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ABSTRACT

A numerical algorithm which is designed to calculate the flow patterns
in a gas centrifuge is presented. The nodal equations are derived using
finite volume concepts, thus ensuring rigorous conservation of mass,
momentum, and energy for the computational cells and for the entire rotor.
The method for solving the systems of nodal equations is designed to
produce a steady-state solution using a mixture of time-dependent and
time-independent equations. Streamlines for a sample configuration are
shown. Comparison with results published by other authors shows good
agreement.





1. INTRODUCTION

The gas centrifuge has come into prominence as a potential tool for
enriching uranium for use in nuclear reactors (refs. 1-3). Britain, West
Germany, and the Netherlands have plants in operation. Japan is building a
plant, while the United States has cancelled further construction on its
partially completed plant. The desire to build centrifuges brings with it
a need to calculate their performance. There have been many papers
published on aspects of centrifuge calculation. Workshops on "Gases in
Strong Rotation" have been held on a biannual basis since 1975.

Figure 1.1 shows a schematic of a typical gas centrifuge. dander's
article (ref. 1) contains a detailed description of the configuration and
an explanation of its operation. The separation chamber itself contains
only a few crucial features. Near the bottom is a stationary scoop which
draws off the tails flow. The top of the chamber is a baffle with holes in
it through which the product flow is drawn into an upper chamber where it
is picked up by another scoop. The feed material is introduced at the
axis. In addition to the dimensions and rotational speed of the chamber,
the locations of the tails scoop, product holes, and feed point; the flows
through these features; the drag on the tails scoop; a measure of the mass
of gas contained within the chamber; and the temperatures of the rotor wall
(and perhaps the end caps) form a sufficient set of data to be able to
calculate the flow within the chamber and thus its separative performance.

In 1974, James A. Viecelli (ref. 3) of the Lawrence Livermore National
Laboratory (LLNL) proposed a set of equations which he believed would be
sufficient to describe the flow in a centrifuge. He made approximations to
the Navier-Stokes equations of a boundary layer nature drawing on estimates
and preliminary calculations done by others who had studied the problem as
well as the usual boundary layer arguments. He then assembled a finite
difference algorithm for his equations and a solution scheme for the
resulting set of node equations. Viecelli's scheme was adopted by
J. E. Park of Martin Marietta Energy Systems, Inc., who modified some
boundary conditions and changed the difference algorithm for the energy
equation. The present author took over from Park and has continued the
evolution of the scheme. Neither Viecelli nor Park has published any of
his work on this. The author will make an effort to show which of the
ideas to be presented here are theirs.
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Fig. 1.1. Schematic of gas centrifuge.



2. ASSUMPTIONS

The method presented here assumes that the continuum equations for
mass, momentum, and energy are sufficient to describe the flow. The
conservation equations are written in cylindrical coordinates (r,9,z) in
the inertial frame with velocity components (u,v*,w). A further assumption
is that all features can be averaged in the azimuthal (6) direction and
that thus the derivatives in the 6 direction may be omitted. The flow is
assumed to be laminar. The UF, gas is described using the ideal gas
equation of state

P= PRT (21)

with values for the properties C ,y,M,k, and pD (D is the self-diffusivity
of UF.) which are constants Ffor all points in the flow. Lastly, it is
assumed that the changes in average molecular weight caused by the changes
in concentration of small amounts of "UF, (molecular weight 349) in a gas
which is mostly JOUF& (MW 352) can be neglected. This allows the flow
patterns to be calculated ignoring isotope separation and then the
separation to be calculated as a final step.

The method is intended for calculating the steady-state behavior of a
centrifuge. The solution scheme uses the steady-state assumption in a
number of places as an aid to faster convergence so that in its present
form it cannot simulate transient behavior accurately.





3. EQUATIONS OF MOTION

The equations of motion used in this paper are continuity:

f+ 7 i (pur) +i (pw) =ps . (3-1}

radial momentum:

9(pu) 9P pv2 . . • ,, _,.
9r r s

axial momentum:

9(Pw.) 9P , y 8 , 9w. , ♦. n q]

angular momentum:

9(pvr) ,18. n,3/ \ P 3 , 3 3 ,vN, , , • , fo n_ +__ (purvr) + _ (Pwvr) .__ [r _ (_)] + (pvr)s , (3.4)

energy:

-^ [p(Cv T+%v2) ] +~ [pur (C T+hv2) ] +-|L [pw (C T+hv2) ]

_ k 9 9T\ y 9 2 9 ,v,. _,_ y 9 r 9w,
- 7^7fr^7> +7^7 tr v^7 (7)] +7^7 [rw-s7]

+ tP (C f + Jjv2)] . (3-5>
P s

The above equations are all in divergence form except for radial momentum.
The centrifugal force term in radial momentum cannot be converted to
divergence form.

The equations of motion, Eqs. (3.1-3.5), represent Viecelli's
approximations although he did not use the divergence form for his momentum



equations and used an internal energy equation for energy. There are many
terms from the complete laminar equations which are missing in this
approximation. The convection terms for both radial and axial momentum
have been neglected, as well as most of the stress tensor from the three
momentum equations and from the energy equation and the axial heat
conduction from the energy equation. One of the theoretical advantages of
a finite volume, finite difference, or finite element scheme is that the
complete set of equations can be solved. Thus, a brief justification for
the use of Viecelli's incomplete set may be in order. Adding terms to an
equation set requires an increase in the size and complexity of the
calculation and in the number of operations which must be done to get a
solution. Further, terms whose overall contribution to the flow field is
small may nevertheless change the character of the partial differential
equations or of the difference equations so that achieving a solution may
be more difficult than would be the case if they were neglected. Thus,
there are strong disincentives which encourage the analyst to keep his
equation set as simple as he can.

The separation chamber has boundaries at the top baffle, bottom cap,
outer wall, and inner vacuum core. The boundary conditions at the outer
wall (r=a) are

v = fta , (3.6)

where SI is the rotation rate of the rotor and thus £2a is the peripheral
velocity, and

T = f(z) (a specified function).

Those at the inner core are

u = 0 ,

If <7> - ° •

!? =»•

|l-0 . (3.7)
9r



Those at the baffle and cap are

9z U '

w = 0 (except at baffle hole locations) ,

9z U '

£-0 . (3.8)

At baffle hole locations, the axial mass flux pw is specified.
Each of the equations of motion has a source term represented by a dot

above and a subscript "s", e.g., (pu)g. The feed is introduced within the
flow field as explicit sources of mass, momentum, and energy. These
sources have a distribution in space that is determined by some theory
which estimates the collisions of molecules in free molecular flow with the
rotating gas. The rotating gas is, of course, described by the continuum
equations. This subject will be discussed further in the next section.
The scoop is simulated as a sink of mass, angular momentum, and energy
located in the flow field. Because there are no convection terms for

radial or axial momentum, it would be inconsistent to simulate sinks of
these momentum components associated with the scoop mass sink. This
subject will also be continued in the next section.

The isotope equation is described in the report by Park (ref. 4). The
solution is obtained using the method described in that report. There is
no need to repeat Park's discussions in this paper.





4. FINITE VOLUME EQUATIONS AND SOLUTION METHODS

The term "finite Volume method" is fairly recent, but the ideas have
been around for some time. Many engineers and scientists have seen the
derivation of the partial differential equations for fluid flow from
balances on control volumes as an exercise on the blackboard or in a
textbook. Developing a discretization by reversing the process and
integrating the p.d.e.'s over control volumes seems like too natural a step
not to have occurred to many people independently. Patankar (ref. 5) wrote
about the "Control Volume Formulation." The use of the conservation law
form dates back at least as far as Lax (ref. 6). Roache (ref. 7) wrote
earnestly about the need for the "conservative property" in finite
difference equations. Patankar (ref. 5) made "consistency at control-
volume faces" the first of his "Four Basic Rules."

The author regards any scheme which derives the set of discrete
equations for the variables at nodes by dividing the region to be computed
into a set of non-overlapping control volumes and integrating the partial
differential equations over this set as a finite volume method. The author
agrees wholeheartedly with Roache and Patankar about the necessity for
consistent fluxes at the faces of the volumes. The author also accepts the
preferability of using p.d.e.'s in the divergence or "conservation law"
form following the reasons set forth by Lax.

A typical cell of the finite difference mesh is shown in Fig. 4.1.
The half-cell offsets of radial and axial velocity (u and w) are arranged
in this way in order to construct convective fluxes on the surfaces of the
cell used to calculate mass and energy without having to average these
velocities. The offset of angular velocity (v) is somewhat arbitrary.
There are advantages to the offset position—principally the ability to
construct the v part of the centrifugal force term in radial momentum at a
position halfway between adjacent pressures without having to average v.
Probably, v could be defined at the same location as P and T and a
difference algorithm constructed which would do as well as the one based
upon the offset position.

The mesh is arranged so that the inner edge is located at i=% and the
outer edge at i = NR+ij, where NR is the number of radial zones. The inner
edge is not located at the center (i.e., r,>0). Rather, its location is
usually determined by the equation

15 =(fia)2
2 RTQ r-(?)'] • (4.1)

where T» is a reference temperature. This is an expression for locating r,
so that the density at r, under isothermal solid body rotation ik
e times that at the wall. For convenience in defining boundary
conditions, "image" cells are defined to the left (inside) of the inner
edge and to the right (outside) of the wall. Similarly, the bottom cap is
located at j=3^ and the upper baffle at j = NZ+Jj with image cells above and
below these boundaries.

11
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Fig. 4.1. Finite difference mesh.
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A finite volume scheme requires definitions of the volumes. Also,
some averaging operations require definition of surface areas. The control
volume for mass and energy (P and T. .) is V. ., which is defined by

-1» j •L»J ifj

Vi,j 57T (rU" r2±-h)(Z3+h- Z3-h] • (4'2a>
The control volume for radial and angular momentum is

Vl-Js,j E7T (ri" rLl)(zj+Js- Zj-V • (4.2b)

The volume for axial momentum (w. . ) is

Vi,j-^57T (ri+^~ rU)(zj " zj-i> ' (*-2c)

For later use, some subvolumes must be defined, such as

2 2

V*,j 5* (ri" 'i-^^- V^ ' <4-2d>

Vi+^,j E*(rU - rl)(zi+H ~Zj-h) ' (4.2e)

etc.

V. . , = tt (r.,, - r. i)(z. - z. ,) , // of\i,j-^ 1+^ i-Vv j j-V (.4./t;
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In addition, some useful areas are

/ 2 2N
i+% i+% i' '

A. , = tt (r.
x-H i Vi> •

tt (r
±+h ~ r±-h> >

(4.2g)

(4.2h)

(4.2i)

etc.

Each of the five principal variables (P, T, u, w, v) has its own
difference equation and its own solution scheme. The author has found it
most convenient to discuss the solution of the finite volume difference

equation for each of the principal variables immediately after the
statement of the difference equation. However, the difference equations
are derived from the p.d.e's through integration via finite volume methods
and do not depend upon any specific solution scheme. The equation and
solution for each of the principal variables will be described in turn.

4.1 RADIAL MOMENTUM

While the concept of integrating the p.d.e. to develop a difference
equation for each cell is fairly straightforward, there may be some benefit
in going through the process for at least one equation as a demonstration.
The p.d.e. for radial momentum is given in Eq. (3.2). The integral of this
equation over its appropriate control volume is

i-^.J

9(pu)
9t

dV

•h,i

_9P
9r

dV +

(pu) dV
s

L-*5,j

1 2JTT
— pv dV
r
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Using the divergence theorem, the pressure gradient may be transformed to
surface integral. Making this transformation and letting dV = 2-rrrdrdz,

2/1 [>* |iESl
r • i z . 11-1 2-h

rdrdz = - 2tt
rzi+h

'i-h

(P. - P.^rdz

+ 2tt

+ 2tt

ri rZ j+%l 2^— pv rdrdz
j r

r-i 1 z- L.

ri rZi+h

r. . -1 z. 1
1-1 2-h

(pu) rdrdz
s

At this point, average values of pu, pv , and (pu) over the vol„...c .

and average values of P, and P. between z. , and z. , are assumed to
i—' J—*5 J+*5

exist. In terms of these average values, the integrated equation becomes

ume V.

9(pu)
9t

*< + ri-lVi h i = " (pn • " p- 1 .)2ir —i-J^j 1_i5'J i»J i-l. J (Zi^ " V^

+ PV h-k,i 27r(ri " ri-l> <Zi+h ~ «J-%>

+ (pu) . , . V. , .
s x-H,3 i-*S,J
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Approximate the time derivative by

let

„. N n+1 n
9(pu) _ pu - pu
9t * At

P. . + P. , .

l-^,j R(T. . + T. . .)
'J 1,3 i-l.J

P4

and divide through by V. , .. The resulting finite volume equation for
l-*5i J

radial momentum at i-^.j is

n+I n
pu - pu

P - P , (P. . + P. . .) V. , .
_ i..i i-l,J 1 1.1 i-l,.1 i-*5,J

At L , . r. - r. n r. , R(T,. + T. . .)
i-h,3 i i-l 1-% ij i-l.J

+ (pu) . i .
's i-^,J

(4.3)

The radial momentum difference equation is a simple explicit
calculation. The values of P and T that are used are at whichever time
level happens to be in memory when the operation is done (the algorithm
does not require that both time levels n and n+1 be stored because the
system is aimed at steady state). The boundary conditions on the wall and
at the inner edge are accomplished by never changing the values at these
locations.
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4.2 AXIAL MOMENTUM

The difference equation for axial momentum at i,j-Jj is

= _ _iiJ i>3-l + M 1

ZJ " Zj"l r± ri+^ X±-h

n+1 n+1 n+1 n+1
( W, ,, . i - w, . L W. . i - W. n . i \

lv±+h 1+1'J-^ ±^~h - r±-h X>1 2 i-^J-H
I r..n - r. r. - r. . f
v i+1 l l i-l

+ (pw) ... . (4.4a)
s i.J-^

It is convenient to use p at whichever time level is in memory and thus

have the difference equation cast as an equation for w instead of pw. This
is permissible because the system is only intended to calculate steady

state. Density is not defined at i,j-^, but must be found by averaging,
i.e.,

P. . + P. . 1
n = 1,J 1>J"1 (4.4b)
Pi,j-^ R(T. .+ T. . .) ' K }

'J 1,3 i.J-1

The difference equation is solved using an implicit formulation in the
radial direction. Terms multiplying the w's at time level n+1 are
collected on the LHS and all other terms on the RHS. Because there are no

w terms for any value of j besides j-%, the rearranged difference equation
becomes NZ tridiagonal sets of the form

« -, n+1 , .„ n+1 , ., n+1 _ r / / „\
A3. . , w. ... . , + A2. . , w. . , + Al. . iw. .. . , = B. . j, .(4.4c)

i.J-^ 1+1,3"^ 1,3"^ i,3_J5 1,3-^ 1-1,3"^ 1,3"^

The boundary condition at the inner surface (i=h) is found by

n+1 n+1
w . , = w, . , (4.4d)

The boundary condition at the rotor wall (i=NR+%) is

wn+1 = _wn+1 (4.4e)
NR.j-Js NR+IJ-J5
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The conditions on the caps (j=Jj, j=NZ+ij) are that mass flux pw is constant.
These can be applied explicitly by calculating new values of w to meet this
condition.

4.3 CONTINUITY (PRESSURE)

Although p is the correct variable for conservation of mass,
continuity is expressed as an equation for P with the equation of
state Eq. (2.1) providing the linkage between the two. One important part
of Viecelli's solution scheme is the use of a steady-state continuity
equation to calculate a pressure field for the next time step which will
(ideally) produce a set of mass fluxes for that next time step which will
exactly conserve mass. This approach is used in the ICE method (ref. 8).

Steady-state continuity is given by Eq. (3.1). The equation for mass
conservation at time level n+1 may be written as:

0=-14, (rpun + Atr !i£«I) - 3_ (pwn + At !£*>) + Po . (4.5a)
r "97 KLpu T "Lr 9t ' 9z VH" "fc 9t ' ' "s

The mass flux derivatives are the same as the momentum derivatives and are
given by Eqs. (3.2) and (3.3). Substituting these into Eq. (4.5a) and
doing considerable rearranging, the continuity equation becomes an equation
for pressure of the form:

0 =7^7 (r ~dT~) + di (Tz } ' r "97 ( RT } r 9z l9r °VJ

19 , «s 9 / *n
- -7T- r(pu) - -K- (pw)
r or s dz s

+kl-$hr™--h«~>n +Kl •

This is a linear p.d.e. in two space dimensions for the advanced time
pressure field Pn . The term which is multiplied by 1/At represents the
mass conservation error at time level n. It acts as a forcing function
which drives the solution toward mass conservation. If it were absent, the
solution to the equation would be a pressure field which would generate a
mass flux field at level n + 1 which would have the same distribution of
mass conservation errors as the field at time level n.

The finite difference equation for P . is not derived by differencing
the p.d.e. Eq. (4.5b), but rather by differencing the continuity equation,
Eq. (4.5a), and then substituting from the differenced forms of
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the radial and axial momentum equations. The difference equation for
continuity based on finite volume concepts is

0=- I 1_^ [pu)n _ n

+ Atr 9(pu)-) - Atr 1<PhLv l+ Atri+35 9t )i+^,j ^i-JjIt>i-J5,j]

i-— [pw)n - Pw)" . ^ + At |iesl)
:j+^ z-i_^ i,3+h 1,3-H 3t 'i,j +J?

Atlr^)- • iJ +P • • (4.5c)9t 1,3-V s i,j ' v JW

Equations (4.3) and (4.3a) approximate the time derivative terms. The
final form of the difference equation is found by substituting these into
Eq. (4.5c). It is

n _ 1 1 r n -.n At /rin+l r.n+l>,

?U+} . + Pn+1 v*

r ({oka AAjnilaA. teJum, , l , n
" ' centeJied at i-^.j J } + z._ - z. , * pw)i,j+3s

3+^ 3-^

+ At n+1 _ n+1 yAt _9_ 9w
zj+35 " Zj_J5 i>J+l i.J " 9r U 3r;i,j+^

+At (pw)s i.j+Js " [ linttAzd at 1,3-h ]} + Ps i,j • (4'5d)



20

Boundary conditions come directly from the differenced momentum equations.
All the boundaries have fixed values for mass flux. The conditions that
lead to extrapolated values of pressure in the image cells outside the mesh
are created using the appropriate momentum equation with the time rate of
change set to zero. For instance, pressure in the image cell inside the
mesh (i=0) is found from the radial momentum difference equation by

'P. .-P . , P, ,+P0i1 2*/ A p, . - p . , p, .
3(Pu)» = _ 1.1 o,3 + i_ 1>3
3t )h,3 r. - r r^ R (T

1 O 'J
(T. . + T .) h,3

1,3 °»3

+ (PU)S H,3
(4.5e)

The difference equation for pressure together with the boundary

conditions lead to a set of simultaneous equations for P of the form

A. .,Pn+1 , +A. .,Pn^ .+A. .,Pn+1 +A. .,P*" .
1,3,1 1,3-1 1,3,2 1-1,3 1,3,3 1,3 1,3,4 1+1,3

+A. ._Pn+1+1 -B. . . (4-5f)
1,3,5 1,3+1 1,3

This set of equations has a matrix structure in which a square matrix with
five non-zero diagonal stripes multiplies a vector of pressures to get the
vector of right-hand sides. Viecelli solved the system exactly using
Gaussian elimination. This solution used large amounts of computer time
and required considerable computer memory for storage of scratch arrays.
It was found that the successive line overrelaxation (SLOR) method could be
used with large savings in both computer time and memory. Let superscript
(£) represent results from the Jlth iteration of the SLOR method for a given
time step. The £+1th iteration is done by solving a tridiagonal system for
each axial line which is derived by moving the axial terms from Eq. (4.5f)
to the RHS; i.e.,

A P(£+1) + A P(£+1) + A P(£+1) = B .Ai,j,2Pi-l,j 1,3,3*1,3 1,3,4 1+1,j i,j

- A P. . , - A. . c P. . , • (4.5g)
Ai,j,l 1,3+1 1,3,5 1,3-1

Note that the values of P on the RHS do not have an iteration level
indicated. Satisfactory convergence can be obtained by using whichever
level is resident in those locations at that moment which saves having to
store two levels of pressure. The iteration is continued until
satisfactory convergence is reached. The convergence criterion is

max | U+l) _ pU) 1/ pwHL < e , (4.5h)
1,3 ' i,j l.J 1
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where PWHL. is the pressure at r. for wheel flow; and e is a convergence
constant which is typically 10~3 to 10~6.

4.4 ANGULAR MOMENTUM

The difference equation for angular momentum at i-h,3 is

(pvr)\ 1 l
1 M'1 *" r. , VTrT~l [ PUr)^J VT)U3 ~PUr)i-l,j Vr)i-l.j]

fPW)._k AlX, Vr),zi+h ~ ^_h 'i-hti+h LJi-h,3+h

- Pw) . , . , vr). , . , ]

r. — r. , i r , — r v -r *- /
ri_J2 i i-i i+h 1-h rl+k ri-%

-J 1 , 1-*5.T I-3,,

" ri-l r
i-% l-'S i-% i-3/.

+ (pVr)s i-Jj.j ' (4.6a)

Equation (4.6a) is not complete because pur, pw, and vr are not defined at
the specified locations. The approximations for pur and pw are made in a
way that ensures mass conservation for the control volume V. , .. These
are i-%,j

pur)±fj * [ Pur).+35> . (r2 - r2^)

+Pur)i-^,j (rU " ri)]/(rU " ri-^ (4-6b)

+^i-i.j-% ('U " ri-i>"<ri " Vi> • (4-6t)
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The averages for vr are

vr).ifj *h [vr).+^. +vr)1_JSfj] ,

vr) . ,
i-h

•2,3-h [
i-^,3

+ v.
-'s.j-i-

(4.6d)

(4.6e)

The boundary conditions at the ends are accomplished by setting the image
cell values to those for their neighbors in the interior cells. The
angular velocity is actually defined at the outer wall (i = m+h) so the
nonslip condition is met by never changing v at NR+^. The inner boundary
condition is a little more difficult. One of the desirable features of a
conservative calculation is that quantities are conserved on the global
scale represented by the total volume of the computing mesh as well as on a
cell-by-cell basis. But the offset of the mesh used to calculate v
compared to the mesh used to calculate mass and energy means that the total
computing meshes for these variables do not coincide. The decision was
made to treat rvas the "true" boundary for all variables. This requires a
boundary condition at the inner edge which is

v i . v 3/ .
-h,3 _ +*.3 .

-h V/2

(4.6f)

Viecelli proposed solving the angular momentum equation in a steady-state
form as an aid to improved convergence. He also proposed that the system
of simultaneous equations which results from Eqs. (4.6a-4.6f) should be
solved by SLOR, but with only one iteration per time step. The result is
almost identical to that used for pressure, i.e.,

n+1

Ai,j,2 Vi+^,3
+ A

n+1
+ A

n+1

1,3,4 i-9J, 3
= B. - A

i.j.l Vi-*S,j+li,3»3 •h,3

- A r- V. 1 -1i,j,5 i-*5,3-l

1,3

As was the case with pressure, the values of v on the RHS are at
time level happens to be in memory at that moment. There is a feedback
loop between the pressure and angular momentum equations which occurs
because the value of v strongly influences the radial pressure difference
which, in turn, controls changes in the radial velocity field which lead to
changes in v. The existence of this loop has forced underrelaxation of the
angular momentum step for some problems.

(4.6g)

whichever
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4.5 ENERGY

The difference equation for energy at i,j is

p(C T+ %v2)n+1 - p(C T+ hv2)n .
v " " i>3 v i,i 1 1 r-^-. u. = _ [pur)

1

(C Tn2 . + *5v2 j. .)- pur). , . (C Tn+f . +hv2 , .) ]
p 1+55,3 i+*S,3 i-*S,3 P 1-^,3 1-^,3

- ~ {tPw (C Tn+1 + %v2) ] . . .
3+h z3-h p X'J+J5

- [pw(C Tn+1 + 3jv2)] , }
P i,3-^

n+1 _ n+1 n+1 n+1

+^ * [r, . i+M TM - r uTi,3 "Vlvlj"r.^-r.^ 1+^i+l-ri i-% r.-r^ ]
2

+1 1 rV±+h Vi+^,,j (V _V ,
r± ri+%" r±-% ri+l " ri r i+1>J" r i»J

2

_ 1-* i-^,,1 (v} _ v
r± " r._1 Vi,j r;i-l,j;j

, y 1 r 9w. 3wN -,
+ - 7 =~7 [ ^ "57'14*- i " rw ^-i i- i ]r. ri+3s ri-35 3r 1+ '̂3 ar X 2>2

+ [p(C T + V2)] . . . (4.7a)
P s 1,3
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Many of the terms in this equation need to be defined. The approximations
are as follows:

t ~ Js(T + T ) (4.7b)
Tl+H,3 ~Mi+l,j Ti,3} '

2
v l^^^^-^^H^K-^^U-^^^

[^V]±,3+h*hCV[i\3+l + 1i,3)PW)U3+h

- ^1,3+1- h^^UiW' (4-?d)

tpw^v ]lfj^*^(vlfj+1 + vlij)pw)lfj+%

" a(vi,i+l- Vl,3)|pw|i,iW '
(4.7e)

v> ^ h( i+^j + i-^.J) . (4.7f)

™̂i+^.j ** T—^ {(Wi+1'̂ +Wi^

Cwi+l,J.* " Wi.J-*> (Zi+H ~Z3)+ (W1+U-^ +"i.J-^

(Wi+l,J-^ " "1.W (Z3 " Z3-H))KZ3+H ' V^ ' (4-78)

Viecelli used the weighted donor cell differencing for the axial heat flux
as shown in Eq. (4.7d). He also used a separate time step for energy Atg.
This is usually 100 times the regular time step. The donor cell factor a
is found by searching the mesh for a minimum axial cell transit time given
by

min |Zj+1 " Zj i
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and then dividing this into At This quotient multiplied by a safety
factor of about 1.2 is used for a. If this value is larger than 1.0 At
must be lowered until a < 1.0. The boundary conditions at the caps art
accomplished by simply setting the values of T in the image cells to those
of their neighbors in the interior. The inner boundary condition is the
same; i.e.,

T0,j = Tl,j ' (4.7h)

The wall boundary condition is satisfied by a linear extrapolation to the
image cell of the form

^4^-^V^i , («.7i)
NR+1 NR+*5 NR+1 rNR

where TW. is the temperature of the wall at z..
Because the algorithm is only intended fir steady state, it is not

necessary that the rate of change in energy accurately take into account
changes in either density or kinetic energy. Thus, it is possible to
reduce the LHS of Eq. (4.7a) to

n

The set of simultaneous equations that results from Eq. (4.7a-4.7j) can be
written as

A. .. Tn+* + A Tn+1 +A Tn+1 + A Tn+11,3,1 1,3+1 i,j,2 'i+lj +Ai,jj3 Ti,j +Ai,3,4 Ti-1,4

+ A. . c T? . . = B. . . (4.7k)1,3,5 i.j-x i,j k*./k.)
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Viecelli solved his energy equation with SLOR. It has been found from
experiment that stability requires that all of the axial donor cell terms
must appear at the same time level so that, for an SLOR formulation, part
of the central diagonal term, A. . ,, must be placed on the RHS. The SLOR

... i, J »j
equation is

A. .,TnT! .- A\ . ,Tn+1 +A. ..Tn+1 .=B. .
1,3,2 1+1,3 1,3,3 1,3 1,3,4 1-1,3 1,3

- A'.'. „ T" .- A. ., Tn .,, - A. . c T* , , (4.71)
'i,j,3 1,3 1,3,1 i.j+l i,3,5 i'J"1

where

A. .,=-a/ ^~ [|pw|. _ + |pw| ,J ; (4.7m)
i,3,3 2 z , -z , 'i,3+i5 i,3-*S

3+h 3" 2

and a! . _ contains the rest of A. , ,. As in angular momentum, the energy
i,J ,3 i ,J,j

equation is not iterated but is solved only once for each time step.

4.6 SOURCE AND SINK TERMS

As was mentioned in the previous section, the feed and the interaction
of the gas with the tails scoop lead to source terms in mass, angular
momentum, and energy. In practice, source terms in radial and axial
momentum are neglected. The conservative finite volume approach makes
calculation of the sources particularly easy. For mass, the source is
simply the amount of mass arriving within a control volume per unit time
divided by the volume. Similarly, the angular momentum source is the mass
rate multiplied by the angular velocity of the arriving molecules and the
radius of the interaction, again divided by the volume. For feed, the
average angular velocity is zero. For energy, the source is the mass rate
times the total enthalpy C T + h iu + v + w ) of the molecules divided by
the volume.

Although the principles are the same, the correct treatment of the
scoop is more complicated. The control volume which contains the cell must
have explicit sinks of mass, angular momentum, and energy. The mass sink
is obvious. The angular momentum sink, thanks to Newton's Third Law, is
exactly equal to the torque applied to the arm that holds the scoop divided
by the volume. As Olander mentioned, the gas which flows past the scoop is
heated by the interaction. However, the scoop is not moving in the
laboratory frame so that it cannot be an explicit source of energy. The
mass sink aspect of the scoop leads to an energy sink whose magnitude is
the mass sink rate multiplied by the stagnation enthalpy divided by the
volume. The heating near the scoop is automatically calculated by the
shear terms and the transformation of kinetic to internal energy which are
integral parts of the energy equation.
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4.7 ORDER OF EQUATIONS IN SOLUTION

A single time step consists of an iteration of the angular momentum
equation followed by an iteration of the energy equation, several
iterations of the pressure equation (after 50-200 time steps, the initial
pseudo-transient will die away, and the number of pressure iterations per
time step will usually fall to between 1 and 5), and fresh solutions of the
radial and axial momentum equations. This order of operations is not
mandatory although the sequence [pressure—radial (or axial) momentum-
axial (or radial) momentum] gives the closest to a mass conserving flow
field for use by the angular momentum and energy equations.





5. STABILITY AND LIMITATIONS OF THE METHOD

The SLOR solutions specified for all of the governing equations except
radial momentum calculate radial transport implicitly. Consequently
radial stability limitations should be mild. The axial transport of
angular momentum and energy is, in effect, explicit. Thus, one might
expect Courant limits in the axial direction. An attempted stability
analysis of the solution scheme did not yield any useful results The
system seems to have a time step limit of the form

At < .008 min I^ I. ,. ^
i,3 ' w ' (5.1)

This limit is both very crude and highly empirical, but it is useful for
order of magnitude estimates.

In the discussion of the angular momentum equation in the previous
section, it was noted that stability required an underrelaxation of the
angular momentum equation. In addition, it has been found to be advisable
that the relaxation factor be further limited so that no value of angular
velocity may change by more than U in any time step. This can be a
temporary limit that acts during the first 50-200 time steps during which
the changes in the system variables are fairly vigorous. After these
initial transients have decayed, the relaxation factor may be increased to
its "stable" limit.

The Viecelli approximations neglect axial shear stresses and axial
heat conduction. The end cap boundary conditions are free-slip and
adiabatic which are consistent with the absence of axial diffusion of
momentum and energy. These boundary conditions preclude development of the
"Ekman" boundary layers which are assumed to exist on the caps
(refs. 9,10). There have been discussions of this lack among the author
and numerous colleagues, and some effort has been made toward remedying it.
To date, no model of the Ekman layers has been developed which is
satisfactory for the finite volume approach as outlined in this paper so
that the lack of Ekman layers remains a notable omission.
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6. RESULTS

A test case has been run using machine parameters which were published
by Wood and Sanders (ref. 11). This case represents the optimum parameters
from Table 2 of ref. 11. Figure 6.1 is a plot of the streamlines.
Reference 11 contains plots of streamlines for a linear wall temperature
(Fig. 8) and a scoop (Fig. 9). These two plots are reproduced in
Figs. 6.2a and 6.2b. Unfortunately, ref. 11 does not show a streamline
plot for a combined case. The optimum quoted in Table 2 of ref. 11 was
found by linear superposition of the scoop and linear wall temperature
solutions together with some mass feed solutions. Thus, a plot of the
streamlines for the combined case would have features from both Figs. 8 and
9, ref. 11 (i.e., Figs. 6.2a and 6.2b, respectively).

Figure 6.1 shows some of the qualitative features that one might
ascribe to a plot of streamlines from the ref. 11 optimum case by mentally
combining Figs. 6.2a and 6.2b. A cell which is centered at about one-half
scale height radially and one-half the rotor length axially looks like the
cell shown in Fig. 6.2a. Similarly, Fig. 6.1 contains a cell centered at
about four scale heights radially and near the bottom axially which
resembles the cell shown in Fig. 6.2b. The differences in the shape of the
streamlines for this cell at the bottom may be partially explained by the
inclusion of an Ekman layer model and a much finer axial resolution in the
calculations of ref. 11 compared to those which are plotted in Fig. 6.1.
Such deviations in the fine structure are not surprising. Nevertheless,
one may conclude that the test calculation for this paper produces
streamlines similar to those from the same case calculated using the
methods of ref. 11.
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Fig. 6.1. Streamliner for test case.
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Fig. 6.2a. Streamline plot for "linear wall temperature drive"
(Source: reproduced from Fig. 8 of ref. 11).
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Fig. 6.2b. Streamline plot for "scoop drive1
(Source: reproduced from Fig. 9 of ref. 11).
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