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ABSTRACT

Three-dimensional numerical calculations of Heliac equilibria are presented.
The results indicate that finite-3 distortions in the flux surfaces can arise due to the
presence of low order rational surfaces within or near the plasma. These distortions
arise because of nonlinear beatings between the toroidal shift and the helical com-
ponents of the magnetic field. Reducing the toroidal shift by increasing the number
of field periods and/or the aspect ratio improves the equilibrium S-limit.






1. INTRODUCTION

The Heliac [1] consists of a toroidally directed central conductor, about which
spirals a set of toroidal field (TF) coils. This coil set leads to an indented or “bean-
shaped”’ plasma, whose magnetic axis follows the spiral motion of the TF coils.
Figure 1 shows the coil set and magnetic surfaces at several toroidal locations for
a four-field-period Heliac. Also included in the coil set are a pair of vertical field
coils, which are necessary to control the horizontal pbsition of the plasma.
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Fig. 1. Coil set and vacuum flux surfaces in constant toroidal angle planes for a
four-field-period Heliac.

The strong helical curvature in the Heliac can lead to relatively deep mag-
netic wells and favorable stability properties. In the infinite aspect ratio, helically
symmetric limit, the region of first stability to the ideal ballooning mode has been
shown to extend to betas of at least 30%, for a relatively highly indented plasma [2].
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To a more limited extent these results are also confirmed by stability calculations
for finite aspect ratio Heliacs [3]. The Heliac thus appears to have good finite-3
stability properties. The existence of toroidal equilibria at significant central beta
values (8o ~ 10%) is, however, questionable in many cases. In particular, at tight
aspect ratio (i.e., strong toroidal curvature), the interplay between the toroidal and
helical curvatures may lead at finite-8 to resonant or nearly resonant harmonics,
which can cause large distortions to the flux surfaces. The effect of these resonant
harmonics is particularly accentuated by the low shear that is intrinsic to helical
axis stellarators. Reimann and Boozer have given a first order analytic treatment
of equilibrium flux surface destruction in the Heliac [4]. For the particular case they
examine, the +/M = 0.5 resonance is at the magnetic axis and a very low §-limit,
B ~ 0.5%, results. (Here « is the rotational transform, and M is the number of field
periods.) Cary and Kotschereuther have also made an analytic study of the effects
of plasma pressure on equilibrium magnetic island formation in the stellarator (5]
Their results concentrate on the directly induced resonant Pfirsch-Schliiter currents
and do not include higher order effects such as the beating of the toroidal and he-
lical shifts. For configurations with high ¢/M (such as the Heliac), these beatings
can lead directly to resonant harmonics and are thus important.

In this paper we present a mainly numerical study of toroidal Heliac equilibria.
These studies are performed with the three-dimensional (3-D) equilibrium code
NEAR. In the next section, we give a brief review of NEAR. In Section 3 we present

the equilibrium results, and finally, in Section 4, conclusions are given.

2. NUMERICAL METHODS

Full details have been given elsewhere of the 3-D equilibrium code NEAR [6].
In this section, we give only a brief summary of the code.

The 3-D NEAR code is based on a set of vacuum flux coordinates (py, 8y, $v)
described by Boozer [7]. These coordinates are defined by their relationships to the

vacuum magnetic field,
Ev = Bopvﬁﬂu X v (90 - fu‘ibv) = Fvﬁ‘ﬁv (1)

and by the additional constraints that BopZ2/2 is the vacuum toroidal flux and that
the constant F, should be such that ¢, varies by 27 in traversing the torus once
toroidally. The (p,, 8., @) coordinates and associated metric elements are derived

numerically from given coil configurations, using the method described in Ref. [8].
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The 3-D NEAR code uses the (p,,8y,¢,) coordinates as its Eulerian frame
of reference. The dependent variables are represented as doubly periodic Fourier
series in the angular like variables 8, and ¢,. Thus, for example, the contravariant

component of the radial magnetic field is represented as

B (pu,0u,6u,1) = 3_ B (pv, 1) sin (mby + ney) (2)
mn
This representation provides an accurate description of the small but important
resonant harmonics. The equilibrium problem is solved, using this representation,
by a steepest descent method in the manner described by Chodura and Schliter
[9]. A fictitious force F is introduced,

F=JxB-VP (3)

which in turn is related to a velocity 1 by a conjugate gradient iteration scheme [9].
The magnetic field (B) and pressure (P) are advanced subject to the constraints of
flux and mass conservation:

oB

E:Vx(?xﬁ) (4)

and P

where 4 is the ratio of specific heats. It should be noted that the scheme makes
no assumptions about the existence of good equilibrium flux surfaces, except at
the last closed vacuum flux surface, where an infinitely conducting wall boundary
condition is imposed. Advancing Eq. (4) directly leads to a flux conserving scheme
(i.e., the vacuum + profile as a function of toroidal flux is conserved during the
iteration process). An additional iteration loop that has been added to the NEAR

code also allows equilibria with zero net toroidal current to be calculated [10).

3. EQUILIBRIUM RESULTS

First we note that we study only cases in which good vacuum flux surfaces
exist. This restriction is imposed directly by the need to be able to obtain the
vacuum flux surface coordinates for the equilibrium calculation. It also seems a
sensible prerequisite to require good vacuum flux surfaces. In the Heliac, cases
which contain or have nearby low order resonances (+/M = 1/2,1/3, ...) tend to

have broken vacuum flux surfaces. Figure 2 shows the distortion and vacuum flux
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surface destruction which occur for a case that cuts the ¢/M = 1/3 resonance. As
we shall see, similar distortions of the flux surfaces can occur at finite-3 for cases
with good vacuum surfaces. The problem of finding good vacuum flux surfaces
in the Heliac is caused partly by the low shear and also by generally high values
of rotational transform per field period (¢/M ~ 0.5), which make the low order

resonances accessible.
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Fig. 2. Vacuum flux surfaces for a four-field-period case containing the +/M = 1/3
resonance.



To study the effects of finite-§ on Heliac equilibria, we focus on cases which
contain, or have nearby, the +/M = 2/5 resonance. Note that the resonance consid-
ered by Reimann and Boozer [4], +/M = 0.5, is a lower order and more damaging
resonance than 2/5. Figure 3 shows the vacuum and §o = 5% equilibrium flux sur-
faces calculated with the 3-D NEAR code for a four-field-period Heliac with a coil
aspect ratio A, of 4. The rotational transform in this case varies between 1.52 at
the magnetic axis and 1.58 at the plasma edge. The equilibrium is flux conserving,
and therefore its ¢ also varies over the same range. Distortions to the 8y = 5% flux
surfaces are evident in Fig. 3. By suppressing the contributions of given harmonics,
we may examine the cause of these flux surface distortions. Figure 4 shows the flux
surfaces for the 8o = 5% case (Fig. 3) with the (5,8),(3,4), and (2,4) helicities
removed. Suppressing the contributions of the (5,8) helicity lessens the distortion,
and omitting the three helicities completely removes the distortions. In this case,
the (5,8) harmonic is nearly resonant, so it strongly affects the flux surface quality.
The (3,4) and (2,4) harmonics, although farther from being resonant with the ¢
range of plasma, are also important because they are lower order and thus larger
than the (5,8) harmonic. At higher 8, these distortions lead to a failure of con-
vergence in the equilibrium code. Figure 5 shows the flux surfaces at Fo = 10%
after 2 x 10% and 8 x 10° iterations for the same case as Fig. 3. Eventually the
distortions near the boundary become so large that they are incompatible with the
fixed boundary constraint, and the code fails. Clearly, in this case a free boundary
calculation is necessary to determine the existence of the equilibrium.

As discussed by Reimann and Boozer [4], there are two distinct mechanisms
for the pressure-induced generation of these resonant or nearly resonant harmon-
ics. First, there is the generation of the Pfirsch-Schliiter currents arising from the
presence of the given harmonic in the vacuum spectrum. The radial magnetic field
associated with these Pfirsch-Schliiter currents is given by

ge = _ImlBo_énm iwf_’z.,, "3+ Po oy
mn a® n—wm(4p, 2 402 2m|+2 2(jm|+2)a?
lm|ﬁ0 6n,m 1

20 n—+em(jm|+1)(|m|+2)
where 6, 1, is defined by

2

1
5= ~§3~ Z 6n,m cos (ml, + nd,)
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and the pressure profile is assumed to be P = Py[1 — {p,/a)?]? with 8o = 2P/ B3,
Here p, = a is the location of an infinitely conducting wall. Comparing the radial
magnetic field from Eq. (7} with the full numerical soiution, we find that the Pfirsch-
Schliiter currents account for about 30% of the (2,4) harmonic but are clearly
unrelated to the generation of the (3,4) harmonic {Fig. 6). In contrast, there is
very good agreement between the analytic and nurnerical (1,0) radial fields {upper
plot, Fig. 6). Similarly good agreement exists with the helical (1,4) harmonic. As
an alternative to using Eq. (7), we may run the FAR code with only the desired
harmonic retained; the resuits are in good agreement with Eq. (7). For the (5,8)
harmonic, the directly induced Pfirsch-Schliiter field is two orders of magnitude
smaller than the numerically observed value. The dominant generation mechanism
for these resonant or nearly resonant harmonics is the nonlinear beatings of low
order harmonics. The case examined by Reimann and Boozer [4] relates to the
nonlinear beatings of the toroidal (1,0) and helical (1, M) curvatures, which give
rise to the (2, M) harmonic. In higher order such nonlinear beatings will lead to the
generation of all possible harmonics (even if a harmonic is absent in the vacuum,
i.e., its 6,,m = 0). These nonlinear beatings are present in all toroidal stellarators
but are only important at very high £ for £ = 2 and 3 stellarators because of the
relatively high shear and low «/M (~0.1 typically) in these devices. In the Heliac,
however, which has high +/M and low shear, these nonlinearly induced resonant
harmonics can become important at low 3.
There are two obvious methods to reduce the finite-3 flux surface distortions
and increase the 3-limit in the Heliac:
(1) Choose the ¢-range so as to avoid the dangerous low order resonances.
(2) Decrease the magnitude of the nonlinear beatings that generate the resonant or
nearly resonant harmonics.
Figure 7 shows the low order resonances for the range 1/2 > ¢/M > 1/4 and
Bo = 5% flux conserving equilibria for three A, = 4 Heliac configurations with
the indicated ¢-ranges. The case containing the «/M = 2/5 resonance is not fully
converged, and eventually the flux surface distortions near the boundary cause the
code to fail. This case and the case with the 2 /5 resonance nearby show very similar
flux surface distortions. The case with /M ~ 0.36 avoids the low order resonances
| (m < 2) and shows no flux surface distortions. For this case, however, at fo = 10%,
the +/M = 3/8 resonance gives rise to large m = 8 distortions to the flux surfaces.
To alter the ¢-ranges in these cases, we have varied the swing radii of the TF coils.

For the standard Heliac (i.e., Fig. 1), varying the conductor currents gives very

9



2.0

1.5

o (x1073)

P
1,

ORNL-DWG 86-2625 FED

I | [

—=NEAR
=== ANALYTIC -

-
-
- -
bk e 3

0.25 0.05 0.75 1.00

P/pWA LL

Fig. 8. Comparison of the analytic B? associated with the Pfirsch-Schliiter currents
and the full numerical solution for the (1,0), (2,4), (3,4) harmonics.

little freedom to vary ¢, and it is generally necessary to change the geometry to
alter ¢ significantly. For the Flexible Heliac [11], however, where an additional £ = 1
conductor is wrapped around the central conductor, extensive variation of + can be

achieved by varying the conductor currents. This allows the freedom for a single

10



machine to explore the improved §-limits which arise from avoiding the low order

resonances.
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For the equilibria shown so far, we have used the constraint of flux conservation.
In stellarators with relatively low «/M (~0'.1), the constraint of zero net current
can lead to relatively large finite~-3 deformations to the +profile [10]. In the Heliac,
however, the high values of +/M mean that the Pfirsch-Schliiter currents are small,
and so the deformations to the +-profile from the zero net current constraint are also
correspondingly small. Figure 8 illustrates this for 8o = 5% zero-current equilibria
corresponding to the /M ~ 0.36 case of Fig. 7. In this case, not only is the
deformation to the +-profile relatively small, but also the profile is within the range
of + values of the vacuum profile; thus the proximity of resonances {and associated

flux surface deformations) is not greatly altered by the zero net current constraint.
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Fig. 8. Zero net current fp = 5% »-profiie for the +/M = 0.36 equilibria of Fig. 7.

The alternative method of reducing the finite-f flux surface distortions is to
minimize the effect of the nonlinear beatings. As discussed above, the dominant
harmonics which give rise to the nonlinear beatings are the toroidal (1,0) and helical
(1, M) shifts. Since the helical curvature is intrinsic to the Heliac design (and
provides the magnetic well for good stability), minimizing the nonlinear beatings
is essentially equivalent to minimizing the toroidal shift. The toroidal shift (A7)

varies as A,/+*. Thus, with an increase in the number of field periods at fixed aspect
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ratio, + increases as M, and the toroidal shift decreases as 1 /M 2, Alternatively,
increasing the number of field periods and the aspect ratio in proportion causes the
toroidal shift to decrease as 1/A.. Figures 9 and 10 compare the toroidal (Ar) and
helical (A ) shifts of a case with M = A. = 8 with those of cases with M = 4, = 12
and M = 16, A, = 8, respectively. Here Ay and Ay are defined by the relative
shift between the vacuum magnetic axis (Ro, Zp) and the finite-3 magnetic axis

(RM’ZM), as
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In Figs. 9 and 10 the M = A, cases have ¢,/M = 0.38, whereas the M = 24,
case has ¢p/M = 0.42. Both sequences are thus equidistant from the +/M = 2/5
resonance and should be affected similarly by the (5,2M) harmonic. From Fig. 9, we

2w
Ay / ((Ram — Ro) cos M@ + (Zpg — Zo) sin M| do
0

see that increasing M and A, in proportion does decrease the toroidal shift as 1/A4,
approximately. The underlying field period and the helical curvature are, however,

unaffected by changing the number of field periods in this manner, and thus Ay
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is practically invariant. Increasing the number of field periods at fixed A, also
produces the expected decrease in Aq (Fig. 10). In this case, however, we increase
the helical curvature as we increase M, and so A g becomes larger. The decrease in
Ag with M shown in Fig. 10 is less than that expected analytically (Ar o 1/M?);
this is probably because we must alter the coil geometry as we increase M, and
this changes other factors which affect Ay. The decrease in Ay in these cases is
reflected by an improvement of the equilibrium-3 which can be achieved before the
finite-B flux surface distortions occur. Figure 11 shows the fp = 10% flux surfaces
for the M = A, = 12 and M = 16, A, = 8 cases. At very high B {~20%) these cases
also suffer from large-scale distortions of the flux surfaces due to the proximity of
the /M = 2/5 resonance.

We have also investigated methods for reducing the toroidal shift at fixed M and
A;. These methods rely on reducing the toroidal 8y ; harmonic, which is directly
related to the toroidal shift [see Eq. (7)]. In lowest order, this term is determined
by the 1/R dependence, due to the chosen A., and so at fixed A, we can only affect
80,1 by higher order nonlinear beatings. We have examined two methods of altering
do,1:

(1) Modulate the TF coil winding law according to 8 = M¢ + Cassin M b.
(2) Modulate the TF coil currents according to I = Io(1 + Cp cos M¢).

These methods produce very similar results. By modulating the winding law
or currents in this manner we are directly affecting the (0, M) harmonic [which by
beating with the (1, M) helical harmonic alters the (1,0) harmonic|. Unfortunately,
at A. = 4 these modulations cannot be made large enough to have any significant
impact on the §p,; harmonic, which is totally dominated by the 1/R terms. Figure 12
illustrates this for an A. = 4 case by showing a wide range of variation of the {0,4)
harmonic with the current modulation (Cr) while the (1,0) harmonic is practically
invariant. Since the toroidal shift is directly related to the 6o ; harmonic there is no
appreciable change in the finite-3 flux surface deformations resulting from current or
winding law modulations (for small A.). At larger aspect ratio (A. ~ 20), reductions
of ~30% in Ay can be achieved by modulating current. This is because the 1/R

terms are weaker and the ép,; harmonic can be affected by nonlinear beatings.
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4. CONCLUSIONS AND DISCUSSION

Calculations of fully 3-D Heliac equilibria with the NEAR code have been pre-
sented. The results, which confirm the analytic calculation of Reimann and Boozer,
show that the presence of low order resonant surfaces in or near the plasma can
lead to the finite-3 destruction of equilibrium flux surfaces. The results are also in
qualitative agreement with numerical calculations by Park et al. [12] on the effects
of the +/M = 0.5 resonance. The effects of low order resonances in the Heliac are
greatly accentuated by the low shear and high «/M, which make the low order reso-
nances accessible. For the particular resonance studied in this paper, +/M = 2/5,
the dominant mechanism for generating the resonant harmonic (5,2M) is the non-
linear beatings of low order harmonics, the largest of which are the toroidal and
helical shifts. Since the helical curvature is intrinsic to the Heliac design, we can
only minimize the nonlinear beatings, which give rise to the resonant harmonics
by reducing the finite-3 toroidal shift. At tight aspect ratio (A, = 4), the toroidal
shift is large and the finite-8 deformation of the flux surfaces becomes very large
for Bo > 5%. By increasing the number of field periods and/or the aspect ratio,
we reduce the toroidal shift and raise the equilibrium g-limit. For M = A, = 12,
configurations with good equilibria have been found up to at least o = 10%. At
fixed aspect ratio and number of field periods we can optimize the equilibrium beta
by tuning the ¢-range to avoid the low order rational surfaces. At fixed M and A.
we have also investigated methods for reducing the toroidal shift by modulating the
TF coil winding law or currents. At tight aspect ratio (A, ~ 4), these modulations
are unable to overcome the intrinsic 1/R toroidicity and there is no reduction in
A7 or corresponding improvement in the finite-8 flux surface destruction. At larger
aspect ratio (4. ~ 20), however, a modest reduction (~30%) in Ar results from

modulating the TF coil currents.
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