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A Message-passing Multiprocessor Simulator

T. H. Dunigan

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge. Tennessee 37831

ABSTRACT

The structure and use of a message-passing multiprocessor simulator
are described. The simulator provides a multitasking environment for the
development of algorithms for parallel processors using either shared or
local memories. The simulator may be used from C or FORTRAN and pro-
vides a library of subroutines for task control and message passing. The
simulator produces a trace file that can be used for debugging, performance
analysis, or graphical display.

1. Overview

1.1. Introduction

The study and exploitation of parallel processors are becoming increasingly important
for fifth generation computing for several reasons. First, the speed of serial processors is
approaching the physical limits imposed by the speed of light. The Cray 2 supercomputer
has cycle times of four nanoseconds. Speecing up the Cray 2 by an order of magnitude
would require that the storage modules for the computer be within a foot of the processor.
(Electrical signals travel about one foot in one nanosecond.) To get even higher computing
speeds would require that a number of parallel processors be used, such as in the Cray X-
MP. Second, the cost of VLSI processors ard memory continues to decline each year. A
vendor can package a large number of standard processors together into a parallel proces-
sor to produce a high performance system at relatively low cost. Also, special purpose
parallel processors can be constructed economically to solve a particular problem, such as
signal processing, or to play chess faster or better than can be done on much more expen-
sive supercomputers. Thus parallel computing is important not only to the few who need
the most computing cycles per second possible, but also to the masses who want high per-
formance at a low cost.

Simulation of parallel processors has several important uses. First, simulation pro-
vides the computing system designer with a test bed to evaluate inexpensively various
parallel architectures or design decisions within a given architecture. Second. users who
cannot afford a parallel computing system can develop programs on a simulator. Third,
even with a parallel system available, the uszr may find that the simulator provides more
debugging aids and performance information than the actual hardware. Finally, the user
may wish to investigate new algorithms cr test existing applications on proposed or
theoretical architectures available only through simulation.
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The objective of the simulator described in this report is to provide an environment
for developing algorithms and applications for a message-passing local memory multipro-
cessor. In §1.2, the history and structure of the simulator is summarized. In §1.3 the
specific message-passing model used by the simulator is described. Section 2 is a guide to
the use of the simulator with examples and sample sessions for both C and FORTRAN.
Section 3 compares running programs on the simulator with running the same programs on
a real multiprocessor.

1.2. Simulator structure

The simulator is a library of subroutines for C or FORTRAN that provide task and
message management services. It is based on a shared-memory multiprocessor simulator,
the “Multitasker,” developed by Brooks {1]. The simulator runs as a single process on a
Digital Equipment Corporation VAX 11/730 under the control of Berkeley’s UNIX'
4.2bsd. The distribution tape (see Appendix A) provides include files, makefiles, sample
programs and scripts to aid in constructing an application to run under the simulator. An
application may consist of up to 1000 processes or tasks that will be scheduled for con-
current execution by the simulator.

A set of subroutines (tfork, texit, and twait) provides task management services.
Application subroutines that are to be executed in parallel are declared to be of type
TASK: then tfork is used to start such subroutines in parallel. The main entry point for
the application is contained in the simulator library, so the user's main program is replaced
by a subroutine of type TASK with the name task(. The simulator passes control to task0
when the application program is started. The application can then create other parallel
processes with subsequent calls of tfork specifying tbe task name, stack size, and, option-
ally, any arguments the task uses. An optional trace facility can be enabled to provide a
history of simulator events.

Within a single UNIX process, the simulator provides a small operating system that
schedules the execution of the user’'s application tasks. Two forms of scheduling services
are provided. The simplest form is a non-preemptive scheduler. A simulator task runs
until it must wait for some simulator event (message arrival, for example). When the
task blocks, the next runnable simulator task is started, selected in a simple round-robin
fashion. This mode requires very little simulator overhead and the application runs at
normal VAX speed. A more complex, preemptive scheduling mode is available when the
application is built in aspp-mode.

In aspp-mode, the application code is in effect interpreted, permitting the execution of
each active simulator subtask to be interleaved. At program build time, the aspp module
(assembler post processor) inserts calls to the simulator scheduler between each assembler
instruction in the application program. The simulator then can provide concurrent execu-
tion of the application’s tasks and maintain a clock (in units of VAX instructions). The
clock, in turn, can be used to schedule asynchronous events such as task sleeps (¢sleep) or
message arrivals and can time-stamp entries in the trace file for detailed performance ana-
lyses. However, the real run time of the application will be lengthened considerably due
to the additional overbead incurred.

1.3. Message-passing model

To support our local research efforts, the Brooks simulator was extended with addi-
tional subroutines to simulate the Denelcor HEP multiprocessor [3] and message-passing
multiprocessors. The initial message-passing model was fully interconnected processors,

*UNIX is a trademark of AT&T.
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and the application program used simple SEND and RECEIVE subroutines to pass messages
from any processor to any other processor. The model was then refined to simulate the
performance and syntax of Caltech’'s Cosmic Cube [9]. Finally. to prepare programs for a
hypercube that we were acquiring, we tailored the message-passing model to the
specifications of the Intel iPSC hypercube [8]. including the provision for a host or cube-
manager processor.

A hypercube of dimension N consists of 2% processors, each with its own memory
and each with a direct connection to N other processors. The processors are the corners of
an N-dimensional cube, and the communication paths are the edges. This structure permits
a large number of processors to communicate without the expense of full interconnection
(e.g.. crossbar switch) or the message delays of an order-n interconnect such as a ring. The
structure expands nicely as well, since as the number of processors is increased the number
of communication links grows only logarithmically. Other communication topologies can
be mapped on to the hypercube, such as rings, meshes, and trees, and a large number of
real-world problems can be solved with the hypercube [4] The simplicity and applicabil-
ity of the hypercube have made it a fruitful research area, and a number of vendors now
offer hypercube multiprocessors.

The simulator supports the hypercube architecture by means of a set of subroutines
for passing messages between processors, with a message delay based on the size of the
message, the distance the message must travel, and the transmission speed of the commun-
ication channel. The distance. or number of hops. between any two processors on a hyper-
cube can be calculated from the binary addresses of the two processors. Each processor
has an N-bit address in the range 0 to 27-1 and is connected to the N processors whose
addresses differ from its own by exactly one bit. Under such an addressing scheme, the
number of hops between any two processors is the number of bits in which the processor
addresses differ. (Algorithimically, it is the number of 1's in the exclusive-OR of the two
addresses — also known as the Hamming distance.) The programmer can control the
transmission speed and packet size of messages. large messages are broken into packets,
and the actual number of bytes transmitted is rounded up to the nearest packet. Finally,
there is a startup time for sending a message. This startup time is a function of message
size and may be set by the user.

Most commercial implementations of the hypercube include a host processor that is
used for program development, downloading the cube programs, and getting back results
from the cube. The simulator models the Intel arci:itecture by having a host processor
that has a direct connection to every processor in the hypercube. Messages between the
host and the cube exhibit a transmission delay in the same manner as messages between
cube processors. but the user may specify a different transmission rate for the host-to-cube
communication path.

The data rates for the cube communication channels and the host-to—cube channel for
the simulator are specified as a delay value. The delay value is the ratio of processor speed
(instructions per second) to transmission speed (bytes per second). This is a critical ratio
for any hypercube and will influence how algorithms are designed. With the simulator,
the user may vary this ratic to see how an algorithm might perform under various cube
architectures. Thus, the message delay in simulator clock ticks (VAX instructions) for
sending a message between two processors on the hypercube is

sM + hrM,

where M is the number of bytes in the message (rounded to the nearest packet), h is the
number of hops between the two processors, s is the startup delay value, and r is the
transmission delay value between two adjacent processors. A message may be delayed



further if another message having the same source and destination is still in transit.
2. User’s Guide

2.1. Simulator subroutines

The simulator subroutines can be divided into three basic services — task-control ser-
vices (tfork, texit), message-passing services (send, recv, copen, cclose, status, probe), and
information services (mynode, clock, syslog, cubedim, strace, etrace, cube_init). Appendix C
summarizes these subroutines and supplemental information is available from [1] and [8].
This section will illustrate how to use these services to construct parallel programs.

Rather than having a main procedure, a simulator application consists of a number of
subroutines of type TASK that may be executed concurrently by the simulator scheduler.
The “main" task has the name task(0 and may start other subroutines of type TASK with
tfork. The first argument to ¢fork is the name of the subroutine, and the second argument
specifies the number of four-byte words to be used for the stack and automatic storage for
the task or process. The minimum stack size is 10,000, but may need to be larger if the
task or subroutines it calls have large storage requirements for local variables (such as
arrays). Tasks exit when they execute a refurn or texit or encounter the end of the sub-
routine. Each task bas an id that can be retrieved with the function mynode. TaskQ has an
id of -1 (or HOST as defined by the include file intel.h). Tasks created with tfork are
assigned ids starting with zero.

The message-passing conventions are modeled on those used on the Intel hypercube
[8]. To send or receive messages the program must first establish one or more communica-
tion channels thh copenn. The argument to copen is an arbitrary integer, sometimes called
the process id. Copen returns a value of type CHNL which can be thought of as a file
descriptor in C or a FORTRAN logical unit number. The syntax to send a message is

sendw(ci, type, mesg, size, node, pid)

where ¢i is the channel identifier established with the copen. Type is an arbitrary integer
which can be used by the application to indicate different kinds of messages. Mesg is the
address of size bytes that will be sent to the task with id node on the channel that node
has opened with the process id of pid. There is a corresponding subroutine sendmsg with
the same arguments that the Intel host is required to use.

The syntax for receiving a message (or waiting for a message to arrive) is
recvw(ci, type, mesg, size, &length, &node, &pid)
When a message of the specified type arrives it is stored starting at mesg up to a max-
imum of size bytes. Length is set to the actual number of bytes sent. and node and pid
are set to the node number and process id of the sending process. The correpsonding host
version is

recvmsg{ci, &type, mesg, size, &length, &node, &pid)

Note that the host version does not distinguish on fype; but rather a message of any type
is received, and the value of Zype is set. Both recvw and recvmsg are synchronous or

* On the Intel cube, it is possible to have more than one task running on a node processor. The process id
permits the sending task to select a particular process on the node.
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blocking: that is. the program is suspended until a message arrives.

Asynchronous versions of send and recv are supported for more complex message
management. The status function is provided to indicate whether the transmission on the
given channel (the argument to status) has been completed. Completion of send does not
mean the message has been received, only that the mesg area has been copied into the
operating system area. Completion of a recv indicates that a message has arrived and that
the arguments to recy have been set. Testing for the completion of a recv must be done
with a “busy wait.”” When the simulator is rot in aspp-mode, a “busy wait” can cause an
infinite loop unless the flick call is used. Flick permits other processes 1o run. A code
fragment illustrating a proper “busy wait™ follows:

recv(ci, type, mesg, size, &lth, &node, &pid);
while(status(ci)) flick{);

By opening several channels, one can have multiple receives outstanding. The
probe(ci, type) permits the program to see if a message of a given type is in the receive
queue. Probe returns the length of the message if one is queued; otherwise -1 is returned.
A recv must still be issued to retrieve the message.

Various informational routines are provided as well. Cubedim returns the dimension
of the hypercube. Mynode returns the node id of the task, and clock returns the current
value of the simulator clock. A log of simulator events can be initiated with
strace(filename) and terminated with etrace (see §2.2), and syslog can be used to write a
string into the trace file. Finally, cube init is used to set various simulator controls,
including node-to-node and host-to-node communcation rates, message startup rate, mes-
sage packet size. and dimension of the cube. Cube_init accepts a variable size parameter
list. so unused trailing arguments may be omitted, in which case default values are used;
refer to Appendix C for the specific types and values of the arguments.

Since the simulator was originally a shared-memory multiprocessor simulator [1]. an
application may choose to mix message passing and shared memory in order to simulate
some hybrid computer architecture. However, simulating a message-passing environment
with no shared memory requires that the program structure be restricted. The C program-
mer should use no external variables; all variables should be declared within the scope of
procedures. The FORTRAN programmer should not use COMMONSs.

Figure 1 illustrates the use of some of the simulator routines in a contrived example.
The program calculates the inner product of a matrix (matrix) with a vector (vector) and
prints the resulting vector (result). The result is calculated in parallel by creating
processes to perform the vector products. The host process (task0) starts the trace file,
sets the cube parameters, and issues a copen. Then it initiates a process mudt for each row
in the matrix. Next, the host process sends 1o each process a message of type 1 containing
a row of the matrix and a message of type 2 containing the vector. Then it waits for each
process to send back the resulting inner product.



/* ip.c vector matrix(transpose) inner product using messages */

#include <stdio.h>

#include <intelLh>

#define STACK 10000

TASK mult(); /* the worker, replicated in nodes */

#define DIM 5

#define PID 15

int result{ DIM], vector{ DIM] = {2,3,2,4,3};

int matrix{ DIMIDIM] = { 1,2,3,4,5,2,3,10,4, 3,3,1,22,0,1,1,0,3, 4,3,2,1,5};

TASK

task0()

{ /* main task — host process */
CHNL 4d;
int i,val,typelth,node,pid;

strace("ip.trace”);

cube_init(0.1,0.3,0.2,1024);

d = copen(PID);

for (i=0;i <DIM;i++){ /* start and send data to each node */
tfork(mult,STACK); /* start up a node */
sendmsg(d,1,matrix{i),sizeof(matrixi],i,PID);
sendmasg(d,2,vector,sizeof(vector),i,PID);

for (i=0;i <DIM;i++){ /% wait for results */
recvmsg(d, & type,&val sizeof(int),&1th,&node,&pid);
resul{node] = val;

)
for(i=0;i <DIM;i++) printf(" %d",result{iD;
}

TASK

mult(

{ 7* do inner product of two vectors */
int v1[DIM), v2[DIM};
int i,sum,node,pid,ith;
CHNL 4d;

4 = copen(PID);

recvw(d,1,v1, sizeof v1,&1th,&node,&pid);
recvw(d,2,v2,sizeof v2,&1th,&node,&pid);

sum=0;

for(i=0;i< (1th/ sizeof(int));i++) sum += vi[i] ® v2{il;
sendw(d,3,&sum,sizeof(int),node,pid);

Fig. 1. C program for matrix-vector product

The process mult issues a copen and awaits a message of type 1; then it awaits a mes-
sage of type 2 containing vectors. The inner product of the two vectors is calculated, and
the result sent back. More substantial examples of simulator and hypercube programs and
algorithms can be found in [2], [5]. [6]. and [7].

2.2. Trace file and post-processors

The simulator can provide extensive debugging and performance information if one
enables tracing within the application program. The trace file is initiated with
strace(” filename” ) where the argument is the name of a file. If the file exists, the trace
information will be appended; otherwise a new file is created. Thus it is usually necessary
to remove the old trace file between successive runs of an application. The trace may be
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stopped with efrace. A program might have several calls to strace and etrace in order to
trace simulator events within specific program segments or to limit the size of the trace
file. If the file name given to strace is the null string. for example, strace(*”), then the
trace output is directed to stdowt and thus may be viewed directly on the terminal as the
program runs, or, more often, piped into one ¢f the post-processors for graphic or tabular
display.

One line is written to the trace file for each simulator event such as process initiation,
process termination. sending a message. or message arrival. Figure 2 is an excerpt from a
trace file. Fach entry is stamped with simulator time, though the application must be
built in aspp-mode for the simulator clock to be active. The trace file entry for a send or
recv includes the node id (¢id) of the originator along with message type, address, and size
and destination (or sender) id. Note that the #id is one greater than the processor id used
in the application program. The programmer may include his own data in the trace file
with syslog, which writes an integer {pid) and a character string to the trace file. The cnt
entries indicate the number of processors active at the given time. The active and waiting
processors can be deduced from the “waking” and “blocking” substrings of a trace entry.
In practice, the trace file can grow quite rapidly, so discretion is advised.

tforktid O clock 110 taddr 1212 stack 10000 waking 5

cat 2 clockill

send tid Oclock 119 to 5 pid 15 type 1 1th 20 addr 036224

send tid O clock 126 to 5 pid 15 type 2 1th 20 addr 036060

recvw tid 5 clock 128 pid 15 type 1 1th 20 addr 01467764 blocking 5
ent 1 clock 128

recvw tid O clock 148 pid 15 type -1 1th 4 addr 0237714 blocking 0
cnt O clock 143

timer msgarrived clock 539 from O pid 15 type 1 1th 20 addr 0457764 waking 1
ent 1 clock 539

syslog  tid 1 clock 541 pid 1 msg "here we are”

recvw tid 1 clock 553 pid 15 type 2 1th 20 addr 0457740 blocking 1

ent O clock 553

timer msgarrived clock 562 from 0O pid 15 type 1 1th 20 addr 0667764 waking 2
ent 1 clock 562

evpost tid 1 clock 1110 addr 0104330 was CLEARED

texit tid 1 clock 1110 status O

ent 2 clock1110

Fig. 2. Trace file excerpt

The raw trace file can be a very useful debugging aid (see §2.5), but trace files are
usually interpreted by post-processors to give performance summaries. For mcanmgful
performance data to be obtained. the application program must have been built in aspp-
mode. Two post-processors, ccplot and tracel, produce graphical output suitable for use
by the UNIX graph command. For example,

ccplot tracefile | graph -b | plot -T4010

would plot processor utilization over time on a Tektronix 4010 graphics terminal.” Figure
3 is an example of a plot produced by ccplot. The vertical axis is the number of processors
active, and the horizontal axis is time measured in VAX instructions.
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Fig. 3. Processor utilization from ccplot

To see specifically which processors are busy at a given time, one may use the tracel com-
mand,

tracel tracefile | graph -b | plot -T4010

Figure 4 is a sample tracel plot, where the vertical axis is the processor id for each proces-
sor and the horizontal axis is simulator time. The horizontal lines indicate that a given
processor is busy; otherwise the processor is idle (awaiting arrival of a message, for exam-
ple).

Tabular summaries of sends and receives and processor utilization can be displayed
with the nstats command. A sample output of nstats is part of the sample session in Fig-
ure 5. Nstats may also be invoked as part of piped sequence, which is useful when the
trace file may be too large to be stored on disk. As an example, if the application has
started its trace file with strace(*”), directing the trace output to stdout, then

application | nstats -n.out | ceplot > plotdata

will pipe the trace file through nstats and into ccplot, producing a tabular summary in
n.out and a plot file suitable for input to graph.
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Fig. 4. Processor utlization from tracel

2.3. Sample session

Figure 5 is a transcript of a terminal session illustrating how one builds simulator
programs and invokes post-processors. The files used are part of the simulator distribu-
tion tape. The actual location of these files is determined by how the simulator was
installed at a given site (Appendix A).

In this sample session, the user first lists the directory containing the simulator
libraries, and then copies three files from the simulator directory into his own working
dlrectory The file ip.c is just the vector-matrix program described in §2.1. The script bld
is used to invoke the makefile using a commsznd like bld file where .c is assumed as the
extension to file. The executable ip produced by bld is run and the resulting vector is
printed.

The trace file is deleted and the program rebuilt in aspp-mode. The resulting program

(ip) is run again, producing the same answer, but now the trace file (ip.trace) has useful

timing data. The trace file is analyzed by nstats, and a summary of processor utilization

and message counts is reported. Finally, ccplot is invoked to generate graphxcal data on
processor utilization.
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% 1s /usr/local/intel

SndAwt.a  ccplot heptst.c libfkernel.a gplotit
SndAwt.o ccplotold  heptstm libkernel.a  task.fh
SndAwta.a dining.c intel.h libkerncl.a.old task.h
aspp f77sample ip.c makefile tracel
aspp.old fbld ip.m msgist.c

bld fmakefile ipsa.c nstats

bobw.c hep.h ipsa.m nstats.old

% cp /usr/local/intel/ip.c .

% cp /usr/local/Intel/bld .

% cp /usr/local/intel/makefile.

% bld ip

¢ -0 -I/usr/local/intel < tst.c

cc o tst tst.0 /usy/local/intel/libkernel.a -lm
% ip

4527 31 14 40

% rm jp.trace

% bid ip aspp

cc -S -1/usr/local/intel tst.c
/usr/local/intel/aspp < tst.s > tst.tmp

mv tst.tmp tst.s

as ~0 tst.o tsts

rm 1518

cc -0 tst tst.0 /usr/local/intel/libkernel.a -1m
% ip

4527 31 14 40

% /usr/local/intel/nstats ip.trace

tid start end duration busy  utiliz sends recvs
0 4 1766 1762 277 16% 10 5
1 18 1110 1092 91 8% 1 2
2 41 1133 1092 91 8% 1 2
3 64 1156 1092 91 8% 1 2
4 87 1179 1092 91 8% 1 2
5 110 1202 1092 91 8% 1 2

Nodal utilization 8% Nodal+host utilization 10% sends 15 recvs 15
Gross utilization 7%

% /ustr/local/intel/ccplot ip.trace > plotdata

% /usr/local/intel/gplotit plotdata

Fig. 5. Sample simulator session for C

2.4. FORTRAN interface

The simulator subroutines described in §2.1 are available to the FORTRAN program-
mer as well. Figure 6 illustrates some of the simulator FORTRAN subroutines using the
sample described in §2.1. The program calculates the inner product of a matrix (matrix)
with a vector (vector) and prints the resulting vector (result). The result is calculated in
parallel by creating processes to perform the vector products. Notice that there is an
include statement and that those subroutines that are processes are of type TASK rather
than type SUBROUTINE. The AUTO statement declares all variables to be automatic.
This permits multiple copies of a subroutine (process) to be executed concurrently — each
baving its own copy of local variables. (The read-only variables matrix and vector are
declared static so they can be initialized in a DATA statement for this example.) The host
process (task0) starts the trace file, sets the cube parameters, and issues a copen. Then it
initiates a process mult for each column of the matrix. Notice that an EXTERNAL declara-
tion is required for any subroutine (TASK) used in a ¢fork. The host process next sends a
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#include <taskfh>
TASK task0
AUTO
implicit integer (a-z)
¢ do simple inner product with snd rcv
static matrix(5,5), vector(5)
integer result(5), copen
external mult
data matrix /1,2,3,4,5,23,1,0,4,3,3,1,2,2,0,1,1,0,3,4,3,2,1,5/
dats vector /2,3,2,4,3/

call cubeinit(0.1,0.3,0.2,1¢24)
call strace("ip.trace™)
d = copen(15)
do 10 i=1,5
call tfork(mult,10000)
call sendmsg(d,1,matrix(1,1),20,i-1,15)
call sendmsg(d,2,vector,20,i-1,15)
10 continue
do 20 i=1,5
call recvmsg(d, ity pe, val,4,1th,node,pid)
result(node+1) = val
20 continue
write(6,*)result
end

TASK mult

AUTO

implicit integer (a-2)
¢ multiply two vectors

integer v1(5), v2(5)

d = copen(15)
call recvw(d,1,v1,20,1th, node,pid)
call recvw(d,2,v2,20,1th,node,pid)
sum =0
do 10 i=1,5

10 sum = sum + vi(D) * v2(D)
call sendw{d,3,sum,4,node,pid)
end

Fig. 6. FORTRAN program for matrix-vector product

message of type 1 containing a column of the matrix and a message of type 2 containing
the vector to each process. Then it waits for each process to send back the resulting inner
product.

The process mult issues a copen and awaits a message of type 1; then it awaits a mes-
sage of type 2 containing vectors. The inner product of the two vectors is calculated and
the result sent back. Several simulator functions return values of type INTEGER but do
not follow the FORTRAN default naming convention, so one must remember to declare
these functions (copen, status, probe, cubedim, clock) as INTEGER.

Figure 7 is a transcript of a terminal session illustrating how one builds FORTRAN
simulator programs and invokes post-proceszors. The files used are part of the simulator
distribution tape, and their location is determined by how the simulator was installed at a
given site (Appendix A).
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% 1s /usr/local/intel

SndAwt.a ccplot heptst.c  libfkernela gplotit
SndAwt.o ccplot.old heptstun  libkernclatask.th

SndAwta.a dining.c intelh libkernela.old task.h
aspp f77sampleip.c makefile tracel

aspp.old fbld ip.m msgtst.c

bld fmakeflle ipsac nstats

bobw.c hep.h ipsa.m nstats.old

% cp /usr/local/intel/fbld bld
% cp /ustlocal/intel/fmakefile makefile
% cp /usr/local/intel/ipam .
% hid ip
/lib/cpp -1/ust/local/intel -DUNIX < tst.m lawk 'V # && /[° 0/' lexpand -6 >tst.f
77 ¢ tst.f
tst.f:
taskO:
mult:
™ tst.f
£77 -0 tst tst.o /usr/local/intel/libfkernela
% ip
45 27 31 14 40
% mm Ip.trace
% bld ip aspp
/lib/cpp -V/ust/local/intel -DUNIX < tst.m lawk 'V # && /° 0/" | expand -6 Dtst.f
77 -S tst.f
tat.f:
task0:
mults
/usr/local/intel/aspp < ist.s D> ist.tinp
mv tst.imp tst.s
as -0 ts1.0 tst.s
rm tst.s tst.f
£77 -0 tst tst.o /usr/local/intel/libfkernel.a
% ip
45 27 31 14 40
% /ust/local/intel/nstats ip.trace

tid  start end duration busy utiliz sends recvs
0 11 1803 1792 297 17% 10 S
1 19 1138 1119 112 10% 1 2
2 53 1172 1119 112 10% 1 2
3 87 1206 1119 112 10% 1 2
4 121 1240 1119 112 10% 1 2
s 155 1274 1119 112 10% 1 2

Nodal utilization 10% Nodsl+host utilization 11% sends 15 recvs 15
Gross utilization 8%

% /usr/local/intel/ccpliot ip.trace > plotdata

% /usr/local/intel/gplotit plotdata

Fig. 7. Sample FORTRAN session

In this sample session, the user first lists the directory containing the simulator
libraries, and then copies three files from the simulator directory into his own working
directory. Notice that fbld and fmakefile are renamed as part of the copying process.
With this convention, one needs separate directories for building C and FORTRAN simula-
tor applications. The file ipon is just the matrix-vector program described in the first part
of this section. The extension sn is used as a reminder that the FORTRAN file is passed
through a pre-processor before being compiled by the f77 compiler. The script bld is used
to invoke the makefile using a command like bld file, where /m is assumed as the extension
to file. The executable ip produced by bld is run, and the resulting vector is printed.
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The trace file is deleted and the program rebuilt in aspp-mode. The resulting program
(ip) is run again, producing the same answer, but now the trace file (ip.trace) has useful
timing data. The trace file is analyzed by nstats and a summary of processor utilization
and message counts is reported. Finally ccplot is invoked to generate graphical data on
processor utilization.

2.5. Debugging

The simulator provides a number of aids for discovering bugs in a parallel applica-
tion. To reduce the number of initial bugs, keep the implementation simple. deferring
until later optimizations for speed or storage savings. Write the program so that it can run
with an arbitrary number of processors, and then test it with just a few. This will keep
the size of the trace file manageable, as well as any debugging output. Test and run in
non-aspp-mode first. This will give faster turnaround. If possible, isolate and test the
message-passing logic of your application. Often synchronization problems can be
discovered by using different values (e.g., 0, 1.0, 100.0) for the node-to-node communica-
tion rate in cubeinit.

The trace file provides a wealth of information when things go wrong. Often syn-
chronization problems arise from messages arriving in an unanticipated order. The trace
file shows who is sendmg what to whom and when. Synchromzauon problems can be
reduced by using different “type” fields in the send and recv calls. Distinct message types
also make following the program seguence in the trace file easier. Use of syslog to note
different phases of the application also aids in reading the trace file. Messages are some-
times not received because the process-id in the send does not match the process-id used
by the receiving task in its copen. Also observe message sizes in the trace file. Sometimes a
program is changed to send a different variable, but the user failed to adjust the message
size in the send or recv. Failure to specify proper lengths in recv can have fatal results,
since other variables in the program may be over-written. In C, care must be taken in
specifying addresses (&) of variables where required. FORTRAN programs will crash if
the first argument to {fork has not been declared EXTERNAL.

One must estimate storage requirements for processes in the tfork call. The storage is
used for all variables declared within the blocks of the called process as well as any pro-
cedures that process might call. Failure to provide sufficient storage produces unpredict-
able results! The chkstk function can be called from within any process or procedure to
detect insufficient automatic storage. Another storage management problem can occur if
one accidentally uses the shared-memory features of the simulator. Hence, C programmers
must take care that all variables are defined within procedures, and FORTRAN program-
mers must do without COMMON.

Sadly, the FORTRAN 1/O routines are not re-entrant; thus concurrent use (aspp-
mode) of FORTRAN I/O statements by two or more processes will result in a tight CPU
loop. One must restrict FORTRAN 1/0 to one process at a time. To limit debugging out-
put, it is a good practice to allow only one process to issue such output. This can be done
where several processors are running the same program by doing the output only if the
processor id is a given number.

The distribution tape also includes a version of the simulator library (libdbxkernel.a)
that was built for use with the UNIX dbx debugger. The user can compile his programs
with the -g option to the compiler and then link with the dbx version of the simulator
library. Both the simulator and an application can be debugged in this manner.
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3. Intel iPSC and the Simulator

The simulator started out with a general message-passing architecture and then was
refined to approximate the architecture of a hypercube, specifically, the Caltech Cosmic
Cube as described by Seitz [9]. We then acquired an Intel iPSC d6 hypercube, and the
simulator was further refined to simulate the performance and calling sequences of the
Intel cube [8]. Even with access to a real message-passing machine, the simulator still is a
useful tool in program development and algorithm analysis for the following reasons.
First, as of this writing, the Intel cube is a single user system (though other users may be
doing program development on the cube host)., whereas the simulator permits many users
to work concurrently on their own “cubes.” Second, the simulator is presently better
instrumented for providing debugging information (output directly from the node
processes and dbx support) and performance data (trace files, plots, processor utilization).
Third, the simulator provides a means to reproduce identical runs and isolate timing bugs,
or one can vary the simulator parameters to see if timing bugs appear. Finally, the simu-
lator can be tuned to test the performance of an algorithm or application under different
message-passing architectures, or even architecturss with both message passing and shared
memory.

Developing a program to run correctly on both the simulator and the Intel cube does
require some care. The default word size for the VAX is four bytes, but it is only two
bytes for the Intel cube and its host. Thus the default precision for int in C and
INTEGER in FORTRAN is different for the two machines. For arguments to simulator
subroutines, one may just declare the arguments as inf or INTEGER and the calls should
be compatible between the simulator (which uses four-byte arguments) and the Intel cube
(which uses two bytes). However, other areas of the user’s code may give incorrect results
because of the different word size. The simulator permits I/0 in the nodes; the Intel cube
does not. The simulator-specific calls (¢fork, cube_init, strace, etrace) and include-file
references must be removed in order to move the program to the INTEL cube.

For C, the type TASK and CHNL must be removed (or defined as int). C program-
mers must also remember that global variables will be in “shared” memory on the simula-
tor. FORTRAN programmers will need to remove the AUTO and TASK declarations from
their subroutines as well as any include files. The EXTERNAL statements for the TFORK
arguments must be removed as well when porting to the Intel cube. Finally, the use of
COMMON on the simulator is discouraged since the variables will be in “shared’” memory.
These changes usually can be made quickly, and we often move codes back and forth
between the simulator and the Intel cube.

The simulator is not a true simulation of the Intel cube for a number of reasons.
There may be only one process per node on the simulator, and it is possible to share
memory on the simulator. The message-passing delays are only rough estimates. The
nodes on the Intel cube are noticeably slowed when they are forwarding messages; the
simulator behaves as a cube with a separate message coprocessor on every node. The simu-
lator does not account for message delays induced by traffic from nodes other than the
source and destination. Finally, the simulator’s clock is a count of VAX instructions, and
calls to various libraries are not accountable. Nevertheless, the simulator provides a useful
and reasonably accurate predictor of actual cube performance and is a powerful tool for
performance analysis and debugging.
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Appendix A

Installation Guide

The simulator consists of subroutine libraries, post-processors, and some sample pro-
grams and scripts. The simulator is written to run on a VAX 11/780 under UNIX 4.2bsd.
None of the routines require root privileges. though root may wish to assist in the installa-
tion to place the libraries and executables in a system-accessible path. The simulator is
distributed by the Department of Energy on a 1600 bpi tape in UNIX tar format. The
tape is available from

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
(312/972-7250)

The distribution is composed of five directories. The local directory contains the
simulator library (libkernel.a) and its FORTRAN version (libfkernel.a). If the files in this
directory are copied to another directory. then one will need to ranlib the library files.
Makefiles and sample building scripts (5ld) are contained in local along with a sample C
session (csample) and FORTRAN session (f77sample). It may be necessary to modify the
makefiles to indicate the proper path to the simulator local directory. The files assume
/usr/local/intel. Various post-processors and aspp are executables in the local directory.

The intel directory contains a number of subdirectories containing manual entries,
papers describing the simulator, sample programs, and sources for the libraries and post-
processors. The doc subdirectory contains manual pages and papers describing the simula-
tor and its predecessor, the “Multitasker” by Eugene Brooks of Lawrence Livermore
National Laboratory. The kernel subdirectory contains the sources and makefile for re-
constructing or modifying the simulator. To make a new version of the C simulator
library, one just issues the command make libkernel.a and a new library will be built in
the kernel subdirectory. ‘

Directories geist and mzh contain various sample codes for the simulator being
developed by Al Geist and Mike Heath of Cak Ridge National Laboratory. The /I direc-
tory contain samples of shared-memory codes developed by Eugene Brooks for the original
simulator.

Installation consists of loading the tape with the far command, moving the files in the
local directory to their final residing place, doing a ranlib on the .a files, and possibly
modifying the makefiles to reflect the correct path to the simulator libraries and include
files. Optionally, the manual entries in intel/doc can be copied to a man subdirectory.
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Appendix B

Porting to Other Machines

The simulator is designed to run on a DEC VAX 11/780 under UNIX 4.2bsd. The
simulator is written in C, but there are explicit machine language instructions in module
kernel.c. It is necessary to issue machine language instructions to save the process state in
doing process switching. Knowledge of the use of the machine registers by the compilers is
also used in saving and restoring processes by the simulator. Presumably, the simulator
would run on VAX 750s or Microvaxes without modification. Porting the simulator to
another architecture would require modification to kernel.c.

The other explicit use of the machine architecture is used by the aspp step. Aspp
takes the assembly language output from the compilation of the user’s application codes
and inserts subroutine calls into the assembly language source stream to invoke the simu-
lator between every machine instruction of the application code. This mode permits the
simulator to step the clock and process-switch. A number of architectural requirements
are implied here. First, the compilers must produce assembly language output. Second,
aspp must be able to read and understand the assembly language output to the degree that
it can know where to insert the calls to the simulator. Third, the assembler or hardware
architecture must be flexible enough to accept additional instructions in the source stream
without “‘breaking’ short-branches, for example. Finally, it must be possible to save and
restore the machine state across these inserted calls to the simulator, so that the calls are
transparent to the application. Of course, aspp is not needed if the user does not require
the fine-grain information provided by aspp for plots and performance analysis. Alterna-
tively, other methods of “interpreting” the application code could be developed, such as
modifying the application object modules.

The simulator supports both C and FORTRAN. Languages supported by the simula-
tor must produce re-entrant application codes, and the run-time library of the language
should be re-entrant as well. Some FORTRANSs do not meet these requirements. The
UNIX 4.2 77 FORTRAN provides optional data types of AUTOMATIC and STATIC. The
AUTOMATIC data type is required to support concurrent execution of a subroutine by
several processes. (Note, however, the f77 1/0 run-time routines are not re-entrant.) Sub-
routine calling sequences may differ among languages, so the simulator may have to pro-
vide special interface routines for the simulator subroutines. The modules fortrash.c and
ortrash.c convert FORTRAN calling sequences to C calling sequences.

Since the simulator runs as a single process under the host operating system, the size
of the simulation will be restricted by the virtual memory limit for a process. For UNIX
4.2bsd, the process memory limit is six million bytes, though UNIX can be re-compiled to
permit larger processes. With the minimum stack size of 40K bytes for the ¢fork call and
the overhead of the application and simulator, this limits simulations to about 100
processes. Porting the simulator to machines with smaller virtual memory limits (or no
virtual memory) could limit the efficacy of the simulation. If one is willing to work with
no more than eight to twenty processes, alternate simulator implementations could be con-
sidered, such as using the UNIX fork service and interprocess communication facilities.
With such an implementation, the simulator would not bave to perform task management
and message-passing services, and the application would generally run faster. However,
the detailed timing and performance data would be lost.
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Appendix C

Simulator Manual Pages
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INTEL (L) UNIX Programmer’s Manual INTEL(L)
NAME

intel - intel hypercube simulator routines
SYNOPSIS

#Finclude "intelLk"

void cube_init(foat nndelay, float hndelay, float staxrtup,
int packetsize, int cubedim, int timeslice);

CHNL copen(int pid)
void cclose(y;

void send(CHNIL d, int type, char smasg, int msglth,
int dstnode, int dstpid)

void sendw(CHNL 4, int type, char smsg, int msglth,
int dstnode, int dstpid);

void sendmsg(CHNL d, int type, char smsg, int msglth,
int dstnode, int dstpid)

void rec¥(CHNL d, int type, char smsg, int maxlth,
int smsglth, int *srcnode, int ssrcpid);

void recvw(CHNL 4, int type, char smsg, int maxlth,
int smsglth, int *srcnode, int #srcpid);

void recvinsg(CHNL d, int stype, char smsg, int maxlth,
int smsglth, int #srcnode, int ssrcpid);

int probe(CHNL 4, type)
int status(CHNL dJ

int mynode(;

int cubedim();

int clock(;

void syslog(int pid, char #msg)
void Rick();

DESCRIPTION
These functions provide a message-passing architecture for the parallel processor simulator
(see man ppsim). The routines approximate the INTEL implementation of the Caltech
hypercube. A message delay is supported and task0 is assumed to be the host. Explicit
messages to the host should use the node id of HOST. The host is assumed to have a direct
message path to every node.

cube_init sets the amount of delay for messages and should be called once in task0. Delay
values are the ratio of CPU speed (instructions per second) to transmission speed (bytes
per second) . There is a node-to-node delay (nndelay). a host-to-node delay (hndelay).
and a startup delay. A delay value of 1.0 means roughly that a byte of information can
be sent in the same amount of time that it would take to do one CPU operation. The
node-to-node delay is multiplied by the number of hops the message must take. The
default delay values are 0.0. Values for the Intel iPSC might be 0.1, 0.3, 0.2. An estimate
of intranodal message passing delay is made by dividing the node-to-node delay by 100.
A value for the size of a message packet (defauit of 1) may be specified: the iPSC uses a
packet size of 1024. The length of a message will be rounded up to a multiple of packet-
size for purposes of transmission delay calculations. A value for the dimension of the
cube (cubedim) may be supplied. This value will be returned by cubedim(). To increase
the speed of aspp-mode simulation and possibly alter the order of execution of the nodes,

4th Berkeley Distribution S June 1985 1
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a timeslice value is also provided. A value of 0 allows a process to run until it blocks. A
value of 1, the default, causes a process-switch after every application instruction. Larger
values allow g process to execute the given number of instructions before a process-switch
is induced. The trace file will not be in chronological order if a timeslice other than 1 is
selected. and the concurrency information produced by the simulator: will no longer be
meaningful. More powerful trace-file processors could account for the disordering in order
to calculate concurrency information correctly. Message delays also become less realistic
with a time-slice other than 1. ’

The programmer must first establish one or more cube communication channel data struc-
tures with calls to copen. copen takes a value to be used as process identifier and returns a
descriptor, of type CHNL, that is used in subsequent message-passing functions. A process
is addressed by its node number and process identifier. cclose frees the channel data struc-
ture. ‘

send and sendw send the message pointed to by msg to the process at node dstnode with
process id dstpid. The type and size of the message (msglth) in bytes are also provided.
send returns immediately, but one cannot use the message area until status returns FREE,
indicating that the kernel has sent the message. sendw does not return until the message
has been sent. (This does not imply thst the message has been received.) sendmsg behaves
exactly like sendw but is intended as the host version for compatibilty with INTEL cube.

recv and recvw await the arrival of a message of the given type for the node and process id
associated with CHNL d. The functions provide addresses to store the message, the actual
length of the message. and the node and process id of the sender. For recvw the process
blocks until a message of the given type arrives. For recv the process may continue pro-
cessing after issuing the recv, and when status returns a value of FREE, then a message of
the given type has arrived. Upon receipt of the message, the simulator sets the srcnode
and srcpid to those of the sender, sets the msglth to the length of the received message,
and copies the message into msg. No more than maxith bytes are copied. Messages are
handled in a FIFO fashion. recvmsg behaves like recyw except it does not discriminate on
message type, rather the type of the message is returned along with the message in accor-
dance with the INTEL cube. sendmsg and recvmsg are intended (by INTEL) to be used
only by the host processes, but the simulator permits node usage as well.

probe determines if a message of the given type is available for the node and process id
associated with the given CHNL. If a message is available, probe returns the length of the
message; otherwise, a value of -1 is returned. One must issue a recv actually to fetch the
message. Note, the channel data structure should not be in use by other message-passing
functions. stafus returns a value of BUSY or FREE indicating whether the given CHNL
data structure is in use or not. For send, BUSY indicates that the kernel has not yet sent
the message. For recv, BUSY indicates that the desired message has not arrived.

mynode returns the node number of the process. The host has a node number of HOST.
Node numbers will differ by one from those appearing in the simulator trace files. cubedim
returns the dimension of the cube. clock returns the present value of the process clock.
syslog places the given message and pid in the trace file. flick relinquishes control from the
given process to other runnable processes. flick is usually used in busy-wait conditions
with status following a recv or with probe. (If you are using busy-waits and are not in
aspp-mode, you must use flick to permit the simulator to run your other nodal processes.)

POST PROCESSORS
If the aspp-mode is used and strace(” filename” ) then a trace file is produced with simulator
data that can be suramarized by nstats or coplot. nstats tracefile will produce a per-node
summary of compute time and sends and receives. ccplot tracefile > plotfile will produce a
plotfile that can be plotted with various plotting programs such as graph(1).

4th Berkeley Distribution 5 Jure 1985 2
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FORTRAN

The message passing subroutines may also be called from f77 programs. A build and
makefile, fbld and fmakefile, are in /usr/local/intel. They can be copied into your area.
fmakefile should be renamed makefile. There are sample FORTRAN programs with the
extension .m in /usr/local/intel. These samples are passed through a pre-processor by the
fbld command. You must use automatic storage for your parallel subroutines and for
your “main” subroutine zask0. You must declare all parallel subroutine names as EXTER-
NAL in the main subroutine fask0. Care must be taken in using COMMON since the simu-
lator provides you a shared memory environment that would not exist with a real cube.
FORTRAN L/O is serial and can cause the simulator task to fall into an infinite loop if you
attempt to intermix I/O statements from parallel subroutines. You probably should
confine your I/0 to the main subroutine. Other troubles may arise from the fact that
FORTRAN passes arguments by reference.

SEE ALSO
ppsim(1), hep(1)

BUGS
The delay model does not account for media delay induced by traffic between intermediate
nodes. Running multiple processes on a single node is not supported. Processes are
assigned to nodes by the order of tfork calls. Since the simulator is 2 single task, one can
share global variables. In a real cube, such memory sharing would not be possible. Calls
to library routines (for example, SQRT) are not counted by the simulator clock. The
handler function is not presently implemented.

AUTHOR

T. H. Dunigan

4th Berkeley Distribution 5 June 1985 3
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NAME

ppsim - parallel processor simulator
SYNOPSIS

#include ®task.h"

TID tfork(TASK fcn, int stacksize {,argsl);
void texit(int value);

void twait(TID taskid)

TID gettid(O;

void tsleep(int ticks);

void 1ock(LOCK slockvar);

void unlock(LOCK slockvar);

void evpost(EVENT =eventvar);
void evclear{EVENT seventvar);
void evwait(EVENT seventvar);

void strace(char sfilename);
void etrace(;
void mark(char sstring)k

DESCRIPTION

This package provides a set of function calls to implement a shared memory paraliel pro-
cessor and provides a means to debug and analyze parallel algorithms. Presently, up to
1000 parallel processes may be invoked. Various functions provide synchronization primi-
tives and message-passing facilities. A trace file may be produced and plotted. The simu-~
lator is implemented within a single process on the VAX, so very large or very time con-
suming applications are discouraged. A semple makefile is provided to assist in building an
application. Do not provide a main() function, but rather provide a TASK fask0 as the
application entry point. All external and global variables are known by all the processes,
so proper synchronization must be used in accessing global variables. To provide full tim-
ing information and process switching after each application VAX instruction. the aspp
build option must be used. Unfortunately, aspp forces a factor of 20 slowdown in the real
time for the simulation.

tfork is used to initiate a process. The function initiated must be of type TASK. A stack
size (in units of 4 bytes) must be provided to tfork, and it must be large enough 1o
accomodate the automatic variables in the process, including those of any serial functions
called by the process. A minimum stack size of 10000 is recommended. Any additional
arguments to tfork are passed to the initiated process. tfork returns a TID value that can
be used in a subsequent twail to await termination of the initiated process. A process will
exit when it encounters the closing brace of the function definition or when a fexit is exe-
cuted. gertid returns the TID of the process. tsleep idles the process for the given number
of clock ticks.

Synchronization of access to shared memory is provided by LOCK and EVENT variables
and functions. lock locks a LOCK variable if it is not locked. If the variable is locked, the
process is suspended until the lock is unlocked. The queue of processes waiting on a LOCK
variable is FIFQ. uniock unlocks a LOCK variable and releases the next process waiting on
that LOCK variable. evpost sets an EVENT variable to POSTED and releases all processes
that have issued an evwait on that EVENT variable. evclear sets an EVENT variable to
CLEARED. evwaif suspends the process urtil the EVENT variable is POSTED.

A trace file is initiated with strace{filename}, and the trace is stopped with efrace. If the
filename is the null string, then the trace is directed to stdout. An informative string may
be inserted in the trace file with the mark function. Various post-processing commands are
available for plotting the trace file, though the aspp option must be invoked to obtain
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useful concurrency information.

FILES
In /usr/local/intel the following files are available
libkernel.a simulator functions
aspp assembler post processor
makefile sample make file
ccplot trace file post processor
tracel trace file post processor

SEE ALSO
See man entries for hep and intel. There is also a paper by Brooks describing the simulator.
Sample programs may be found in /usr/local/intel. Other interfaces are available for £77
calls and simulating the CRAY X-MP.

BUGS
The overhead of aspp needs to be reduced. Function calls to library routines are not
accounted for in aspp mode. There is no easy way to detect an insufficient stack size pro-
vided to tfork. There is a function chkstk{) that you may add to alert you to stack
deficiencies. The default stack size of 40,000 bytes for taskO cannot be changed.
The FORTRAN 1/0 routines are not re-entrant. so doing FORTRAN 1/0 in more than one
process in aspp mode will put the program into an infinite loop. Also remember that FOR-
TRAN passes values by reference, so passing arguments in a ffork should be done with
care.

AUTHOR

Simulator is based on the “Multitasker” written by Eugene Brooks of LLNL and is avail-
able from the NESC.
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