vertices of 
the grid are numbered in some manner, and the associated matrix A has the p-oyerty that 
aij ~4 if and only if vertex i and vertex j are associated with the s ~ m e  small square in 
the grid. Two different orderings of the grid are given in Fig. 5. the associated Cholesky 
factors are displayed in Fig. 6.  and their corresponding elimination trees a ie  shown in Fig. 
7. 

Fig. 5: Two srderings of a 3 by 3 gsid. 

K 
x 

8. 

x x .x 
XI[ 8: 

x x x x x  
x x x % x x x x  

X 

x x x x x x x  

X 
X X  
X X  

X X X X  
X X H X - X .  

K X X X T  

X X X K  
X X X X K  

X X X X X  

Fig. 6: Structure of the Cholesky factcam for th? ordcrings of Pig. 5. 
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Fig. 7: The elimination trees associated with the matrices in Fig. 6.  

The e l ~ i n a t ~ o n  tree on the left is typical of those generated by orderings that are 
good in the sense of yielding low fill and low operation counts. Its tree structure is short 
and wide, and such trees and their associated orderings lend themselves well eo parallel 
computation- For example. it should be clear that Tcd(11, Tcol(2). TcdC3). and Tcd(4 )  
can start immediately in parallel. Moreover. when they have completed execution. Tcol IS) 
and Tcd(6)  may proceed independently, The remaining tasks are no different than those 
for a dense matrix. and the findings in IS] apglgr equally well here, 

OIa the other hand. the band-oriente ordering shown a ve is undesirable &cause it 
imposes the same serial execution on the iv operations tha imposed in the dense case 
(note, however. that even in the dense case, m n e  '1lr7EaTE operations can still 
concurrently [91). Moreover, the operation counts and fill-in are inferior to that of the 
first ordering. 

In the elimination tree if node i and node j belong to the same level of the tree. it is 
clear that the tasks TctJ (I; 1 and T C O ~  ( j  1 can. 
tasks associated with their descendant nodes completed. In Qrcfer p i l l  
high processor utilizati , it is therefore desirable to assign, if possible. nodes on the: Sanie 
level of the tree to d rent processors. An overall task assignment scheme will then 

indewndently So as 
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correspond to assigning the Tcsl (i ) tasks to successive processors in a breadth-first 
bottom-up manner from nodes of the elimination tree. 

It should be pointed out that some of the practical fill-reducing orderings will 
already order the nodes of the elimination tree in this desirable sequence. They include 
the recent implementation of the minimum degree ordering using maalP,iple elimination [15] 
and a version of the nested dissection ordering [IO]. In such cases. the task assignment 
scheme corresponds to the straightforward wrap-around assignment. wlisre task Ted (i ) 
will be assigned to the processor s , given by s = (i -1) nmi p . 

3. Design and hnplernentation 

In this section. we consider the design and implementation of a sparse Cholcsky 
factorization algorithm appropriate for a parallel multiprocessor with local memory. Let 
A be the givm n by PP, spmse symmetric positive definite matrix with Cholesky factor L . 
We assume that the matrix has already been p r n u t e d  by some fill-reducing ordering 
appropriate for parallel elimination. 

As before. we lee Tco l ( j  ) be the task of computirig the j -th column of the sparse 
Cholesky factor L .  This task consists of the two types of subtasks: c m o d ( j . k )  and 
cdiv ( j  ). 

In the sparse case. the task T c d ( j )  can be expressed in the following algorithmic 
form: 

for each k with nonzero Z,, and j > k  do 

cdiv ( j ) 
craod( j .k )  

It should be clear that the number o f  c d  operations required in the task T c o l ( j )  i s  
given by the number of off-diagonal nonzeros in the j - t h  row of L .  To facilitate our 
discussion, we introduce the vector n d  [* 1. where the value r t m d  [ j  1 is the number of 
column modifications c d  required in the execution of T e d c j ) .  This vector can be 
obtained by simply counting the number of off-diagonal nonzeros in each row of 9,. 

Consider the symmetric factorization of A in a given parallel message-passing 
multiprocessor environment. Let p be the number of processors in the parallel machine. 
We assume that an assignment of the column tasks Tcol (Y ) to the computational nodes of 
the multiprocessor has been given. For definiteness, let t m p [ * !  be the mapping of these pz 
tasks into the p processors. That is. map [ j 1 will be the processor that is responsible for 
the performance of the task T c d ( j  1. and hence the computation of coluinn j of L . It 
should be pointed out that the effect of task-to-processor assignment on load balancing 
and communication cost can be studied by choosing different map [* 1 fzanctions. 

In the parallel environment. we further assume that there are two primitives: send 

and await. Execution of a send does not cause the sending process eo wait for a reply. On 
the other hand. execution o f  an await causes the process executing it to be suspended until 
the message is received. Messages that arrive at  the destination process before the 
execution of the receiving await are placed in a queue until needed. 

We shall now describe, in an algorithmic form, the work to be performed by the host 
and node processors. Each node processor uses a multisend routine. which will be 
discussed later in detail. 
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HOST pr-or: 

Determine the mapping function nmp [* [3 
for s := 1 to p do 

Determine the nntod [* 1 function 
for j := 1 to n do 

/* broadcast map [* 1 */ 
send map [* I to processor s 

send column j of A and n d  [ j  1 ta processor r n ~ p  [ j  1 
repeat n times do 

mai t  a column of L and Store it into the data structure 

NODE proeessar s : 

await map [* 1 from the host 
compute ttGd (using map). the number of columns to be processed by processor s 

/* obtain columns from the host and eliminate if possible */ 
repeat md times do 
begin 

await a column j of A and n n d  [ j  1 from the host 
if nmOB [ j  1 = 0 then 
begin 

cdiv ( j  
mdtisend ( j  , 1 

end 
end 

fzcd := mol- number of columns rtxeived with zero nmoa" 

/* main loop: driven by the incoming columns */ 
while ncd > 0 do 
begin 

await a column of L , say Lk 
for each offdiagonal nonzero l j k  with map [ j 1 = s do 
begin 

cmod(jSe1 
nmodt j ]  :== nmodfj]i-1 
if nrnodfj 1 .p 0 then 
begin 

cdiv { j 1 
merltismd ( j  , L,, 1 
tecd :-ncd--P 

end 
end 

end 

It is clear that the host processor is merely responsible for the initiation of the tasks by 
sending the relevant information to each node processor. and then for the collection of the 
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computed colu1rnns af  the factor matrix I.. In each f i d e  prc~cesscr, a routins called 
mdt ised  is used Its function is to ~2nd the coluwrn I.,, to the hast processoi- and also to 
all the sartdr: processors that require this colunm for performing rrrsdifications. Specifically. 
this routine can be formulated as follows 

&i\rr0~.tine muktisem! Cj , LSj 1: 

fo i  each processor d such that for S O X E  i > j , Ii, f 0 and map [i  ] d do 
semi LZj to processor a’ 

set& L,, to the host 

It should be emphasized that the routine nmltisend rhcluld oinly send onc copy of the 
column E,, to ~ 7 1  processor evc?a though the ~ ~ O C C S S O H  iAay US% this column to modify K L O ~ $  

than one column in this processor. ??urthermore.. the Touting strategy in the distribution 
of the column Id,, to the processors concerned can be changed by simply coding a neu; 

There fire s?. few points worth mentioning ita the scheme for each node processor. As 
soon as a colunnn Lj of L i s  completely formed, it i s  imiim%a;ely sent to the other 
processors that need this column. including the nadc processor that rsampxted if that 
node processor also rmeeds LS1. A node’s sending messages to itself in such circumstances: 
makes &he logic and programming mush cleaner. This should riot rzsubt in a significant 
performance penalty in any reasonable multiprocessor design since it, should involve 
merely an internal movement of data. The immediate transmission of completely formed 
columns allows an overlapping of column elirninatiion and colnm;l input from the host in 
the repat  loop in the algorithm. More iniportnntly. by making colilmri~s of L 
immediately available. this will reduce wait time on node processors. 

Note also that the main loop is driven by the incoming c o l ~ ~ m n s  of L .  This implies 
that the parallel nlgorithnn is working at the granularity level of the subiasks c d  ( j  ,k ) 
and cdiv ( j  ), rather than at the level of the tasks Ted ( j  ). l’hhis i s  in direct contrast to the 
serial impIcmeritatioif sf the sparse ChQleSkY mettrod (for rxample. SPARSPAK [ 111 or 
YSMP [*5]>, where each Tcol ( j  ) is executed and c3mpletcd in succesaion. 

Another; important characteristic of this formulation is that it is independent of the 
interconnection network topology. In other words, the parallel zlgorithsn as formulated is 
applicable to any parallel multiprocessor in a message-passing mvironlncnt. For dilfrxnt, 
processor interconnectioras. it may be desirzble to choose a dii’immt task-to-processor 
mapping function m p [ e  1 or ii: different message routing strategy. But tine basic algorithm 
remains unchanged. 

VePSiOn Qf ?iI&’~.i,Wd I 

4. Ex~+riBlen* and &ncl tasioE3 

In the previous sections our discussion has bee:;. iadcpcndcnt of thc interconnection 
topology of the multiprocessor. Our objective has been to disrribute the workload 
uniformly and to reduce the amount of communication that must be performed. In this 
section we report some e ~ p ~ i t ~ . e r t a l  resixlts obtained from an implcmeiltation of our 
algorithm running ow a binary hypercube mvltiproccssos. For background information 
about hypercube mi.iltigrocessors. see [8] and the rcfersaccs contained therein. 
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..... - . . ~ - - - .  __-_.- 
2 3 4 5 6 

..____I____ 

33576 32916 31656 32412 
32040 30408 30540 
29486 32088 31524 
3072D 30072 32640 
30108 29628 2.8884 
29076 28944 27895 
31032 30253, 30216 

95 32244 31848 30336 31536 

24 40832 41204 41528 41035 
__ - 
~ 

Table 2: Logical cornmunication volume among 8 processors for pz =1009, 

106 438 423 Q 423 0 0 0 
441 188 0 423 0 408 0 0 
438 0 99 426 0 0 415 0 

0 444 435 99 0 0 0 445 
40.3 0 0 0 93 428 422 0 

0 411 0 0 427 95 0 425 
0 0 437 0 414 0 94 418 
0 0 0 448 0 445 425 97 

Host I 127 128 127 127 127 127 127 127 
.. .. . .- -. .._... ^ 

[ ,  
....- 

__- 
Host 

126 
127 
126 
126 
126 
126 
126 
126 

0 

Table 3: Physical communication counts for 8 processors and n =1009. 
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3 Most 

0 1 2 3 

31692 125460 124308 0 
124320 29232 0 120468 0 119760 
124596 0 29484 123624 0 0 121620 

0 126336 123684 30072 
119580 0 0 o m 8 4  124176 123924 

0 118632 0 0 122712 28536 
0 0 124968 0 121980 
0 0 0 126924 

Table 4: Physical communication volume among 8 processors for n -1009. 

There are several noteworthy aspects of the numbers in Tables 1-4. First, observe 
that the logical communication is quite evenly distributed among a11 the processors. That 
is, the algorithm generates about the same amount of traffic between any and every pair of 
processors. 

Entries in the logical communication tables associated with the processor nodes are all 
nonzero. However. there are a number of zero entries in the physical communication table. 
Indeed. each zero in the tables (except for the “Host”’ row and column) means that a 
physical link does not exist &tween the two associated processors. For example. there is 
no direct link betweerr processors 0 and 3. The messages from processor 8 to 3 must be 
directed through an intermediate processor, processor 1. This will have the effect of 
increasing the physical. traffic from processor 0 to 1 and from processor 1 to 3. This 
explains why the nonzero entries in the physical communication tables are much larger 
than the corresponding entries in the logical communication tables. 

Furthermore, it is interesting to observe that the actual physical links in the 
hypercube topology all carry about the Same amount of traffic. Thus, it would appear that 
this particular topology adequately supports the actual (logical) traffic generated by the 
algorithm, at  least for this class of sparse problems. 

In order to determine what our implementation achieved in actual speed-up, we ran 
our code using one processor and eight processors. and in addition we ran the best serial 
code we have available. 

A comparison of the times €or the serial code and the parallel code with one processor 
was done to assess the cost incurred in the parallel implementation per se. T t  is 
noteworthy that the penalty is quite substanliall. in the neighborhood of 25 percent. This 
is different from experience with solving dense systems on multiprocessors. where the 
performance of the best serial code and the parallel code running on one processor are 
comparable [8]. This is to be expected for the dense case, since the parts of the codes 
where the majority of the computation is done are identicd. However. serial codes €or 
sparse Cholesky factorization gain important performance advantages through beav y use 
of context. For example. efficient processing and storage of a column depend on rapid and 
direct access to information about certain selected previous C Q ~ U ~ I I S .  This context is 
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one processor 

time SpWd--Up 

102 72 15 .70 
29O573 1 .73 
345427 1 .74 
5357658 .7s 
806009 1 -76 

inevitably lost in a para&? irPrpl&.mentation. since the columns are distributed among 
many proce5s0m, and the use of sueh con ta t  would almost certainly require prohibitive 
amounts of communication. Thus. the data structures a i d  eomputatinmal schemes used in 
the serial a n d  pa.ralle1 implementations are quite diPTerent. 

Amtlner aspect of parallel sparse matrix computations that tends to make them less 
efficient than their dense counterparts i s  that the amociated messages in sparse parallel 
imp?cmientations tend to be shorter, The time re aired to transmit a message from one 
process~r t o  another typically involves a fixed startup time plus a cast proportional to the 
message length. It i s  therefore desirable to have a few large messages rather than many 
small oiies in parallel computations. but this is difficult to achieve fo r  sparse matrix 
computations. 

The results of our experiments are contained in Table 5. Note that the “time” 
reported is artificial. The simulator measures time simply as the number of machine 
instructions executed. with rip: distinction being made between the relative cost o f  
executing instructions of diff ercnt types. 

.I-p 
eight processors 

time 

285614 
484443 3.02 
776278 3.31 

1120536 3.59 
1591583 3.84 

265 
486 
577 
778 

1W9 L-_____ 

‘7 19606 
1452056 
2567438) 
4022592 
6112334 

Table 5: Speed--up for one processor and 8-processor configurations. 
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