
......

1 nis rspoi: :.xi prepax2 55 an account of :.?ark sponsoli; by an agency of the
Unit-:!Stat"srJovcrn,,leilt Neither ihz Z Z I , : ~ ? S:a!csGove~ IIIIIC"! "3r any agr icy
t k reo f no! m y of tbosr ernployens rinkos " ' l y :.jsrranty exprcss 91 ,;i;plied or
assulllas any leszi liability or rwnonsibility for ths a f C i J l x y completerscc or
usefulnesc cf anv inforrltaidn. apnaratcis o rodwt or plocoss disclosed. or
repressits that its u s o ~ ~ l d not infr ~ f i ~ z privately ow-oc! righis F3,^rcrcncc bcreia
to any specific coii-triielLial oroduct ptocess or cowc:: Sy tr-dc ?si ie t rzdemlh.
rzinufacturer or othe :, dcos not rsr3Ss?l l ly c :iiuiz or iriipiy its
endorsement, rcc?ciii?6 !on or favoring by the Units a t o r ~ o v e r i i r n n ~ t or
any agency d ~ ~ z ~ : f ne vietus and opinluns d; &,thola e r ; - ~ s n d herein do not

.11iy state or rs':ec! those cf thcl lni tcd StatcsGmc-.x-? 3r any cgcncy
thereof

Engineering Physics and Mathematics Division

Mathematical %ences Section

Alan George
Michael T. Heath

JosepIi ~ i u tt
Esmond Ng

t Department of Ccmputer Science
University of Waterloo
Waterloo, Qntarb, Canada N2C 361

l"t' Department of Ccmputer Science
York University
Downsview, Ontario, Canada M3J IF3

Date Published: A p r i l 1986

Research was supported by the Applied Mathematical
Sciences Research Program of the Ofice of Energy Research,
U.S. Department of Energy, by the U.S. Air Force Office of
Scientific Research under contract AFOSR-lISSA-85-80O83,
and by the Canadian Natwal Sciences and Engineering
Research Council under grants A8111 and A5509.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831
operated by

Martin Marietta Energy Systems. Inc.
for the

U.S. DEPART1L1IEAT OF ENERGY
under Contract No. ~ E - A ~ Q 5 - ~ 4 ~ R 2 ~ 4 ~ ~

, 3 4 4 5 6 053820L 0

1 . Introduction .. P
2 . Sparse Cholesky Factorization ... 2.

2.1. Dense Case: the Basic Algorithm .. 2

2.2. Parallel Sparse Column-Cholesky and the Effect of Ordering 4
3 . Design and Implementation ... 8

4 . Experiments and Conclusions .. 10

5 . References .. 14

- Y -

Alan George

Waterloo. Ontario. Canada

Micha.el T. Heath

Mathematical Sciences Section
Oak Ridge Nirtional Laboratory

Oak Ridge, Tennessee

Joseph Liu

Department of Computer Science
York University

Downsview, Qntario, Canada

Esmond Ng

Mathematical Sciences ,Section
Oak Ridge National Laboratory

Oak Ridge, Tennessee

This article deals with the problem of factoring a large sparse psi t ive definite matrix on a
multiprocessor system. The processors are assumed to have substantial local memory bus
no globally shared memory. They communicate among themselves and with a host
processor through message passing. Our ;primary interest is in designing an algorithm.
which exploits parallelism. rather than in exploiting features of the u ~ d e ~ l y ~ n ~ topology of
the hardware. However. part of our stuc-y is aimed at determining, for certain sparse
matrix problems. whether hardware based on the binary hypercube topology adequately
supports the communication requirements for such problems. umerical results from
experiments running on a multiprocessor sirnulator are included.

$ Research was supported in part by the Applied Mathematical Sciences Rcscarch Program of the Office of Ener-
gy Research, U.S. Department of Energy under corrtract DH-ACO.S-840Rt1400, by the U.S. Air Force Otiiee of
ScientiEc Research under contract AFOSX-ISSA-85-00083 with Martin Marictta Energy Systems Ine., and by
the Canadian Natural Sciences and Engineeting Research Council under grants A8111 and A5509.

Ideally, every processor in the system should be able to send a m a a g e directly to
any other processor. However, for large p , economics make building machines with such a
capability infeasible, so most local-memory nnultiprocmcm provide physica 1
communication links among only a few nearest neighbors in same geometric layout.
(Comnnon topologies include the ring, the two-dimensional regular grid and Ehe binary
hypercube.) A consequence is tbaE a message to be sent from processor i to ~ ~ O C C S S Q ~ j
may have to traverse several. physical links, and be forwardled by processors along the
transmission path.

It is therefore useful to distinguish between logical and physical! data trafic. By the
logical traffic Prom processor i to processor j , we mean the amount of data originated
from processor i that must be received and utilized by processor j . On the other hand.
we use physical traffic from i to 4 to refer to the total amolrnP of data traffic that actually
flows on the physical link (assuming it exists) from processor -I to j in the multiprocessor
network. If there i s no direct link between ~* .~C~XSQI=S i and j . the arlount of physical
traffic will always be zero even if there i s some logical data trafic between them. In this
case, data originated from processor i and required by processor j bas to trave! through
one or more intermediate processors in some transmission path before reaching j .

It i s clear that logical tra c is determined by the way in which the E Q t d computation
has beera. distributed across the processors. and physical traffic further depends on the
underlying hardware topology and routing strategi - Loosely speaking. logical traffic i s a
function of the algorithm only, while physical tra c i s a function of both the algorithm
and the hardware.

An outline of the paper is as follows. In Section 2, we review the basic Cholesky
algorithm for the dense matrix case. and examine the effect of ordering for the sparse case.
Although we defer the discussion of a parallel. algorithm for computing an ordering until a
later paper. the choice of the ordering can have a drastic effect on both the sparsity of the
triangular factor and the degree of parallelism that can be exploited in computing it. For
the numerical. experiments reported in this paper. the ordering is computed by a standard
sequential algorithm. The design and implementation of the parallel algorithm for sparse
numerical factorization are presented in Section 3, and the results of our numerical
experiments in Section 4.

2. Sparse moleskg Farctori.Eation

2.2. Dense Case: the Basic A l p r i t h

algorithm, described in the following algorithmic form.
We begin by providing a column-oriented version of the basic Cholesky factorization

Thus. in terms of these sub-tasks, the basic algorithm can be expresse
fQllQWing COndenS€!d fQrm.

for j := 1 to pe. do
begin

fork := 1 to j-I do

cdiv (r" 1
end

consider the potential fox g"'"1eIkm in the a ve formulation o f the
d and &-ut operations

are atomic in the sense that we do mot ~.ttempt to exploit parallelism within them,
although wch exphitation is clearly possible

(i . k) h3.S been cOIllple&ed far dl

implicitly assume throughout this paper that the

Note first that c d 1 ~ 4 j 3 cannot begin until c

k " c j . and eolenm
been completed. very there is no restriction on the order in which the c
aperatiam are ex
concurrently. For exampie, after cdiv (13 has csmp%eted, rianod @,I) and. c
execute in parallel. These precedence relations are depicted in Fig., I .

n be wed to modify mbsquent columns only after d i v (j 1 has

and cnwd operaticas for differenn. colrtmrrs can be performe

CmOd(jdr-2,j) . . . tonod(rz , j) cmod (j -4- I 2)

cmod (jJ)
. . . @mod (j 3 2)

Fig. 1: Subtask precedence graph for column- Cholesky.

2.2, HP~dkl S p m ~ Cdu~1~1-Ch0l~ky a d the EEwt S€ O E - ~ W ~ Z

The main difference between the sparse and dense versions of the algorithm stems
from the fact that for sparse A , column j may no longer need tii be modified by ate
columns k C 4 . Specifically. colunnin j is modified o d y by columns k for which l j k &I.
and after c d i v (j > has been executed. colurnn j needs to bc macle available only to tasks
Tcd(r > for which I , a. This can be understosd easily by examining thi. bssir: form of
the algorithm displayed at the beginning of section 2.1. If ajk=O, it is obviously
unnecessary to execute the loop on 2 , since it has no ef f r i t .

Ideally, we would like to choose an ordering for the matrix A which achieves a
number of objectives. First. just as in the use of serial. machines, we -.would like to
preserve sparsity and obtain a low arithmetic sprat ion count. In addition. the ordering
should allow a high degree o f parallelism. and allow the distrihutim of the computation
across the procemoas in a wsy that allows the parallelism to be exploited without
requiring an inordinate amount of cornlmexnication.

Fortunately. these objectives turn out to be nutually complenicntatj.. In order to
gain insight into this problem, it is useful to introduce the mtion of elimination trees for
sparse Cholesky factors [3,15].

Consider the structure of the Cholesky factor E . For each coluiiin j < t c , if column
j has eff-diagonal nonzeros, define $ j 1 by

y [j] = min { i I l i j $0. i > j }
that is. y [j] is the row subscript of the first offdiagonal imiizci-o in column j of E . If
column j has no off-diagonal nonzero, we set y [j 1

;

j . (Hence ybn]=n .>
We now define an ekimirecltbn tree correapnding io the structure of L . The tree has

n nodes, labelled from 1 to n . For each j , if y [j 1 > j . then node y [j 1 is the parent of
node j in the elimination tree. and node j is one of pcssibly sever21 chiLQ nodes of node
y [j] . We assume that the matrix. A is irri?dz4h.e. so that PL is the only node with

y [j] = j and it is the of tlie tree. Thus, for I G j <n 7hl.j 1 > j . (If A is reducible.
then the elimination t efined above is actually a forest which consists of several trees.)
There is exactly one path from each node to the root of the tree. If pl~de i lies on the path
from node j to the root. then node i is an awestor of node j I(and node j is a descendant

An example to illustrate the notion of elimination trees is provided by the structure
of the Cholesky factor shown in Fig. 2 . with the associated elimination tree being sbown in
Fig. 3. Elimination trees have been used eithzr impIicit%y or explicitly in nurner~us articles
dealing with sparse symmetric factorization ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ” ~ ~ , ~ 4 . 1 1 6 , 1 ~ , ~ ~ , ~ ~ * ~ ~ ~ , idn particular.
the paper [I81 uses the elimination tree. as a model to study the parallel sparse Chdesky
factorization algorithm in a shared-memot y multiprocessor.
exploring the use of elimination trees in the parallel ~ m ~ l e ~ ~ ~ t a ~ ~ o ~ of multifrontal
methods.

Of node i .

Xn addition,

X
X

B E

X X ’ K X X X
.E x L =

K X X H j

Fig. 2: Structure of a Cholesky factor.

. 3: The elimination tree associated with the Cholesky Partas in Fig. 2.

The elimination tree provides precise in Formation a”raaut the ccrlzlmn
Specifically, cdiv (i
nodes j OB node i .

y. as shown in Fig. 4. Thus. the representation requires only a single vector of size IE .

cannot be executed until cdiv (j 1 bas completed for d l descendant

The elimination tree has simple structure that can be economically represented. using

- 6 -

Fig. 4: Computer representation of the t rec 3f Fig. 3 .

In order to see the role that elhination trees might play in identifying paralklism.
we now consider two different orderings of the same problcm, and study their
corresponding elimination trees. Consider a 3 by. 3 grid problcrr,. wherc the 9 vertices of
the grid are numbered in some manner, and the associated matrix A has the p-oyerty that
aij ~4 if and only if vertex i and vertex j are associated with the s ~ m e small square in
the grid. Two different orderings of the grid are given in Fig. 5. the associated Cholesky
factors are displayed in Fig. 6. and their corresponding elimination trees a ie shown in Fig.
7.

Fig. 5: Two srderings of a 3 by 3 gsid.

K
x

8.

x x .x
XI[8:

x x x x x
x x x % x x x x

X

x x x x x x x

X
X X
X X

X X X X
X X H X - X .

K X X X T

X X X K
X X X X K

X X X X X

Fig. 6: Structure of the Cholesky factcam for th? ordcrings of Pig. 5.

- 7 -

Fig. 7: The elimination trees associated with the matrices in Fig. 6.

The e l ~ i n a t ~ o n tree on the left is typical of those generated by orderings that are
good in the sense of yielding low fill and low operation counts. Its tree structure is short
and wide, and such trees and their associated orderings lend themselves well eo parallel
computation- For example. it should be clear that Tcd(11, Tcol(2). TcdC3). and Tcd(4)
can start immediately in parallel. Moreover. when they have completed execution. Tcol IS)
and Tcd(6) may proceed independently, The remaining tasks are no different than those
for a dense matrix. and the findings in IS] apglgr equally well here,

OIa the other hand. the band-oriente ordering shown a ve is undesirable &cause it
imposes the same serial execution on the iv operations tha imposed in the dense case
(note, however. that even in the dense case, m n e '1lr7EaTE operations can still
concurrently [91). Moreover, the operation counts and fill-in are inferior to that of the
first ordering.

In the elimination tree if node i and node j belong to the same level of the tree. it is
clear that the tasks TctJ (I; 1 and T C O ~ (j 1 can.
tasks associated with their descendant nodes completed. In Qrcfer p i l l
high processor utilizati , it is therefore desirable to assign, if possible. nodes on the: Sanie
level of the tree to d rent processors. An overall task assignment scheme will then

indewndently So as

- 5 -

correspond to assigning the Tcsl (i) tasks to successive processors in a breadth-first
bottom-up manner from nodes of the elimination tree.

It should be pointed out that some of the practical fill-reducing orderings will
already order the nodes of the elimination tree in this desirable sequence. They include
the recent implementation of the minimum degree ordering using maalP,iple elimination [15]
and a version of the nested dissection ordering [IO]. In such cases. the task assignment
scheme corresponds to the straightforward wrap-around assignment. wlisre task Ted (i)
will be assigned to the processor s , given by s = (i -1) nmi p .

3. Design and hnplernentation

In this section. we consider the design and implementation of a sparse Cholcsky
factorization algorithm appropriate for a parallel multiprocessor with local memory. Let
A be the givm n by PP, spmse symmetric positive definite matrix with Cholesky factor L .
We assume that the matrix has already been p r n u t e d by some fill-reducing ordering
appropriate for parallel elimination.

As before. we lee Tco l (j) be the task of computirig the j -th column of the sparse
Cholesky factor L . This task consists of the two types of subtasks: c m o d (j . k) and
cdiv (j).

In the sparse case. the task T c d (j) can be expressed in the following algorithmic
form:

for each k with nonzero Z,, and j > k do

cdiv (j)
craod(j .k)

It should be clear that the number o f c d operations required in the task T c o l (j) i s
given by the number of off-diagonal nonzeros in the j - t h row of L . To facilitate our
discussion, we introduce the vector n d [* 1. where the value r t m d [j 1 is the number of
column modifications c d required in the execution of T e d c j) . This vector can be
obtained by simply counting the number of off-diagonal nonzeros in each row of 9,.

Consider the symmetric factorization of A in a given parallel message-passing
multiprocessor environment. Let p be the number of processors in the parallel machine.
We assume that an assignment of the column tasks Tcol (Y) to the computational nodes of
the multiprocessor has been given. For definiteness, let t m p [* ! be the mapping of these pz
tasks into the p processors. That is. map [j 1 will be the processor that is responsible for
the performance of the task T c d (j 1. and hence the computation of coluinn j of L . It
should be pointed out that the effect of task-to-processor assignment on load balancing
and communication cost can be studied by choosing different map [* 1 fzanctions.

In the parallel environment. we further assume that there are two primitives: send

and await. Execution of a send does not cause the sending process eo wait for a reply. On
the other hand. execution o f an await causes the process executing it to be suspended until
the message is received. Messages that arrive at the destination process before the
execution of the receiving await are placed in a queue until needed.

We shall now describe, in an algorithmic form, the work to be performed by the host
and node processors. Each node processor uses a multisend routine. which will be
discussed later in detail.

- 9 -

HOST pr-or:

Determine the mapping function nmp [* [3
for s := 1 to p do

Determine the nntod [* 1 function
for j := 1 to n do

/* broadcast map [* 1 */
send map [* I to processor s

send column j of A and n d [j 1 ta processor r n ~ p [j 1
repeat n times do

mai t a column of L and Store it into the data structure

NODE proeessar s :

await map [* 1 from the host
compute ttGd (using map). the number of columns to be processed by processor s

/* obtain columns from the host and eliminate if possible */
repeat md times do
begin

await a column j of A and n n d [j 1 from the host
if nmOB [j 1 = 0 then
begin

cdiv (j
mdtisend (j , 1

end
end

fzcd := mol- number of columns rtxeived with zero nmoa"

/* main loop: driven by the incoming columns */
while ncd > 0 do
begin

await a column of L , say Lk
for each offdiagonal nonzero l j k with map [j 1 = s do
begin

cmod(jSe1
nmodt j] :== nmodfj]i-1
if nrnodfj 1 .p 0 then
begin

cdiv { j 1
merltismd (j , L,, 1
tecd :-ncd--P

end
end

end

It is clear that the host processor is merely responsible for the initiation of the tasks by
sending the relevant information to each node processor. and then for the collection of the

- 10-

computed colu1rnns af the factor matrix I.. In each f i d e prc~cesscr, a routins called
mdt ised is used Its function is to ~2nd the coluwrn I.,, to the hast processoi- and also to
all the sartdr: processors that require this colunm for performing rrrsdifications. Specifically.
this routine can be formulated as follows

&i\rr0~.tine muktisem! Cj , LSj 1:

fo i each processor d such that for S O X E i > j , Ii, f 0 and map [i] d do
semi LZj to processor a’

set& L,, to the host

It should be emphasized that the routine nmltisend rhcluld oinly send onc copy of the
column E,, to ~ 7 1 processor evc?a though the ~ ~ O C C S S O H iAay US% this column to modify K L O ~ $

than one column in this processor. ??urthermore.. the Touting strategy in the distribution
of the column Id,, to the processors concerned can be changed by simply coding a neu;

There fire s?. few points worth mentioning ita the scheme for each node processor. As
soon as a colunnn Lj of L i s completely formed, it i s imiim%a;ely sent to the other
processors that need this column. including the nadc processor that rsampxted if that
node processor also rmeeds LS1. A node’s sending messages to itself in such circumstances:
makes &he logic and programming mush cleaner. This should riot rzsubt in a significant
performance penalty in any reasonable multiprocessor design since it, should involve
merely an internal movement of data. The immediate transmission of completely formed
columns allows an overlapping of column elirninatiion and colnm;l input from the host in
the repat loop in the algorithm. More iniportnntly. by making colilmri~s of L
immediately available. this will reduce wait time on node processors.

Note also that the main loop is driven by the incoming c o l ~ ~ m n s of L . This implies
that the parallel nlgorithnn is working at the granularity level of the subiasks c d (j ,k)
and cdiv (j), rather than at the level of the tasks Ted (j). l’hhis i s in direct contrast to the
serial impIcmeritatioif sf the sparse ChQleSkY mettrod (for rxample. SPARSPAK [111 or
YSMP [*5]>, where each Tcol (j) is executed and c3mpletcd in succesaion.

Another; important characteristic of this formulation is that it is independent of the
interconnection network topology. In other words, the parallel zlgorithsn as formulated is
applicable to any parallel multiprocessor in a message-passing mvironlncnt. For dilfrxnt,
processor interconnectioras. it may be desirzble to choose a dii’immt task-to-processor
mapping function m p [e 1 or ii: different message routing strategy. But tine basic algorithm
remains unchanged.

VePSiOn Qf ?iI&’~.i,Wd I

4. Ex~+riBlen* and &ncl tasioE3

In the previous sections our discussion has bee:;. iadcpcndcnt of thc interconnection
topology of the multiprocessor. Our objective has been to disrribute the workload
uniformly and to reduce the amount of communication that must be performed. In this
section we report some e ~ p ~ i t ~ . e r t a l resixlts obtained from an implcmeiltation of our
algorithm running ow a binary hypercube mvltiproccssos. For background information
about hypercube mi.iltigrocessors. see [8] and the rcfersaccs contained therein.

- 12 -

..... - . . ~ - - - . __-_.-
2 3 4 5 6

..____I____

33576 32916 31656 32412
32040 30408 30540
29486 32088 31524
3072D 30072 32640
30108 29628 2.8884
29076 28944 27895
31032 30253, 30216

95 32244 31848 30336 31536

24 40832 41204 41528 41035
__ -
~

Table 2: Logical cornmunication volume among 8 processors for pz =1009,

106 438 423 Q 423 0 0 0
441 188 0 423 0 408 0 0
438 0 99 426 0 0 415 0

0 444 435 99 0 0 0 445
40.3 0 0 0 93 428 422 0

0 411 0 0 427 95 0 425
0 0 437 0 414 0 94 418
0 0 0 448 0 445 425 97

Host I 127 128 127 127 127 127 127 127
..- -. .._... ^

[,
....-

__-
Host

126
127
126
126
126
126
126
126

0

Table 3: Physical communication counts for 8 processors and n =1009.

- 43 -

3 Most

0 1 2 3

31692 125460 124308 0
124320 29232 0 120468 0 119760
124596 0 29484 123624 0 0 121620

0 126336 123684 30072
119580 0 0 o m 8 4 124176 123924

0 118632 0 0 122712 28536
0 0 124968 0 121980
0 0 0 126924

Table 4: Physical communication volume among 8 processors for n -1009.

There are several noteworthy aspects of the numbers in Tables 1-4. First, observe
that the logical communication is quite evenly distributed among a11 the processors. That
is, the algorithm generates about the same amount of traffic between any and every pair of
processors.

Entries in the logical communication tables associated with the processor nodes are all
nonzero. However. there are a number of zero entries in the physical communication table.
Indeed. each zero in the tables (except for the “Host”’ row and column) means that a
physical link does not exist &tween the two associated processors. For example. there is
no direct link betweerr processors 0 and 3. The messages from processor 8 to 3 must be
directed through an intermediate processor, processor 1. This will have the effect of
increasing the physical. traffic from processor 0 to 1 and from processor 1 to 3. This
explains why the nonzero entries in the physical communication tables are much larger
than the corresponding entries in the logical communication tables.

Furthermore, it is interesting to observe that the actual physical links in the
hypercube topology all carry about the Same amount of traffic. Thus, it would appear that
this particular topology adequately supports the actual (logical) traffic generated by the
algorithm, at least for this class of sparse problems.

In order to determine what our implementation achieved in actual speed-up, we ran
our code using one processor and eight processors. and in addition we ran the best serial
code we have available.

A comparison of the times €or the serial code and the parallel code with one processor
was done to assess the cost incurred in the parallel implementation per se. T t is
noteworthy that the penalty is quite substanliall. in the neighborhood of 25 percent. This
is different from experience with solving dense systems on multiprocessors. where the
performance of the best serial code and the parallel code running on one processor are
comparable [8]. This is to be expected for the dense case, since the parts of the codes
where the majority of the computation is done are identicd. However. serial codes €or
sparse Cholesky factorization gain important performance advantages through beav y use
of context. For example. efficient processing and storage of a column depend on rapid and
direct access to information about certain selected previous C Q ~ U ~ I I S . This context is

. 1 4 -

one processor

time SpWd--Up

102 72 15 .70
29O573 1 .73
345427 1 .74
5357658 .7s
806009 1 -76

inevitably lost in a para&? irPrpl&.mentation. since the columns are distributed among
many proce5s0m, and the use of sueh con ta t would almost certainly require prohibitive
amounts of communication. Thus. the data structures a i d eomputatinmal schemes used in
the serial a n d pa.ralle1 implementations are quite diPTerent.

Amtlner aspect of parallel sparse matrix computations that tends to make them less
efficient than their dense counterparts i s that the amociated messages in sparse parallel
imp?cmientations tend to be shorter, The time re aired to transmit a message from one
process~r t o another typically involves a fixed startup time plus a cast proportional to the
message length. It i s therefore desirable to have a few large messages rather than many
small oiies in parallel computations. but this is difficult to achieve fo r sparse matrix
computations.

The results of our experiments are contained in Table 5. Note that the “time”
reported is artificial. The simulator measures time simply as the number of machine
instructions executed. with rip: distinction being made between the relative cost o f
executing instructions of diff ercnt types.

.I-p
eight processors

time

285614
484443 3.02
776278 3.31

1120536 3.59
1591583 3.84

265
486
577
778

1W9 L-_____

‘7 19606
1452056
2567438)
4022592
6112334

Table 5: Speed--up for one processor and 8-processor configurations.

5. Mcferexnm

I S . Duff, ”Full matrix techniques in sparse Gaussian elimination”. im L e d w e Notes ire
Math,mtics (912). ed. G.A. Watson, Springer Verlag (1982).

I.S. DUE. “Parallel implementation of multifrontal schemes”, Technical
Memoraa-,dum No. 48. Mathematics and Computer Science Division. Argonne National
Laboratory, Argonne. 11.. (March 19851.

I.S. DUE and J.K. Reid, “The multifrontal solution of indefinite sparse symmetsir,
linear equations*’, ACM T ~ Q ~ w . on Math. Software 9. pp.302-325 (1983).
T.H. Dunigaw. “A message-passing multiprocessor simulator”, Technical report
ORNL/TTM-9966, Mathematical Sciencgs Section. Oak Ridge National Laboratory, Oak
Ridge. TN (1986).
S.C. Eisenstat, M.C. Gursky, M.N. .%hultz. and A.H. Sherman, “The Yale sparse
matrix package. I. the symmetric codes”, Internat. 9. N u m . Meth. Engrg. 18.

S.C. Eisenstat. M.H. Schultz, and. A.H. Sherman, “Applications of an element model
for Gaussian elimination”. in Speisss Matrix @omp&&isns, ed. J.E. Runch and 3 . J .

pp.1145-1151 (1982).

”’ 15 -

Rose, Academic Press. gp.85-94 (19’76).

S.C. Eisenstat, M.M. Schultz, and A. . Sherman. ”Software for sparse Gaussian
imination with limited core storage“, in Sparse Matrix Yt-meedings 1978. ed. I.S.
uR and G.W. Stewart., SlAM Press, ppl3S-

[SI C.A. Geiw and .T. Heath. ““Paralkl e”ho1esky fa6torkatioan on a hypercube
multiprocessor”’, Technical Report NL-5 190, Mathematical Sciences Section. Oak
Ridge National Laboratory, Oak Rid Tennessee (1985).

J.A. George, M.T. Heath. and J.W-lIE. Liun ‘”Parallel Cholesky ~ a ~ ~ 5 ~ ~ ~ ~ ~ ~ n on. a
multiprocessor”’. Research Report 6584-49, Depa ent of ~~Q~~~~~~ Science,
University of Waterloo. Waterloo, Ontario, Canada (1

[IO] J.A. Cearge and J.W-H-kiu. ”An automatic nested dissection algorithm
finite element problems”’. SIAM J . Nutpm. Anal. 1s. ~ ~ . ~ ~ 5 ~ - ~ ~ ~ ~ (697

[Ill J.A. George and J.W-H. Liu. “The design of a user interface for a sparse matrix
package”’. ACM Trans. on Math. Software 5, pp.134-162 (6979).

[I21 J.A. George and J.W-H. Liu, “An optimal algorithm for symbolic ~ ~ c ~ ~ ~ ~ ~ t ~ o ~ s f
symmetric matrices”. SIAM J . Gornp&. 8. pp.583-593 (19801.
.T. Heath, “Parallel Cholesky factxization multiprocessor

es sf2ctitiom, Oak

[I41 J A G , Jess and M.C.M. Kees, “A dat,z. structure for parallel %/TJ ~ ~ o ~ ~ ~ ~ t ~ ~ ~ ’ ’ ,

[15] J.W-H. Liu, “Modification of the minimum degree alg irhrn by multiple

1161 J.w-H. Liu, ‘“A compact row storage scheme for sparse Cho~esky factors using

. Liu. ““On general row merging schemes for sparse Givens transformations”,

, Liu, “‘Computational models and task ~ c ~ ~ d u ~ ~ ~ ~ for parallel sparse Cholesky

[7]

[9]

environments”’. Technical Report ORML-61SD,
Ridge National Laboratory, Oak Ridge. Tennessee

. C-31, pp.231-239 (1982).

elimination”. ACl\rf Trans. ~n mafh. S0ftual-e 1%. pp.ll$l-is3 (1

elimination trees’.. ACM Trans. ~n Math. S ~ f t w m e (19863‘). (To appear.]

SIAM J. Sei, Stat. &m@. (1986). (To appear).

factorization”, ~ a d k ? t Computing CI98Ql. I‘ro appear.)

Mathematisch Centrum. Amsterdam, The Netherlands (19801.
[193 F.J. Peters. ’“Sparse matrices and substructures”. ~ a ~ h ~ ~ a ~ ~ c ~ ~ Centre Tracts I P

ew implementation of sparse Gaussian elirn ination“’. A
pp.256-276 (6982).

1.
2.
3.
4.
5.
6 .

7-8.
9-13.

14.
1s.
16.
17,

18-22.
23.
24.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

L, S. Abbott
J. B. Drake
T . 13. Dunigan
E. k. Frome
C. A. Geist
L. J. Gray
R. F. Harbison
M. T. Heath
W. E. Lever
F. C. Maienschein
T. J. Mitchell
M. D. Morris

C . Ostrouchov
V. R. R. Uppuluri

E. @. Ng

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
35.

37.
38-39.

Central Research Library
R-25 Plant Library

/Document Reference Suition
Laboratory Records -
Laboratory Records ~~~~~~~~~

Dr. Donald M. Austin. Office of Scientific Computing, OBce of Energy
Germantown Building. US. Department of Energy. Washington, DC 2

Dr. Robert G. Babb. Department of Computer Science and Engineering, Oregon
Graduate Center, 19600 N.W. Walker Road, Beaverton. OR 97006

arfow, Department of Computer Science, Pennsylvania State University.
University Park, PA 16802
Prof, Ake Bjorck. Department of Mathematics, Linkoping University, Linkoping
58183, Sweden

fi. James C. Browne, Department of Computer Sciences. University of Texas. Austin,
TX 78712
Dr. Bill L. Buzbee. C-3. Applications Support & Research. Los Alamos Fbdati~paal
Laboratory. P.O.
Dr. Donald A. Calahan, Department ~f Electrical and Computer Engineering,
University of Michigan. Ann Arbor. MI 48 109
Dr. Tony Chan, Department o f Computer Science, Yale University.
Yale Station. New Maven, CT 06.520
Dr. Jagdish Chandra, Army Research Office. P.Q. BOX 12241, Research ~~~a~~~~ Park,
North Carolina 27709
Dr. Paul Concus. Mathematics and Computing.

rlceley, GA 94728

x 1663, Los Alamos, NM $7545

-18-

50.

51.

53.

3-19.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

6.5.

66.

57.

68.

69.

TO.

BT. Jane K. Cull~lm, IBM T. J. Watson Research Center, P.0. Box 218, Yorkeowin
Heights. NY LO598
ns. George eyhcnko, Department of Computes Scimcc. Tufts Univcrsity, Medforcl,
hlA 02155

Dr. G e ~ r g c J. Davis. Depa;-tment Qf Mathematics, Georgia State Univer,<ily. Atlanta.
GA 30303

Dr. Jack J. Dongarra, Mathematics and Computer Science Division. Argonne National
Laboratory. 9708 South @ass Avenue. Argsiarre, JL 60439

Dr. Stanley Eisenstat I Depariinent of Computer Science. Yale University, P.O. Boa
2158 Yale Station, New Haven, C T 06520

Dr. Howard C. Elman, Computer Science Departmefit, University of Maryland,
College Park. MD 20742

Dr. Albert M. Erisman. Roeirig Computer Services, 565 Andsver Park West, ‘9?ukwila.
WA 98188

Ds. GeoErey C. Fox, Booth Compting Center 158-79. California Institute of
Technology. Pasadena. CA 91125

Dr. Paul 0. Frcdesicksoa Cctmputimg Division, Eos Alanins National Laboratory, Los
Alatmos. NM 87545
Dr. F r ~ d N. Fritsch. L-300. Mathematics arid Statistics Division, Lawrence Livermore
National Laboratory. P.0. Box 808, Livermore, CA 94550
DP. Robert E. Funderlic, Department of Computer Science, North Carolina State
University. Raleigh. NC 27650

Dr. Dennis 9. Gannon. Computer Science Department, Indiana University,
Bloamington, IN 47405

Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Mumay Mill, NJ 07974
DP. C. William Gear, Computer §cience Department. University of Illinois. Urbana.
Illinois 61801
Dr. W. Morvm Gentleman, Division of Electrical Engineering. National Research
Coixticil, Building M-SO. Room 344. Montreal Road. Ottawan Ontario. Canada klA
OK8

Dr. J. Alan Georg~. Department of Computer Science, University of Waterloo.
Waterloo. Ontario. Cainrada N2L 3G1
Prof. Gene 13. GsEub, Department of Computer Science. Stanford University,
Stanford, CA4 94305

ET. Joseph P. Orcar. Division 833 1, Saizdia National Laboratories, 1,ivermore. CA
94550

P.O. Box 481, Wsuston, TX 77001
T)r. Wot-lert B. Huddleston. Computation Department, Lauircnee Livemore National
L.a19ora:sry, P.8. Box 808. Livermore, CA 94550
Dr. Ilse Ipen , Department of Computer Science. Yale University, P.8. Box 2458 ‘bale
Station. New Haven. CT (36520

XPT. Do3 E. Helkr. Physics and Computer Science Depertment, Shell Development co..

71.

72.
73.

74,
75.

76.

77.

78.

79.

80.

$1.

$2.

83.

84.

85.

86.

87.

89.

90.

91.

92.

93.

Dr. IIarry Jordan, Department of Electrical and Computer Engineering, University of

Dr. Linda KauTmm, Bell Laboratories, Q
Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandin Natio
Livermore. CA
M?. Virginia Klerna, Statistics Center, E40-I3 1

0, Boulder, CO 80309

~ o ~ ~ t a ~ Avenue. ~ ~ ~ ~ a y

A 02139

Dr. Richard Lau. Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

California, Santa Barbara. CA 93106

Dr. Robert L. Launer, Army Research Office. P.8. Box 12211, eseareh Triangle Park,
North Carolina 27709

Lax, Director, Courant Institute o f M ~ t ~ e ~ ~ t ~ ~ ~ l Sciences. New York
University, 251 Mercer Street. New York, NY 10012
Dr. Michael R. Leu=. Computer Science Department. Box I679 ~~~~~~~ B, ~ ~ ~ ~ e ~ ~ ~ ~ t
University, Nashville, TN 37235
Dr, Joseph Liu, Department of Computer Sience, York University, 47
Downsview. Ontario, Canada M3J 1P3

Dr. Franklin Luk. Electrical Engineeriqg Department. Cornell University, Ithaca., NY
i4853
Dr. Thomas A. Manteuffel. Cornputkg Division. Los Alamss National to^^,
Los Alarnos. NM 87545
Dr. Paul C. Messina. Applied Mathematics Division, Arpnne National ~ ~ ~ o r ~ t o ~ ~ ,
Argonne, IE 60439

Dr. Clew Moler. Intel Scientific Ccbmputers, 152 1 N.W. Greenbrier ~ a r ~ ~ a ~ ,
Beaverton. OR 97006
Dr. Dianne P. Q'Leary, Computer Science Department ~ University of
College Bark, MD 20742
Maj. C . E. Oliver, Office of the Chief Scientist. Air Force ~~~~~s ~ " ~ ~ ~ ~ a ~ ~ ~ ~ ~
Klrtland Air Force Base. Albuquerque. 'UM 87115
DP. James M. Ortega. Department of Applied Mathematics, University o f Virginia,
Charlottesville, VA 22903

Prof a Chris Paige. Computer Science Dqartment, McCi'L1 University, 805 Sherbroske
Street W.. Montreal, Quebec. Canada W3A 2KA
Dr. John P. P a h e r , NCUBE Corporation, 915 E. LaVieve Lane, Temp, AZ 85284

Berkeley, CA 94720

r. Alan 9. taub, epartment of Electrical and Computes Engine&

resford N, Parlett. Department of Mathematics. University nf California,

r. Robert .I. Plemrnons, Departments of M a t ~ e ~ ~ a ~ i c s and Computer %ience, North
arolina State University, Raleigh, NC 27650

Ds. John K. Reid. CSS Division, Building 8.9, AEBE
OX11 mA

-28-

9.4. nr. John R. Rice. &mputer Science Department. Purdue: University. west hfayette,
IN 47909

Dr. Garry Rodrigue. Numerical Mathematics Group, I,avrrense Livermore Laboratory,
Livetmore, Cia 94550

Or. Donald J. Rose, Department of Computer Science, Duke University. Durham, NC
27’706
Dr. Milton]E;,. Rose. Director, ZCASR. M/S 132C. NASA Langley Research Center,
Wampton. VA 23665

98. Ur. A4hmed €3. Sanneh, Computer Science Department, University of Illix~ois. Uibatla,
T L 66801

99. Dr. Michael Samnders. Systems Optimization Laboratory. Operations Research
Department. Stanford University. Stanford, C R 94305

100. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic
Institute, Troy, NY 12180

101. Dr. Martin M. Schultz. Department of Computer %cience, Yak? h ivers i ty , P.8. Box
2158 Yale Station. New Haven. Cr 06520

102. Dr. David S. Scott, lntel Scientific Computers, 15201 N.W. Greenbrier Parkway.
Beaverton, OW 99005

103. Di. I~wrenc:: F. Shampine, Numerical Mathematics Division 5642, Sandig National
Laboratories, P.O. Box 5800, Albuquerque, NM 87115

184. Dr. Danny C. Sorensen. Center for Supercomputing Research and Development. 305
Talbot Laboratory. University of Illinois, 104 South Wright Street, Urbana, 11,

165. Prof. G . W. Stewart, Computer Science Department, University of Maryland, College

106. Capt. John P. Thomas, Air Force Office of Scientific Research, Bujldiag 410. Bolling

107. Prof. Charles Van Loan, Department of Computer Science. Cornella University. Ithaca,

108. Dr. Robert 6. Voigt. ICASE. MS 132-G, NAS14 Langley Research Center, Hamptorn,

109. Dr. Andrew B. White, Computing Division. Los Alamos National Laboratory, Los

110. Dr. James H. Wilkinsan, Division of Numerical Analysis and Computer Science.

11 1. Mr. Patrick W. Worley, Computer Science Department, Stanford University. Stanford,

112. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle Park.

11.3. Dr. Margaret Wright, Systems Optimization Laboratory. Operations Research

114. Office of Assistant Manager for Energy Research and Development, Departmene of

95.

96.

97.

61801-2932

Park, MD 20742

Ais Force Base. Washington, DC 20332

NY 14853

VA 23665

Alnmos, NM 87545

National Physical 1,aboratory. Teddington. Middlmex TW11 QLW. England

@A 94385

North Carolina 27709

Department, Stanford University. Stanford, CA 94305

Enengy. Oak Ridge Operations Bifice. Oak Ridge. TN 37830

115-1411. Technical. Information Center

