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ABSTRACT 

Methods for abtaining  unbiased parameter estimates from data 
obtained by in situ tests of temperature d e t e c t o r s  are evaluated.  
A computer program that  calculates unbiased estimates of parameters 
that d e f i n e  a dynamic model of the temperature detector and that 
calculates standard d e v i a t i o n s  of t h e  model parameters and of the  
response t i m e  is presented.  

The computer program, along with  the a s s o c i a t e d  theoretical 
development, represent  an ex tens ion  of the previous c a p a b i l i t y  for 
analyzing data from in s i t u  tests of temperature d e t e c t o r s .  
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INTRODUCTION 

Methods f o r  analyzing i n  s i t u  test d a t a  of tempera ture  d e t e c t o r s  have 

he re to fo re  been e s s e n t i a l l y  l i m i t e d  t o  obta in ing  unbiased e s t ima tes  of param- 

eters t h a t  de f ine  a dynamic model of a temperature de t ec to r . lS2  

r e l a t e d  t o  t h e  parameter estimates can be obtained by analyzing many sets of 

d a t a  o r  by analyzing t h e  r e s i d u a l  of a p a r t i c u l a r  set of da t a  i n  conjunct ion 

with the  model. 

Stat is t ics  

The research  repor ted  he re in  exrends previous a n a l y s i s  c a p a b i l i t y ,  i n  

several ways: (1) a nonl inear  minimization algori thm is  developed (and 

implemented with a computer program) t h a t ,  in  theory,  always converges t o  a 

l o c a l  minFmum3; (2) t h e  computer program is t a i l o r e d  t o  implementation on a 

microprocessor;  and (3)  standard devEations of t he  model parameters and of 

the response time ( ca l cu la t ed  from t h e  model parameters) are obtained from 

a s i n g l e  d a t a  set. 

a 

c 
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The o v e r a l l  research  e f f o r t  includes:  (1) evalua t ion  of t h r e e  minimi- 

za t ion  a lgor i thms,  (2) development of the  c a p a b i l i t y  t o  ob ta in  s tandard 

de r iva t ions  of des i r ed  parameters, and (3) computer program v e r i f i c a t i o n .  

Severa l  nonl inear  minimization algori thms commonly used f o r  p r a c t i c a l  

problems are: (1) s t e e p e s t  descent i n  conjunction with a l i n e  sea rch ,  

(2) l i n e a r i z a t i o n  of t h e  func t iona l  o r  approximating func t ion  i n  conjunct ion 

with a v a r i a b l e  s t e p s i z e  (a gene ra l i za t ion  of Newton's method), and 

(3)  Marquardt's method. The bes t  a lgori thm f o r  a p a r t i c u l a r  a p p l i c a t i o n  

is  usua l ly  not  known a p r i o r i .  Thus, t h r e e  nonl inear  minimization algo- 

rithms are evaluated f o r  app l i ca t ion  t o  the  LCSR da t a  ana lys i s :  

a r i z a t i o n ,  (2) Marquardt's method, and (3)  a combination of Marquardt 's  

method and l i n e a r i z a t i o n .  The l i n e a r i z a t i o n  method is p re fe r r ed  t o  

Marquardt's methad o r  t h e  combined method for t h e  LCSR da ta  a n a l y s i s  

problem. 

(1) l i n e -  

GENERAI, COMMENTS ON NONLINEAR MINIMIZATION ALGORITHMS 

Two b a s i c  problems a s soc ia t ed  with any i t e r a t i v e  nonl inear  search  

aogir i thm are: (1) determining a d i r e c t i o n  vec to r  and (2) determining"the 

optimal s t e p s i z e  i n  t h e  s p e c i f i e d  search  d i r e c t i o n .  

an i m p l i c i t  e s t ima te  of the s t e p s i z e  i n  a d d i t i o n  t o  determining t h e  search  

d i r e c t i o n .  Nevertheless ,  i t  is f r equen t ly  d e s i r a b l e  t o  expend computational 

overhead t o  o b t a i n  an opt imal  (or suboptimal) estimate of t h e  s t e p s i z e  f o r  

a t  least two reasons: (1) t o  improve o v e r a l l  computational e f f i c i e n c y  and 

(2) t o  ensure convergence p rope r t i e s .  

Most methods provide 

Nonlinear Minimization Using Linea r i za t ion  

One advantage of t h e  l i n e a r i z a t i o n  method over some second o rde r  methods 

is t h a t  t h e  c o e f f i c i e n t  m a t r i x  for determining the  search  d i r e c t i o n  is  p o s i t i v e  
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definite (at least semidef inite) 4; consequently, the functional value decreases 

in the selected direction. Thus, if the optimal (or suboptimal) stepsize is 

obtained for each iteration, the linearization method is theoretically guaran- 

teed to converge to a local minimum. 

cannot always be achieved.3 

convergence is  typically slow near the minimum, compared to a second order 

method. 

In practice, guaranteed convergence 

A disadvantage of the linearization method is that 

The function which approximates the data is given by, 

Typically, t w o  exponential terms ( W 2 )  are sufficient to adequately approximate 

LCSR data. In order to estimate the model parameters (a 0’ - * * >  %, hl’ * * . ,  

the variance of the residual is minimized; in particular, the following $2 , 
functional is minimized 

where 

m 

Y 

Yek = the observed data 
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I f  t he  approximating func t ion  i s  expanded i n  a f i r s t  o rder  Taylor series, 

one ob ta ins  

Minimization of 3 i s  equiva len t  t o  t h e  l i n e a r  least squares  problem f o r  t h e  

set of equat ions,  

(g)ks= Yek - fok ; k = 1, ..., N . - 

Thus, rnimimization of t h e  f u n c t i o n a l  given by Eq. (2) i s  converted i n t o  a 

sequence of l i n e a r  least squares  problems by l i n e a r  least squares  i t e r a t i o n s .  

A t  each i t e r a t i o n ,  t h e  optimum s t e p s i z e  is c a l c u l a t e d  so t h a t  a(@ -I- p 60; 

Y t) is minimized; in p a r t i c u l a r ,  # is minimized wi th  r e spec t  t o  p f o r  each -e' 

i t e r a t i o n .  

- 

The optimum s t e p s i z e  is es t imated  by using th re?  poin ts :  (1) t h e  po in t  

where t h e  func t iona l  minimum occurred f o r  t h e  previous i t e r a t i o n ,  (2)  a poin t  

which reduces t h e  func t iona l  va lue  ( t h i s  po in t  is found by halv ing  t h e  i n t e r n a l ) ,  

and (3) a poin t  which increases t h e  f u n c t i o n a l  va lue  ( t h i s  po in t  is  found by 

inc reas ing  the  s t e p s i z e ) .  

thus ,  t h e  optimum s t e p s i z e  is e a s i l y  es t imated.  

A quadra t i c  curve is defined by t hese  t h r e e  po in t s ;  

S ince  t h e  d i r e c t i o n  is obtained through t h e  use of a p o s i t i v e  d e f i n i t e  

(at least semi-def ini te)4 c o e f f i c i e n t  matrix, t h e  func t iona l  is reduced i n  the 

d i r e c t  i on  chosen. 

Three cri teria are used f o r  te rmina t ing  t h e  minimization algori thm: (1) i f  

t he  norm of t h e  func t iona l  g rad ien t  is small wi th  r e spec t  t o  t h e  norm of t h e  
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func t iona l  , (2) if t he  func t iona l  va lue  cannot be reduced i n  t h e  se l ec t ed  

d i r e c t i o n  by halving t h e  i n t e r n a l  a se l ec t ed  number of times, and (3)  i f  t h e  

spec i f i ed  number of i t e r a t i o n s  is exceeded. 

Nonlinear Minimization Using Marquardt's Method 

Marquardt's method uses t he  Hession matr ix  t o  c a l c u l a t e  t h e  search  

d i r e c t i o n  and s t e p s i z e .  Since t h i s  is a second order  method, i t  has very 

good convergence p r o p e r t i e s  near  a l o c a l  minimum. On t he  o t h e r  hand, t h e  

Hessian matrix f o r  c a l c u l a t i n g  t h e  search  d i r e c t i o n  may be negat ive  d e f i n i t e  

as w e l l  as p o s i t i v e  d e f i n i t e ;  thus ,  a method based only on t h e  Hessian matrix 

could r e s u l t  i n  f ind ing  a maximum i n s t ead  of a minimum. Marquardt has devised 

a method t o  circumvent t h i s  problem to ensure t h a t  t h e  search  algori thm always 

l e a d s  t o  decreasing t h e  func t iona l .  Details of Marquardt 's  method are given 

by Bard.' 

Marquardt 's  method r e q u i r e s  t h e  c a l c u l a t i o n  of t h e  second par t ia l  der iva-  

t i v e s  of t h e  func t iona l  with respect to  the  model parameters as a prel iminary 

s t ep .  The appropr i a t e  d e r i v a t i v e s  are as follows: 

where 

and 
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The second partials of the approximating function are specified by:  

a2fk 

ao. ao 
- a f k  , i > M+1, j > M + l  and i =: j ; 
tkao.' 

- 
1 J j  

otherwise, the second partials are zero. The first partials are easily 

computed. For example, if K=5 

, ... X2tk a t  e 2 k  
'1% af  - =  - 5  a t  e afk 

l k  a x 2  
a x P  

Standard Deviations of the Model Parameters and of Response Time 

Data obtained f r o m  a LCSR test are analyzed to obtain unbiased estimates 

of several parameters. 

to estimate a time constant that characterizes a plunge test of the temperature 

detector. 

Some of the estimated parameters are subsequently used 
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Uncertainty in the estimates of the parameters that characterize the 

LCSR data arises from at least t w o  factors: (1) the data is contaminated with 

noise and (2) the model is not exact. 

in unbiased parameter estimates has been discussed with Bayne’ and is described 

by Bard.4 

two methods could be used to estimate the standard deviation of the plunge 

test t i m e  constant obtained from the parameter estimates: (1) t h e  propagation 

of error formula6 could be employed in conjunction with an analytical approxi- 

mation for the time constant,7 or (2) the parameters used to obtain t h e  “plunge 

test time constant” could be randomly varied in conjunction with a direct cal- 

culation of the time constant. The f i r s t  method described above is the one used 

for t h e  work reported herein. 

A method f o r  estimating uncertainty 

If one is given the standard deviation of t h e  parameter estimates, 

The model that approximates the LCSR data is assumed to be 

A X2t 
f ( 6 ; t )  = a. f ale 

where 

and 6 denotes the unbiased parameter estimates. In terms of the model and 

the residuals (noise), the observed data are given by 

where 

Y = an observed datum 

E = the residual. 
j 

j 



It is assumed that 

particular , 
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the expected value of the residuals is near zero; in 

Also, the best est-mate of the variance of the residuals is used to estimate 

the true variance of the residuals, 

e ( q  = s 2 

and 

2 2  s 3l.J 

where 0’ is the unknown variance of the residuals. 

estimate of the variance should also be good. 

If the model is good, the 

2 2 
1611 order t o  obtain the variances of interest (i.e., u and u ) ,  it is 

x1 x2 
necessary to calculate the covariance matrix of ê  (Var (g ) ) .  
elements of Var ( 0 )  are the variances of each of the elements of the vector 

8. 

The diagonal 
A 

A 

The covariance matrix is approximated by 

IL 

A T -1 2 
Var (6) = [Z  Z] S 
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where 

ZT 

af - 
ae21 

af 

ae22 
- 

af 
_I_ 

a02N 

. e .  

... 

... 

The f i r s t  subscript on 8 denotes the pos i t ion  in the vector ê  and the 

second subscript denotes the observation number. The estimate of the  variance 

( S  2 ) is given by 

[Yj - f 6 , t J I  2 
J 

N - K  

It is  of i n t e r e s t  t o  point out that the elements of the Z matrix ( Z  ) can be 
ij 

computed from an a n a l y t i c a l  expression. In particular:  

(e)- 1. 

A t  (5) = e 1 j  

A t  
2 j  

, 



1 2  

The above d e s c r i p t i o n s  of t he  b a s i c  theory are appropr i a t e  f o r  c a l c u l a t i n g  

estimates of u 

constant  is  given. 

Next, t h e  method f o r  c a l c u l a t i n g  t h e  var iance  of t he  t i m e  
2 
0 -  
i 

An estimate of t h e  plunge test  response (obtained from t h e  LCSR da ta )  i s  

given by 

The t ime constant  T i s  def ined when 

YPl(d = Y (-)(a - e-’) , PI 

and is accura t e ly  approximated by 

The propagation of e r r o r  formula 

T(U ) as follows: 
2 . 

T 

( 3 4 )  

(35) 
a 

can be used t o  estimate the  variance i n  

2 2 2 
(7 T = (%) aA1 

where CfA and (7 are obtained from V a r  ( 6 ) .  The app l i cab le  p a r t i a l  
1 h2 

d e r i v a t i v e s  are: 
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and 

The development presented  i n  t h i s  s e c t i o n  is  a concise  and s t r a igh t fo rward  

method for es t ima t ing  t h e  s tandard  d e v i a t i o n  of t h e  time cons tan t  T. The accu- 

racy  of t h e  e s t ima te  is p r i m a r i l y  dependent on t h e  v a l i d i t y  of t h e  model. 

Although methods are a v a i l a b l e  f o r  determining if a p a r t i c u l a r  model is "good," 

t h e s e  methods have not  been incorpora ted  i n t o  t h e  o v e r a l l  procedure f o r  esti-  

mating t h e  time cons tan t .  Never the less ,  t h e  estimate of the variance u using 

t h e  methods described h e r e i n  should be s u f f i c i e n t l y  accu ra t e  f o r  s e t t i n g  a p p l i -  

cab le  bounds on t h e  time cons t an t ,  

2 
T 

RESULTS AND DISCUSSION 

Resu l t s  of several computational experiments are presented: 

1. Survey c a l c u l a t i o n s  t o  e v a l u a t e  t h e  l i n e a r i z a t i o n  method, Marquardt's 

method and a combination of t h e  Marquardt and l i n e a r i z a t i o n  methods. 

m 

2. Calcu la t ions  t o  determine t h e  e f f e c t  of whi te  n o i s e  and of 60 Hz i n  

t h e o r e t i c a l  LCSR data on parameter estimates and on s tandard  d e v i a t i o n s  

of parameter e s t ima tes .  

3. Calcu la t ions  f o r  parameter estimates and €or  u n c e r t a i n t i e s  of parameter 

e s t i m a t e s  using experimental  data. 

Each of t h e  t h r e e  non l inea r  minimization a lgor i thms t e s t e d  performed 

w e l l ,  Although Marquardt's method ( i n  theory) converges much f a s t e r  than 
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the linearization method near the minimum, the overall performance of the 

linearization method is better than Marquardt's method for the functional of 

interest (given by Eq. (2 ) ) .  A combination of the two methods performed no 

better than the linearization method; consequently, the computer program 

(ED. F4) for estimating the model parameters uses only the linearization 

method. 

Results relating to the effect of white noise and 60 Hz on theoretical 

data illustrate that the parameter estimates are accurate; in order to verify 

that the estimates of the standard derivations are accurate, detailed simula- 

tion studies are needed. Regarding some of the results which follow, input 

data to the computer program (NOISY) preceds the output from the computer 

program ( E D . )  which estimates the model parameters f o r  the results relating 

to the effect of white noise and 60 Hz. 

If the input data (to NOISY) specifies a loop current step response (LCSR) 

calculation, the theoretical data is composed of two (M=2) exponential terms. 

If a drop (DRgP) test is specified, the theoretical data is composed of three 

(M=3) exponentials. The value of R (input to NdISY) specifies the higher 

eigenvalues using the relation a 

P(1) specifies the first eigenvalue and TM specifies the time span of the 

data. 

Even though the LCSR data are significantly contaminated with white no i se  

(or 60 Hz), the parameter estimates are correct. Also the uncertainty in the 

estimates varies as is expected. 
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Experimental data is analyzed using two computer programs (EXP and LCSR) 

for parameter estimation; both programs yield essentially the same results. 

Although several experimental data files have been analyzed with both programs, 

only results for H3727 are presented. The following results are from LCSR. 

Results from E W  are: 

c 

The first and second eigenvalues from LCSR are -0.6058 and -2.47 compared to 

-0.6061 and -2 .48 from EXP. F i n a l  values are 201.6 f rom LCSR and 201.9 f r o m  

EXP. 

after halving the interval ten times raither than by obtaining a small normalized 

Note that E2k converged by not being able to reduce the functional value 
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gradient. Also the expected value of the residual is not near zero. This 

indicates that parameters are slightly biased and that the model is apparently 

inadequate. This conclusion is supported by other unusual features of this 

particular data set. Other experimental data sets converged on the criteria 

of a small normalized gradient. 

CONCLUSIONS AND RECOMMENDATIONS 

Comparisons of the linearization minimization algorithm with Marquardt's 

method or a combination of Marquardt's method with linearizatfon indicate that 

the linearization algorithm is slightly better for the functional of interest. 

Also ,  in theory, the linearization algorithm should always converge to a local 

minimum. 

Test calculations using EXP on theoretical data and on experimental data 

indicate that this computer program (EXP) has no apparent errors. It is an 

improvement over an existing computer program (LCSR) for estimating model param- 

eters related t o  LCSR data in that E W  does not require initialization and 

that it also provides useful statistical information about model parameters and 

a calculated parameter (i.e., the 63% response time). a 

It is recommended that the existing computer program (EX?) be upgraded in 

two ways: (1) that the data be digitally filtered (or smoothed) consistent with 

the sampling theorem so that the number of data points used in the analysis is 

not more than is needed, and (2) that a statistical analysis of the residual 

error be included to check model validity. 
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LISTING OF THE COMPUTER PROGRAM 

EXP, F4 
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