
f

. .

_____ ___ __ __ __ .~ __...
-
I his :sport was prepared 8s an account of work sponsored by ai? agency of ihe
United Sizies Goverm?mt Ne r iiie~Jnl:E3StaicSQour:, or any agency
thsreo!. nor any of their employees, makes any ?i,arran?y, o:a;xs or implied. or

m y legal liability or res,?i;nsibility for the accuracy, cornpte:eness, or
us&dKess of any infomation, apparai
reptssmts itiat i ts use would not tnfringn,
to any sp~z i f i c coii imccial pioduct.
mafiufacturcr. or o;he%.:ise, d3t:

1, recomncr.datioi-i. or
thsieof. ‘rw ukw: a;id

arm, tiadfmark.

nc.:rssaiiiy state oi icflect those of theUni;ec: S t s k s C o v e i n ~ s ~ t 6 i any acency
thsrocf.

OR?JL/TM-9966

Engineering Physics and Mathematics Division

Mathematical !Sciences Section

A MESSAGE-PASSING MULTIPROCESSOR SIMULATOR

T. M. Lhnigan

Date P u b l i s h e d - May 1986

The work was supported by the
Applied Mathematical Sciences subprogram

of the Office of Energy Research.
U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 6 O L 3 B 3 4 7 2

Table of Contents

Abstract ... 1

1 . Overview .. 1

1.1 Introduction ... 1

1.2 Simulator structure ... 2

1.3 Messagepassing model .. 2

2 . User's Guide ... 4

2.1 Simulator subroutines ... 4

2.2 Trace file and post-processors ... 6

2.3 Sample session-... 9

2.4 FORTRAN interface ... 10

2.5 Debugging ... 13

3 . Intel iPSC and the Simulator-... 14

Acknowledgements .. 15

References ... 16

Appendix A: Installation Guide .. 17

Appendix B: Porting to Other Machines ... 18

Appendix C: Simulator Manual Pages-... 19

iii

A Message-passing Multiprocessor Simulator

T. w. Dunigan
Mathematicai Sciences Section

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831

ABSTRACT

The structure and use of a messagepassing multiprocessor simulator
are described. The simulator provides a multitasking environment for the
development of algorithms for parallel proeessars using either shared or
local memories. The simulator may be used from C or FORTRAN and pro-
vides a library of subroutines for task control and message passing. The
simulator produces a trace file that can be used €or debugging. performance
analysis, or graphical display.

1. Overview

1.1. Introduction
The study and expIoitation of parallel processors are becoming increasingly important

for fifth generation computing for several reasons- First. the speed of serial processors is
approaching the physical limits imposed by the speed of light. The Cray 2 supercomputer
has cycle times of four nanoseconds. Speecing up the Cray 2 by an order of magnitude
would require that the storage modules for the computer be withm a foot of the processor,
(Electrical signals travel about one foot in one nanosecond.) To get. even higher computing
speeds would require that a number of parallel p r o c m r s be used, such as in the Cray X-
M P . Second, the cost of VLSI proGessors and memory continues to decline each year. A
vendor can package a large number of standard processors together into a parallel proces-
sor to produce a high performance system at relatively low cost. Also, special purpose
parallel processors can be constructed economically to solve a particular problem, such as
signal processing. or to play chess faster or better than can be done on much more expen-
sive supercomputers. Thus parallel computing is important not only to the few who need
the most computing cycles per second possible. but also to the masses who want high per-
formance at a low cost.

Simulation of parallel processors has several important uses. First, simulation pro-
vides the computing system designer with a test bed to evaluate inexpensively various
parallel architectures or design decisions wkhin a given architecture. Second, users who
cannot afford a parallel computing system can develop programs on a simulator. Third,
even with a parallel system available. the user may find that the simulator provides more
debugging aids and performance information than the actual hardware. Finally, the user
may wish to investigate new algorithms cr test existing applications on proposed Or
theoretical architectures available only through simulation.

- 2 -

The objective of the simulator described in this report is to provide an environment
for developing algorithms and applications for a messagepassing local memory multipro-
cessor. In $1.2, the history and structure of the simulator is summarized. In $1.3 the
specific messagepassing model used by the simulator is described. Section 2 is a guide LO
the w e of the simulator wieh examples and sample sessions for both C and FORTRAN.
Section 3 compares running programs on the simulator with running the same programs on
a real multiprocessor.

1.2 sirnulamor structure
The simulator is a library of subroutines €or C or FORTRAN that provide task and

message management services. It is based on a shared-memory multiprocessor simulator,
the "Multitasker." developed by Brooks [l]. The simulator runs as a single process on a
Digital Equipment Corporation VAX 11/780 under the control of Berkeley's UNIX'
4.2bsd. The distribution tape (see Appendix A) provides include files, makefiles. sample
programs and scripts to aid in constructing m application to run under the simulator. An
application may consist of up to lo00 procl.sses or tasks that will be scheduled for con-
current execution by the simulator.

A set of subroutines (ffurk, texit . and twait) provides task management services.
Application subroutines that are to be executed in parallel are declared to be of type
TASK; then tfork is used to start such subroutines in parallel. The main entry p i n t for
the application is contained in the simulator library, sa the user's main program is replaced
by a subroutine of type TASK with the name tclsRO. The simulator passes control to taskQ
when the application program is started. The application can then create other parallel
processes with subsequent calls of tfurk specifying the task name, stack size, and. option-
ally. any arguments the task uses. An optional trace facility can be enabled to provide a
hiaory of simulator events.

Within a single UNIX process. the simulator provides a small operating system that
schedules the execution of the user's application tasks. Two forms of scheduling services
are provided. The simplest form is a non-preemptive scheduler. A simulator task runs
until it must wait for some simulator event (message arrival, for example). When the
task blocks, the next runnable simulator task is started, selected in a simple round-robin
fashion. This mode requires very little simulator overhead and the application runs at
normal VAX speed. A more complex, preemptive scheduling mode is available when the
application is built in uspp-mode.

In app-mode. the application code is in effect interpreted, permitting the execution of
each active simulator subtask to be interleaved. At program build time, the aspp module
(assembler post processor) inserts calls to the simulator scheduler between each assembler
instruction in the application program. The simulator then can provide concurrent execu-
tion of the application's tasks and maintain a clock (in units of VAX instructions). The
clock. in turn, can be used to schedule asynchronous events such as task sleeps (fsleep) or
message arrivals and can time-stamp entries in the trace file for detailed performance ana-
lyses. However, the real run time of the application will be lengthened considerably due
to the additional overhead incurred.

13. Message-passing model
To support our local research efforts, the Brooks simulator was extended with addi-

tional subroutines to simulate the Denelcor HlEP multiprocessor [3] and message-passing
multiprocsors. The initial message-passing model was fully interconnected processors,

'UNIX is a trademark o f AT&T.
-

- 3 -

and the application program used simple SEPlD and RECEIVE subroutines to pass messages
from any processor to any other processor. The model was then refined to simulate the
performance and syntax of Caltech’s Cosmic Cube 191. Finally. to prepare programs for a
hypercub that we were acquiring, we tail0 the sn-age-passing model to the
specifications of the Intel ~ P S C hypercube E81, indudin the provision for a host or cube-
manager processor.

A hypercube of dimension N consists of 2N processors, each with i t s own memory
and each with a direct connection to N other processors. The processors are the corners of
an N-dimensional cube, and the communication paths are the edges. This structure permits
a large number of processors to communicate without the expense of full interconnection
(e.g.. crossbar switch) or the message delays of an order-n interconnect such as a ring. The
structure expands nicely as well. since as the number of processors is increased the number
of communication links grows only logarithmically. Other communication topologies can
be mapped on to the hypercube. such tis rings, meshes. and trees. and a large number of
real-world problems can be solved with the hypercube [4]. The simplicity and applicabil-
ity of the hypercube have made it a fruitful. research area, and a number of vendors now
offer hypercube multiprocessors.

The simulator supports the hypercube architecture by mains of a set of subroutines
for passing messages between processors. with a message delay based on the size of the
message, the distance the message must travel. and the transmission speed of the commun-
ication channel. The distance. or number of hops. between any tw0 processors on a hyper-
cube ca.n be calculated from the binary addresses of the two processors. Each processor
has an N-bit address in the range 0 to 2N-1 and is connected to the N processors whose
addresses differ from its own by exactly one bit. Under such an addressing scheme, the
number of hops between any two processors is the number of bits in which the processor
addresses differ. (Algorithimieally. it is the number of 1’s in the exclusive-OR of the two
addresses - also known as the Hamming distance.) The programmer can control the
transmission speed and packet size of messages. Large messages are broken into packets,
and the actual number of bytes transmitted is rounded up to the nearest packet. Finally,
there is a startup time for sending a message. This startup time is a function of message
size and may be Set by the user.

Most commercial implementations of the hypercube include a host processor that is
used for program development. downloading the cube programs. and getting back results
from the cube. The simulator models the Intel aickitecture by having a host processor
that has a direct connection to every processor i x ~ the hypercube. Messages between the
host and the cube exhibit a transmission delay in the same manner as messages between
cube processors. but the user may specify a different transmission sate for the host-to-cube
communication path.

The data rates for the cube communication channels and %he host-to-cube channel for
the simulator are specified as a delay value. The delay value is the ratio of processor speed
(instructions per second) to transmission speed (bytes per second). This is a critical ratio
for any hypercube and will influence how algorithms are designed. With the simulator,
the user may vary this ratio to see how an algorithm might perform under various cube
architectures. Thus, the message delay in simulator clock ticks (VAX instructions) for
sending a message between two processors on the hypercube L

where M is the number of bytes in the message (rounded to the nearest packet), h is the
number of hops between the two processom, s is the startup delay value. and r is the
transmission delay value between two adjacent processors. A message may be delayed

- 4 -

further if another message having the same source and destination is still in transit.

2 User‘s Guide

21. Simulator subroutin

The simulator subroutines can be divided into three basic services - task-control ser-
vices (tfurk, texit). message-passing services (send, recv, eopen, cclose, status, probe), and
information services (mynode, &, sysbg, cubedim, strace, etrace, cubeinit). Appendix C
s u m m r a r k these subroutines and supplemental information is available from [l] and [8].
This section will illustrate how to use these services to construct parallel programs.

Rather than having a main procedure. a simulator application consists of a number of
subroutines of type TASK that may be executed concurrently by the simulator scheduler.
The “main” task has the name twkO and may start other subroutines of type TASK with
tfbrk. The first argument to tfm-k is the name of the subroutine. and the second argument
specifies the number of four-byte words to be wed for the stack and automatic storage for
the task or process. The minimum stack size is 1O.ooO. but may need to be larger if the
task or subroutines it calls have large storage requhments for local variables (such as
arrays). Tasks exit when they execute 8 retrrxn or texit or encounter the end of the sub-
routine. Each task has an id that can be retrieved with the function myrude. Tusk0 has an
id of -1 (or HOST as defined by the include file ihtelh). Tasks created with tfm-k are
assigned ids starting with zero.

The messagepassing conventions are modeled on those used on the Intel hypercube
[a]. To send or receive messages the program must first establish one or more communica-
tion channels with copen. The argument to copen is an arbitrary integer. sometimes called
the process id*. Copen returns a value of type CXINL which can be thought of as a file
descriptor in C or a FORTRAN logical unit number. The syntax to send a message is

sendw (ci , type, mesg , size, node ~ p i d)

where ci is the channel identifier established with the wpen. Type is an arbitrary integer
which can be used by the application to indicate different kinds of messages. Mesg is the
address of size bytes that will be sent to the task with id node on the channel that node
has o p e d with the process id of p id . There is a corresponding subroutine sendmrg with
the same arguments that the Intel host is required to use.

The syntax for receiving a message (or waiting for a message to arrive) is

recvw(e.5, type, mesg, size, a n g t h , M e , &id)

When a message of the specSed type arrives it is stored starting at m s g up to a max-
imum of sire bytes. Length is set to the actual number of bytes sent, and node and pid
are set to the node number and p r o m id of the sending process. The correpsonding host
version is

Note that the host version does not distinguish on type; but rather a message of any type
is received, and the value of type is set. Both r e m and recvmsg are synchronous or

’ Qn the Intel cube, it h possible t o have more than one task running on a node processor. The procas id
permits the sending task to select a particular proccss on the node.

- .s -

blocking: that is. the program is suspended until a message arrives.

Asynchronous versions of send and rem are supported for more complex message
management. The status function is provided to indicate whether the transmission on the
given channel (the argument to Stahrr) has been completed. Completion of s e d does not
mean the message has been received. only that the mesg area has been copied into the
operating system area. Completion of a rem indicates that a message has arrived and that
the arguments t o rem have been set. Testing for the completion of a rem must be done
with a “busy wait.” When the simulator is cot in aspp-mode, a “busy wait” can cause an
infinite loop unless the flick call is used. I;Za’ck permits other processes to run. A code
fragment illustrating a proper “busy wait” follows:

By opening several channels. one can have multiple receives outstanding. The
proMci,type> permits the program to see if a message of a given type is in the receive
queue. Bo& returns the length of the message if one is queued: otherwise -1 is returned.
A recv must still be issued to retrieve the message.

Various informational routines are provided as well. Cubedim returns the dimension
of the hypercube. Myrwde returns the node ,id of the task. and cLmk returns the current
value of the simulator clock. A log of simulator events a n be initiated with
strace(jilename) and terminated with etrczce (see 82.21, and syslog can be used to write a
string into the trace file. Finally. cubeArtit is used to set various simulator controls,
including node-to-node and host-to-node communcation rates, message startup rate, mm-
sage packet size. and dimension of the cube. Cubelnit accepts a variable size parameter
list, so unused trailing arguments may be omitted. in which case default values are used;
refer to Appendix C for the specific types and values of the arguments.

Since the simulator was originally a shared-memory multiprocessor simulator [11, an
application may choose to mix message passing and shared memory in order to simulate
some hybrid computer architecture. However, simulating a messagepassing environment
with no shared memory requires that the program structure be restricted. The C program-
mer should use no external variables; all variables should be declared within the scope of
procedures. The FORTRAN programmer should not use COEtlMONs.

Figure 1 illustrates the use of some of the simulator routines in a contrived example.
The program calculates the inner product of a matrix (matrix) with a vector (vector) and
prints the resulting vector (r e d > . The result is calculated in parallel by creating
processes to perform the vector products. The host process (tasR0) starts the trace file,
sets the cube parameters, and issues a copen. Then it initiates a process mult for each row
in the matrix. Next. the host process sends to each process a message of type 1 containing
a row of the matrix and a message of t y p 2 containing the vector. Then it waits for each
process to send back the resulting inner producL.

- 5 -

/* ip.c vcctor matridtrampose) inner product wing masaga
flnclude Gtdio.h>
findude &tel.h>
Mefine STACK lo000
TASK multo; /* the worker, replicated in nodes */
#define DIM 5
#define PID 15
int re~ult[DM], v ~ t o t [D M] - (2,3.2,4,3);
int matrdDIMIDIM] = (1.2J3.4,5, 2,3,1,0,4, 3,3,1,2,2, 0,1,1,0,3,4,3,2.1,5};

TASK
multo
{ /* do inner product of t w o vectors */

int vl[DIM], vaDLIvlk
int i,sum,node,pid,lth;
CHNL d;

d - copen(PxD);
racvw(d,l ,vl ,sizcof vl ,&th.&node,&pid);
rccvw(d,l,v2,sizoof vt,<h,&node,&pid);
sum+
for(inO;i<(lth/ sizcof(int));i++) aum +z: vl[i] vail;
scndw(d,3,&suxn,sizeof (int),node,pid);

}

Fig. 1. C program for matrix-vector product

The process mult issues a copen and awaits a message of type 1; then it awaits a mes-
sage of type 2 containing vectors. The inner product of the two vectors is calculated. and
the result sent back. More substantial examples of simulator and hypercube programs and
algorithms can be found in [21. [51. [61. and [71.

2.2. Trace W e and post-pr 3 3

The simulator can provide extensive debugging and performance information if one
enables tracing within the application program. The trace file is initiated with
s t race("~name'~ where the argument k the name of a file. If the file exists, the trace
information will be appended; otherwise a new file i s created. Thus it is usually necessary
to remove the old trace file between successive runs of an application. The trace may be

- 7 -

stopped with etrace. A program might have several calls to strace and etrace in order to
trace simulator events within specific program segments or to limit the size of the trace
file. If the file name given to strace is the null string. for example, stracef“”), then the
trace output is directed to stdout and thus may be. viewed directly on the terminal as the
program runs. or. more often. piped into one of the post-processors for graphic or tabular
display.

One line is written to the trace file for each simulator event such as process initiation,
process termination. sending a message, or message arrival. Figure 2 is an excerpt from a
trace file. Each entry is stamped with simulator time. though the application must be
built in mpp-mode for the simulator clock to be active. The trace file entry for a send or
recv includes the node id (tid) of the originator along with message type. address, and size
and destination (or sender) id. Note that the irid is one greater than the processor id used
in the application program. The programmer may include his own data in the trace file
with syslog, which writes an integer (pidl and a character string to the trace file. The cnt
entries indicate the number of processors active a t the given time. The active and waiting
processors can be deduced from the “waking” and “blocking” substrings of a trace entry.
In practice, the trace file can grow quite rapidly. so discretion is advised.

tforktid 0 clad 110 taddr 1212 stack l(xKx) waking 5
a t 2 clOcL111
send tid 0 clock 119 ta 5 pid 15 type 1 Ith 20 addr 036224
send tid 0 clock 126 to 5 pid 15 type 2 lth 20 addr 036060
r a w tid 5 clock 128 pid 15 type 1 Ith 20 addr 01467764 blocking 5
cnt 1 c10&12%
recvw tid 0 clock 148 pid 15 type -1 lth 4 addr 0237714 blocking 0
cnt 0 cloclr.148
timer mJganived clock 539 from 0 pid 15 Q’pe 1 lth 20 addr 0457764 waking 1
cnt 1 clodt539
ryslog
racvw tid 1 clock 553 pid 15 type 2 lth 20 addr 0457740 blocking 1
cnt 0 clock553
timer msgarrivad clock 562 from 0 pid 15 type 1 lth 20 addr 0667764 waking 2
cnt 1 clock562
evpost tid 1 clock 1110 addr 0104330 was CLEARED
texit tid 1 clock 1110 status 0
cnt 2 cloeb1110

tid 1 clock 541 pid 1 msg “here we are*

Fig. 2. Trace file excerpt

The raw trace file can be. a very useful debugging aid (see 92.5). but trace files are
usually interpreted by post-processors to give performance summaries. For meaningful
performance data to be obtained. the application program must have been built in a s p p
mode. Two post-processors, ccplot and tr-1, produce graphical output suitable for use
by the UNIX graph command. For example,

ccpZot trace@ I graph d I plot -T4010

would plot processor utilization over time on a Tektronix 4010 graphics terminal. Figure
3 is an example of a plot produced by ccpbt. The vertical axis is the number of processors
active, and the horizontal axis is time measured in VAX instructions.

- 8 -

i a00(21

Concurrencw p l o t x - t l s l y - c c n c u r r e n r procmssms

Moodas 4 nux c o n c u r r e n c y 4 Mode U t l l l i a t l o n 63%

i
---c----------
20000

T

-- a
t i m e

Fig. 3. Processor utilization from c c p h

To see specifically which processors are busy at a given time. one may use the trace1 corn-
mand.

trace1 tTacejile I graph -b I plot - T a l 0

Figure 4 is a sample tTaceI plot, where the vertical axis is the processor id for each proces-
sor and the horizontal axis is simulator time. The horizontal lines indicate that a given
processor is busy; otherwise the processor is idle (awaiting arrival of a message, for exam-

Tabular summaries of sends and receives and processor utilization can be displayed
with the nstats command. A sample output of nstats is part of the sample session in Fig-
ure 5. Nstuts may also be invoked as part of pi sequence. which is useful when the
trace file may be too large to be stored on disk. As an example. if the application has
started its trace file with strace(""), directing the trace output to s t d m , then

ple).

application I nstats -n.d I ccplot >plotdata

will pipe the trace file through nstats and into ccplot, producing a tabular summary in
n.out and a plot file suitable for input to graph.

,

- 9 -

L I 1 1 I I I

10000 20000 36000 40000 561000 60000
t i m e

Fig. 4. Processor utlization from trace1

23. Sample session
Figure 5 is a transcript of a terminal session illustrating how one builds simulator

programs and invokes post-processors. The files used are part of the simulator distribu-
tion tape. The actual location of these files is determined by how the simulator was
installed a t a given site (Appendix A).

In this sample session, the user first lists the directory containing the simulator
libraries. and then copies three files from the simulator directory into his own working
directory. The file i p s is just the vector-matrix program described in 92.1. The script bki
is used to invoke the &e#Ze using 8 commvld like bld Jile where .c is assumed as the
extension to ple. The executable ip produced by bld is run and the resulting vector is
printed.

The trace file is deleted and the program rebuilt in asppmode. The resulting program
(ip) is run again, producing the same answer. but now the trace file (ip.trczce) has useful
timing data. The trace file is analyzed by nstuts, and a summary of processor utilization
and message counts is reported. Finally. ccpht is invoked to generate graphical data on
processor utilization.

- 10-

% la /usP/local/Intd
SndAwta ecplot hcptstx 1ibflrerncl.a qplotit
SndAwt.0 ccplotdd hcptst.m 1ibhernel.a taskfh
SndAwta.r diningx intc1.h 1ibkcmel.aiold task.h
U P P f77sample ipx make8le trace1
aspp.old fbld ip.m msgtst.c
bld f make5lc ipsa.c KlStAts
b0bW.C h e p h ipra.rn nstatsold
% cp /l.m/lwl/inteP/ipc.
R, cp /w/local/lnteYbld .
% cp f ~ / ~ ~ / i ~ ~ ~ ~ ~ .
% bld ip
cc -0 -Vusr/louVintel -c tst.c
cc -0 tst tst.0 /aur/logVintcVlibhcrnela -Im
9b IP
45 27 31 14 40
Sb rm iptraee
5% bld Ip aspp
cc S -Vusr/louVintel tstx
/uJr/locaVinteVupp < tsts > t s t t m p
mv tst.tmp tstJ
as -0 tst.0 tsts
1111 t5t.s
cc -O tst tst.0 /usr/lOcaVinteVlibkC~Cl-a -h
% fP
45 27 31 14 40
8 /umflacaVinte.l/astats iptrace
tid start end duration busy utiliz scnds rccvs
0 4 1766 1762 277 16% 10 5
1 18 1110 1092 91 8% 1 2
2 41 1133 1092 91 8% 1 2
3 64 1156 1092 91 8% 1 2

1 2 4 87 1179 1092 91 8%
1 2 5 110 1202 1092 91 8%

Nodal utilization 8% Nodabhost utilization 10% scnds 15 rccys 15
Gross utilization 7%
% /usr/locaYinWccplot ipmce > plotdata
% fusrAacaVinteVqplotiit plotdata

Fig. 5. Sample simulator session for C

2.4. FORTRAN interface

The simulator subroutines described in $2.1 ate available to the FORTRAN program-
mer as well. Figure 6 illustJratRs some of the simulator FORTRAN subroutines using the
sample described in $2.1. The program calculates the inner product of a matrix (matrix)
with a vector (vector) and prints the resulting vector (r e d) . The result is calculated in
parallel by creating processes to perform the vector products. Notice that there is an
include statement and that those subroutines that are processes are of type TASK rather
than type SURR0UTI;NE. The AUTO statement declares all variables to be automatic.
This permits multiple copies of a subroutine (process) to be executed concurrently - each
having its own copy of local variables. (The read-only variables matrix and vector are
declared static so they can be initialized in a DATA statement for this example.) 'The host
process (t ~ s k 0) starts the trace file, sets the cube parameters. and issues a copen. Then it
initiates a process mult for each coluoan of the matrix. Notice that an EXTERNAL declara-
tion is required for any subroutine (TASK) in a tfark. The host process next sends a

- 11 -

#include dask.fh>
TASK -LO
AUTO
implicit integer (a-z)

c do simple h e r product with snd rcv
static matriu(5.5). vectorC5)
integer resuld5). copen
external mult
d ~ t a matrix /1,22.4.~,2J.l.O.4J,3,1.2~,0,1,1,0,3,4.~,~,1,5/
data vector /2,3,2.4$/

call Cubeinit(O.l,Q.3,0.2.1624)
a 1 1 strace("ip.traa")
d - coptn(l5)
do 10 i 4 ,5

mil tio*(multJWCO3)
call scndmsg(d,l,matriu(l ,i>,tO.i-1.15>
call liendmsg(df,v~m,2Q.i-1,15>

10 continue
do 25 i-1.5

call recpmsg(d,itype,val,4,lth,nodt,pid)
result(node+l) = val

20 continue
arr i td6~)mult
end

TASK mult
AUTO
implicit integer (A-d

integer vl(5). vZ(5)
E multiply two vocton

d = ~open(l5)
call rccvw(d,l,vl,20,lth,nude,pid)
call rtcvw(d,2,v2,tO,lth,nc*fe.pid)
s u m - 0
do 10 i==1,5

sum = s u m + vl(i) * v ~ (i)
call sendw(d,3,sum,4,node,pid)
end

10

Fig. 6. FORTRAN prograni for matrix-vector product

message of t;rPe 1 containing a column of the matrix and a message of type 2 containing
the vector to each process. Then it waits for each process to send back the resulting inner
product.

The process mu& issues a mpen and awaits a message of type 1; then it awaits a mes-
sage of type 2 containing vectors. The inner product of the two vectors is calculated and
the result sent back. Several simulator functions return values of type INTEGER but do
not follow the FORTRAN default naming convention, so one must remember to declare
these functions (copen, status, probe, cubedim, clock) as INTEGEX

Figure 7 is a transcript of a terminal session illustrating how one builds FORTRAN
simulator programs and invokes post-processors. The files used are part of the simulator
distribution tape, and their location is determined by how the simulator was installed at a
given site (Appendix A).

- 12-

%J L /urrflocrvlnW,
SndAwtr a p l o t hcptst.c libfkernc1.r qplotit
SndAart-o ccplot.old heptst.m libkerneLatash.fh
SncL4wla.a dining.c intelh 1ibberncl.a.old task.h
u p p M7srmple ipse makeilk traccl
upp.old fbld ip.m msgtst.c
bld frnahefile ipsa& nstats
b0bw.c hcp.h ipsa.m nstats.old
5% cp /usr/laaVintel/fbld bld
B cp /usrAocaVhtel/fmakefik makefile
% CP / ~ ~ A ~ V i n t d / l V *
5% hld ip
/lib/cpp -Yusr/locaVintcl -DUNIX < tst.m I awk 'v^ #/ && A-
f71 -c trt-f
t s t f :

task&
mult:

rm tst.f
f77 Q tst ISLO /usr/lecaVinteVlibfkmeh
B ip

45 27 31 14 40
B ms, iptrace
% bld ip aspp
/lib/cpp -Vusr/locaVhtcl - D W < tst.m I awk 'V" #/ && /Î
f 7 7 s tsLf
tstf:
ask&
mult:

/usr/lccd/inkVaspp < tst.s > tst.tmp
mv tst.tmp tsts
as -0 tst.0 tsu
m tst.s tstf
M7 -0 tst tst.0 /uJr / loca l / in teVl ib fcr~c~~
96 SP

5% /usrAocaVistel/nstats iptrace
tid start end duration busy utiliz sends rems

0 11 1803 1792 297 17% 10 5
1 19 1138 1119 112 10% 1 2
2 53 1172 1119 112 10% 1 2
3 87 1206 1119 112 109b 1 2
4 121 1240 1119 112 10% 1 2
5 155 1274 1119 112 10% 1 2

45 27 31 14 40

Nodal utilhtion 10% Nodal+hmt utilization 11% sends 15 recn 15
Gross utilization 8%
95 /usrAocaVintel/wplot ip.tPace >plotdab
5% /usrflouaVintel/pplOtit plotdata

Fig. 7. Sample FORTRAN session

0/' I expand -6 >tst.f

0/' I expand -6 >tst.f

In this sample session, the user first lists the directory containing the simulator
libraries, and then copies three files: from the simulator directory into his own working
directory. Notice that fbld and finake$le are renamed as pmt of the copying process.
With this convention. one needs separate directories for building C: and FORTRAN simula-
tor applications. The file i p m is just the matrix-vector program described in the first part
of this section. The extension m is used as a reminder that the FORTRAN file is passed
through a preprocessor before being compiled by the fsS compiler. The script bld is used
to invoke the make@? using a command like 61d fde, where m is assumed as the extension
to $le. The executable i p p r o d u d by b&i is run, md the resulting vector i s printed.

The trace file is deleted and the program rebuilt in up-mode . The resulting program
(i p) is run again, producing the Same answer. but now the trace file (ip.trace> has useful
timing data. The trace file is analyzed by nsttats and a summary of processor utilization
and message counts is reported. Finally ccpbt is invoked to generate graphical data on
processor utilization.

2.5. Debugging
The simulator provides a number of aids for discovering bugs in a parallel applica-

tion. To reduce the number of initial bugs. keep the implementation simple, deferring
until later optimizations for speed or storage savings. Write the program so that it can run
with an arbitrary number of processors. and then test it with just a few: This will keep
the size of the trace file manageable. as well as any debugging output. Test and run in
non-crrppmo& first. This will give faster turnaround. If possible, isolate and test the
messagepassing logic of your applicationL. Often synchronization problems can be
discovered by using different values (e.& 0. 1.0, 100.0) for the node-to-node communica-
tion rate in cubeinit.

The trace file provides a wealth of information when things go wrong. Often syn-
chronization problems arise from messages arriving in an unanticipated order. The trace
file shows who is sending what to whom and when. Synchronization problems can be
reduced by using different “type” fields in the send and re# calls. Distinct message types
also make following the program sequence in the trace file easier. Use of syslog to note
different phases of the application also ai& in reading the trace file. Messages are some-
times not received because the process-id in the send does not match the process-id used
by the receiving task in its oopen. A h observe message sizes in the trace file. Sometimes a
program is changed to send a different variable. but the user failed to adjust the message
size in the send or rem. Failure to specify proper lengths in rem can have fatal results,
since other variables in the program may be over-written. In C, care must be taken in
specifying addresses (&) of variables where required. FORTRAIV programs will crash if
the first argument to tfork has not been decl,ued EXTERNAL.

One must estimate storage requirements for processes in the tfork call. The storage is
used for all variables declared within the blocks of the called process as well as any pro-
cedures that process might call. Failure to provide sufficient storage produces unpredict-
able results! The ChRstk function can be called from within any process or procedure to
detect i d c i e n t automatic storage. Another storage management problem can accur if
one accidentally uses the shared-memory features of the simulator. Hence, C programmers
must take w e that all variables are defined within procedures. and FORTRAN program-
mers must do without COMMON.

Sadly, the FORTRAN VO routines are not re-entrant; thus concurrent use (arpp-
mode) of FORTRAN VO statements by two or more processes will result in a tight CPU
loop. One must restrict FORTRAN V O to o:ne process a t a time. To limit debugging out-
put, it is a good practice to allow only one process to issue such output. This can be done
where several processors are running the same program by doing the output only if the
processor id is a given number.

The distribution tape also includes a version of the simulator library (2ibdbxkernel.a)
that was built for use with the LJNlX dbx debugger. The user cafl compile his programs
with the -g option to the compiler and then link with the dbx version of the simulator
library. Both the simulator and an application can be debugged in this manner.

- 14 -

3. Intel iPSC and the S h u l s t o s

'The simulator started out with 8. general mesage-passing architecture and then was
refined to approximate the architecture of a h y p r c u k . specifically. the Caltech Cosmic
Cube as described by Seitz [9]. We then acquit an Intel iPSc d6 hypercube, and the
simulator was further refined to simulate the ~rmance and calling sequences of the
Intel cube [SI. Even with access to a real messagepassing ma&: me, the simulator still is a
useful tool in program development and algorithm analysis for the following reasons.
First, as of this writing. the Intel cube is a single wer system (though other users may be
doing program development on the cube host), whereas the simulator permits many users
to work concurrently on their own "cubes." kkond. the simulator is presently better
instrumented for providing debugging information (output directly from the node
processes and dbx support) and performance data (trace film, plots, processor utilization).
Third. the simulator provides a means to reproduce identical runs and isolate timing bugs,
or one can vary the simulator parameters to if t h i n g bugs appear. Finally, the simu-
lator can be tuned to test the performance o n algorithm or application under different
message-passing architectures or even a r c h ~ t ~ ~ ~ ~ ~ with boEh message passing and shared
memory.

Developing B program to run corrwtly on bath the simulator and the Intel cube does
require some a r e . The default word size for the VAX is four bytes. but it is only two
bytes for the Intel cube and its host. Thus the default precision for int in C and
IN'lXGER in FORTRAN is different for the two machines. For arguments to simulator
subroutines. one may just declare the m p m BS inl: or INTEGER and the calls should
be compatible between the simulator (which four-byte arguments) and the Intel cube
(which uses two bytes). However, other iw the user's code may give incorrect results

use of the diEerent word six. The simulator pe~mits VO in the nodes; the Intel cube
not. The simulator-specific calls (t fmk, cubeAnit, stram, etrace) and include-file

references must be removed in order to move the program to the INTEL cube.

For C, the type TASK and CHNL must. b4: removed (or defined as id). C program-
mers must also remember that global variables will be in "shar '' memory on the simula-
tor. F O R m programers will need to remove the AWTO and TASK declarations from
their subroutines as well as any include filers. The EXTERNAL statements €or the TFORK
arguments must be removed as well when porting to the Intel cube. Finally. the use af
COMMON on the simulator k discouraged since the variables will be in. "shared" memory.
These changes usually can be made quickly. and we often move codes back and forth
between the simulator and the Intel c

The simulator is not a Intel cube for a number of reasons.
There may ade only one pro hula tor , and i t is possible to share
memory on the simulator. messagepassing delays are only rough estimates. The
nodes on the Intel cube are lowed when they are forwarding messages; the
simulator behaves as a cube with a separate coprocessor on every node. The simu-
lator does not account for message delays by traffic from nodes other than the
source and destination. Finally, the simulator's clock is a count of VAX instructions. and
calls to various libraries are not accountable. Nevertheless. the simulator provides a useful
and reasonably accurate predictor of actual cube performance and is a powerful tool for
performance analysis and debu

- 1s -

Acknowledgements
The author is gratefully indebted to Eugene Brooks of Lawrence Livermore National

Laboratory for constructing the shared meaory simulator and for answering numerous
questions as the simulator was extended. and to A1 Geist and Mike Heath of Oak Ridge
National Laboratory for their time and patience in exercising the sirnulator.

- 16 -

E. D. Brooks, A multitasking kernel for the C and Fortran programming languages,
Tech. Rept. UCID-20167. Lawrence Livermore National LAxratory. Livermore, CA.
September 1984.

G. J. Davis. Column LU factorization with Pivoting on a hypercube multiprocessor,
Tech. Rept. ORNL-6119. Oak Ridge National Laboratory. Oak Ridge, TN. November
1985.

T. H. Dunigan. Denelcor HEP Multiprocessor Simulator. Tech. Rept. ORNERM-9971,
Oak Ridge National Laboratory, Oak. Ridge. TN. in preparation.

G. C. Fox and S. W. Otto, Algorithms for concurrent processors, Physics Today, May
1984. pp. 50-59.

G. A. Geist and M. T. Heath, Parallel Cholesky factorization on 8 hypercube mul-
tiprocessor, Tech. Rept. ORNE-6190. Oak idge National Laboratory, Oak Ridge. TN.
August 1985.

A. George. M. T. Heath. and J. Liu, Cholesky factorization on a shared-
memory multiprocessor. Tech. Rept. 124, Oak Ridge National Laboratory,
Oak Ridge, TN, March 1985 (to appear in Linear Algebra Appl.) .

M. T. Heath, Parallel Cholesky factorization in messagepassing multiprocessor
environments. Tech. Rept. 0 SO. Oak Ridge National Laboratory, Oak Ridge,
TN. May 1985 (submitted to COmpuring).

Intel, iPSC User’s Guide. Intel. 17455-03. Portland, Oregon, October. 1985.

C. L. Sitz, The cosmic cube, C o r n . AGM. 28 (1985) 22-33.

- 17-

Appendix A

Installation Guide

The simulator consists of subroutine libraries. post-processors, and some sample pro-
grams and scripts. The simulator is written. to run on a VAX 11/780 under UNIX 4.2bsd.
None of the routines require root privileges. though root may wish to assist in the installa-
tion to place the libraries and executables in a system-accessible path. The simulator is
distributed by the Department of Energy on a 1600 bpi tape in UNIX tar format. The
tape is available from

National Energy Software Center
Argonne National Laboratory
9700 South &s Avenue
Argonne, Illinohs 60439

(312/972-7250)

The distribution is composed of five directories. The local directory contains the
simulator library (2ibRerneI.a) and its FORTRAN version (libfRernela). If the files in this
directory are copied to another directory. then one will need to ranlib the library files.
Makefiles and sample building scripts (bid) are contained in had along with a sample C
session (csample) and FORTRAN session (f7'7smple). It may be necessary to modify the
makefiles to indicate the proper path to the simulator ZocuZ directory. The files assume
/ u s r / W / i n t e l . Various post-processors and uspp are executable in the l d directory.

The intel directory contains a number of subdirectories containing manual entries,
papers describing the simulator. sample programs. and sources for the libraries and past-
processors. The doc subdirectory contains zanual pages and papers describing the simula-
tor and its predecessor. the "Multitasker" by Eugene Brooks of Lawrence Liveemore
National Laboratory. The k m Z subdirectory contains the sources and makefile for re-
constructing or modifying the simulator. To make a new version of the C simulator
library, one just issues the command make li&rneZ.u and a new library will be built in
the kernel sutxiirectory.

Directories geist and m&h contain various sample codes for the simulator being
developed by A1 Geist and Mike Heath of Oak Ridge National Laboratory. The 111 direc-
tory contain samples of shared-memory codes developed by Eugene Brooks for the original
simulator.

Installation consists of loading the tape with the tar command, moving the files in the
Zd directory to their h a 1 residing place. doing a ranlib on the .a files, and possibly
modifying the makefiles to reflect the correct path to the simulator libraries and include
files. Optionally, the manual entries in irLtel/doc can be copied to a an subdirectory.

- 18 -

The simulator is designed to run on a DEC VAX 11/780 under UNIX 4.2bsd. The
simulator is written in C . but there me explicit machine language Instructions in module
Rernel.c. It is nexssary to isrme guage instructions to save the process state in
dohg process switching. Know1 of the machine registers by the compilers is
a b used in saving and restoring pr by the simulator. Presumably. the simulator
would run on VAX 750s or out modification. Porting the simulator to
mother architecture would require modification to kmml.c.

The other explicit use of the machine architecture is used by the w p p step. Aspp
takes the assembly language output the compilation of the user’s application codes
and inserts subroutine calls into the bly language source stream to invoke the simu-
lator between every machine instru f the application code. This mode permits the
simulator to step the clock and prscess-switch. A number of architectural requirements
are implied here. First, the compilers must produce assembly language output. Second,
a p p must be able to read md understand the assembly language output to the degree that
it can know where to insert the calls to the simulator. Third. the assembler or hardware
architecture must be flexible enough to accept additional instructions in the source stream
without “breaking” short-branch r example. Finally. it must be possible to save and
restore the machine state across rted calls to the simulator. so that the calls are
transparent to the application. , u p p is not needed if the user does not require
the h e g r a i n information provided by aspp for plots and performance analysis. Alterna-
tively, other methods of “‘interpreting” the application code could be developed. such as
modifying the application object modules.

The simulator supports both C and FORTRAN. Languages supported by the simula-
tor must produce re-entrant application codes, and the run-time library of the language
should be reentrant BS well. Same FQ do not meet these requirements. The
UMX 4.2 f77 FQRTaAN provides sptiona pes of AUTOMATIC and STATIC. The
AUTOMATIC data type is required to support concurrent execution of a subroutine by
several processes. (Note, however. the j77 YO run-time routines are not re-entrant.) Sub-
routine calling sequences may d S e r among languages, so the simulator may have to pro-
vide p i a l interface routines for t ulator subroutines. The modules f0rtrash.c and
ortTash.c convert FORTXAN callin

Since the simulator runs as B single process und e host operating system. the size
of the simulation will be restricted by t he virtual rn limit for a process. For UNIX
4.2bsd. the process memory limit is six million b gh UNIX can be re-compiled to
permit larger processess. With the minimum .stack size of 40K bytes for the tfork call and
the overhead of the application and simula this limits simulations to about 100
processes. Porting the simulato h smaller virtual memory limits (or no
virtual memory) could limit t ulatiom. If one is willing to work with
no more than eight to twenty pr I alternate simulator implementations could be con-
sidered. such as using the UNM fork service and interprocess communication facilities.
With such an implementation. the simulator would not have to perform task management
and messagepassing services. and the application would generally run faster. However.
the detailed timing and performance data would be lost.

t Q c Calling SeqUe€lW.

- 19 -

Appendix C

Simulator Manual Pages

...... -. . ,

- 20 -

UNIX Programmer's Manual

NAME
intel - ink1 hypercube simulator routines

SYNOPSlS
ClUdG . intclb"

irnt XnynodeQ;
intc
int c
void ayslog(int pia, char *
void flick@

DEGCPUIPTIQN
These functions provide a messagepassing architecture for the parallel processor simulator
(see man ppsim). The routines approximate the INTEL implementation of the Caltech
hypercube. A message delay is supported and task0 is assumed to be the host. Explicit
messages to the host should us& the node id o f HOST. The host is assumed to have a direct
message path to every node.

&2& sets the amount of delay for messages and should be called once in task0. Delay
values are the ratio of CPU speed (instructions per second) to transmission speed (bytes
per s o n d) . There is a node-to-node delay (nndelay). a host-to-node delay (hndelay).
and a startup delay. A delay value of 1.0 means roughly that a byte of information can
tx sent in the same amount of time that it would take to do one CPU operation. The
node-to-node delay is multiplied by the number of hops the message must take. The
default delay values are 0.0. Values for the Intel might be 0.1. 0.3. 0.2. An estimate
of intranodal message passkg delay is made by dividing the node-to-node delay by 100.
A value for the size of a message packet (default of 1) may be specified; the iPSG uses a
packet size of 1024. The length o f a message will be rounded up to a multiple of gacket-
size for purposes of transmission delay calculations. A value for the dimension of the
cube (cubedim) may be supplied. This value will be retuned by &dim(). To increase
the @ of aspp-mode skulation and possibly alter the order of execution of the nodes,

4th Berkeley Distribution 5 June 1985 1

- 21 -

UNM Frogranuncr's Manual

a timeslice value is a h provided. A vrtlue of 0 allows a process to run until it blocks. A
value of 1, the default. causa a process-switch after every application instruction. Larger
values allow a pro- to execute the given number of instructions before a process-switch
is induced. The trace file will not be in chronological order if a timeslice other than 1 is
selected. and the concurrency information produced by the simulator will no longer be
meaningful. More powerful trace-file processors could account for the disordering in order
to cafculate concurrency information correctly. Message delays also become less realistic
with a timeslice other than 1.
The programmer must fvst establish one or more cube communication channel data struc-
tures with calls to copen. mpen takes a value to be used as process identifier and returns a
descriptor. of t y p CHNL. that is used in subsequent messagepassing functions. A process
is addressed by its node number and process identifier. c&e frees the channel data struc-
ture.

send and sendw send the message pointed to by msg to the process at node dstnode with
process id dstpid. The type and Size of the message (msglth) in bytes are a h provided.
send returns immediately. but one cannot use the message area until sttatus returns FREE,
indicating that the kernel has sent the message. sendw does not return until the message
has been sent. (This does not imply thnt the message has been received.) sendmrg behaves
exactly like ~ e n d w but is intended as the host version for compatibilty with INTEL cube.

rem and r e m await the arrival of a message of the given type for the node and process id
associated with CHNL d. The functions provide addresses to store the message. the actual
length of the message, and the node and pmcess id of the sender. For r e m the process
blocks until a mesage of the given tw arrives. For rem the process may continue pro-
cessing after issuing the rem, and when status returns a value of FREE. then a message of
the given type has arrived. Upon receipt of the message. the simulator sets the srcnode
and srcpid to those of the sender. sets the 9 1 t h to the length of the received message,
and copies the message into msg. No more than maxlth bytes are copied. Messages are
handled in a FWO fashion. recvmrg behaves like r e m except it does not discriminate on
message type, rather the type of the message is returned along with the message in accor-
dance with the INTEL cube. sendmg and recvmrg are intended (by INTEL) to be used
only by the host processes. but the sirnulator permits node usage as well.

pr& determines if a message of the given type is available for the node and process id
associated with the g i v a 4X.NL. If a message is available. probe returns the length of the
message; otherwise. a value of -1 is returned. One must issue a recy actually to fetch the
message. Note. the channel data structure should not be in use by other message-passing
functions. status returns a value of BIJSY or FREE indicating whether the given CHNI,
data structure is in use or not. For s a d , BUSY indicates that the kernel has not yet sent
the mesage. For rem. BUSY indicates that the desired message has not arrived.

mynode returns the node number of the process. The host has a node number of HOST.
Node numbers will differ by one from those appearing in the simulator trace files. &dint
returns the dimension of the cube. dock returns the present value of the process clock.
syslog places the given message and pid in the trace file. flick relinquishes control from the
given process to other runnable processes. flick is usually used in busywait conditions
with status following a re# or with p&. (If YOU are using busy-waits and are not in
aspp-mode. you must use frick to permit the simulator to run your other nodal processes.)

If the asppmode is uskd and straoef &I-*) then a trace file is produced with simulator
data that can he summarized by nstats or ccpld. nstats tracejk will produce a per-node
summary of compute time and sends an9 receives. ccpbt trace* >plot@ will produce a
plotfile that can be plotted with various plotting programs such as graphfl).

POST PROCESSORS

4th Berkeley Distribution 5 Jur.e 1985 2

- 22 -

W X Programmer’s Manual

FORTRAN
The message passing subroutines may also be called from f77 programs. A build and
makefile. fMri and fmakejle, are in /usr/localhtel. They can be copied into your area.
f d e p should tie renamed maRejEle. There axe sample FORTRAN programs with the
extension .m in /usr/local/intel. These samples are passed through a preprocessor by the
fbld command. You must use automatic storage for your parallel subroutines and for
your “main” subroutine taskO. You must declare all parallel subroutine names as EXTER-
NAL in the main subroutine terkQ. care must be taken in using COMMON since the simu-
lator provides you a shared memory environment that would not exkt with a real cube.
FORTRAN VO is serial and can cause the simulator task to fall into an infinite loop if you
attempt to intermix I/O statements from parallel subroutines. You probably should
confine your I/O to the main subroutine. Other troubles may arise from the fact that
FORTRAN passes arguments by reference.

ppsim(1). hep(1)

The delay model does not account for media delay induced by traRic between intermediate
nodes. Running multiple processes on a single node is not supported. Processes are
assigned to nodes by the order of t fwk calls. Since the simulator is a single task, one can
share global variables. In a real cube. such memory sharing would not be possible. Calls
to library routines (for example. SQRT) arc not counted by the simulator clock. The
handler function is not presently implemented.

T. H. Dunigan

SEE ALSO

BUGS

AUTHO

4th Berkeley Distribution 5 June 1985 3

PPSIM (L 1

- 23 -

UNIX Pmgrammner's Manual

NAME
ppsim - parallel processor simulator

#include taskha
SYNOPSIS

PPSIM (L

TID tfork(TASK fcn, int stacksize (, a rgs]> ,
void texidint value);
void twJt(TID taskid);
TID gettidO;
void tslecpiint ticks),

void +evenmar),
void epCfear(EvENT *eventvark
void tvwaidEVENT 8eventva.r);

void straoe(char =filename);
void ctrauQ
void markkhar *string);

This package provides a set of function calls to implement a shared memory parallel pro-
CeSSOr and provides a means to debug ajnd analyze parallel algorithms. Presently, up to
IO00 parallel processes may be invoked. Various functions provide synchronization primi-
tives and message-passing facilities. A trace file may be produced and plotted. The simu-
lator is implemented within a single process on the VAX. so very large or very time con-
suming applications are discouraged. A ssmple makefile is provided to assist in building an
application. Do not provide a mainrl function. but rather provide a TASK task0 as the
application entry point. All external and global variables are known by all the processes.
so proper synchronization must be uged hi accessing global variables. To provide full tim-
ing information and process switching after each application VAX instruction, the a p p
build option must be used. ~nfo r tuna tdy . m p p forces a factor of 20 slowdown in the real
time for the simulation.

DESCRIPnON

t fwk is used to initiate a process. The function initiated must be of type TASK. A stack
size (in units of 4 bytes) must be p b i d e d to tfork. and it must be large enough to
accomodate the automatic variables in tbe process. including those of any serial functions
called by the process. A minimum stack size of loo00 is recommended. Any additional
arguments to t fwk are passed to the initiated proees~. t fwk r e t m a T D value that can
be used in a subsequent Wait to await termination of the initiated process. A process will
exit when it encounters the closing brace of the function definition or when a texit is exe-
cuted. gettid returns the "ID of the process. tsleep idles the process for the given number
of clock ticks.

Synchronization of access to shared memory is provided by LOCK and EVENT variables
and functions. k c k locks a LOCK variable if it is not locked. If the variable is locked, the
prows is suspended until the lock is unlwkd. The queue of processes waiting on a LOCK
variable is FIFO. unlock unlocks a L E K variabXe and releases the next process waiting on
that LOCK variable. evpost sets an EVENT variable to POSTED and releases all processes
that have issued an w a i t on that EVEKT variable. evdear sets an EVENT variable to
CLEARED. w a i t suspends the process ur.-til the EVENT variable is POSTED.

A trace file is initiated with strace(-re), and the trace is stopped with etraee. If the
filename is the null string. then the ?.race is directed to stdout. An informative string may
be inserted in the trace file with the murk function. Various post-processing commands are
available for plotting the trace file. though the app option must, be invoked to obtain

1 4th Berkeley Distribution

PF’SIM (L

- 24 -

UNIX Programmer’s Manual PPSIM (L 1

useful concurrency information.

In /usr/locaVintel the following files are available
1ibkernel.a simulator functions
W P
rnakefile sample make file
ccplot trace file post processor
trace1 trace file post processor

See man entries for hep and in&. There is also a paper by Brooks describing the simulator.
Sample programs may be found in /usr/locaVintel. Other interfaces are available for f77
calls and simulating the GRAY X-MP-

The overhead of aspp needs to be reduced. Function calls to library routines are not
accounted for in uspp mode. There is no easy way to detect an insufficient stack size pra-
vidad to rfmk. There is a function chkstkf) that you may add to alert you to stack
deficiencies. The default stack siZm: of 40.000 bytes for task0 cannot be changed.

The FORTRAN VO routines are not re-entrant. so doing FORTRAN VO in more than one
procss in uspp mode wilt put the program into an infinite loop. Also remember that FOR-
TRAN passes values by reference, so passing arguments in a tfmk should be done with
care.

Simulator is based on the “Multitasker” written by Eugene Brooks of LLNL and is avail-
able from the NESC.

k l u s

assembler post processor

SEE ALSO

BUGS

AUTHOR

4th Berkeley Distribution 31 March 1985 2

- 25 -

DISTRIBUTION OF
ORNWTM-9966

1. L. S. Abbott
2. J. Barhen
3. J. A. Clinard
4. M.V.Denson
5. J. B. Drake

6-10. T. H. Dunigan
11. J. R. Einstein
12. Y. H. Etheridge
13. E. L. Frome
14. G. A.Geist
15. L. J. Gray

16-17. R. F. Harbison

18. M. T. Heath
19. T. L. Hebble
20. M. R. Hilliard
21. C. K. Johnson
22. W. F. Lawkins
23. E. Leach
24. R. P. Leinius
25. F. C. Maienschein
26. W. J. McClain

Mathematical Sciences Library

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

4'1.
42-43.

44.
45.
46.
47.

G. S. McNeilly
T. J. Mitchell
M. D. Morris
E. Ng
C. Ostrouchov
S. Thompson
R. C. Ward
D. G. Wilson
C. Weisbin
A. Zucker
Central Reseamh Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library

Document Reference Section
Laboratory Records--RC
Laboratory Records Department
P. W. Dickson. Jr. (Consultant)
6. H. Golub (Consultant)
R. W. Haralick (Consultant)
D. Steiner (Consultant)

EXTESNAL DISTRIBUTION

48. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7. Germantown Building, U.S. Department of Energy, Washington, DC
20545

49. Dr. Robert G. Babb. Department of Computer Science and Engineering, Oregon
Graduate Center, 19600 N.W. Walker Road, Beaverton. OR 97006

50. Dr. Jesse L. Barlow. Department of Computer Science, Pennsylvania State
University, University Park, PA 16802

51. Dr. Mark Bassett. Ametek Corp., E l 0 North Santa Anita Ave.. Arcadia. CA
91006

52. Dr. Alan Baum, Computer Science Dept.. GM Research Lab.. Warren, MI 48090

53. Dr. Nancy Blachman. NASA-Ames. WACS. MS 230-5. Moffett Field, CA 94035
54. Dr. Eugene Brooks, Lawrence Livermore National Laboratory, P.O. Box 808, L-

55. Dr. James C. Browne. Department of Computer Sciences, University of Texas,

56. Dr. Bill L. Buibee, C-3. Applicatiom Support & Research. Los Alamos National

57. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering,

297, Livermore, CA 94550

Austin, TX 78712

Laboratory, P.O. Box 1663. Los Alamos, NM 87545

University of Michigan. Ann Arbor, MI 48109

- 26 -

58. Dr. Jagdish Chandra. Army Research Office, P.O. Box 12211, Research Triangle

59. Dr. George Cybenko, Department of Mathematics. Tufts University. Medford,

60. Dr. George J. Davis, Department of Mathematics, Georgia State University.
Atlanta, GA 30303

61. Dr. Jack J. Dongarra. Mathematics and Computer Science Division. Argonne
National Laboratory. 9700 South C a s Avenue, Argonne, 1L 60439

62. Dr. Geoffrey C. Fox. Physics Department. California Institute of Technology.
Pasadena, CA 91125

53. Dr. Paul 0. Frederickson, Computing Division. Los Alamos National Laboratory.
Los Alamos, NM 97545

64. Dr. Dennis B. Gannon. Computer Science Department. Purdue University. West
Lafayette. IN 47907

65. Dr. David M. Gay, Bell Laboratories. 600 Mountain Avenue, Murray IIill, NJ
07974

66. Dr. W. Morven Gentleman, Division of Electrical Engineering. National Research
Council. Building M-50. Room 344, Montreal Road, Ottawa, Ontario. Canada
KIA OR8

67. Br. J. Alan George, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

68. Dr. Jung €long. Los Alamos National Laboratory, P.O. Box 1663. MS K488, Los
Alamos. NM 87545

69. Dr. Don E. Heller. Physics and Computer Science Department, Shell Develop-
ment CA.. P.O. Box 481, Houston, TX 77001

70. Prof. Roger W. Hockney. Department of Computer Science. University of Read-
ing, Whiteknights, Bersk., England RG6 2AX

71. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore
National Laboratory P.O. Box 808, Livermore. CA 94550

72. Dr. Ilse Ipsen. Department of Computer Science. Yale University. P.O. Box 2158
Yale Station. New Haven. CT 06520

73. Dr. Harry Jordan. Department of Electrical and Computer Engineering, Univer-
sity of Colorado, hu lder , CO 80309

74. Dr. Robert J. Kee, Applied Mathematics Division 8331. Sandia National Labora-
tories, Livermore. CA 94550

75. Ms. Virginia Klema. Statistics Center. E4@-131, MIT. Cambridge. MA 02139

76. Dr. Richard Lau. Office of Naval Research, 1030 E. Green Street. Pasadena, CA

77. Dr. Alan J. Laub, Department of Electrical and Computer Engineering. Univer-

78. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211. Research Triangle

Park, NC 27709

MA 02155

91101

sity of California, Santa Barber. CA 93106

Park. NC 27709

- 27 -

79. Dr. Michael R. Leuze. Computer Science Department, BOX 1679 Station B. Van-

80. Dr. Joseph Liu, Department of Computer Science. York University, 4700 Keele

81. Dr. Olaf Lubek. C-3, Computer Research and Applications, Los Alamos National

82. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca,

83. Dr. Paul C. Messina. Applied Mathematics Division, Argonne National Labora-

84. Mr. Bob Micci. Sequent Computer Systems. Inc., 400 Amherst St.. Nashua. NN:

85. Dr. George Michael. Computation Department, Lawrence Livermore National

86. Dr. Cleve Moler. Intel Scientific Computers. 15201 N.W. Greenbrier Parkway,

87. Dr. Dianne P. OLeary. Computer Science Department. University of Maryland,

88. Dr. James M. Ortega. Department of Applied Mathematics. University of Vir-

89. Dr. Neil Ostlund, Department of Computer Science. University of Waterloo,

90. Dr. Edward W. Page. Dept. of Computer Science, 405 College of Nursing Bldg..

91. Dr. John F. Palmer, NCUBE Corporation. 915 E. LaVietpe Lane, Tempe, AZ

92. Prof. Merrell Patrick, Department of Computer Science. Duke University, Dur-

93. Dr. Robert J. Plemmons. Department of Mathematics and Computer Science,

94. Dr. John R. Rice, Computer Science Department. Purdue University. West

95. Dr. Garry Rodrigue. Numerical Mathematics Group, Lawrence Livermore

96. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham,

97. Dr. Ahmed €3. Sameh. Computer Science Department. University of Illinois,

98. Dr. Joel Saltz. EASE. MS 132-C, NASA, Langley. Hampton. VA 23665

99. Dr. Robert Schreiber. Dept. of Mathematical Sciences, Rensselaer Polytechnic

derbilt University, Nashville, % 3 7235

Street. Downsview. Ontario. Canadz. M3J 9P3

Laboratory P.o. Box 1663 Los Alamos, NM 87545

NY 14853

tory, Argonne. IL 60439

03063

Laboratory, P.O. Box 808, Livermore, CA 94550

Beaverton. OR 97006

College Park, MD 20742

ginia, Charlottesville, VA 22903

Waterloo, Ontario. Canada N3L 3Gl

Clemson. SC 29634-1906

85284

ham. NC 27706

North Carolina State University, RaleLgh. NC 27650

Lafayette. IN 47907

Laboratory, Livermore, CA 94550

NC 27706

Urbana, IL 61801

Institute, Troy, NY 12180

- 28 -

100. Dr. Martin H. Schultz. Department of Computer Science. Yale University. P.0.

101. Dr. David S. Scott, Intel %ientific Computers, 15201 N.W. Greenbrier Parkway.

102. Dr. Danny C. Sorensem, Mathematics and Computer Science Div.. Argonne

103. Prof. G. W. Stewart. Computer Science Department. University of Maryland.

104. Gapt. John P. Thomas, Air Force Office of Scientific Research. Building 410. Bol-

105. Prof. Charles Van Loan, hpartment of Computer Science. Cornel1 University.

1%. Dr. Robert 6. Voigt. ICASE. MS 132-C. NASA Langley Research Center. H a m p

107. Dr. Andrew B. White, Computing Division. Los Alamos National Laboratory,

108. Mr. Patrick H. Worley. Computer Science Department, Stanford University,

109. Dr. Arthur Wouk. Army Research Office. P.Q. Box 12211 Research Triangle

110. Dr. Margaret Wright, Systems Optimization Laboratory. Operations Research

111. Office of Assistant Manager for Energy Research and Development. Department

Box 2158 Yale Station, New Haven, CT

Beaverton, OR 97006

National Laboratory. 9700 South Cass Avenue, Argonne. XI, 60439

College Park, MD 20742

ling Air Force Base. Washington, DC 20332

Ithaca, NY 14853

ton. VA 23665

Los Alamos. NM 87545

Stanford. CA 94305

Park, NC 27709

Department, Stanford University, Stanford, CA 94305

of Energy, Oak Ridge Operations Office. Oak Ridge. TN 37830

112- 139. Technical Information Center.

