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ABSTRACT 

Fusion product alpha populations can significantly influence 

tokamak stability due to coupling between the trapped alpha 

precessional drift and the kinetic ballooning mode frequency. This 

effect is of particular importance in parameter regimes where the alpha 

pressure gradient begins to constitute a sizable fraction of the 

thermal plasma pressure gradient. Careful, quantitative evaluations of 

these effects are necessary in burning plasma devices such as the 

Tokamak Fusian Test Reactor and the Joint European Torus, and we have 

continued systematic development of such a kinetic stability model. In 

this model we have considered a range of different forms for the alpha 

distribution function and the tokamak equilibrium. Both Maxwellfan and 

slowing-down models have been used for the alpha energy dependence 

while deeply trapped and, more recently, isotropic pitch angle 

dependences have been examined. In the latter case the drift reversal 

of the not so deeply trapped alphas is an important new feature not 

included in the deeply trapped model. The tokamak equilibrium was 

initially described using the nearly concentric circular flux surface 

model as well as more realistic analytic and numerical calculations 

that include the higher order poloidal harmonics af the equilibrium. 

An improved analytic model gives especially close agreement with the 

finite fl numerical equilibrium. Detailed comparisons of these various 

models are presented. Our results indicate that alpha populations can 

significantly deteriorate the first stability window f o r  ballooning 

modes as the alpha pressure gradient is increased and as the  background 

electron temperature is raised (for the slowing-down model) ar, 
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equivalently, the ratio of  alpha t o  background temperature is lowered 

(for the Maxwellian model). A related effect is the observed 

destabilization with increased aspect ratio ( c  = Ro/r where P is 

the local pressure gradient scaJ.e length). These scalings are 

consistent with an interaction between the ballooning mode frequency 

and the alpha precessional drift at energies involving increasingly 

larger fractions of the alpha distribution. Such regimes will 

characterize the central regions of burning tokamak devices and should 

be observable for the projected ranges of alpha pressure and background 

temperature. 
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1. INTRODUCTION 

The interaction of hot particle species with tokamak stability has 

been of substantial interest [1-8] in recent years due to the natural 

occurrence of suprathermal populations from neutral beam and rf heating 

and, ultimately, from alphas in ignition devices. The consequences of 

this interaction depend strongly on the parameter range and type of 

mode under consideration. An overall classification can be made in 

terms of the relative magnitude of the mode frequency (w) relative to 

the hot species precessional drift frequency (udH). 

First, for moderately energetic populations, one has (I) = WdH, 
which can lead to destabilizing couplings of the hot species with the 

kinetic ballooning mode [1,2] and with the pressure-driven internal 

kink [4,5]. Such interactions have been studied theoretically in some 

detail for the case of alpha populations in burning tokamaks and for 

neutral beam-generated tails in present-day devices. In the latter 

case, this destabilization has been verified experimentally in the form 

of the "fishbone oscillations" observed with near perpendicular 

injection on the Poloidal Divertor Experiment (PDX) [5]. Such 

fluctuations have components of the interaction of the trapped 

energetic species with internal kinks (the low frequency, low mode 

number oscillations) and with ballooning modes. The fishbone 

oscillations cause rapid loss of the fast particle component; 

destabilizing the ballooning mode affects the bulk plasma confinement. 

Second, for very highly energetic populations (in the multi-MeV 

range), one has w << udH, which leads to a stabilizing influence on 

1 
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ballooning modes [6] due to the hot species enhancement of the plasma 

compressibility. This effect tends t o  become more pronounced as the 

hot species pressure is increased; however, it does not rely on o r  

require production of a diamagnetic well by the hot component. It has 

been proposed [ 6 ]  that such an effect could be utilized to allow access 

between first and second stable regimes in the tokamak. 

Our specific interest in this report is to examine interactions of 

alpha populations with ballooning modes. Slowing-down alphas in 

ignition-grade plasmas (Ti ,e 2 10-20 keV) have sufficient collisional 

coupling to the background thermal plasma to generally reside in the 

moderate energy (w = wdH) regime. The strength of the interaction is 

related to the alpha pressure gradient, which can b e  a sizable fraction 

of the background plasma gradient due to the centrally peaked nature of 

the alpha particle source (m <av>). A s  shown in this report, this 

coupling i s  not always necessarily destabilizing. There are ranges of 

shear and pressure gradient where ballooning stability is improved; 

however, the first stability window, which will limit the central part 

of the profile, is generally always destabilized. The possible 

consequences of this destabilization could be a deterioration of the 

background plasma beta limit as well as an enhanced Loss of the alpha 

component before thermalizing. Since either of these outcomes can 

seriously impair the chances f o r  achieving ignited conditions, a 

careful, quantitative evaluation is called f o r ,  both in the present 

generation of break-even experiments and for the proposed compact 

ignition device. The goal of this approach is first to develop a 

realistic model for delineating unstable parameter regimes that should 

2 
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be avoided by burning plasma devices and, ultimately, for carrying out 

optimization studies (with respect to cross-sectional shaping and 

possible tailoring of the hot distribution function) to enlarge the 

stable window of operation. An important reason for pursuing such 

optimizations is that the type of shaping required to improve stability 

in an alpha-dominated, burning plasma is not necessarily the same as 

that already developed for the background thermal plasma alone. This 

is due to the different weighting of the curvature by the trapped hot 

species from that of the usual MWD instability driving term in the 

ballooning equation. 

We systematically develop the theory of coupling between an alpha 

population and the kinetic ballooning mode; we also present stability 

results over the parameter ranges characteristic of ignition 

experiments. First, the general form of the two coupled mode equations 

for the perturbed fields is presented, subject to a number of 

approximations appropriate for a trapped alpha species. Next, we 

choose a particular alpha distribution function and discuss the tokamak 

equilibrium model. Then, an approximate method for reducing the two 

coupled mode equations to  a single equation in the case of an isotropic 

alpha distribution is discussed. This approach is useful in that the 

components of the equation which arise from the conventional ideal MHD 

ballooning theory can be clearly identified and separated from the new 

terms describing the hot species and background coupling effects. 

Also, the new terms appear in a fairly simple form, indicating the 

mechanism of the coupling. Next, we describe numerical solution 

techniques used to solve both the full coupled set of 
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integro-differential equations and the approximate single eigenrnsde 

equation limit. Finally, we present a number of numerical results for 

the different models using parameters relevant to ignitian tokamaks and 

conclude by summarizing our findings and discussing their implications. 
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2. BASIC EQUATIONS 

The equations developed here are based on the analysis of 

Ref. [9], where a general gyrokinetic formalism was used to derive a 

set of coupled equations describing short wavelength ballooning modes 

in an arbitrary geometry, including the tokamak. This work retained 

the hot and background species finite Larmor radius effects and 

evaluated the hot population response for frequencies that could be 

comparable with the hot particle precessional drift frequency, as well 

as lower frequencies. This analysis also assumes that the hot particle 

bounce frequency is large compared to the drift frequency. The 

following calculations are based on the two coupled 

integro-differential equations [ E q s .  (11) and (12)j developed from the 

gyrokinetic formalism of Ref. 191. These result from taking the kl x b 

component of Ampere’s law (kl L?: wave vector 1 to B, b = BIB) and from 

applying B- b 0 to the parallel component of Ampere‘s law and 

+ 
+ + -  -3 

1- + 

invoking quasi-neutrality. The velocity integrals in the equations are 

defined as only over the trapped particle region of velocity space; the 

circulating particles do not contribute. We make two approximations t o  

these equations initially. These are the neglect of vi as compared t o  

vj inside the velocity integrals (since vf is down from vf by the 

inverse aspect ratio for the trapped region of velocity space), and we 

retain only the hot and background species finite Larmor radius terms 

as they enter in through the diamagnetic drifts, but not to higher 

order. These approximations are made to somewhat simplify the algebra 

but are not essential for the methods of solution used here, which 
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could be generalized to include such terns. With these p o i n t s  taken 

into account, our two coupled m u l t i p l e  species ballooning mode 

equations are 

where 

d 3  - 3  + . . +  
= kl x b b = B / B  , K = ( b  V)i 

3 3 -a I3 <@dH> = - <B-’ k l  x b (PVB + vf,K)> , 
QH 
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Q, = perturbed potential , 

- + +  0 -  Q,, = - B,, + (e BB) B'l+ 
C 

= Lagrangian magnetic field perturbation 

+ 
parallel to B (equilibrium) . 

The distribution function FH must depend only on the constants of 

the motion, E and M. For the purposes of this report, we break i t  up 

into a pitch angle-dependent part FA and an energy-dependent part FE. 

For FE we use a slowing-down distribution with a cutoff at the alpha 

birth energy, E,, as the most appropriate model for alphas in ignited 

plasmas, 
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with 

f 3NH 
I ._____ 

4rrln(l + C3)(V3 + v;, 
= { 

0 

va = J2E,/MH , 

6 = v /v, (assumed here to be radially constant) , c 

Zini/Ai 
[ Z ]  = c 1-.1___ ~ 

ions “e 

Ai = atomic mass number , 

Zi = charge number , 

ne, T,, Me = background plasma electron density, 

temperature, and mass , 

FA = a function of X ( X  = pBmin/E) subject to the normalization: 

where Mo = B,,,/Bmin and M = EMmin , 

B = maximum and minimum magnetic Bmax9 min 

field on flux surface of interest . 
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For the results given in this report, the isotropic limit FA s 1 will 

be taken. This is motivated by the fact that alphas are born 

isotropically. However, we retain FA in the analysis through the next 

set of equations since it may be of interest at some point to consider 

nonuniform F X f s  as would be formed by a possible anisotropic loss 

mechanism ( e . g . ,  fishbone losses) of the alpha losses during slowing 

down. If we now substitute Eq. (1) for the OH term occurring on the 

left-hand side of Eq.  (2) and use the above distribution function in 

the velocity integrals, the following system of equations results: 

where 
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c ’  0 = q)4 , n = , x =. v/v 

Ro = radius of the magnetic axis , 

r = average minor radius of the flux surface.  

-+ 
Here we have used t h e  equilibrium force balance relation to express OB 

I n  terms of Vp and K in the drift frequency function f d ( X ) .  
3 -3 

A s  written, E q s .  ( 4 )  and (5) are valid f o r  arbitrary equilibria. 

We have considered several different toroidal equilibrium models in 

solving these equations: (a) the shifted circular flux surface model 

[ l o ] ,  (b) an improved shifted circular flux surface model of Red. [ll] 

which more accurately treats the radial variation and first derivative 
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of the shift, and ( c )  a general numerical two-dimensional toroidal 

equilibrium. In all cases we use the isotropic limit for the alpha 

population (FX = 1) so that only a scalar pressure toroidal equilibrium 

need be considered in which the alpha pressure is simply additive to 

the background plasma pressure. 

These equilibria are all based upon the ballooning transformation 

[lo] which maps 8 from the interval -E 5 8 5 II to the extended infinite 

interval -0) 5 8 Q) subject to the boundary conditions that Q and Q,, 

vanish at 8 = 50). The effect of this transformation on Eqs. ( 4 )  and 

(5) is that all functions of 0 are mapped onto the infinite interval. 

The bounce averages appearing inside the integrals I1 and I2 are 

performed over the appropriate A-dependent subintervals of the same 2n 

interval at which the other (nonintegral) terms of Eqs .  ( 4 )  and ( 5 )  are 

being evaluated. 

Although the numerical equilibrium is ultimately the most 

realistic of the three models and is best for careful quantitative 

stability studies, the analytic models (a) and ( b )  are useful for 

parameter sensitivity studies of the effects of hot populations on 

ballooning modes. These models have the virtue of allowing stability 

results to be characterized in terms of a few simple dimensionless 

parameters descriptive of a single flux surface. The relevant terms in 

Eqs. ( 4 )  and ( 5 )  which must be provided by the equilibrium model are 

k i t  kl x b Vp, kl x b * K, and b * V. I t  is a well-known consequence 

of the ballooning transformation that certain of these terms do not 

-+ - + +  . . +  - +  

remain purely periodic, but contain secular (i.e., proportional to 0 or 

9') dependences. We explicitly indicate this by writing them i n  the 

form 



- +  .+ 
where each of  t h e  coefficients k i o ,  k i l ,  kfi2, (ks x b V P ) ~ ,  and 

(ki x b - K)O,l The results of the equilibrium 

of Ref. [l l]  f o r  an i s o t r o p i c  plasma are t hen  as fo l lows :  

3. . . +  
i s  now periodic in 8 .  

qQ 
-+ * +  

(kl x b K)O = (cos8 + hOs inQ)  , 
'RO 

where 
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hi = s / D 2  , 

D = 1 - 8 cos@ , 

rT;f = - g 2 )  [(l - 8 * ) 3 &  + (2s - 3 q  , 
(1 + 282)  

a 2q2Ro f dp r2dr ( for  a parabolic p profile) . 
\ = - -  Bhr’ 0 dr T 

These results will reduce to the limit considered in Ref. [ l o ]  i f  we 

take Xp + 0 .  This results in 8 + 8, rgt + a, and D + 1. The 

difference in the two models is that the above more accurately retains 

the finite shift of the flux surfaces and more accurately treats the 

radial dependence of the shift. Also, the earlier model 1101 assumes a 

low f3 pressure profile that has a steep slope through the flux surface 

of interest, whereas the above approximation [l l]  allows the radial 

variation of the pressure to be more gradual (due t o  the finiteness of 

the Xp parameter). Finally, the above model retains sin2B terms as 

well as sine. This model has been generalized to include an 

anisotropic hot population with arbitrary pl profile. Although we w i l l  

P 
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n o t  repeat the specific d c t a i h s  here, such an equilibrium i s  useful, 

for example, in carrying out the d e e p l y  t r a p p e d  limit [ I  , S I  of the hot 

species bsl. looning mode q u a t  ioris. 

The accuracy of these models c . m  b c  ttxamiried by comparing the 

periodic coefficients of  Eqs. (9) -- (15 )  with  results for  the man9 

terms calculated u s i n g  the nurneri.ca1 equilibrium. For this we have 

used the NOMCON equilibrium code described in Ref. [ 1 2 ]  as applied to 

an axisynmetric tokamak. The results of the equilibrium 2re then 

mapped t o  a straight fie1.d line coordinate system and the quantities in 

Eqs. (9 )  - (15) calculated. Although an exact coiiiparissn of the 

numerical and analytic equilibrium results is not possible (since 

quantities such as ex will va.ry around the f l u x  surface in t h e  numerical 

calculation), we have calculated flux surface averages of such 

parameters in order to do an  approximate benchmark of the differeat 

models. The results of this are shown in Fig. 1, where the two 

analytic calculations along with the numericaB results are displayed. 

A s  may be seen, the coefficients given by Ref. [ll] are generally 

closer to the numerical calculation than those  of R e f .  [ l o ] ,  as might 

be expected, due to the retention of higher order effects i n  this 

model. Examination of such p l o t s  over a range of differing $3 values 

arid aspect ratios has led us t o  conclude that the results given i n  

Eqs.  (9) - (15) should provide an equilibrium of reasonable accuracy 

for parameters relevant to break-even coiadi tions in circdar tokamaks. 

The exact numerical equilibrium a lso  has been coupled to the stability 

codes discussed here and will be of par t icu lar  importance for s t u d i e s  

o f  the effects of alpha populations on ballooning in noncircular 

tokamak-s . 
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Fig. 1. Comparison of periodj c equilibrium coefficients entering 

the  ballooning equation based  on a numerical equilibrium calculation 
(solid line), the analytic equilibr-ium of Ref. [ 101 (dashed line), and 
the equilibrium of Ref. I l l ]  (dotted l i n e ) .  



One further equi l ib r iunn  quantity of interest which has heen 

calculated is the bounce-av~raged drift freqkiericy <wdH>. This was 

given fellowing Eqs. ( 4 )  and ( 5 )  [i.e., the f d ( X )  function] and is 

important in determining the degree of c o u p l i n g  present  between the 

alpha component a d  background plasma modes. A t y p i c a l  exarrrple of 

<wda> is shown in Fig. 2, where i t  is plotted YS A (=  u B m i r a / E j  far a 

number of differing 6's for an aspect ratio of 3.5. Ilere 6, is the 

t o t a l  (alpha p l u s  background) l oca l  beta on the flux surface where the 

calculaeion is carried out. The dashed line on the left-hand side is 

the trapped-passing boundary (A -= Bmin/Bmax) where the alpha banana 

ORNL-DWG 66-2472 FED 
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0 
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3, -0.6 

- 0.9 

- 1.0 
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- i.4 

-1.E 

I 
a 

0.750 0800 0.850 0.900 0.950 4 .ooo 
x 

Fig .  2. Bounce averagpd t r d p p r d  par t ic le?  drift frequency as a 
f u n c t i o n  of X and thc  local e. 
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orbits extend all the way to the inside of the torus and average over 

both good and bad curvature, thus lowering t o  negative values. 

The trapped-passing boundary is not a vertical line since the value of 

Bmin/Bmax shifts upward as the 6 of the equilibrium is raised. On the 

right-hand side is the deeply trapped limit at X = 1, where the alphas 

sample only unfavorable curvature and have > 0 ,  except at the 

higher e ' s .  As f3 is raised, the plasma diamagnetism begins to modify 

the gradient of B enough to overcome the curvature term and reverse the 

drift frequency at increasingly higher values of A. This happens on 

the average at about 6 = 5% in Fig. 2, and the deeply trapped value of 

<wdH> reverses at 6 r: 10%. 

Substituting the equilibrium given in E q s .  (9) - (15) into 

E q s .  ( 4 )  and (5) leads to the following coupled system. Here we have 

defined a new variable which differs from Q,, by a factor that is 

independent of 0; this is for convenience to avoid unnecessary 

dimensional factors in the final equations. 

With 

2q2 fo( 6)fdlln( 1 + F3 ) 

- d b(1 + h2 )!?I + [ s z ( Q  - Qp)D3 (1 + h2 ) + D2 ( c o s 0  -t. hsinS)(aL, + %)]#I 
d0 de 
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- . - .  * 
and Ilc I2 are defined as before [Pallswing E q .  ( 5 ) ]  except with a,, in 
the integrand. 

Equations (16) and (11)  now caili b r  solved either directly using an 

iterativc numerical approach (as will be discussed later) o r  by first 

approximating the integrals (based on the expected shape of the Oil 

function). The latter approach is uscfml in that it leads to a single 

integro-differential equation involving only 9; this equatioii can be  

solved exactly fo r  c j r ,  and iterations are onby reqiiired to obtain the 

eigenvalue Q (as determined by the boundary condition imposed on 4 at 

8 7 0). This solution can then be used as an initial guess f o r  the 

iterative solution of the full coupled Eqs. (16) and ( 1 7 )  which will 

involve numerical iterations to obtain + and Q,, in addition to those 

required f o r  9. 

,-I 

m 

N 

The approximate approach relies on the fact that QII is typically 

highly peaked about 0 : 0. This characteristic shape then implies that 

bounce averaKes of Q,, which enter in the integrals I1 and I2 will b e  

peaked about X = 1; such a dependence is generally seen in the 

numerical solutions and is especially apparent in bounce averages over 

the lowest interval -n 5 0 5 n. A s  a result, one can approximate P1 

and E 2  by removing the more s lowly  varying components of their 

integrands (evaluated at X = I) outside the integral and retaining the 

more rapidly varying components QII and (1 XM)-’’’ inside, as 

indicated here: 

w 

- 
c 

- 

1”* = [ ( 2  - 
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with 

This approach can be thought of as an application of the mean value 

theorem justified a posteriori by iteration. In effect, we have chosen 

X = 1 as a first approximation to the integral. A somewhat improved 

approximation [which still permits Eqs. (16) and (17) to be decoupled] 

is also possible if one retains the H(O,6,X) function inside the Io(@) 

integral. 

3( 

We are then left with the single X integral, Io of Eqs. (18) and 

(19). The fact that the upper limit of this integrand (M-l = B/Bmin) 

depends on 8, however, would still prevent one from reducing Eqs.  (16) 

and ( 1 7 )  to a single equation for +. To make further progress, we then 

note that the assumption that <Q1,> is peaked about X = 1 implies that 

I, is peaked about 8 = 2mA,  m = 0, 1, 2, ... (i.e., at which M'l = 1). 

The height of this peak is simply Io(8 = 0 ) .  The Io integral then 

clearly has two characteristics: it is peaked at 0 = 0 ,  and i t  vanishes 

smoothly t o  0 at 0 = (2m + l ) n  due to the fact that the upper and lower 

limits coalesce ( M - l  -+ M i  1 ) at these points. A reasonable 

approximation t o  Io then is to use its peak value multiplied by a 

function that is 1 at 8 = 2mn and 0 at 8 = (2m t 1)n:  
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w i t h  

1 a t  8 = 2mIE , 
K(0) = 

0 a t  8 = (2m J. 1)n 

rn = 0,1,2, ... . 

The s t r u c t u r e  of I,(@) then leads u s  t o  choose t h e  f a l l o w i n g  form €or 

K( €3) : 

which goes t o  t h e  above-mentioned limits. Our r e s u l t i n g  f i n a l  

approximation t o  I1 and I2 w i l l  then be  denoted by 
- w 

where. H ( Q , 6 )  is  t h e  i n t e g r a l :  
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i.e., H ( 0 , S )  is H(n ,S ,X)  evaluated at X = 1, 

and the pitch angle averaging operator <=> is defined by 

- 
dX<. * .> Jq (1 - X)1'2 <...> = . E 

It may be noted that the above operator first transforms a function of 

8 (such as a",,) into a function of X and then transforms this into a 

single number; this characteristic is necessary in order to decouple 

E q s .  (16) and (17). The X dependence enters through the integration 

boundaries of the bounce-averaging operator < >. 
Equation (16) may now be written approximately as 

a",, = D(cos63 t hsine)+ 

This is solved simply by operating on it with <=> t o  obtain 

- q2 fo( 6)fdlln( 1 + 5-3 )<D(cosB + hsinB)+> 
<ti,,> = ' (23)  

q2f0(6)fdlln(l t S - 3 )  + %s2H(Q,6) <-(1 Bb - 
BBmin 
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Substituting this back into Eq. (22) then leads to 

(1 - B I B  mi3X <D(cosf3 + hsin$s>H(Q,6) 
- .. 0 ( 2 4 )  

The approximate version of Eq. (17) is 

1 -[D(l d + h*)-] d+ + [ n ( Q  - Qp)D3(1 t h 2 )  + D2(eos9 -e hsin$)(orc + aH) Cp 
d e  d 9  

Substituting <GI,> from Eq. (23) into the right-hand side then leads to 

a single ballooning mode equation f o r  $: 

d d+ - [D(1 + h2 
$8 + [ Q(Q - Qp)D3 (1 + h2 ) + D2 (cos@ + hsin9)(orc c 
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This equation consists of a differential operator on the left-hand 

side and an integral term on the right-hand side. The differential 

operator can be identified as the usual ideal ballooning MHD operator 

with the alpha pressure gradient augmenting the background pressure 

gradient in the usual MHD ballooning drive [i.e., the (cos0 + hsinO)(orc 

+ QN) term]. The right-hand side contains the effect of the 

precessional drift coupling between the thermal. background and alpha 

species which enters in through the H(n,&) functions. The resonance in 

the integrand of these functions which occurs at w = <udH> { i . e . ,  tl = 

x ) will especially enhance the size of this coupling term when the 

mode frequency is near the precessional drift frequency of the bulk hot 

population. It can also be seen that the strength of the hot species 

response is proportional to the average of the curvature times the 

perturbed potential function 9 [the (D(cos0 + hsin$)+>term]. Since + 
is typically peaked about €3 = 0 ,  this average tends to emphasize the 

bad curvature region. This characteristic has been the basis of 

previous calculations [ l ,  81 using the deeply trapped approximation in 

which the bounce average on the right-hand side was evaluated only at 8 

= 0 .  

2 



The equations developed in the previous section have been solved 

numerically using techniques that we briefly describe here. To 

reiterate, the full coupled integro-differential system consists of 

Eqs. (16) and (17) ,  and the approximation to this is Eq. (26). 

Equation (26) can be solved in one pass of an ordinary differential 

equation solver €or $, followed by iterations for the correct Q. This 

eigenvalue is determined by requiring 0 to satisfy prescribed boundary 

conditions ( d + / d e  = 0 at Q z 0). Solution of E q s .  (16) and (17) 

involves both iterations to obtain Q and Q,, as well as an inner set of 

iterations to obtain Q. 

We first outline the steps involved in solving the approximate 

Eq. (26) since its solution often provides a reasonable estimate of 

stability as well as being useful as a first guess for the more exact 

E q s .  (16) and (17). Equation (26) is a single integro-differential 

equation of a form that is relatively easy to sclve using the same 

methods used in Ref. [ 6 ] .  We may write this as follows: 

A s  was painted out in Ref. [ 6 ] ,  (p may b e  treated as a superposition of 

a homogeneous solution $o and an inhomogeneous solution $I (i . e . ,  $ = 

+o + c + ~ )  where these coniponents satisfy the following equations: 
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Substituting + = +o + c411 back into the original Eq. (27) then results 

in the following expression f o r  the coefficient e :  

<p6,> 
1 - < F p  c =  

This coefficient will be different for each 2n interval in 8,  the 

extended ballooning variable, since the bounce averages entering into c 

will act only over the 2n interval within which Eqs. (28) and (29) are 

currently being solved. 

The solution procedure consists of solving Eqs.  (28) and ( 2 9 )  with 

an initial guess for 9 using an ordinary differential equation (0.d.e.) 

integrator. This is started at a sufficiently large value of 8 (we 

have typically used 8 = 5n for the calculations in this paper). The 

initial conditions on +1 are that its value and derivative are 0 at 8 = 

emax. Those for 9, are that its value and derivative match onto the 

analytic large s 0  solution of E q .  (28) which evanesces at large 0.  

These two equations are then integrated over a 2n interval. At this 

point, +o and +I are used to construct c as given above. The 0.d.e. 

integrator is then restarted with the initial conditions that 9, equals 

+, + from the end of the previous 2n interval and +; equals +; + 

c$i, also from the end of the previous interval. Again, the initial 
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conditions on are that its value and derivative are zero. The 

0 .d . e .  integrator is then run for another 2n interval, new starting 

conditions are calculated for 6, and Q p s  and so on. This procedure 

ensures that the total solution + = +o + remains continuous from 

one interval to the next. For the final interval from n to 0 ,  the 

solution is started in a similar way and stopped at €3 = 0 .  The total 

solution Q, is reconstructed, and its derivative is used as input t o  a 

root-finding routine. This routine then makes repeated adjustments in 

Q in order to annihilate the derivative of + at 8 1= 0 within some 

prescribed level of accuracy. For each new guess of Q the above 

process is repeated to recalculate +. 
Solution of the full integral E q s .  (16) and ( 1 7 )  is done 

iteratively. First, the solution for + from E q .  (26) is substituted 

into E q .  (24) to calculate Q,,. This is then bounce averaged, resulting 

in a function of A. From this, the integrals Il and I2 are calculated 

numerically, retaining the full X dependence in all components of the 

integrands. Equation (17) is then solved for -$ and 61, keeping the 

right-hand side fixed. Using I1 with this new Q, and 9, Q,, is 

recalculated from Eq.  (16). The I1 and I2 integrals are again computed 

using the new Q,, , E q .  (17) is solved for -$ and Q, a new QII is obtained 

fram Eq.  ( 1 6 ) ,  etc. This procedure is  repeated until B is sufficiently 

converged. 

w w 

c - 
.d w 

- ". 



27 

4 .  DISCUSSION OF RESULTS 

The effects of alpha populations on tokamak ballooning stability 

have been examined for a range of parameters that should characterize 

break-even and ignition experiments. The pressure gradient ratio %/ac 

has been varied over the range from 0 to 0.5 and the background 

electron temperature Te from 10 t o  40 keV. The background ion 

temperature has been chosen as equal to T,. The form of the alpha 

distribution is determined by prescribing and the parameter 8 ,  which 

depends only on Te. Other parameters entering these calculations and 

their values are bi = k pi/2 = 0.04, q = 1.7 t o  2, R/a = 3.5, R/rp = 6 

(rp = pressure gradient scale length). This value of R/r has been 

chosen to account f o r  alpha heating in the center of the plasma, which 

can lead to a steeper pressure gradient than would be given by using 

the simple geometric aspect ratio. Since the case of alphas in a 

deuterium plasma is of interest, we have chosen ZB/Zi = 2 and HHK/Mi = 

2 2  

P 

2. 

The numerical solution procedures described in See. 3 can be 

applied either for calculating the real and imaginary parts of 52 with 

all parameters held fixed o r  for following marginal stability 

boundaries. In the latter case, the real part of 9 and some other 

parameter (usually either s o r  uc> are solved for, subject to the 

constraint that Oi/Qr is a small number (typically taken t o  be 0.05 

here). Qi/Qr is kept finite and positive since the large s8 boundary 

conditions applied to + at 8 = Qmax are based upon the assumption of an 

unstable mode. The results presented below in Figs. 3 through 6 are 

based on solutions of the approximate isotropic Eq. (26). The 
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iterative solution of the full coupled equations i s  then compared with 

this in Figs. 7 and 8 over a limited parameter range, indicating 

satisfactory agreement with respect t o  the depencknce on shear. The 

iterative approach involves quite a bit more computer time to solve and 

has not at this time been used over as wide a parametee range. Having 

this more exact solution, however, has beer, useful in refining the 

accuracy of the approximate method. 

In Fig. 3 we first examine dependence of marginal stability curves 

on the equilibrium parameter Xp, which was defined following 

E q s .  (9)-(15). The value X = 0 . 2 5 ~  (where 0: = ac + is associated P 
with a parabolic pressure profile, while Xp = 0 reduces to the 

equilibrium of Ref. [ l o ] .  Other parameters used here are c1 /a = 0.3 ,  

T, = 20 keV, q = 1.7, and bi = 0.04. 

monotonically stabilizes the first stability f3 limit. This effect is 

related to the increasing shift of the flux surface, modifying the 

curvature experienced by the plasma in the favorable direction. 

However, on the lower right-hand side of the unstable region, raising 

X tends to destabilize the ballooning boundary; X also can be thought 

of as a flux surface label, with the larger values representing flux 

surfaces closer t o  the edge. A typical trajectory through the s ,  wc, 

%/a parameter space would then start at ac -- 0, s = 0 ,  /a = 0 and 

move outward, increasing ac, s ,  and +,/a simultaneously up to some 

maximum orc (at the inflection point of the pressure profile) and then 

return back to the uc = 0 axis, while continuing to increase s and 

+,/a. A complete characterization of  the stability of such  an 

equilibrium would involve examining the unstable region in the 

three-dimensional s ,  ac9 \ / C Y  parameter space. In the plots we 

H c  

A s  nay be seen, increasing 

P P 

xp 
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generally fix \/a a t  0.25 and study the dependences of stability 

boundaries on other parameters in "-as space. However, in translating 

these results to a range of flux surfaces it would be necessary t o  map 

out the x/cr dependence as is shown in Fig. 3 for a particular case. 

111 Figs. 4 and 5 the sensitivity of the stability boundaries to 

exH/ac is displayed for two values of background electron temperature, 

Te = 20 and 30 keV. At both values increasing the alpha pressure 

gradient relative to that of the background destabilizes the f i r s t  

stability boundary (left-hand region of the unstable region) and 

stabilizes the lower right-hand portion of  the boundary. A somewhat 

greater effect is observed at 30 keV (Fig. 5 )  due to the stronger 

coupling between the background and hot species (i.e. the CI) = <coda> 

resonance intercepts a greater fraction of the hot species 

distribution). 

This feature is indicated more clearly i n  Pig. 6, where we have 

fixed the ratio cxH/cts a t  0.4 and varied T,. Raising T, increases the 

mean energy of the hot species distribution (due to increasing v,/v,). 

However, due to the choice of  Ti = T,, the location of  the resonance 

between <c""dH> and wr (vhich is related to 'hi and thus Ti) also moves 

to higher energies with increasing T,, The net effect is to increase 

the strength of the coupling at cor = <@elH> as a result o f  the 

increasing size of the H ( O , & )  function integrand with energy [i.e., 

v 6 3  /(vc + v 3 ) ] .  A s  a result, increasing T, lowers the f i r s t  stability 

limit and also eventually closes access between first and second stable 

regions (e.g., notice the T, = 40 keV case). 

A s  may be seen by comparing Figs.  4 through 6 with analogous ones 

from the deeply trapped limit [8], the isotropic distribution does not 

produce nearly as much destabilization. This may be attributed to the 
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more equal averaging over favorable and unfavorable curvature, which is 

present in the latter ease. This feature primarily enters in through 

the right-hand side of Eq. (26),  which is proportional to the 

bracket-bar average of the curvature-weighted potential +. It is also 

present in the pressure gradient-curvature drive term on the left-hand 

side oE the mode equation. In the deeply trapped limit, the peaked 

anisotropic pressure distribution strongly weighted the unfavorable 

curvature near 8 = 2 m ~ ,  m = 0, 1, 2, ... . For the isotropic model 

the hot pressure is constant along 8 and more evenly weights good and 

bad curvature regions. 

We now turn to the iterative solution of the full set of Eqs. (16) 

and (17). In Fig. 7 a convergence study of 9, and Pi is shown based on 

P the parameters s = 0 . 6 ,  uc = 0.8, T, = 40 keV, q = 2, - = 0 . 3 ,  and X 

= 0 . 2 5 ~ ~ ;  4,  Q,, , and the eigenvalues are initially determined using the 
approximate method based on Eq. (26). The code is then run for about 

60 iterations, indicating a reasonably well converged solution at this 

point. Both the initial growth rate and real frequency are below the 

final values in this case, with Qr changing more than Pi* A similar 

characteristic is seen in Fig. 8 where the dependence of roots of the 

more exact Eqs. (16) and (17) is compared with that of Eq. (26) as a 

function of s at fixed ac = 0.8, T, = 40 keV, and aH/aC = 0.3. 

However, the qualitative dependence on s is similar in the two 

calculations. 

aH 
?! 
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5. CONCLUSIONS 

1 this report we hav developed the basic. qu tions and niim ical 

solution methods for examining the effects of an isotropic alpha 

distribution on tokamak ballooning modes. In addition, this approach 

can be extended to the case o f  anisotropic distributions. Applying 

these equations to parameiers characteristic of break-even and ignition 

tokamaks generally indicates that energetic alpha populations can 

destabilize the first stability beta limit. This is similar to the 

destabilization observed in earlier calculations [1,8] based on a 

deeply trapped alpha model, but not nearly as strong. The greater 

destabilization of the latter model can be understood from its dominant 

weighting of the unfavorable curvature an the outside of the tokamak- 

Our results indicate several ways to alleviate this 

destabilization and, in some cases, possibilities for improving 

stability over the case with no alphas present. First, as was shown in 

Fig. 3 ,  operation with larger values o f  the X parameter (proportional 

t o  the flux surface shift and to E$ ) is stabilizing, Second, from 

Figs. 4 and 5, limiting the ratio of the  alpha pressure radient to the 

background pressure gradient weakens the effect of the alphas. 

Finally, keeping the background electron temperature Te below some 

maximum value is desirable (Fig. 6). In fact, for T, < 20 keV, 

increased access between first and second stable regions is possible. 

The increasing destabilization with rising electron temperature shown 

in Pig. 6 may also be useful f o r  bu rn  control i n  a thermally unstable 

ignited plasma. 

P 

P 

Comparison of the isotropic alpha pitch angle and deeply trapped 

alpha results indicates that the deeply trapped portion of t h e  alpha 
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distribution plays an important role in the observed destabilization. 

In the tokamak this part of the alpha distribution could be depleted by 

adding a small amount of ripple in the toroidal field. Of course, 

there would be a trade-off between the adverse effects on the alpha 

energy balance and the possibility of improving the ballooning beta 

limit. The analysis and solution methods of this report could be 

applied to stability aspects of such a problem through consideration of 

an FA distribution which is hollowed out near X = 1. 
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