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DESIGN OF INDUCTION PROBES FOR MEASUREMENT
OF LEVEL OF LIQUID METALS

C. V. Dodd C. C. Chengl

C. W. Nestor, Jr.2  R. B. Hofstra?

ABSTRACT

This report gives general analyses of eddy-current probes
for measuring the level of liquid metals. The case of a coil
encircling a level chamber and the case of a coil inside a
level chamber have been solved theoretically, and computer
programs are included in the Appendix for the latter case.

As a specific example, we have designed a probe encloged in
molybdenum (a good conductor) to measure the level of molten
bismuth (a poor conductor). By using a computer analysis, the
sensitivity of the probe to level changes is maximized while
the sensitivity to undesirable variables, such as temperature
changes, is minimized. Experimental measurements demonstrated
that the level could be measured to within + 0.080 in. over a
level range from O to 13 in. within a temperature range of
600° to 650°C. The high degree of success achieved in the
probe design and measurements for this unfavorable combination
of conductors indicate that highly accurate eddy-current meas-
urements can be made with almost any combination of conductors.

1. INTRODUCTION

The ability to measure the level of a molten metal is very important
in a number of industrial and chemical processes. We have analyzed the
general problem of measuring the level of a conductive fluid by an induc-
tion, or eddy-current, process. The eddy-current probe consists of a
long bifilar coil, which can either encircle a chamber containing the
liquid metal or be inside a tube mounted In the chamber containing the
liquid level. We obtained integral solutions which were valid for the
chamber either empty or full, and, because of the probe length, we
assumed that the response of the probe to levels between these two
extremes was approximately linear. Later experimental measurements

showed this to be an excellent assumption. A relaxation solution could

lconsultant from the University of Tennessee.

2Mathematics Division.



be used to calculate the probe responses to various levels of liquid
metal, but was judged to be too expensive to run for the additional
information gained. While the technique is very general and can be
applied to almost any conductive fluid, we analyzed a system that con-
sisted of a coil encased in molybdenum (a good conductor) used to measure
the level of molten bismuth (a poor conductor ). The high degree of
success achieved in the probe design and measurements for this unfavorable
combination of conductors leads us to conclude that highly accurate eddy-
current techniques can be designed and applied for level measurements with

almost any combination of conductors.

2. THEORETICAL ANALYSIS

The general configuration to be considered is an axially symmetric
driving coil located concentrically with an arbitrary number of cylin-
drical conductors with arbitrary thickness, permeability, permittivity,
and conductivity. For simplicity, we assume that all media are linear,
isotropic, and homogeneous, and the driving current is time-harmonic with

- N

frequency, w. Then, the current density J and vector potential A will

have only azimuthal components in cylindrical coordinates:

J(x) = 3(r,2) &, (1)
and
i ~p .
A(x) = A(r,z) e, (2)
where é@ is an azimuthal unit vector. The vector potential at (r,z),

produced by a driving coil with a current density J(r',z') at (r',z'),

can be expressed as

Ar,z) = ‘[]- G(r,z;r',z") J(r',2z") dr'dz’ (»)
Driving
Coil

where G(r,z;r',z') is the Green's function for a unit s-function current
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at (r',z'). 1In a linear, isotropic, homogeneous medium, the Green's

. P
function satisfies

S I U - o
5 T T3 + 57 Jwpo 4w ope G(r,z;r ;7" )
ar r oz
= =y &(r-v') 8(z-z") . ()

where 1, €, and ¢ are the permeability, permittivity, and conductivity
of the medium. The solution of Eq. (i) for each medium must also satisfy

the proper boundary conditions.

We shall first consider a s-function coil coaxial with k+k'-2
cylindrical conductors; k-1 of them inside the coil and k'-1 of them
outside the coil, as shown in Fig. 1. The general solution of Eq. (&)

in any region, n, may be obtained by separation of variables. Setting

G(n)(r,z;r‘,z‘) - R{r) z(z)

and dividing Eq. (&) by R(r) Z(z) gives:

]
1 SR(r) 1 oR(x) 1 dz(z) | 1
R{r) 3p2 rR(r) or z(z) N 2
2 .
Fotue = o o= O (5)

The subscripts n on the permeability, permittivity, and conductivity
denote the values of these parameters in the region n. We shall choose

o]
the separation "constant"”, &, to be negative and define

3C. V. Dodd and W. E. Deeds, J. Appl. Phys. 39, 2829-2838 (1968).
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Fig. 1. Multiple Concentric Conductors in the Presence of a Delta

Function Coil.

Then we can write for the z dependence

3

2
z

1
Z(zi
Solving this differential equation gives:

z(z) = A sin Q(z—zo) + B cos a(z—zo) .

We can drop the sine term due to the symmetry about z = z!'.

(6)
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The radial term has the following dependence:

rd R(r)  mR(x)

2 dr

- (rzoci + 1) R(r) = O . (&)
dr

This differential equation has the following solution:

R(r) = or, (r) ¢ DK (e ©)
where Il(dnr) and Kl(ahr) are modified Bessel functions of first order.

The complete solution to the Green's function in each region is an

integral over the separation constant O:

¢, e, 0) -.:fm[cn(@) L {oyr)

o]

+ 1 () K](unr)] cos (z-z' ) da (10)

forn=1,2, . . . k; 1',2', . . . k'. The unknown constants are func-
tions of the separation constant @ and different for each region. We
shall use the boundary conditions to solve for these unknown constants.
In order to obtain a very general solution for an arbitrary number of
cylindrical conductors inside and outside the coil, we shall use a

matrix technique.

In the innermost region the coefficient of K](er), Dl(a), must be

zero, and in the outermost region C,, must be zero in order for the

]-I
solution to remain finite. (The outer radius of the outermost region
is infinite.) We shall use the boundary conditions in order to deter-
mine the other constants. We have the following boundary conditions

for the Green's function (which are the same as those for the vector

potential) between regions n and n+l shown in Fig. 2:

G(n)(rn,z;r',z') = G<n+1)(rn,z;r‘,z') (11)

and
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o o 1. (xr ) a K (xr )
n 1V n d . n 1Y n n
ICH(Q’) }—J;—[Of r ﬂ*‘ddnrn 1—]. (unrn{l i Dn(a) F[CX r

o n o 0 nn
d Teos aemst)
+ aa;;;—Kl(Ohrn cos a(z-z' )du
o Q I.{& .r )
) n+1 1Y n+l n d
—:[ Cnﬂrl (Q) LL |:CX r * doy r Il(arﬂ—lrn)]
o il n+ln n+l n
K (.t )

n+l 1 L d ‘
F D () n [cx r R (Qn-alrn>] cos fz-z')d

n+l n+l n n+l n

+ 8(z-z") ﬁ(rn—r') . (15)

We shall make use of the relations

K(z) + Tk (2) = K (2) and L1 (2) 0 1 () = 1 (2) (10)
1 dz 1 o z 1 z 1 o

N

and define

B} 1/2

o N
) .o 4.2 _ .2 -
: ) o= " (0" + 3 oo T W e ) . (15)

Making these simplifications and multiplying both sides of Eq. (13)

by p cos o' (z-z') and integrating from minus to plus infinity gives:
oo o0
j I{CH(U,)BHIO(O’nrn) - DH(CX)BHKO(CLnrn )} cos G(z-z') cos O (z-z' Yad(z-z*)
~"0
oo, - 00
::—[ f{cn-f-l (o )‘Bn»%lIo ({xn»ilrn) - D H(Oﬂ )Bn*rlKo (O(n-%—lrn )}cos A(z-z")oos B(z-2" YHod(z

-0 0O

+ Hofm o(z-z") 5(fn*r' ) cos ' (z-2') d(z-2') . (16)

-



We can reverse the order of integration of the integrals containing

Mrssel functions and use the Fourier integral theorem,

%l[ f(w){:[n cog (x(z-z') cos a'(z-z') d(z—z’)}dilz £lar)
O -0

Equation (1¢) then becomes:

) )

[ o — 3 X r = § 91 -
CnFnIo(/nrn) DntnKo(unln) CnrltnalIo(qn+lln

M‘Dn+lpn+1Ko(Jn+1rn

il
Yo L '
+ 7& U(rn r ) . (1()

A similar operation on Eq. (11) gives:

Cnll(&nrn) N DnKl(unrn> a Cn%lIl<dn+lrn) " DnilKl(qn+lrn) - (18)
Equations (17) and (1&) represent the relations between the constants
for any two regions inside the coil. We shall now solve for all the
unknown constants in the following manner. Since the innerwmost region
has only one unknown constant, Cl’ we shall solve for the unknown con-
stants in the second region in terms of it. Next we shall solve for the
unknown constants in the third region in terms of Cl’ then the fourth,
until we reach the region containing the coil, k. We shall do the same
thing for the regions outside tiie coil, starting with the outermost and
working inwards, solving for each region in terms of Df, until we reach
the region k'. We shall then use Eq. (17) and Eq. (18&) for the coil
regions k and k'. This will give two equations for the two unknowns,

Cl and Dl" and we can solve for them. This will then allow us to
write the expression for the unknown constants in any region.

Solving KEqs. (17) and (18) for the unknown constants in any region,
n+l, in terms of the unknown constantsg in region n, where the coil is

not between the regions, gives:



= (G X T , 1 < (¢ S
Cn+1 B (Ko‘an+1rn) Il<anln) K ﬁn+l Io(anfn) Kl(mn+1rnJL%HlfnCu
8
-+ Y - O r - X 94 @4 1<
KO( n+1rn) Kl(ynln) . Ko((nrn) Kl(un+lrnﬂ /n+lrnDn ? (19)

and

A .y _ .n
Doir = (Io(an+lrn) II(Jnln) Bn+1

(' r ) I ( nil n J OCrH-lrnCn

B

N (Io(On -1 n) K (a "o ) Ko(ahrn) Il<an+lrn)) CL’n'%'lrnDn (20)

rn%l

The denominators have been simplified by use of the Wronskian rela-
tion:

n+l
%lrn) * Il( r,) K ( nblrn)) T« r

3 4
’n+1(lo(oﬁ+1rn) Kl(ah r
n+l o

n l n
We can write Eqs. (19) and (20) in matrix notation;

a =T a
~n+1 ~n+l,n ~n

ail | Tll(n+l,n) Tlg(n+1,n) C, Tll(n+1’n)cn + Tlg(n+1,n)Dn

D, Tgl(n+1,n) ng(n+1,n) D Tgl(n+1,n)cn + ng(nél,n)Dn

(21)

The elements of the 2 x 2 transformation matrix, En+l 0’
2

coefficients of Cn and Dn in Egs. (19) and (20) and are

are simply the

T 1(n+1,n) = (K (o

o) n%J n

o) I <q g ) n+1 Io(anrn) K1<qn+1rn) Oénntl,rm > (22)
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- o . N
TIE(H+1’H) - (Ko(un{l n) K (i r ) ~>Bn+1 Ko(a t ) K (o ‘n41tn ) a1 n
(23)
)
i - . ~ — n Is ~ -~
T'l(nﬁl’n) - (Io<dn+lrn) Il(dnrn) Bn+1 Io(lnrn) Il(Jn+1rn)) “n+ltn
(#h)
and
5n
2;(n11 n) = o(an+lrn) Kl(gnrn) * E;TI-KO(Qnrn) l1<an+1rn)) OCn+1rn

(25)
This transformation matrix gives the relation between the constants in

any two regions not containing the coil between them. It is the same

for regions inside and outside the coil, with the exception that n should

be replaced by n' for regions outside the coil to correspond to our

notation.

Starting from the innermost region (n:l) and going to the second

gives:

[

S

(3

“

s

14

—

!

r

-

(=N e)
[ |

The constants in the third region can be obtained by:

z D 3 - I/ > T 1 \’L > (27}

N
-
N
V]

and the constants in the fourth region by:

T, . . = T T, , T, a, . .
~ ~hyaoss TSR RE e el ¢l (28)

The general expression for the nth region is

&S

T .. . T, T a, . 2
‘ “r?,l"l (9)

::T
n ~n,n-1 ~n-1 n-2 ~5, 2

To make our expressions shorter, we shall define;
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v(n) =1 T .. . T, T (30)

~n,n-1 ~n-1,n-2 R

and when n = k we shall drop the argument. Thus we have

a, and a =VYVa =V iy] - (31)

0
a , = g(nr) _‘311 and gkl = LJ 31! = g [DlJ (55)

where we have made a similar definition:

n') =T T Lo e . T T, 5l
g( ) ~n',n'-1 ~n'-1,nt'-2 ~5t,2r =R 1Y (5h)
and we have dropped the argument when n' = k'. Thus, we can now write

the constants in any region in terms of the constant in the innermost

0
[ ] by means of the
Dy

transformation matrices, V(n) and U(n). We shall write Eqs. (17) and

C
region, a. = [Ol]’ or the outermost region,

21 g1

(18) for the regions on either side of the coil, k and k'. Here we

have r_ = ¢', so that &(r ﬂr') = 1. Also & = ¥ = @ and 3, = B
n n < o} k

k k! k!
= 3

, so that the equations become:
0

CP.I, (r') =B K (¥ )=

o

0

Ck"ﬁolo (ozor' ) — Dk"BoKo (O/Or‘ )+ =, (35)

and

1 4 7 -1 . Al 1] e 1 26
O Iy (ort )+ DRy (ort ) = G Ty (e ) = DRy (et ) - (56)



Using our matrix notation, we can write

>
C, = 73 \; = Vi "31’ =Vv.,C (37)
K k' Pl 1171
D= Vo 6y s (38)
Ckl - UléDl' s (,7)9)
and
Bier = UagPys (h0)

Thus, by writing the constants in Eqs. (35) and (5€) in terms of o and

D , we can get:

1
"

C, [VMT.O(aOr' ) - V}ElKo(aorl )] =D, [UIQIO(Qor! ) — UggKQ(aor' )] , C%
(41)

and

Cl[Vllilmor') VR )] Dl'[Ulgll(uof’) PR )] ()

We now have two equations and only two unknowns. Solving these gives

o) O r! ot
. - [U1211( JFN) UK (G )] Pot (i)
L UooVip — UV i
and
N , oot . 1
o [vi T ) s vk (o )] ot (i)
, = — — 4
! UsoVip — U0V ‘

where the denominator has again been simplified by use of the Wronskian,

and the fact that BO = ao. Now we can substitute the values of the



1%

constants in Eqgs. (4%) and (4h) into Egs. (%1) and (%5) to give the
constants in any region. We can write the Green's function for aany

region inside the coil as

G(n)(r,

zyr',2' ) =

Lor'fm [‘/11(n JEy () + v, (K (O r )] [ULZZ%I (ayr') + U;ﬁa;éKl(aor')]

cos G(z-z' )do .
o [U;zz;;?vl 1 UIZVB]]

(45)
The Green's function for any region outside the coil is

1
G(n Nryz;r',z') =

Lor'er[Ulg(n')Il(oh,r) 1 Ugg(n’)Kl(thrfﬂ [vllll(aor') +—V21K1&%fJﬂ

= cos X(z-z' )d
: N
o [U ooV T UeVe 1]

(46)

Once we have the Green's function, we can get the vector potential
by uging Eq. (ﬁ). The most common type of coil is one of rectangular
cross section, as shown in Fig. 3. We added another region, that con-
tains the coil, and designated it region c¢. For a densely and uniformly

wound coil, the current density J(v',z') is approximately:
I(et,2') ~ a_t (:7)

where . is the number of turns per unit area, and 1 is the current per
turn. Substituting Eqs. (47) and (4%) into Eq. (%) gives the vector
potential for any region inside the coil as
L .
2 (%2
A(n)(r,z) = nCI G(n)(r,z;r’,z') dr'dz"' . (48)

El T
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Fig. 3. Coil with Rectangular Cross Section Concentric with Cylin-
drical Conductors.

Reversing the order of integration and integrating over the dimensions of

the coil gives
ngmo %1n u(z~ﬂl) -~ sin a(z—z2ﬂ[yll(n)ll(an) + VZl(n)Kl(unrﬂ

2
oo (U

A(n)(r,z) =
22V11 7 Y12V21)

X [Ulzl(rz,rl) + Uzzx(rz,rlﬁ do (49)
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where we have defined the functions

) OLorZ
' 1 v M}_‘ oy ' '
T Il(aor Ydr - 5 o T ll(aor )daor
K}
L. A
r'=r, a r'=0a T,
OLor2
1 1 r
== xIl(x)dx = -§>I(r2,rl) (50)
%o o
x=0, r
and
r2 1
¥ L B i
r Kl(ucr Ydr' = 5 K(rz,rl) (51)
rl OLO

vhere ry and r, are now taken as the coil inner and outer radii, and
should not be confused with the outer radii of the first two regions.

The vector potential for any region outside the coil is

o0

n Ln_ [sin o (z-2)-sina (z~22)][U12(n‘)Il(ctﬂr)-l»Uzz(n')Kl (o r)]

1
A(n )(r,z) = - 5
oo (UypVyg — UpV04)

% ({
be [Vlll(rz,rl) + J21K\r2,rlﬂ do . (52)

The region of the coil requires special treatment. To find the vector
potential at a point in the coil region, r, we must add the solution of

A(k)(r,z) for a coil going from r to r, to the solution of
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1 1
A(< )(r,z) for a coil going from Ty to r. The results are

o0

ncluo [s1n a(z-l ) — sin u(Zvﬁzﬂ

Ale) = i a (U

22Y11 7 Y12V21)

r

T T .t "
X [UlZIl(aor) + UZZK](u rﬂ[ 11 lnw ') 4V .Kl(aor ﬂ r'dr
1

Lo

' t 1 '
-+ [Vllll(aor) + V21 l(a rﬂ[ ,l(aor ) + UZZKl(aor ﬂ r'dr'Nda

T
n Tu [Sin u(z—l ) — sin a(z-% ﬂ
- _C o 27
“ aUyyVyq = Upp¥sy)
)
r, r,
X UlZVll l(a r)I (u r'r'de’ + 27 21 l(a r)K (u r'Yr'dr'
1 ‘1
r r,
' 1 [ ' ' '
12 21[1 (o r) Kl(aor Yr'dr' 4 Kl(aor) Il(aor )T dr]
vy T
r T,
1] 1 \] “ ] vd_v] . 53
+ U22V11 [ Kl(aor)Il(aor yr'dr' + Ll(uor)Kl(uor dyr'dr da - (53)

I‘l r
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We shall use the definitions given in Egs. (50) and (51) for I(rz,rl)

and K(rz,rl), and we shall use the relations

r r

2
1 v v 1 - - [ 1 T
Kl(uor Jr'dr' = - 5 k(rz,rl) Kl(uor yridr
g “o r
and
r, r
1yt v A _ v ' '
Il(aor)Kl(aor yr'dr 5 I(rz,rl) Il(aor dr'dr
T o ry

Equation (53) then becomes

n Ty * %in a{z-2.) — sin a(z-2 ﬂ
A(C)(r,z) . .C o 1 2

m

3
ol %y WooVig —UpVoy)

X [UlZVllIl(aor) I(rz,rl) + U22V21K1(u0r)K(r2,rl)

UppVo Iy (e m)R(ry ) + Uy oV, Ky (o ) I(xy, 1%

[sin a(z—zl) — sin u(z~22ﬂ

o

+

r

B

1 1 t
+ Il(uor)Kl(uor yr'dr ] do .

T

r
? 1 1
[ Kl(aor)Il(aOr Yr'dr

(54)
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3

We have shown in an earlier paper~ that the integral of the expression

in the large square brackets is

o0

. 1 o (z~22) -0 (2—21) ‘
5 5 J(r,,r;) J, (ar) [2 —e ° —e © ]da (55)
o0
o o
whare

1 rz
—§-J(r2,rl) = rJl(ar)dr . (56)
a r

Making this substitution gives:

A(C)(r 2y - DCIUO [§1n d(Z“El) -~ sin a(z~22ﬂ[Ulzvllll(aor)l(rz,rl)
? T 2
ace (U V19 7 UgpVng)

+ U22V21Kl(aor)K(r2,r1) + U12V21(Il(aor)K(r2,rl) + Kl(aor)l(rz,rlﬁ]

a (z-2,) - (z-%24)
o 2 I P CTE

m
+~*-§;-J(r2,1l)Jl(ar)[2-— e - e

20
o

We have now determined the vector potential for any region. Once
the vector potential has been determined, we can calculate any physically
observable electromagnetic induction phenomenon from it. The particular
parameters that we wish to calculate are the mutual impedance and the
self-impedance of two identical bifilar coils. The mutual impedance
between two coils, 1 and 2, is the voltage induced in one coil by a unit

current in the other:



19

v

jlez = ?[—Q‘)‘
| (1)
1] \}
" I A
MlZ = 55%?17 AL dsz = Ezij» A(l) 2nrdrdz . {(58)
1 ¥
SIS

Since both coils are identical and occupy the same region, we can expand

Eq. (57) and perform the integration over the second coil to obtain

2 ” A ™ 2 -
y ) 2n o 2[1 cos a(lzwllﬂ[ulzvlll (xz,rl)

12 2 2 2 4
(22—21) (rzwrl) aa (U

22Y11 7 U12Vay)
o]

2 T
+ U22V21K (Zz,ll) + 2U12V21I(r2,r1)ﬁ(r2,rlﬂ

o (%,=2.)
i m 2 _ o2 17 ]
1 33 35 (e ) [uo<9,2 1) +e 1 Yde . 59
O
The coil impedance is
A (60
Z = I JwMzz s )

and since the coils are identical and in the same region, Ml2 = MZZ'

If we take the special case where there are no conductors outside the

coil we have [J = 1, the unit matrix. Then U = 1 and U1 = ( s0 that

22 2

Eq. (59) becomes
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2n,u v

Yo 2 21 2
M. = — co: o )| ==k
127 T2 L ye ) 4[} cos (2, Qlﬂ v, < Ty
27 %1 27 “ 9y
6]

—o (Da-L.)

n 2 a, (y=ly ]
+ = J (rz,rl)[ao(ﬁzﬂﬁl) te —1]Y da . (61)
(8]

A computer program, ENCMUL, to evaluate the integral part of this expres-
sion will be given in a later report. Or, if we have no conductors inside

the coil, we have V = 1, and Eq. (59) becomes

2
2ny U
_ 0 2 - ) 2
MlZ = P )2( - 5 5 1 cos OL(JL2 21) U72 I (rz,rl)
27717 VT & 9% “
0
~0 (&,-2.)
T 2 072 717 ]
+ 373 J (rz,rl)[qo(zz 21) + e 1 do . (62)

a
0]

A computer program, INNMUL, to evaluate the integral part of this

exnression is in the appendix.

Thus, by use of these programs we can calculate the mutual inductance
and coil impedance of coils in a liquid level probe, consisting of multiple
conductors inside or outside the coils. We shall now consider the effects

of the external electrical circuit.

The equivalent circuit of a liquid level probe is shown in Fig. 4.



21

ORNL~DWG 72-6718B

Vg DRIVING VOLTAGE
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Zpy IMPEDANCE OF THE PICK-UP COIL

R, D.C. RESISTANCE OF THE PICK-UP COIL

C; SHUNT CAPACITANCE OF THE PICK-UP CIRCUIT
Rg AMPLIFIER INPUT IMPEDANCE

I LOOP CURRENT

Fig. 4. Simplified Circuit Diagram for an Eddy Current Liquid Level
Probe.

We can write the following set of equations for the voltage drops around

each of the loops in the circuit:

S I R SR I -

Il[RO oC } 12[ G ] v
6 6

(63)

N N I — ~ : -
Il[ wC6J + IZ[ wc@ + R6 + ZD] IB[JMMJ 0
(64)

— 1 |4 1|3 S I I R I =
IZ[JmM] + IS[ZPU + R7 wC7] 14[ wC7] 0
(65)

S S — =

13[ wC7] + 14[ wc, * R9)
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We can use determinants and solve for the current in the final loop,

IM’ produced by an applied voltage V

o
S D T N
Ro wC6 wC6 v VO
-%—- ;Ei~| R, + 2, = juMt 0
(98] 6 €N 6
N o ] A
O juM Zpu RT ol )
(
0 0 ~%— 0
)
7
I, = (67)
_ 1 N - .
R O G
0 LQC6 (UC6

—J—-— ———‘J—" ] . -4- — T )
wC, c, TR T4y Jut .
6 €
0 — juM Z + R — L —i“
NuCr wC
pu T ¢ Yo
U O .__.1.._. ::_l 4 R
AC( wCY 9

We shall solve for the current, IZLJ multiply it by the resistance R, to

9

determine the input voltage to the amplifier, and then multiply by the

amplifier gain G to determine the output voltage:

Mva<G {[ h.L] - f;[ -.L?.]
v = = _,_!_._ . R — —] WM R -
out LbC6C,.( O (L C6 ,‘} \‘uC,
+ {[R - C l [ZD - R6 - é] 4 - 19 }{[RQ — H[ZPU 4+ R - _é__] + 91
o e (el T
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Rearranging terms so that Eq. (68) clearly remains finite when the

capacitance goes to zero, we find that

2

o s o4 . PR
Vout = JmMVORgG -{;wC6RO 3)(wC7R9 jrw™

+ [(wC6RO — 1)z, + R —~jRJ [(wC7R9 ~ )@y + R — jRg]}'. (69)

From Eq. (69) we can calculate the phase shift between the voltage
driving the eddy-current probe and the amplified voltage received by the
phase shift detector. Since the driver coil and pickup coil are in the

same region and are identical, we have

JulM = 2, = Zp. (70)

where M will be given by either Eq. (61) or Eq. (62). To evaluate Eq.
(69), there is a computer program, ATTEN, which calculates the magnitude

and phase of the output voltage for various values of the terms in Eqg.

(69).

The circuit parameters, Ro’ C are values that may be

6° R9, and C7

varied (within certain limits) with an external plug-in attenuator.

The attenuator, when properly chosen, has the following effects:

(1) The phase shift due to. temperature drifts cauging
variations in the dc resistance values of R6 and
R7 can be essentially eliminated.

(2) The L-C network in the driving and pickup circuits
in Fig. 4 and the mutual coupling between the cir-
cuits combine to act as a band-pass filter that
reduces the noise in the instrumentation.

(3) A reduction in sensitivity occurs and the phase
shifts due to variations in the other parameters
increase. However, these effects can be made
negligible 1f the attenuator is properly designed.

The attenuator design will be considered in greater detail in the next

chapter.



5. COMPUTER CALCULATIONS FOR A PROBE INSIDE BISMUTH

The type of liquid level probe analyzed in this report is shown in
Fig. 5. It consists of a long bifilar coil inside a molybdenum con-
tainer. The drawing is symmetric about the coil axis, so only half of
the probe is shown (in cross section). The probe is placed inside a
molybdenum cavity, and the level of the molten bismuth in the cavity
can be measured. A current flowing in the driving coil produces an
electromagnetic field that is modified by the presence of the conductors.
The pickup ceoil detects this field. TIn the design of this probe, we
used the following procedure. We first maximized the sensitivity of
the probe to changes in liquid level, then minimized the effects of the
undesirable variables such as temperature drift, and [inally maximized

the sensitivity to error ratio.

ORNL-~DWG 71-9737
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Liquid Level Probe

Fig. 5. Liquid Level Probe Inside Conductors.



We first calculated the magnitude and phase of the voltage out of
the pickup coil for a current flowing in the driver coil. The driving
impedance and pickup amplifier impedances are both taken to be infinite.
In Fig. 6, we show how the magnitude and phase of the voltage, with and
without bismuth, vary as functions of the wall thickness of the molybdenum
container. The bismuth region is taken to be infinite, since the outer
container has a very small effect, and was not considered in the pre-
liminary calculations. Also, the molten salt is equivalent to air as
far as resistivity is concerned. As the wall thickness is increased,

we see that the phases with and without bismuth cross, indicating that
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Function of the Wall Thickness of the Molybdenum Container, With and
Without Bismuth, at 10 kHz.



with a wall thickness of approximately 15 mils, there is no change in
phase as the liquid level is varied. As the wall thickness is increased
further, the curves of phase with and without bismuth become quite far
apart indicating that there will be a large phase shift as the liquid
level is varied. The phase difference approaches a maximum at approxi-
mately 47 mils and then decreases again to zero as the curves cross at
142 mils, approach another maximun: separation, and then cross again.
The behavior of the magnitude curves of the voltage is very similar,
with the curves crossing and approaching a maximum and then crossing
again. The first maximum, which is not shown in Fig. 6, is the largest
and occurs at zero wall thickness for both the magnitude change and

the phase shift. Since this is impractical in our design, we eclected
to concentrate on the second maximum. The value of wall thickness at
which this maximum occurs is also a function of frequency. 1In Fig. 7,
we have a very similar plot of magnitude and phase of the pickup coil
voltage as functions of the container wall thickness, with and without
bismuth, at a frequency of 20 kHz. Figure 6, which was run at 10 kHz,
is very similar to Fig. 7, except the values of wall thickness for
maximum magnitude and phase change are smaller at the higher frequency.
At 20 kHz the wall thicknesses for maximum phase and magnitude change
occur at Z7 mils and 80 mils, respectively, compared to 47 mils and

110 mils, respectively, at 10 kHz.

In general, we are able to plot optimum wall thickness for maximum
sensitivity against frequency, as shown in Fig. &. 1In Fig. 8 we have
optimized the wall thickness for the maximum phase shift, and the
amount of phase shift we get at optimum is also plotted against the
frequency. Because the curves are rounded, it is difficult to exactly
determine the optimum wall thickness for a given frequency. The shape
of the curves varies with coil size, so we made similar plots for opti-
mum wall thickness for maximum sensitivity to both magnitude and phase
changes vs frequency using different size coils. A composite of these
plots for phase shift is shown in Fig. 9. From Fig. 9, we concluded
that a liquid level probe with a wall thickness of 30 mils would have

adequate sensitivity. Once the wall thickness has been fixed, then we
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can determine the optimum frequency for maximum sensitivity and the sensi-
tivity at that frequency for any size coil. In Fig. 10, we have optimized
for maximum phase shift, and we have made similar plots for maximum ampli-
tude change. From this plot we decided that we would have adequate sensi-
tivity if the coil form OD was 0.725 in. With this size coil aperated at
a frequency of 16 kHz, we have 0.18 radians or approximately 10° phase
shift as the liquid level is varied from full to empty. While this is

not the most sensitive configuration, the sensitivity is much more than
adequate, and the compromises made thus far insure a good inexpensive
mechanical design. We shall now turn our attention to minimizing the

drifts.
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In the calculations to minimize drifts, we included the outer molyb-
denum container as shown in Fig. S. We assumed that both the coil sheath
and the outer container were infinitely long; the coil was actually 13.625

in. long.

The major contribution to drifts is the wide range of operating
temperature of the probe. The temperature contributions can be broken
down into the following:

(1) There is a change in the ac field due to changes in the
resistivity of the molybdenum and bismuth. This causes
a change in the self-impedance of both the driver and
pickup coils and the mutual coupling between them.

(2) There is a change in the dc resistance of both coils.
(%)

Thermal expansion of the coil and conductors also
causes a change in the impedances and mutual coupling.

We shall consider each of these factors separately.

In Fig. 11 we have plotted the phase of the voltage of the pickup
coil against frequency for various temperatures. We can see that these
curves intersect at a certain frequency, which means that tle tempera-
ture coefficient of the phase is essentially zero at that frequency.
These zero temperature coefficient points occur at approximately 25
kHz for the case in which the liquid level probe is empty and at about
30 kHz for the probe being full of bismuth. More exact calculations
with an external circuit attached to the probe for an operating fre-

quency of 24.000 kHz are shown in the table below.

Table 1. Calculated Phase Shift Values (in Degrees)
with Bismuth and Air at Several Temperatures

Temperature (°C)
550 600 050 700

Material

Bismuth 1,55 1.39 L1.hg 11.58

Air 5075 50,58 50.52 50.535
- - - -~ - - - -
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Io the temperature range of particular iaterest, 600° to 650°C, we have

chosen our parameters so that we have exactly the same positive slope

of phase with temperature (%D.O6°/EO°C)
(-0.06°/50°C) in air.
ture coefficient, and it is expected to

the probe being half full.

coelficient is equivalent to +0.001% in.

measurement .

Similar calculations were made for

voltage, but there is no frequency at which

with temperature changes.

This worst case

in bismuth as the negative slope

These two end points represent the worst tempera-

decrease to zero for the case of
of the calculated temperature

/°C error in the liquid level

the magnitude of the pickup coil

the magnitude remains constant



We next considered the variation in phase due to changes in dc resis-
tance of the coil. As we discussed earlier, a value of capacitance and
resistance in the driving and detecting circuits can be chosen that will
give essentially no change in phase as the dc resistance of the coil is
varied, and will also act as a filter to reduce the system noise. However,
when the R-C network is adjusted to give exactly zero temperature drift
with the bismuth present, it will not give exactly zero drift with the
bismuth absent. Therefore, the network is adjusted to give small drifts
of opposite signs in the two cases. But the more we filter to reduce
system noise, the greater these small drifts become. 1In addition, the
phase shifts due to variations in the capacitance and resistance values
in the circuit fncrease as we reduce the system noise. Therefore, we
must compromise between the system noise and drifts. The following table
summarizes the drifts between 600°and €50°C, using 56.% ( for the series
resistance of the driver circuit and the shunt resistance of the pickup

circuit and %830 pF for the shunt capacitance.

Table 2. Summary of Phase Shifts Due to Variations
in Variocus Circuit Parameters

Variation Phase Shift

Parameter Varied in Parameter
o (degrees )
(%)
Driver Coil Resistance 10 0.002
Pickup Coil Resistance 15 0.002
Briver Shunt Capacitance 1 C.008
Pickup Shunt Capacitance 1 0.008
Driver Circuit Series 1 0.00h

Resistance

Pickup Circuit Shunt 1 0.00h
Resistance

Operating Frequency 0.1 C.001

The phase shifts given in Table 2 are the absolute maximum values

that occur anywhere in the temperature range with or without bismuth.
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The final contribution to dirfts that we considered was thermal
expansion of the system. TIncluding thermal expansion effects, a tempera-
ture variation from 0G00° to &50°C caused a 0.05° difference in the phase
change between the two temperatures, which can be compensated for with
a small frequency change.

Additional information on the design of this probe is given in

)y
other reports.

. MEASUREMENTS ON LIQUID LEVEL SYSTEM

Three different sets of measurements have been performed on the
liguid level probe. The first set of measurements was performed at a
frequency of 10 kHz and at room temperature. The primary purpose of
these measurements was to test the linearity of the probe, and the
second purpose was to check the accuracy of the calculations. The
probe consisted of the coil enclosed in a molybdenum gheath, but with-
out any outer molybdenum container. The bismuth was rveplaced by 12
rings of Inconel, each machined to 1 + 0.010 in. thick. The phase
shift was recorded to within 0.01° as the rings were added, simulating
an increasing ligquid level. A least-squares fit was made of the phase
shift vs thickness, and the maximum deviation of any reading from a
gtraight line was 0.002° or 0.011 in. The measured slope of the line
was 0.599°/in. compared to the calculated slope of U.bjlo/inm There-
fore, we concluded that the probe was extremely linear over at least

the first 12 in. of level.

For the next set of weasurements, a prototype liquid level probe
was constructed by persomnel of the Chemical Technology Division, and
joint experiments were performed with them. The prototype was essen-
tially identical to the one shown in Fig. 5, exceplt that the outer
container was made of carbon steel. The carbon steel outer container
has no effect when the probe is covered with bismuth, but decreases
the phase reading by approximately 1/2 a degree when the probe is

emply.

I

L. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 12, ORNL-TM~-3775 (in preparation).
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The measurements were made at a frequency of 27.7 kHz for various
levels of bismuth and at various temperatures between 550°C and 700°C.
The results are plotted in Fig. 12. The phase shift is a linear function
of liquid level over a range from zero to about 13 in. The slope of the
curve varies slightly with temperature, with the minimum temperature

coefficient occurring between 600°C and 650°C.

The temperature coefficient of the level reading was 0.009 in./°C
for the chamber empty and 0.0024 in./°C for the chamber full of bismuth.
The higher temperatuvre coefficieat with the chamber empty was probably

due to the ferromagnetic outer casing.

A series of more accurate calculations, consideriag more different
parawmeters, showed that more accurate measurements could be made at 2h

kliz for the temperature range of 600°C to 650°C. The level in the probe
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wag set at the maximum, determined by the amount of bismuth in the system
at the time. The manometer reading indicated 1O in., but later measure-
ments indicate that the actual level was about 13.5 in. Table % shows
both calculated and measured values of magnitude and phase. The actual
calculations were made with the probe either full or empty of bismuth,
and the 10-in. calculations represent a linear interpolation between zero

and 1%.625 in. of bismuth.

The resistor values are those of both the driver series and the pickup
shunt resistances, and these can be varied to achieve a "fine tuning"” in
the temperature coefficient of the probe. The phase difference is the
phase at the lower temperature subtracted from the phase at the upper
temperature. In the ideal case, the phase shifts between 600°C and 650°C
would be equal but opposite in sign with the probe full and empty, as
shown for the calculated values using 36.3 (. However, the measured
phase difference was +0.12 rather than +0.06 calculated for the 10-in.
level. By increasing the values of the resistors in the attenuator, we
are able to decrease both the calculated and measured phase differences.
The best value of resistors to give minimum drift would probably be
slightly larger than %6.3 0. The level was also varied using the 75-0
resistors in the attenuator. The temperature coefficient of the phase
varied from +0.0028°/°¢C (+0.00%2 in./°C) with the chamber empty to 0.00°/
°C with the chamber full. By decreasing the value of the resistors, it
should be possible to obtain a temperature coefficient of 10.0016 in./OC
with the chamber empty, -0.0016 in./OC with the chamber full and zerxo

with the chamber half full.

The calculated slope at 600°C was 0.84%°/in. compared to a measured
value of 0.866°/in. Part of this error may be due to the fact that the

magnetic permeability of the outer container is only approximately known.

With the information gained in these measurements, we will be able
to calibrate the probe used in the loop with an outer container of molyb-
denum, as shown in Fig. 5. The lower calibration point for the probe
can be obtained before bismuth is ever added to the system. To get the
upper calibration point, the bismuth level must be raised over the top

of the probe, and the phase reading recorded. If 0.40° is subtracted



Table 3. Calcuiated and Measured Vaiues of Magnitude and Phase with
Different Temperatures and Different Attenuator Values
Tem 36-3 2 I 121 9
(ocp\' Resistance 10 in. 10 in. 10 in. 10 in. 10 in. 10 in.
/ Bi Air Calculated Measured Bi Air Calculated Measured Bi Adr Calculated Measured
550 Magnitude 1.36 1.53 1.45 1.64 1.45 1.32 1.49
Phase 41.36  30.76 45.88 L0.88  30.25 L5.7h Lo.y(  29.92 L5.55
Phase +0.0%  -0.17 +0.01 +0.16 -0.01  -0.22 -0.0% +0.0k -0.0k  -0.24 -0.06 0
Difference
600 Magnitude 1.32 1.51 1.43 1.64 L.hy 1.32 1.51
Phase 41.39  30.59 L5.0L L0.87  30.03 L5.78 40.5%  29.68 b5, 55
Phase +0.07  -0.07 +0.06 0,12 +0.02  -C.10 +0.02 +0.03 -0.01  -0.1k4 -0.01 -0.06
Difference
650 Magnitude 1.7 1.h7 1.40 1.63% 1.41 1.351 1.52
Phase 41,46 30.52 46.16 L0.89  29.93 45.81 40.52  29.5k 45.5%9
phase +0.13  +0.02 +0.1h +0.0% .09 -0.02 +.09 -0.07 +0.06  -0.05 +0.06 -0.1%
Difference
700 Magnitude 1.2% L.k 1.38 1.63 1.38 1.30 1.5k _
Phase 41.59  30.54 L6.19 40.98  29.91 Ls.7h Lo.55%  29.k4g 55.36
Magnitude = volts rms x 10_2; Phase = degrees; Phase Difference = upper temperature--lower temperature.



57

from this phase reading, this gives the value of the phase when the liquid
level is 13 in. The phase will be a linear function of the bismuth level
between O in. and 13 in. During the nine months of testing of the probe,
the zero point appeared to move, but the slope was essentially constant
(within 1.4%). Therefore, by assuming a constant slope, it is possible

to recalibrate the probe by raising the bismuth level over the probe.
There was a considerable amount of corrosion in the loop which probably

accounted for the shift in the zevo level point.

A passive RLC phase calibrator was constructed to eliminate instru-
ment variations. It gives two measurements of the instrument gain (slope)
and two independent measurements of the zevo peint. The loug-term sta-

4 O

bility of the calibrator is approximately 0.0]

Additional information on the linearity tests,5 the initial measure-
P

SH . . .
ments ~ in the test loop, and the final measurementsT in the test loop

are given in other reports.
5. SUMMARY AND CONCLUSIONS

The problem for a coil either encircling or enclosed by an arbitrary
number of conductors has been solved. Accurate and versatile computer
programs have been written which numerically evaluate these solutions.
Good agreement has been obtained between the calculations and emperiments.
These programs have been applied to design very accurate liquid level
probes even though we are looking through a good conductor (molybdenum)

and measuring the level of a poor conductor (bismuth).

5L. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 1%, ORNL-TM-3776 (in preparation ).

bL. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 1k, ORNL-TM-LO1& (in preparation).

TL. E. McNeese et al., Engineering Development Studies for Molten-
Salt Breeder Reactor Processing No. 16, ORNL-TM-L020 (in preparation).
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APPENDIX A

Computer Programs for a Liquid Level Probe
Inside Coaxial Conductors

L. INTRODUCTION

This computer program is used to calculate the normalized coil imped-
ance of both the driver and pickup coils of an eddy-current probe, sur-
rounded by multiple coaxial cylindrical conductors. The programming
consists of a fundamental subroutine named INNMUL, which is called into
execution by a main DRIVER program. INNMUL branches to eight other new
subroutines during execution. TNNMUL itself is adapted from an earlier

program in the BASIC language.

The FORTRAN-IV computer language is used, with REAL*E& arithmetic, on
the IBM/360 computers. New work was done to carry out the needed calcu-
lations with sufficient accuracy in the case of a "thin" region among
the conducting media. In connection with this, some special subroutines
were also developed for the calculation of the necessary modified Bessel
functions, with accuracy of at least 15 significant decimal digits for

real arguments, and 10 significant digits for complex arguments.

An outline of the program follows, with discussion and program listing
of each separate routine. The eight subroutines required by INNMUL are
named XIINT, XJJNT, GAMCAL, GCALC, MODBES, CMDBES, COMKB, and CMI. They
are needed for integrations of le(x) and xIl(x), for calculation of the

gamma factor, and for the modified Bessel functions.

TL,ast an interactive program will be given for generation of the data
block file, which must be submitted with the program for execution on
the IBM/360 computer. This program, named TELINC, is stored on the PDP-10
disk, and may be used from the teletype to prepare the daia in the neces-
sary format for the DRIVER. The data could, of courge, be set up for

execution of the program by any other convenient method.



IT. DESCRIPTION OF INNMUL

A. DRIVER Program

The DRIVER wmain program reads the data for the cases to be executed
by the INNMUL subroutine. After receiving the data and making preliminary
calculations if necessary, the DRIVER then branches to INNMUL. After the
calculation of normalized coil impedance is completed by INNMUL and its
other subroutines, then the DRIVER program prepares a summary printout,

showing data and results.

Data must be given to the DRIVER program for the coil dimensions, fox
the air normalization factor, and for information about each conductor

outside the coil. The inner radius, the relative permeability, and

" HRp1
the value of the quantity wuo¥ are needed for each conductor.
m

o]
The DRIVER program is written to receive the quantity, wud?ﬁ, in any

one of three different ways. First, the value of the gquantity may be
given directly for each conductor. Second, the factor ¢ may be given for

each conductor. In that case, the permeability, p, is br x 10 ' x PREL”
Then the operating frequency also is given in order to obtain w for the

¢coil, and ¥ , in meters, is either given or calculated for the coil.
’ m

Third, the resistivity, o (u-cm) may be given as data for each con-

&
ductor. The relation between p and 0 is given by: 0 = 1OL/p. Then the

s )

quantity wpdfﬁ is calculated as 0.509%9790 x freq. x T x “REL/D' The
constant is a product of conversion factors = (27 )(0.0254 )(kr x 10){10).
Therefore in this third case, the known data must include the driving
frequency (Hertz ), and ¥ (in.), as well as relative permeability. The
details of setting up the data for submission with the computer program

will be given in the last section.

Following is a list of the program DRIVER.



oo

100

coooQao

aaO

105

acoaa oo

4o

PRIGRAM T RUN CASES N SUBROUTINE INNMUL

IMPLICIT KEAL*8 (A-HoUW~-Z4)

REAL*8 LsMUsL1

DIMENSION RHEC10)

DATA PI/ 31415 92653 58979 DO/»CONST1/70.0254D0/
DATA MU/ 4.0D=7/
COMMON/REGION/RCIOIEMCI0) > PERMC1I0) 5 KLIM

FIKST DATA IS READ FUKR THE COIL AND ITS DIMENSIUNS

IAIR=0 IF AIR VALUE NURMALIZATION FACTYUR IS NET GIVEN DATA
IAIRLT»0 F@R THE END @F ANY ADDITIONAL CUILS -~ END OF RUN DAT#
NORMAL=1 MEANS THE COIL DIMENSIUNS ARE NORMALIZED AS GIVEN DAT!
A9=AIR VALUE FACIBR FUOR NORMALIZATION OF COIL IMPEDANCE

MU=MUxPI

PRINT 1

FORMATC(' SAVS')
NCUIL=0

READ 6, IAIR, NG RMAL
IFCIALR«LTQ)GY TO 190
NCASE=C
IFCIAIR«GTQYREAD 35 A9
NCOIL=NC@IL+1

PRINT 2,NCSIL
FORMAT(/6Xs *SUMMARY QUTPUT F@k CYIL NB.'>13)
KEAD 3»Rl1,Ra2sLsL.1
F@RMAT(SD15.8)

KI1I=INNER COIL RADIUS C(INCHES @R NeRMALIZED)

RK2=0UTEK COIL RADIUS (INCHES OR NORMALIZED)

L=LENGTH @F CoOIL C(INCHES BR NJRMALIZED)

L1=DISTANCE FROM B@8TTEM OF COIL TQ £4Z=0 PLANE (INCHES OR NORM.)
IF L1 IS N@T Os THEN L IS DISTANCE FROM TOP 0F COIL T Z=0

L=L-L1
IF(NORMAL «NE«O)GB TO 105

NORMALIZATIUN OF COIL AND COUNDUCTBRS IS BY MEAN CUll. RADIUS

RBAR=(K1I+R2)%0.5D0

R1=K1/RBAR

R2=R2/ RBAR

L=/ RBAR

IFCIAIR«EQ«QO)CALL INNMULCRIRZ2,L,A9, IAIR,ZRESZIMD
PRINT 4sRK1lsR2sL.5A9

FURMATC(6Xs " INNER COIL RADIUS (R1) ='5F15.9/

1 6X,'0UTER CBIL KADIUS (R2) ="5F1%.9/

13X "L XL LENGTH (L) ='5F15.9

3 /714X 'AIR VALUE (A9) =',F15.9)

NEXT SET GF DATA GIVES INFORMATIOGN ABBUT THE C@NDUCTORS
N=NUMBER OF CONDUCTZRS

NeL.T«O MEANS END @F ANY ADDITIUNAL CASES WITH GIVEN COIL DATA
IHAVENM=1 MEANS DATA IS GIVEN FOR EM=2MEGA%*MU*SIGMA*RBARSEO
IHAVEM=0 MEANS EM MUST BE CALCULATED BY THIS FORMULA
IHAVEM=~1 MEANS EM MUST bE CALCULATED FR2M RESISTIVITY



L3

110 READ 65Ns IHAVEM
IF(NSLE-0)GE T& 100
NCASE=NCASE+1
PRINT 5sNCABSE-NCOIL

> FURMATL/6Xs "CASE NU.’»13." OF COIL Né.'5137)
6 FORMATC(4LI5)
KLIM=N+1
PRINT 7sN
7 FORMATC I13s° CONDUCTORS OUTSIDE CUIL'/5Xs ' INNER RADIUS®

1 210X, "M% 8Ks "PERMEABILITY "» 3Xs "RESISTIVITY ")
IFCIHAVEM.GT.0)GO TE 130

EMCI)Y I5 THIS VALUE FOR EACH CONDUCTOR I=1sN

RCIY IS THE INNER RADIUS OF EACH CUNDUCTUR C(INCHES 9R NORM.)
PERM(I) IS RELATIVE PERMEABILITY wF EACH CONDUCT@R

FREG@ IS FREQUENCY 9F THE DRIVING UCURRENT (KHZ)D

GMEGA IS ANGULAR FREQUENCY OF THE DRIVING CURRENT,=2PI¥*FREGXE3
MEAN Co@IL RADIUS RBAR GIVEN WITH DATA IF IHAVENM=0,»NERMAL.NE.O
MU IS PERMEABILITY GIVEN FBR EACH CONDUCTOR IF IHAVEM=O0

SIGMA 1S CONDUCTIVITY GIVEN F@R EACH CUONDUCTZR IF IHAVEM=0

acoaoaoaocaoaaaa

READ 3,FREGQ
IF(NDRMAL s NE«0) KREAD 3. RBAR
IFCIHAVEM-LT-02G0 1T¥ 120
OMEGA=2. 0D3%P I FREQ
CONST={REBARKCANST1 ) k%2
Dé 115 I=1-N
READ 3, RC(IJ,SIGMA, PERMCID

115 EMOI)=UMEGA*MUXSIGMAXCUNSTRPIPERMCI)
Gu Ty 140

NUMBER 0509397903 15 A FRODUCT BF CUNVERSIUN FACTURS,
(2%PI4D3I* 4% PLIAD~TIR(DBI* (= DE54%%2)

QOO

120 CUONST=0.5093979D3%REAR*RBAR¥FREW
D@ 125 I=1sN
READ 35 RCIIsRHBC(LY» PERM(ID
125 EMCI)=CONSTHPERMCII/ARHD CID
GY Ty 140
130 DB 135 I=1>N
135 READ 3, RCIIFEMCIIS PERMCI)
140 IF(NURMAL.NE.O)GE TO 150
BY@ 145 I=1sN
145 ROI)=K(I)/RBAR
150 IFC(IHAVEM.GE.0XG0 T9 160
Do 155 K=1,-N
PRINT 8,Ks REK) 2 EMIKI» PERMCK) » KHE (KD
155 CBNTINUE
Gy T 170
160 L@ 165 K=1-N
PRINT 8-KsRIK)» EMUK)s PERMK)
8 FORMATCI3» 1P4AD15+6)
165 CUNTINUE
170 PERM(KLIM)=1.DO
EMCKLIMI= 0sD0
PRINT 1
CALL INNMULCR1,R2,LsAY>IAIRsZRELZIM)
PRINT 1



180
185

190
11
12

PRINT 9
FORMAT(6Xs "NURMALIZED Cull IMPEDANCE')

PRINT

10

LREsZIM

FORMATC(6Xs "NORMALIZED REAL PART ='s 1PD16.6/
1 6Xs "NURMALIZED IMAG PART =',1PD16.6 2
ZABS=DSURT(ZREXZRE+ZIM*ZIM)

IF(ARE) 18051755180
ZARG=PI*0.5D0

G T

1385

ZARG=DATANCLZINM/ Like?
CBNTINUE
DEGR=ZARGX180«L0O/P1

125 ZABS2 ZARG, DEGK

PRINT
GY TY
PRINT

110
11

FORMAT(6KXKs "END UF CASES
FORMATCITKs "MAGNITUDE ="
1 710X,!
2 /10K,°

PRIN
Slop
END

1

PHASE(RADIANS)
PHASE(DEGREES?

RUN SN INNMUL
1PD16«6s
='Dl16s+6
='"D16.6)

PROGRAM ')
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II. (3) INNMUL
The formula which is calculated by the INNMUL subroutine is the

normalized coil impedance,

U
N Uiz 2
Z, =3 { 6 [l COS(“(Zz"ll))] g Ty
o} 22
o)
~a (L.~ )
T2 (2=t ]
+ 36 J (rz,rl)[a(iz—ﬁl) + e -J]}da
” ~a(£2—2 )

T 2
% J (rz,rl){a(zz-zl) + e — 1] do, (71)

o]

of both the driver and pickup coils in a bifilar coil surrounded by

multiple coaxial conductors.

The quantity
2

2 rll(ur)dr

I(rz,rl) = @

Ty

is given by Eq. (50). It is calculated by a branch to the XTINT function

subprogram. Similarly, the quantity,

T
2 2
J(rz,rl) = q rJl(ar)dr .

B

is given by Eq. (56) and is calculated by the XJJINT subprogram. The
ratio, U12/U22’ or gamma, is calculated by a branch from INNMUL to the
GAMCAL subroutine.
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The XIINT, XJJINT, and GAMCAL subroutines will be discussed separately.

The integrand in the numerator of the impedance formula in INNMUL

-
contains a term with the factor (0L + E L ~ 1), where L = 3? “-ﬁl- For
values of UL less than 0.5, this factor is calculated by the rational

approximation,

L {on)”

QXL)Q 180 o
1 - 9.L i _(_C_X_If‘_l -
3 30

This is derived as a continued fraction approximant from the Pade table

associated with the power series,

(am_lAe—a)/g?;_(l,_iJrig_méz_L_a_)tﬁ )(TB)
‘ o~ % 12 60 360 ot

-
If oL is larger than 20, e L is dropped from the calculation of (0L +

oL -GL .
e — 1). For OL between 0.5 and 20, e is evaluated by the exponential
function subprogram available in the IBM/360 FORTRAN library.

The quantity (1 —'COS(QL) which appears in one term of the integrand

is obtained by the half-angle formula from sin(%%).

The overall infinite integral is approximated in INNMUL for an upper
limit of 16. The average of the integrand is calculated for 100 equally-
spaced points from O to 1. For each of the remaining 15 intervals of
unit length, the average of the integrand for 20 equally spaced points
is used. This has been found to give a sufficiently good approximation

to the integral and is named I7 + jI8 in the program.

At the same time during this calculation in INNMUL, integration is
performed independently on the second term of the integrand to obtain
an estimated air value, named I9. The air value contributes to the real

part of the integral, I7, and is by far the slowest part to converge. We

8Alston S. Householder, A Glossary for Numerical Analysis, ORNL-270k,
pp- T3-Th.




b

calculate the air value in a separate program and give the value as part

of the data to this program, as AY. The air value depends only on the

on the coil dimensions and not on the conductor, and is

R ~(4,4)
N T Jc’(r,-):rl) [@s(gpqzl) e . - 1] do . (7 )
o4 - -

(o]

(This term appears both in the numerator and the denominator.)

Therefore, we can obtain the completely converged real part of the inte-

gral by adding the difference between A9 and I9. The completely con-

verged real part is I7 + (A9-I9). The normalized impedance is

z_ = (7 + A9 — 19 + JI8)/AQ . (75)

A listing of INNMUL follows.
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SUBRBUTINE INNMUL (R13s R2s 1.5 A95 TALIRs ZRES ZIMD

IMPLICIT
KEAL*E L
CYMMEN/R
CAMMON/A
DATA PI/

caLCu
COIL

K1
R2
L
A9
IAIR.
IAIK
N =

#Hou N

SEE I

IFCIALR.

coMPy

IAIR=1
KK=150
PRINT 1
FORMATC(6
H1=0.01D
H2=1+000
19=0D0
G1=0.D0
G2=H2
J9:Oc [B]6]
X=Gl+H1*
Q9=xkL
Q1 =X#xX
Qe=a1*Q1
Q6=G2*ul
L1=R*R1
Z2=X*¥Rr2
S4=KJJINT
IF(N9.GT
FO=Q9%Q9
Gy Ty 11
F9=89-1.
IF(Q9.G1
FO=F9+DE
S4=54%54
J9=J9+54
K=X+H1
IFC(X.LESs
19=19+H1
G1=G2
G2=G2+He
P3=XK+tH1*
PRINT 4>
H1=0.05D
IFCXL.To
Hi=0.1DO

REAL*#8 (A-Hs0~4)
5 17518519,J7>J8,J9
EGI@N/R(IO)JEM(IO)JPERM(IO):KLIM
LPO/Xsd1s02

3.1415 92653 58979D0/s KK/ 50/

LATES MEAN C@IL IMPEDANCEs ZRE + I*41M» FOR
INSIOE CUAXIAL CYLINDRICAL CoNUUCTEKRS

INNER Coli K6DIUS 7/ MEAN CBIL RADIUS

PUTER CBIL KRADIUS / MEAN COIL RADIUS

CUIl LENGTH / MEAN COIL RADIUS

NORMALIZING AIR VALUE REQUIRED FOR INNMUL

NE.1 IF INNMUL IS To BE USED Té CALCULATE A9

= 1 IF VALUE BF A9 IS PASSED T@ INNMUL IN CALL
NUMBER ©UF CONDUCTORS QUTSIDE ColIL

F AIR VALUE HAS BEEN CALCULATED
EQ.1)60 T2 120

TE AIR VALUEC(AZ)

X» 'A'»14Xs "ATR VALUE®//)
0

0«5D0

(Z1s 7.2 KK)

«0«5D0XGE T 110
*O-SDO*((Qg/ISO-DO)*H9+1-DO)/(GQ*(-lDO*Q9+l-DO)/3-DO+1-DD
5

oDno

.20.0D02GY TY 115

APL(~-Q9)

*F 9k pPI

/&6

G2)GY Ty 105
*J2

0«500

A3219

0

15.5D0)G Ty 100



IFCKeLT»199¢5D0)GEY TY 100
A9=[9
KK=50
PRINT 2, A9
2 FORMATC' O AIR VALUE ='1PD15.8)
KK=50
RETURN

INITIALIZE STEP SIZEs UPPER LIMIT. INTEGRALS

[eNeRe

120 N=KLIM-1
Hi=.01D0
HZ2=1.D0
I7=0.D0C
I8=0.D0
19=0.D0

COIL IMPEDANCE- I9=AIR VALUEs I7=RE(Z/J):, 1IB=IMLZ/J)

oo

al=0.0D0
G2=H2
PRINT 3
3 FORMAT(EXs *X"5 14Xs "ATR VALUE'>5Xs "REAL PART',6X» 'IMAG PART'//)

C
c BEGIN LU@FP ON ALPHA, WHICH I3 THE VARIABLE NAMED X
C

125 J7=0.D0
J8=0.D0
J9=0.D0
A=G1+H1%0.5D0

130 Q9=X%L
Gl=X%X
WE=01%al
g6=we*ul

CALCULATIUN @F I AND J INTEGRALS

oo

Z1=X*K1
Z2=X*R2
S3=XKIINTCZ1,22,KK)
S53=53%DSINCO.5D0*4u9)
S3=53+353
S53=83%353
S4=RKJINTCZ 12225 KK)
IFCA9GT«0300) G T 135
Foza9%Q9% 0 500*x( (@97 180+ D0I*09+1.D0)/ Q9% 1DO*Q9+1.D0)/3.D0+1 ]
GO Ty 140

135 F9=w9-1.00
IF(Q9.GT«20.D0) GU TV 140
FO9=F9+DEXP(-09)

140 S54=54%54%F9%P]

CALCULATIUN OF GAMMA C(CONDUCTURS GUTSIDE COIL)

oo

145 CALL GAMCAL(G65GT)

RLCGAMMAY=G6s» IM{GAMMAY=GT

[eNeNe]



150

JT=dT+(S54+G6%S3)/Q6
JB=JdB+SIXGET/ WG

J9=J9+ 54746

X=X+HI1

IFC(X.LE.G2) G TY® 130
I17=H1%J7+17

Ig=HI*J8+18

I19=H1*#J9+19

Gl=u2

G2=G2+H2

P3=X+H1%0.5D0

PRINT 4593519517518
FORMAT(F902s10X23E157)
H1=0.05D0
IF(XaLTe155D0)> GU Ty 125
ZRE= -18/A9
ZIM=CA9-19+17)/A9
RETURN

END



II. B(1 and 2) XJINT and XIINT

These two function subprograms evaluate the expressions,

rl'll'z
le(x} dx

‘url
and

f@rz

xIl(x) dx ,

| )@rl

respectively. These are equal to the values given for J(rg,rl) in Eq. (56)
and I(rg,r]} in Eq. (50). The method of integration in both cases, for an
upper limit not greater than 5, is the summation of a power series expres-
sion until the last included term is less than 10_b times the current sum-
If the upper limit of the integral is greater than %, asymptotic formu-

1as‘ are used in both gsubroutines. 1In general application, we assume in
these subroutines that both limits are nonnegative and the lower limit is

less than or equal to the upper limit on the integral.

An explanation follows for the summation method, which is used in the

case that the upper limit is less than or equal to 5.

For the purpose of explaining the general method of integration, let

£f{x) be any function of a real variable with the Taylor series expansion,

n
© ¢ X
n

=)= 0 ar (76)

n=0

Termwise integration yields

b ii cy (bn+l N an+1)
fx) dx =
Sy (n+1) nt
a
‘oo +1 n+1
_ CR D)
SR ON S cein (1)

w. A. Simpson el al., Computer Programs for Some Eddy-Current
Problems — 1970, ORNL-TM-3295 p. 259 (June 1971 ).
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Introduce a new sequence,

q, = —vM%FEW-, and so on. In relation

to this sequence, our integral may be written as

and it is seen that qozl, ql:b—aJ

This is the series to be approximated.

Recurrence relations may be derived to get the terms of the g-sequence

in the following way. Use the algebraic identity
B — o™ = (aib) ("t — oMy — ™7~ a7 (79)

This gives, with nlq = (brl - an), nlqn = (a*b )(n-1) q__ ~ ab(n-2)! q,_

1 2’

Then division by n! and simplification gives

ab q

q, = [}a+b)qn_l *""zg—%ig],/n . (80)

Similarly, one can start with the identity

D -0 2 - -
bt~ a" = (ag+b2>(bn —a""") —a bg(bn f gt M) (81)
to obtain a second useful recurrence relation,
2.2
a bq
2 2 i 1’1—14- /
Q, = &a +b )qn-Q (n- )(H’B)} /a(n-1) . (82)

In the functions XJJINT and XIINT, the second recurrence relation is used
for n greater than 3, since alternate terms are zero for the power series

-~

of le(x) and xIl(x)-



In order to apply this integration procedure, look first at the

1
power series O for I](x):

2r+1

Il(x iﬁ £;4;—7;%f77~ . (85)

Then
00 2r+2
xI, (x) = 9. ——= (84)
L o 27T (r+1 )}
Let s=r+l,
Eci YQS
xL, (x) = (85)
! ool 277 1(5 1)t st

Let k=2Zs,

o0

K
X (k)
xI. (x) = . 86
1 kg’e Kb/on ) (/200 (k) (86)

(even values only)

In the preceding expression, (k!) has been multiplied into numerator and

denominator, to coincide with the Taylor series

O k

§: “k

k=0

T

Then it is easily seen that the coefficients for an even number k are:

c, =1, ¢ = 3/2, cp = 15/8, with

k!
C poed ~_‘ . 8"
Ko e k2 ) ©0

These even-indexed coefficients are related by Ck4£/ K = (k+1)/k. All

other coefficients, €y €15 €35 G ¢+ o are zero. The same coeffi-

cients hold for

lOH. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics,

p. 574, Cambridge University Press, 1950.
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OI.I'2

le(x) dx

arl

with the exception that the terms are alternating in sign.

The summation method, which is described above, is combined with the
9
asymptotic formulas”, for the case that the lower limit is less than or

equal to 5, but the upper limit is greater than 5.

Listings of XTIINT and XJJNT follow.



oo oD

90

100

105

PUNCTILN XTINTCOX1sX2sKEKD

COMPUTES INTEFURAL FREM X1 T8 X2 bk ¥3T11(X).

FOl X@aLEo5Hs METRLD VSELDL IS

BY SUMMINC A PLUER SERIES EYPRESSTON UNTIL TERE
LAST INCLUDFD TFREREM TS LESS THeN 1.F-% TIMES THE

IvPLICTT
DATA X5 7

FFALFE (p-Msb—~7)
1 043506RDEY
¥5 I8

THE INTECRAL PRE

CHECKE STZE Wik X2

TR (X2 CTebHe Y (e T 300

INTITIALIZE TERMS IN
TFLAG=ED

A=X 1% 500

NO= Ak * P

Pk e H110

g = Pk 2

PPr=pR-p

=R+

Pe=Cxrt

Dok

Gl D=CkFe~D¥{
Pa=CrCelD-Dkppe

=0 500 CCHPA-DFCCL D
C=po+AP

D=kodhp

SUNV=CLL D/ 3.0

Ll 105 K=takk
SUM =T+ S
CNFL=CHO=D¥ 0L /7 OY7D2
TNE3=TNP3+2 L0
T=0NERZTNTS

TEST CeNVERCENCE
TR CT/7 58U
CWl.D=G
C=CiNE Y
p1=ne
Le=Re+k
E=F+2«00
ConTINUE

elTe Tel-83 (&7

PRINT NeN-CeNVER(ENCE

0T b

SV DENENM INATLRS2ETC

LoHio

MESEACE

S .
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FEINT 1okKs¥1,¥257Ts SN

1 FURMATCTOXTINT DID NCT CONVEFCF TN'5 T35 " JREMS '/
1Y Y1 ='IPE1445, " ¥2 =%, 01465, " T='53E12.5," SUM ='5F14e5)
FrINT S0

SIA FLUREMATCY SAVE ™)
STUk

110 XTINT=42.D0 (SUNM+T )
JECTRLAC«ECe OdEETLRN
(e 10 320

ASYMPTLTIC SERTES Fl >XPe(1e5
(CERNL IM=23290, [ere)

300 X¥=¥xg
Tew=1
305 Rrx=1e1iCGryx
PRI EENTOALCAEY - 1T3TeHS 00N F ¥+ 524340 €¢€040034] ¥
1 F 1 e B 04D * X =B8R TE3EEDOIF XY A5 108 40CO NI *EX=C e € 1 RNCISI NYH | ¥
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F3=pP3ADEXP XX LSCET ()
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FUNCTION ¥JIUINT (X125 kKED

COMFUTRES INTECEAL FRENM ¥1 tk ¥2 Ll x*J1(¥)a
FOF X2l Fobs MFTHLD USEL T8

Fy SUMMTING A PLbbR SERIES FrPRESHILN DNTIL
LAsST TNnCuUDED TERM IS LEES THAN teF-& TIMFE

IMFLICIT BFLL*E (A=Y, 0L~7)
DATE BEIP0LPIZCTOTHE 45¢PF NPREESAa 1O/
PICAZCeTESRY E1E33 QTa483 307

CHECK SYIZE wr ¥e
TROXZo LTS LI0Y (b T 306G
INTTIAL TZE TERMS TN SUNMs DENEN INATLRSsFTC.

TRLAC=D
A=X 14 5D0

D= ok

FreXP* e SHC
Re=pk%
IP1=F~A
C=F+f
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=P fa
Cel.D=C¥F2~D*p)
fPaA=CRCLLL-D*) P
D= Ge SLOF (O A=)
C=FRo+hp
D=ReEne
SUV=CLL D310
D1=2. 00
De=€6.00

F=0L2
STCN==1.00
TNF3=51:0

==~/ INE3

FPEGIN SV

D 100 K=tk

Stibv =T+ 50V

ONFEY = ((*C-D¥ 0L DYDY /DE
STON=Z-5TON
TNF3=TNF3+210
T=STONFONFLAZATINER

TEST CLubNVEFRECENCE

TFC(DARSCT/Z7EUNMI LT 10-8) LL Tk 105
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O=CNE W

Di=he

De=Dhe+E

E=bk+2.00

ConNTINUE

THE
THE

S .
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¥1=0.0D0

G TL 9C
P3=¥JINT

x1=11

¥0=11

¥JJINT =L -3
RETULN

END

1.0 -

Tt

16

DECRT (X xR SNty -
(310,315)s 1w

a1

305

CI*DSINCATCY)



II. B(3) GAMCAL

The GAMCAL subroutine is used by INNMUL to compute gamma ratio, UlQ/

Ugg’ which appears in the first term of the integrand of interest in

INNMUL .
It is necessary in the calculations of GAMCAL to have given the quan-
D
tit wy, 0. F d for each conductor. 1In this product ¥ is the
ity, ”ukjk o name Mk’ p o
mean coil radius in meters. The angular frequency of the driving current

is given by w. The other variables Hye and o are the permeability and

k
conductivity, respectively, of the conductor. For each conductor,

o = /o + M,

where & is the variable of integration in INNMUL. Then,

R1(% ) :%/2(012 +m

In(o, ) = 1/2 Mk/Rl(o{k) . (88)

The inner radius and relative permeability must also be known for
each conductor for the calculations to obtain gamma. Caution must be
exercised in the case of a large permeability that the calculations do

not lead to computer overflow or underflow.

The use of the zero-th and first order modified Bessel functions
has been seen in the chapter dealing with theoretical analysis. New
subroutines have been written to secure more significant figures than
previously available in the calculations of GAMCAL. These subroutines,

names MODBES, CMDBES, COMKB, and CMI, will be described individually.

A distinction is made between a normal conductor region and a "thin"

conductor region. = A region is classified as thin if

(rep =)/ mpey 5040
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The elements of the T-matrix at r the outer boundary of region k,

k-1

are

Tll(k,k—l) = ZKO(Z)II(Gk—lrk-l) (89)
e ) g T ey ) Ky (2)

T (ko k-1) = 2K (2 )k, (9 v ) (90)
= (/1) Y Ko@) K (2)

Toy (k-1 = 2L (2)1) (0 7 ) (91)
= (/i) d o me T T ) I (=)

and

T22(k,k—1) = zIO(z)Kl(ak_lrk_l) (92)
Fl e ) 9 e Ko@) I (%)

where 7 = O r . (93)

k k-1
For crossing a normal, or "thick" region, these matrix elements are

computed by GAMCAL according to the above relationships.

However, if the region is "thin", a special procedure is used. In

that case, note that at the inner boundary, r of the region k, the

k)
matrix elements are

T (LK) = o n K (9 7 )T (2+h) (%)
/i) (2h) Ty(em) K @t
Tkl k) = o g Ko(G g 0K (2+h) (95)

= (b /i) (24h) Ko(zh) Ry (o or ),
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Tgl(k+l,k) = @k+lrk10(ak+lrk)11(z+h) (96)

= (/W) (240) Ly(eth) Ty (o gy ) s

and

Top (kb k) = o oy Ty (0 g r K (eth) (91)
+ (Uk+l/uk) (z-+h) Ko(z+h) II(Q£+1rk)

where h = ak(rk —'rk_l). (98)

To cross region k,‘the T-matrix is the product Ek+l,k Zk,k—l $k+1,k—1'
In the following equations we will drop the (k+l,k~l) for convenience.

The matrix elements of the product are then

- B - 2T 1 T - GC
Ty, = Tll(k+1,k) Tll(k,k 1) - 112(k+1,k) Tgl(k,ﬁ 1), (99)
Ty, = Tll(k+l,k) Tlg(k,k—l) + Tlg(k+l,k) ng(k,k—i) s (100)
T, = Tel(k+1,k) Tll(k,k—l) + ng(k+1,k) Tgl(k,k-l) s (101)
and
T, = Tgl(k+l,k) Tlg(k,k—l) + TRE(R+1,k) ng(k,k-l) . (102)

This matrix multiplication yields the following complex elements of the

product matrix:
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T r K (o r ) (2

117 Y Do %t /h k-lrk—l)z[KO(z)Il(z+h) * I()(7”)K1(Z+h)] (103)
+ (pk+l/llk )K1 (O‘k+lrk)11(ak—1rk~l )z (z+h )[Io(z+h )Ko(z) - Ko(z+h )Io(z )]

G X T T O T P TR O 1 LK ()T (40 ) = T (2K (2 )]

" i1 o1 P51t To o Fieey TRy (g m ) () [T (ot Ky (=) + K (e )T, (2],

Top = B Tilo Py 1 )Ty (O 7y g 2[Ry (2)T) (k) + Lo (2 ) (z+h)] (105)
- (Hk+l/“k)ll(ak-lrk-l )Il(akJrlrk)z (z+h)[KO(z )Io(z+h) - IO(Z )Ko(z+h )]
vy PP T T P B T G 5 [ ()1 (i) = 1 ()R (240 )

S CRRTLTRD TS N )Il(ak“:rlrk)(zdrh)[Io(z+h)K1(z) + Ko(z+h)11(z)],

T12 = rxk+lrkKO(OCk+lrk)Kl(ak—lrknl )Z[KO(Z )Il(z+h) + Io(z )Kl (z+h )] (10h4)
(e g/ IRy (O r R (O gy )2 (i )[R (20T () = 1 (20K (240 )]
= (/M1 P F1Ko o 71 5 e 1Ko (O Ly [T (oK (2) = 1 (2R (240))

= (/M1 1P 180 et e K Gy ) () [T (bR (2) 1 (20K, (2 ),
and

T, = ot IO m R (@ v e[R (2)1 (zm) ¢ 1, (2)K, (2+h)] (106)
= Qg /i Ky (O g4y )Ty @y )2 )[R ()T () = T (e )k (oo )]
= 9/ 9% 7 1Ko T P n T @ )[Ry (21 (#0) = I (2K, (20 )]

(/e P 1T 1Ko (G 1B 0T (07 ) (et [T (240K (2) + T (2)K (z+h )]



Note that the functions in the square brackets in each matrix ele-

ment are just four combinations of modified Bessel functions:

G, (z,h) = z[KO(z)Il(z+h) A+ Io(z)Kl(z+h)], (107)
Gg(z,h) = z(z+h)[KO(z)Io(z+h) ~"IO(Z)KO(z+hi], (108)
Gﬁ(z,h) = [Il(z+h)K1(Z) "'Il(z)Kl(z+h)], and (109)
Gu(z,h) = (Z+11)[IO(Z'1"h )K.l (Z) + Il(z )Ko(z-i—h >] . (I]O)

These functions are calculated by a subroutine named GCALC, which will be

described separately.

The matrix elements are, then, in the case of the thin region, n,

Tip = 9y Tk (O m T (0 v )6, (2,h) (111)

# G i R (e 0T (0 ey )6, (25m)

X

+ (p /u L, (J

 1Tn-1 (a rn)Gz(z,h)

n 1t n-~1 n-+ ]rn 0

" (Mn+1/un—_ (n l n- ]IO( )Kl(an+lrn>ch(z’h) ?

n- 1 n-1

Tl° - C{n+1rnKO(an-%»lrn>K1(Oén--lrrvl>G1(z’h) (112)

Nl

/p )K ( rn)Kl(qn~1rn—l)G2(z’h)

Pl
N (Hn/un— n+]rnk0((n+l n n—lrn~1K0(qrhlrrvl)Gﬁ<z’l1>

_—(Hn+1/pn—l n- l n-1 O( n-< l n- 1)K1(Oh+1rn)ch(zih) E
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— ~ . » \G _
Top = Ot T (@ e )T (G g7 06, (2,h) (115)
- /i )T (c ; ~(z
(un+l/Mn)Il(un-lrn“l)Il(On+1rn)Gd<7)h)

+ <Hn/un—1)an~lrn-llo(an~lrn—l)Qh+1rnl0<u

11‘1"11:1'1 )G5 (Z’h)

- (pn+1/un-1)an—lrn-llo(an-lrn-l>Il(ah+1rn)ch(z’h)’ and

TQE = Qn+lrnIO(Qh+lrn)Kl(an-lrn—l)Gl(z’h) (11A)
”‘(Hn+l/un)Kl(an~lrn—l)Il(Qh+lrn)G2(z’h)
"'(Hn/un-l)an—lrn—lKO(an—lrn—l)Qﬁ+lrn10(an+lrn>c5(z’h)

* (Hn+1/pnwlyln—lrn-lKO(an-lrn—l)Il<an+lrn)ch(z’h) )

A listing of GAMCAL follows.
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C
C
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100

105

110
115
120

1

N
\Jt

SURKOUTINE GAMCAL (GAMKE, GAMIM)
IMPLICIT REALXS (A-H, 0-7)

CuMPUTES THE REAL AND TMAGINARY PARTS 6F
DIMENSION TCEY, UG,V F(8), G(R),Z(8)

COMMEN /REGIONZ ROIOLEMOI0) > PERMCOIN) ,KLIM
COMMON /TEMPSY AC39)

GAMM A

THE FOLLOWING KEQUTVALENCE CONSERVES STARAGE

(ZC1Y,A025)), UC1YLAC33)), (V1Y ,A037))
COMMBN ZALFB/ ALFA,ALSO, ALFQ

NREG NUMBER OF CONDUCTORS pUTSIDE CaTL
KLIM ONFE MORF THAN NREG
RCID) INNER RADIUS

EMCID OMEGARMUCTI I« ST GMACT Yk RBARE* 2
PERMCT)Y PERMEABILITY (MDD

ALFA ALFHA, VARIABLE @F INTEGRATION
AL SQ AL F A%k 2
ALFG ALFAR* 4

UC1Y=0. DO

U2y =0. DO

UC43=0. DO

Ue3r=1. D0

A1=DSOERT (e SDOK CALSG+DSORETCALFA+EM1I%%2)))
AZ2=4 HDOXEM (1) /AL

Al = HKECALFACIYY, AZ = IMCALFACTIY)

K=2

REGIN LOZF N REGIONS

Ri=Al*RIK=-1)

RB2=02% KK~ 1)

IF(B2:NFE. 0. DOY G2 10 110

CALL MODBESCRILFC1ILFCI)>FC5) ,FC7))
FO1I)=FC1Y%B1

F3)=F(3Y%RB1

DG 105 1=2,8,2

FCID=0. D0

G Te 115

CALl. CMDBES(BI1,B2,F)

D2 120 I=1,8

ZCIY=F D)

A3=DEORTC HSDOR (AL SO+ DSURTINLFI+EMI(KI%%2)) )
Ad=4 HDOKEMIKY FA3

TF(K. FRL.KLLIMY GO T8 140

CHECK FOR THIN REGION

TREL=(R(K-1)-R(KI>/RIK~1)
IF (TREL.GT« . 1D0OY G2 TB 140

ECUIVALENCE (T LACII)Y s (FC1Y,AC9)), C(BCID,ACTTY ),
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130

135

66

THIN KEGIGN - EVALUATE RBESSEL FNS OF ALFA(K+1)Y®:R(K)

AS=DSORT (e SDOx (AL SO+ DSERTCALFI+EMIK 1) %% 2)))
Aé6=e SDOKEMIK+1I/AS

B5=Ab% R (K)

Bo6=A6XR(K)

IF(R6.NE. 0. DOY G T 130

CALL MODBES(BS»FOIILFCHFCD,FIT))
FC1Y)=FC1)%BS

FC3Y=F(3)*B5

DO 125 I=2,8,2

FCIX=0. D0

GC TO 135

CALL CMDBES(BS, B6,F)

CALCULATE G FUNCTI®NS
CALL GCALCCA3,A4:K, )
CALCULATE FLEMENTS @F T MATRIX AT KK

Cl1=PERMK+1)/PERM(K)
CO2=FPERM(K)/PERMIK-1)

C3=Ce%xCt

Z1=Z (5 *GC1)=7(6)%G(2)
Z22=7(5)%GC2)+7(6)%G(1)
TCY=Z1%F(3)=72%xF (4
TC2YI=Z71%FC4Y+72%F (3)
TCOY=Z1xF(1)-72%xF(2)
TCEI=Z 1R EF(2)+7Z2%F 1)
AEVAGDEIIGDENASDEICTED)
22=7CD)xG2I+7(RI%G(1)
TC3Y=Z1*F(3)=7 2% F4)
TCY=71xFC4Y+72%xFC3)
TCT)=71%FC1)-72%F(2)
TCBI=Z1RF(2)+7P%F (1)

ZI1=7 (% GED-Z XG0 L

VA LV AGDEICIEDE AN EICEGL))
TCI=TCI+CI%(Z1xFCT)-72%F(8)Y)
TC2I=TC2Y+CI% (71X F(8I+7 2% F (1))
TESY=TESY - LI L7 IRk F(O)=-ZPxF(£))
TCEY=TCEY-CI%(ZT1RFCHEIFZ2KFC5)Y)
Z1=ZCTIRGCRI -7 (R8I« G 4)

Ze=7 (IR CCLY+7Z(B)%GC3)
TCH=TCI+CIA (7 1RFCTI-Z2%F(R))
TCH=TCO+CI¥(Z1*kF(BI+Z2%F(T))
TCH=TCTI-CI1+ (2 1% F(D)-Z2%F(6))
TEY=TCRI-CIk (Z1XxF(6I+Z2%F(5))
Z1=ZC1)*C(5SY-Z(2)*% G 6D
Z2=7CIRGEIFZ IR GO
TC=TCY+HC2K(ZIXF(3)-Z2%xF(4))
T2)=T(2Y+ 02k (Z 1% F(Y+72xF(3))
TCOI=TIY+CER(Z1%xF1)Y-Z2%F(2))
TCEY=TCEY+C2%(Z 1R F(2)+Z24FC1))
Z1=7(3)%C(OY~-Z( D *kGCH)
Z2=7C).GIOI+Z(B3I*G6)
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TCRY=TL~C2k (21 F(3Y~-72%F4))
TCY=TC-CPY (7 1XkFCDF72%FC3))
TCH=T(TI-C2k (Z1%F(12-72%F(2))
TRI=T(B)~C2H (Z1RF(2)+Z2%F (1))
ZA=7C1YRGCTI-7C2YRG(R)

A TASDEICICDEYASSENCLOD

TC1Y=TCII+CBR(ZNIRFCII-Z2%F(K))
TE2Y=TC2Y+CIR (715 F(BY+7 2% F T
TCSI=TCS)~CB% (7 1% F(5)=72«F(6))
TCEI=TCEY-CBR(ZIRF(EI+Z2%F(9))
Z1=7 (3% CCTY-7CAYXGIR)D

722703 GRYI+Z (MR GCT)

TC3Y=TCAY-C3R (71 FCTI~7Z2%F(R)Y)
TCHD=TCA)~CBRCZ1RF(BI+Z2%F (7))
TCIY=TCI+C3% (T 1R F(S)~T 2%« F( 6))
TCRY=TIRI+CBR(ZIXF(EI+ZE2%F (D))

UPDATE X AND ALFHA

K=K +2
A1=AD
Ag=A6
Cg Te 160

THICK REGION - CALCULATE BESSFL NS OF ALFACKI®FE(K=~1)

140 CONTINUE
B3=A3%kR(K~-1)
Ba=A4xR(K=-1)
IF(B4.NE. 0. DOY GO T@ 150
CALL MODBESCRI,FCIIF(3)F(SY s FCT7Y)
FC1)=F(1)%xB3
FC3)=F(3)Y%RB3
D@ 145 I=2,8,2

145 F1)=0, D0
Ga T@ 155

150 CALL CMDRES(R3,B4a,F)

CALCULATE FLEMENTS BF T-MATRIX AT R(K~1)

155 P=PERMIK) /PERMK~1)
TCII=F(3*Z () =FODXZ(EI+PR(FITI)RZ (1) -F(RI%7(2>)
TC2I=F (B3I RZ(OI+FCMRZ(OI+PR(FCTIRZCEI+F(BI%7 (1))
TCRI=FID*RZ(TI=FCOKRZ(BY~PR(FLTIRZCBI-F(EI*7Z(4))
TCO=F{(DXRZBI+FCOFRZ(TI-PR(FCTI*ZCD+FIEIKRZ (3D
TIOI=FCIIRZ (O -F(2¥%Z(6)-Pk(F(OI*Z{1)-FCHIKZ(2))
TCEIZFCIIRZ(EI+F(2IRZ (O ~PR(F(SIR7(2I+F(HI%7 1))
TCTI=FCIIRZCTI-FC2Y%Z(8)+ PR (FOOIKZ () -F(HIRZ (£))
TCEI=ZFCIYRZ(EI+F(2YRZ(TI+PRCF (D)7 (4I+FCEI%X7(3))
K=K+ 1
Al1=A3
A2=A4

MULTIPLY TU = V, STORE Vv INT® U

160 CONTINUE
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VDI =TODO*UCD -T2 U2+ T3 UCI) -TC4)xUC4)
VEDI=TCDH* U2+ T2, U+ TR UCAO+TC4) U3
VI3 =TEOY U1 -TCHIRUC2Y+TC IR UCII-TEIRUC L)
U =T« U2+ TCHOIXUCII+TODIH*UCAD+TEIHAUCI)
HECIOH=VC®H
HePy=vea2)
He1d>=ve1)

CHECK FOR M@RFE REGIAGNS
TF(K«LE«KLIMY G& T8 100
CALCULATE GAvMA

TEME=UC4) 7UC3)
DENO=TFMPxRUC4Y+1IC3)
GAMRE=CUC1Y+TEMPxUC2))/DEND
GAMIM=(CUC2) - TEMPxUC1)I/DEND
RETURN

FND
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II. Bgiaz GCALC

This subroutine is used to implement a special procedure for "thin"

conductor regions in the computations of GAMCAL for the gamma factor,
U)o/ U

GCALC computes the real and imaginary parts of the four functions,

G, (2,h) = z[KO(z)Il(z+h) + Io(z)Kl(z+h)], (115)
G,(z,h) = z(z+h)[KO(z)IO(z+h) = 1z )k, (z+h )], (116)
G5(z,h) = [Il(z+h)Kl(z) —'Il(z)Kl(z+h)], and (117)
Gu(z,h) = (z+h)[Io(z+h)K1(z) + Il(z)KO(z4h)]. (118)
In the above functions, z = ot and h = @k(rk »-rk_l) in keeping

with definitions in the rest of this report.

To preserve accuracy in the caleculation of the G functions for h
small compared with z (i.e., a thin region), we expand the Bessel func-

tions at z+h in Taylor series about z:

oo k
Io(z+h) = ég% Io(k)(z)%?- s (119)
© k
I (2h) - k};) S (120)
o k
K (z+h) = k{jo kel (121)
and - Kk
K (2+h) = k};g k, )l (122)

vhere Io(k)(z) " (%Z‘Io(z))k
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Derivatives are needed for these Bessel functions at z. Use at made of

the known relations,

A R e OO (123)
A OERNOET SO (124)
k090G = % V), and (125)
x, Mz) - xy(a) - L () (126)

For k = 1, Eq. (124) is a case of the general relation,

ko (k1) (k-1)

ey - =B ) g ) by (R (127)

2

This can be verified by induction on k. Replace k in Eq. (127) by k+i,
and compare the result obtained by differentiating Eq. (127 ) and adding
1/z times Eq. (127) to the result.

Similarly, Eq. (126) is a special case, for k=1, of the relation

zZ 4

) ) =B Ty g () - Beld g (2D (128)

To continue with preparations to compute the Taylor series, Egs.

(119) through (122), assume

1,0z) = s (2)1,(2) + 1, (2) 1,(2) - (129)

For k = 0, 1, and 2, and using Egs. (12%) and (124), then

So(z) =1, To(z) =0
Sl(z) =0, Tl(z) =1
S.(z) =1, Ty(z)-->.

M. Abramowitz and TI. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, 1965, p. 376, formulas (9.6.27 and 9.6.28).
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To determine four-term recurrence relations for Sk(z) and Tk(z), substi-

tute the expression in Eq. (129) with appropriate k-values into Eq. (127).

(k+1 )(z

First, use Eq. (12%) to replace Il(k)(z) by I ), and the result is

Sy (Ig(2) + 1 (2)1 (%) = -§{§k<z)10<z) + Tk<z>11¢zﬂ

+8y (2)(2) + T (2)1,(2) + Kéi{sk_z(z)zo(z) + T (2)1,(2)] (130

By equating the function coefficients corresponding to Io(z), and also
Il(z), it is seen that Sk(z) and Tk(z) both satisfy the four-term recur-

rence relation

2) = = K N ) o Lk=l) , 3
Sk+1<4) = . Sk(z) 1 Sk_l(a) + - Sk_g(z) . (131)

The same recurrence relations in Eq. (131) can be derived by using direct

differentiation on Eg. (129).

The parallel procedure can be carried out to develop expressions

Pk(z) and Qk(z) so that
W) = B (e) K () + Q(2) K () - (132)

In this case, using Egs. (125) and (126),

P1(2)=O, Ql(z)z -1,
and
1
P (z) = 1,, Qu(z) = — -
Substitution of Eq. (132) into Eq. (128), using Kl(k)(z) = ~'Ko(k+1>(z)

from Eq. (125), yields four-term recurrence relations for both Pk(z) and

Q (z):

k-1

k
P (2) = =2 B (2) + B (=) 5

Pk_g(z) * (153)



o

From the initial conditions, we identify

P (7)

Then Eq. (132) is replaced by
k

KO( )<Z) T

pel

Further, by Eqgs.

Sk(z) and Qk<z) = -

5, (¢) K, () -

Tk(z) .

T (2) Ky (2) - (13 )

(125) and (123),

£, ) - ) 2 — s ) R () T (2) K ()
0 0 k+1 1
and
LGy )y s )t e) T () L (n) -
1 0 K+l 0 k1 1
The expressions in Eqs. (119) through (122) in terms of the Sk(z) and
Tk(z) are:
) = 51 R % o
I, (2 = L 0 (z)ET~: I (z) S (z ET‘} I (z) §: , (135)
k = k
1,(zh) = ég% Il(k)(z)ET": %: e e+ Ty (2) E: T () s
(136)
n) = 3 () ns S s () S (1
Ko(a) = & Ko (= )y = Kole) go 5, (2o — &, (2) kzzjo T (2 ), (137)
[ee] k «@ k k.
€ () = L K, - k() PHENNG RO Z T, ()
(138)

The Gl(z,h) function then becomes, using Egs.

(135) through (138),



© S . (Z)hk
Gl(z,h) = Z[KO(Z) IO(Z) ggg *E—%r*-~ )L ( ) §:
oo T N ( )hk w 8
s 1,(2) K (2) 1 e MO W COIDY
k=0 k=0
o T (z)h"
< 2k (2) 1, (2) + I,(2) k() Y o
k=0
o T (2 )hE
Gl(Z)h) = E:\ k+i{

k=0

since the expression in the square brackets, the coefficient of the sum

is the Wronskian of the modified Bessel functions. Similarly, we find

o Tk(z)hk
Go(z,kl) = (z+h) 3
- k=0 )
k
0 g)h
G, (z,h) = % E; , and
5 (z)h
Gu(z,n) -z <;3
R
7 o r r
Note that b = 20 = L , which is real.
z ar T
n n-1 n-1

(1h1)

(1L2)

(143)

These computations are performed in GCALC, making use of the four-

term recurrence relations derived for Sk(z) and Tl(z).
<

A listing of GCALC follows.



o

100

105

Th

CHRECUTINE GCALCCAB,N»B1GG)
TMPLICTT REAL*E (A=H,0=7)
COMMON/REGTAN/FCI0),EMCT0) > PERMCI0) 5 KLIM
DIMENSTON BIGG(8)
X=ARE(N=1)

YER*PON=1)

T=RIN) =R(N=1)

XT=T%A

XPXT =X T+

TSR

YPRT =k [A+Y

HE7=T/i(N-1)
BIGGC(1)=1.N0-HGZ
BIGG(7)=1.D0

BIGG(3)=x1
BIGG(5)=BIGG(3)
HIGHCAY=ETA
RIGGCAY=BICG(4)
BIGG(2)=0.D0

BIGG(%)=0.D0

¥K=2.D0
HXERE=+5D0% (XTI -ETAY X (XT+ETA)
HKETM=XT*FTA

T=vyr7¥%

H=14D0/CTRY+X0)

Ve~-[1*T

FMMIMEY

TIM=-F MM N

F MM =

TRE =~ MMRi

SMPPE=1.D0

SRE=1 .00

TMIRE=1.D0

SM2TM=0.00

SMIRE=0.10

5M1IM=0.D0

SIM=0.D0

TMORF =0 .00

TM2IM=0.10

TM1IM=0.00

BEGIN GG BN K

DE 140 K=1,30

Tr=0.D0

T=TREXHKERE -1 IM®HKEIM
IFC(BIGG(3Y «E0C.0.DOXGEG TE 100
TO=TO+DABSCI/BIGG3))
BIGG(32=BIGG(3X»+T
T=TREFHKATM+T IMYHKORKE
IF(RIGG(4)ED.N.DOY G& 16 105
TO=TC+DABSCT/BIGGC4))
BIGGCA)=RBIGL(4)+]
T=0PEHAHKERE =S IM*HKE 1M
IF(RIGG(TIEQ.0.D0X6GE T€¢ 110
TO=TO+DABS(T/B3I6GGCT)I)
BIGGCT)I=RIGGC(T)I+]



100

125

140

5

TESREAHKGTI M3 IMEHKORE
TF(RIGHCEY EN.0.0060 10 119
TOETO+DABS CT/BIGHHI)D
BIGG(SI=HIBGE) +]
FMRE = MMl + L
Fen I msy
MUMITE R GMERE ~F MM T MASME TMASMT RE+F ] Mes 101 MRk Sh
CMMDE RS MO | MEE MM T MES MR RE $5MT 1M -F MLIMESRE - F MRS IM
MMEE T M2 HE =F MM IM&T M2 TP TM T RE+F MLk T8~ F Mk # ik
P MeF MMEERTM2 LMAF MM LMA T MERE*TME Tr~=r MI M) s - F Mrdok T 1
T2 PREAHKORE ~TP T MAHKE Y,
IF(RIGGECLYEN.0.D036E 16 120
TOETO+DABS (T /BIGGECT )
BIGGCE ) =RBIGGCL+T
TaTPRE#HKE TM+ TP IMEHKERE
IFCHIEG(RILEN.0.D006E 16 125
TO=TN+DARSCTARTIGGCRY)
RBIGG(PI=RBIGGCEY+]
=S RE RHKBRE -5P T MERKE 1Y)
[FCRIGGC) WEG.C-002GE T 130
TO=TQ+DARS CE/HBIGGI5I)D
BIGGCS)I=BT1GEI5)+]
T=SPREAHKEG ITMFSP LMRHKERE
TFCRIGHCEY FGL.0.D0360 16 135
TO=T0+DARBSCT/BIGGCED)
BIGG(A)=RIGG(6) +T

TEST CONVENGENCE
IFCINLT1.D=-112GE TG 145
UPDATE FER NEXT YALS

FMME = ejter
FMMIM=RIM
SM2RE=

M RE =5 RE
SHE=SPRE
EMZ2 I M=EMY
SM1IM=51
SIM=s

TMIRE=1THE

TRE=TpPrl

TP Iv=TM1IM

Ty Im=TIM

TIiv=Tr1IM

XK=XK+1 -0

Ta(HKOREAXT ~HK@TMEETADY /XK
HUOIM= (HKOHERETARHKE IMEX 1D /XK
HAQRE =T

SENT INUE

NEN~CONVERGENCE ALAKM

PRINT 1,700

FORMATC('1 GCALC NBT CBNVEFRGED AFTER 30 TERMS-T@="1rL20.93



OO

MULTIPLY BY APPREPKIATE FACTORY

CONT INUE
T=BIGGU3I*XPXI-BIGGC4)*YFET
BIGG(4Y =BIGG(3)*xYPET+BIGG (4 RXPX]
BIGG(3)Y=1
T=BIGG(SY*UU~BIGH(6)*Y
BIGGCEY=BIGG(5)*y+BIGG6 )+
B1GGH)Y=1

T=1DO+HEF
BIGGCTY=T*xB1GGCT)

BIGGCRY =BIGG(®)Y*T]

PrTURN

FND



7

IT. B(3b) MODBES

The MODBES subroutine is used for real argument x to obtain the
modified Bessel funcitions IO(X), Il(x), KO(X), and Kl(x). Rational
Function approximations 2 are used to give Ko(x) and Kl(x) for all
values of z. Similar rational function approximations]“i’2 are used for

IO(X) and Il(x), when x is not greater than 1.

If x is greater than 1, IO(X> and I (x) are calculated by a back-

1
ward recursion system of Clenshaw,'J which uses Chebyshev polynomials.

The accuracy of MODBES using the 360 computer and double precision
arithmetic is at least 15 decimal digits, as checked against the €08

1
tables of Berger and McAllister (unpublished).LL

A listing of MODBES follows.

12
A. E. Russon and J. M. Blair, Rational Function Minimax Approxi-

mations for the Bessel Functions Kp(xj and Ki(x), AECL-3461, pp. 19-L5
(October 1969 ). -

1)Y- L. Luke, Mathematics in Science and Engineering, Vol. 1, pp.
327-29, Vol. 2, pp. 338&-341, Academic, New York, 1969.

1!

'B. s. Berger and H. McAllister, A Table of the Modified Bessel
Functions, University of Maryland, College Park, Md.




oo

R MW —

NoJNa BRNeIENe IR0 I

Na Vo BN o JNe IV N Ble RN e O L A B W I

O D O D \O

W N0 =

S

VOoOXIr0

FVALUATES
FINCTIONS 10(X),

78

I1¢(X),

SURKQUTINE MEDBES(X,BIO,BKO,RI1,BK1)

KOCX)

FINCTION APPROXIMATIGNS GIVEN BY A.

AECL-3461, 0OCT.

1969.

Fe

THE ZEKG-TH AND FIRST-ORDFEK MO@DIFIED RESSEY,
AND K1(X),

USING RATIGNAL
FUSSBN AND J. M.

IMPLICIT

DIMENSTGN ANIQC15),
DATA ANIO 7

DATA

bala

CNIO /

BNTI1

REAL*E (A-H,

127. 73343
190. 49432
E2. 48903
22. 27481
4e 01167
G 50949
Ce 477771

0. 341

0. 19

0.

0

1. 00827
Qe 844
0e 17

D

0

/ 129.94511
181. 31261
69. 39591
16¢ 33455
257145
0« 25755
0. 2399

0. 154

0.7

O.

0

D=7

CNIODC22),

9B 121
01727
27440
92424
37601
33654
874877
63317
24693
HT17383
. 3260
0. 101
0.2

&

32054
51226
27006
T4
« 5135
0. 568
De B85
0. 12
0.
-0
-0,
-0

0

89032
60405
76337
05525
99063
55118
30791
30190
BTS6T
32641
«+ 1119

BN
811
408
241
6223
79 349
399K 2
98174
66012
59 8K
1549 ¢
21050
69726
6HR P8
« 6096
0e 119
58740
24920
30777
1099
87726
16965
13091
38425
29801
73956
33127
. 44977
e 1799
0e 965
0. 35
Qe 104
-0. 23
(1'9
0. 4
~ (e
356
703
3445
2207
47755
Ca672
471K 40
15627
85754
38122
4628 4

1¢15), DNI1Ce2)
D 00,
D 00,
00,
D o0,
D 00,
9 D 00,
14 D-01,
341 D~02,
1137 D-03,
622360~05,
STRI6D-06,
T2769D-07,
12895D-09,
Ba2g80Db-11,
B90R3D-12 /
D 00,
943 D=02,
5665 D-03,
9553 6D-05,
RIK02D-06,
K0812D~-07,
2228 5D=- 08,
36400D~-0%,
67230D-10,
698 32D~-10,
12763Db~10,
333 64D-11,
T9030D~-11,
T4832D~125
60424D-13,
03934D~ 12,
95045D~13,
55447D~-14,

44315D-14,-085%64D-15,
TORTED- 15, 0.8676D~-16/

2 00,
D 00,
D 0D,
D 00,
D 00,
0 D 00,
55 D-01,
219 D-02,
16515D-04,
3098 6D-05,
56389D-06,

RLAT K,



leRoReReNeNe!

o}

o
i

C

9 0. 32 27616 S52023D-0%,
9 Qs 79290 55929D-10,
9 0 «1678 9T728°D~-11,
9 0. 30 95296D-13 /
DATA DNIYT / 0. 97580 06023 26285 9 D 00»
1 ~0s 2446 T4429 63276 3% D-015»
2 ~0. 27 72053 60763 8289 D-03,
3 ~0s 97221 46728 02013D-05,
4 -0 « 6297 24239 63981D-06,
5 - D 659 61142 15424D-07,
6 ~0.96 13872 921942D~08,
1 -De. 14 01140 90103D-08,
8 =0e 47563 16654D~10>
9 O« 51530 65107D-10.
9 Qe 35408 14%5320-10,
9 0 «5102 56407D-11,
9 -0 « 1804 40934D-11,
2 -0 « 1023 59447D-11,
2 -~ 0. 52 67784D~13,
9 O 107 09419D-12,
9 Ce 26 11976D~13,
9 ~0e® 56129D~14,
9 ~0e 4 T1335D-14,0.82924D-15,
9 De T4262D=-15,~0.8045D~-16/

ANTIO AND CNIO AKE CHEBYSHEV CAEFFICIENTS FOR T0(X)> TAKEN #ROI
TABILLE 29, THE SPECIAL FUNCTIONS AND THEI R APPROXIMATIONS,
VBLs 2y BY Yol LUKE, PPe 33K~339.

BNT1 AD DNIt ARE SAME F@R T1(X>, TABLE 30, PF. 340-341.

DATA € /7 0. 39894 22804 01432 7D 00/

IF(Xs Gl 1. D0 GO T 100
XLGC=DLEGX)
T=X*xx2

APPREX. T2 FOR 10 (PG. 28, AECL-3461)

Q= ((T-2, 506497244587 T799D2)% T+ 2. 9865713163054030D4>0% T
1 -1.612813630445819D6 .

P=(( (=1« 641445283729906D0%T-2. 9501 65TE92958840D2)% T

1 =1e 7984434409411 T7TDAY% T+ 30 T333769444534008D5)% T
2 -1.612813630445%1906

BIO=P/ 0

APFROX. 91 FORK 11 (FPGs 31, AECL-3461)

(=0 (l~1.969144862829399D2)%T+1.9141471627499%9D4yxT
1 -8.673265095976894D5

P=((~=9. 015047822548545D0% T~ 1. 16077805181 7119D3)%T

1 =4 463T17T103610666D4)%T-40336632547T988447D5
RI1=P+X/0Q

APPROXe 28 FOR KOC(X) + LNCX) *x T0OCX) (PG 19, AECL-3461)



100

T OO0

oo

80

Oz (T~2« 2RARISTIALTAIBTH2I R T+2: HILOHTIK01733452D4>%T
1 =1.287566524373463D6
P=(((~-3.2722799925747%4D0% T~5. 1 3562053372509 4D2)*7T
1 —2:.5470746867%2375D4Y47T-34 562729 66838K909D5y* 1|

2 -1.492695386K1 649505

BRO=F/s0-XLOGKBIO

APPROXe 50 FOR CI/XYKTICX) -LNCXDTIC(X)=-1/X) (PG 23, AFCL-3461)

O={(T-2.R1439157545387T3D2¥%T+3: 71264298 672067T0D4Y %1
1 -Pe21493748782433CL6

Pz (4. 8127070456578 44D~ 1%T+9.999137356742931D1)xT
1 +7« 1RTO3RL260A0K480DY T+ 1 TTHEIA6TIOS090155D5)Y% T
O H PRI 2A90198 1 3RIDS

F1=XxF/0+ 1. DO/X+XLODGRET ]

FETURN

Xe GTe 1

FXFX=DEXPF (X))
SGEX=DSOKT X))
D=EXPxx SCRX
T=1.DO/X

APPROXe 113 FOR FXPOXIRSCHRTIX)I®RKOCX) (IFGe 375 AFCL=-3461)

=0T+l 723547893760824D2Y%T+3. 2208458101 7810%D3r%1
1 +1.893736T43618128D4) kT +4, T4618367114%535D4)%T
2 +3.8017270208 699900 % T+ 3¢ €6TOS1L6021T7TT09D4Y%T
3 412017603 12%0918204)%T+1.906135146573901D3)% 7T
4 +1.139205640609552L02
Pz (1. 03025999029 4628D2%T+2. 18155695128 444903)% T
1 +1.9273R0O0IRECOST2DMI%xT+5. PTS59P3966621326D4>%T
2 46 TRORBITINLI62336DAYKkTH 4 42344635818569KD4Y* T
3 +1.477324772T17A15D)%T+2. 371138451057 721D3)y%1
4 +1442T7TRE53468551302
BKO=F/C0%D)

APPROX. 136 FOR EXPOXI*SORTCX) &K1 (X)) (PG. 45, AECL-3461)

E=CCCCCCCT+3. 0171037653951 050 1)+ T+2. 2811502839789 670D2)%T
1 +6.730124200199513D2)%T+9. 24605TRT6003073D2Y%T
2 +6.3805T208BRZR4594D2)%x T+2. 24432252468362202)%1
3 +3T6ETETITICTITIRTDIIKRT+L. 36DL2TO59227T63585D0

PO (6982646013142394D-2%T+6.943429490437559D0)* 1
1 +1.016245135256770D2Y%71+5.1902262767T46314D2)% 1
2 +1.207119908800295D3) % T+ 1. 430398225341416D3)%1
3 +2.005826147591565N2)%T+2,986452400790679D2)%7T
4 + 4. 833007694228 656D 1% T+2.958171781643915D0

BK1=P/(0%D)

APPROXIMATIONS FOR EXP(-X)¥SORT(XI*I0DCX) AND
APPRAXIMATE 10(XY> AND I11(X) FOK Xo. GTs}

USING CHEBYSHEV POLYNOMIALS AND BACKWARD EFCURSION SYSTEM
@F CLENSHAW, LUKE, V@L. 1, PP. 327-329.



&1

IF (X.GT.8.D0Y GO TA 115

CALCULATE TO0(X) AND T1(X) USING TEN(X/8)
FOR 1.LTeX.LES8

XOVER8 = X/8.D0
TP= XOVERSx%x2
S = TP + TP - 1.0D0

ALFK = - § - 8§
X = 15
BKFP110 = 0.D0
BKP2I0O = 0. DO
BKP1I1 = 0.DO
BKP2I1 = 0.DO
105 BKIO = -ALFK#RKF1I0 - BKP2IO + ANIOCK)
BKI1 = ~ALFK¥kBKFI1I1 - BKFP2I1 + BNI1(KD
IFK.LLE. 1Y GB Tg 110
K = K-1
BKF2I0 = BKPIIO
BKP1IO = BKIO
BXKP211 = BKPII1
BKP11I1 = RKII
Go TO 105

110 CONTINUE
BIO = BKIO - S«BKPIIO
BI1l = XOVERB%(BKI1 ~ SxBKPIT1)
G Ta@ 130

CALCULATE TOCX) AND IT1(X)> FORK X.GTe® USING TN(S/X)
11S CONTINUE

EQVERX = 8. DO/X
S = E@VERX + EOVERX - 1.D0O

ALFK = ~ 5 - 8
K = 22
BKP1IO = 0.D0
BKP210 = 0.D0O
BKP1T1 = 0. D0
BKPZ2I1 = 0.D0
120 BKIO = -ALFK%BKP110 - BKP2I0O + CNIOK)
BKI1 = -ALFK#BKPII1 - BKP2I1 + DNI1(K)D
IF(K. LE. 1) G2 T8 125
K = K-t
BKP210 = BKP11O0
BKP1I0 = BKIO
BKFP2I1 = BKP1I11
BKP1I1 = BXKI1

GO T3 120
125 CONTINUE
D = EXPXkxCr/ SERX

BIO = BKIO - 5%BKPI1ID
BIN = BIO%kD
BI1 = BKI! - S¥BKP1I1
BI1 = BIi%xD

130 CONTINUE
RETURN
END



IT. B(%c) CMDBES

The CMDBES subroutine is used for complex argument, z = x+iy. Let
R::V/;?f:i;ﬁ be the absolute value of z. For R less than or equal to
8, KO(Z) and K1<Z> are computed by a rational approximation method. This
is done by a subroutine named COMKB. In the same range of R, IO<Z) and
Il(z) are calculated by backward recurrence in a subroutine named CMIL.
Asymptotic series in CMDBES are used for R greater than & to obtain
approximations of IO(Z)’ KU(Z)’ Il(z), and Kl(z). Accuracy is at least
10 significant digits for these functions of a complex argument z, checking
against tables for the Kelvin functions11 (p. %79 and pp. 430-%1), and

also checking against approximate values in ORNL-TM-3%29%5 .-

Following is a listing of CMDBES.



oReRG RS

oo O

SUBROUTINE CMDBES(X,Y>F)
IMPLICTT REALXB (A-H. 0-7)

COMPUTES FC1) + . % F(2) = 7 * 100Z>
FC3) + J % FC4) = 7 % KOCZ)
FOSY + J % FC6d) = 11020
FCTY + J % FLg) = K1C(Z)

GF THE COMPLEX ARGUMENT £ = X + Jd * Y

DIMENSION F(8)
ReDEARTOXEX+YXY)

Cl=x/k

S1=Y/%

PHI=DATAN(ST1/01)
IF(R.GT%.00) GO TE 100

FER HelLE.8 USE RATIGNAL APPREXIMATION FBR KOCZY AND Ki{LO
AND BACKYWARD RECURRENCE F@r I0(Z) AND 11<CZ)

COLL COMKRB(Xs YsBKZRBKZIsBKOR,BKOI)D
FC(3)=BK7R

FC4) =BKZI

FO7)=BKo

Fos)=BKral

CALL CMICXs¥Y>BLZIBI71,BI0R,BIG1)
FC1IY=RBI/ZR

FC2)=H171

FC5)Y=RBI0R

Feedy=nIiegl

GE TS 125

ASYMPTETIC SERIES FEBR ReGTd

100 D@ 105 1=2-8,2
FCi=-12=1.D0
105 FCid»=0.0D0
GEDD=1 D0
T=1.00
ij=1 .00
P=1.00
SIGN=~1D0
V=e125D0/1
G=C1

5=851

LS5=3+1IDINT(20.D0O/1D
D110 N=1,L5
S6=-0DDREDD
S5T=v/p

T=LT#56%T

Vst (4 DO+S 65T
T =0C%7%

FOI) =TI IGN+F (1)
FO32=Ti+F (3>
T1==5%T
FO2)=TT14SIGN+F(2)
FO4y=T14+F (4)
T1=C*U



G
C

C
C

110

8l

FOSY =T RS TEN+ECS)
FC7y=T1+5(7>
T1==540
SCAYETTHDIGN S (6)
FOOY=T1+FC&)
SIGN=-0T06N

D= el
COR=C0nN+e o0

DT o
SR Y
=) el i/

TYewieset 10
ROmL 390 LG Forte D11 ARRTINORSE/T]
ST=1 7033 141737 31550G%57/11

THE ALCVE #ALTGD S ORE 1/50HT 2% 1)
ARG =« DI04

s
C=RGOSCAKG)
ST INCARG)

1

MU b ey RY GOSN CGHTIAZY - d ok L INCEFHIZ

D115 Nz=Ra“,i

Tep CN=1)=C+r () Y
PN = (NG - (=1 )5
FON=-13Y=1

ConT PN

Ce=hernoy)

FEhREINOY)D

VULTIPLY I FNSe BY Soxnx w0 JRY) AND K FNSe By

DE 120 N=is554
TEFONYHC-F (N +H1 ) %S

FONFTY =565 G 1 %0#F (NY %5)
FONY =T
TEF(NH2YHC+F CN+3) 8

FONFEY =0 T8 (N3 R0 —F (N+R DS
Fon+e) =
CONTINI

MULT TELY 2k e O-nDety UNCTTENS BY 7

T (1) =y Ep (3D
FO2)=r (1YY 4+ (287
FC1) =1

T=r&p (3Y-Ykr (4)
FOAY=F(3YEY+F CAdHR
(3 =71

RS DN R AR

(IR

NN

“)

FaoLm

Sl k172D

P/5001 G

STHFEKPC=-ddY)
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II. B(3ci) COMKB

The COMKB subroutine is used to obtain the modified Bessel functions,
Ko(z) and Kl(z), for complex independent variable z = x+iy. The absolute
value of z must not be greater than & to insure that the rational

. , 15 .
approximation ~ method is successful.

A listing of the COMKB subroutine follows.

l>Y. L. Luke, "The Special Functions and Their Approximations," p.
@29 in Mathematics in Science and Engineering, Vol. 2, Academic, New
York, 19€9.




SUBREUTINE
IMPLICTT

CEMPUTES
ZR ISR
BY THE METHGD G
AND THEIR

PDIMENSIEN
DIMENSTON PICNC16),

DATA

L3N0 -

DATA

DATA
1
2
3
4
)
DATA

U W)=

AW -

DATA

TN WD -

DATA

W N -

U AN

DATA

[ S R
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COMKBC Xs Vs BKZI

Realsg (A-H, -7

T HE
FUNCTIGENS

kEAL &
KOCZ) &
Yol.o
APPROXIMATIGNS,

P27ZECL6)
P2ONC16),

P17ECTIE) S

F17E /3%0.D0

& ITMAGINARKY PARTS OF
Kl1Cz)s
LKk »
VEL e 20>

BKORs BKE1 D

SKZY s

THE
WHerk Z = X
THE
PGe 229,
P32 (162
P3ENC16)

G1ZikC16)
GLENC16)

21 59H63945578D 00,-1.91851851852D 00,
22+ 249178172260 U005 -2.34787T8T87T88D 00,
32« 483283T16528D 00,5,-2.531681272509D 00»
> =2« 605790476190 00,5,~2663463947T0390 00,
» 2681273364940 00/
/3%0.00
2 6326530612240 -01»
> 1603550295860 00,
> 2013850415510 00
s 2423K40000000D 00
» 2379812695110 0OG/
F37KE /3%x0.D0

3 -3.4013060544220~025-155555555556D-01,
2~3543721236030-015~-4.254545454550~-01>
2
>

Pe7
1074074074070 OG>
177333333333b 00
2102040516330 00>
2.29216106996D 0U»

=5«305632502310-015-5.702280912360L~01,
~6e326095238100L-015-6.575415995710-01,

2 ~6495539330173D-01/
/3%0.L0

> 1.63265306122D0 00,
> 1.04142011834a0 00,
> TaD3462603878-01>
> DeBEBBO0000000D~-01.
> 4.82830385016D-01/
P1GN /73*%0.D0

017k

-2.62962962963D
m2e069696969697D 00/
P2ON /3%0.D0
s TTTTTITTITITED-01
2 1666666666670 00,
2 2047619047620 00>
5 2425925925926D 00,
s 2393939393940 007/
P3OBN /3%0.D0

4
2
>
P
>

2523809523810

~1.88EEBEEEEEID 005, -2.09090909091D
-2+33333333333D 00,-2.411764705880 00,
005 -2.56521739130D 00
005 ~265517241379D

1.382716049380 00U
De24aa44444440)~01 5
6e89342403628L~01>
S48692684499310-01>»

00,

U

115181818162 00,
1.82352941176D 00
2+130434782610D 00»
2310344527590 00,

> 1.11111111111D-01,~-9.090909090910-02,

»~333333333333D-015-4.11764705882D-01»
»=5.238095238100-015-5.65217391304D-01»
2=6.29629629630D~015-6.551724137930-01»

»=6.969696969700-01/
01N /3%0.D0

> VTTTTITTTITED 00,

» 1.066666666670D 00,

s T461904761905D-01>

2 De92592592593D~-01 >

3 A.BA848484848D-01/

1454545454550 0U»
9411764705880 -01,
6+95652173913D-01»
551724137931D-01>

MU 1k 1eD
+ IxY,
SPECIAL FUNCT

T1GNS

—241142521341790 U0
~242347617T7800 00
~2.57198288727TD 00
~2+659548150960 GO0

ledUlbo2BY26U QU
1906574394461 UG
2175803402651 UU
2e 338882283000 00

-2 e 65643447 4621)~01
-~ 4830982166620 -01
=5.03820515372L-01
~6:7193341260400~-01

1190082644630 00
Bel3U4A49B269%0L 01
6351606805290 -01
S54136741973840-01

-2623076923077p 0O
~2473684210530 00
~£.60000000000L 0OC
~2e677T41935484D 00

1461538461540 00
1.947368421050 00
2.20000000000D 00
2354838709680 00

~2«307T692307690-01
-4473684210526D~01
-6.00000000000L-01
~6e7T7419354839H-~-01

1.230769230770 00
Bea21052631580~01
6.40000000000D=-01
5.161290322580-01



87

DATA C/1.2533141373155D 00/

DIMENSTEN RTEST(S), NTEST(5)

DATA KTEST/ 1.DDs 4.D0s 16.00> 36.D0, 64.00/
DATA NTESTZ 15, 10s 10, 6és 67

C

c FIND NTERMs THE NUMBER 8F TERMS

C i WE ASSUME THE ARGUMENT HAS BEEN CHECKEL T0 ITNSURE THAT KeLkE oY
e

AG6 = X¥kkRZ o+ Y%

D o100 1 = 25 5

1T =1 -1

IFCRSH «LT. RTESTCIY ) Gg 1€ 105
100 CONTINUE
105 NTERM = NTESTCOIT)

C
C INITIALIZE FK-1, FK~-2s AND FK-3 FOR N=0 AND nN=1l
C
FRM3RZ = 1.D0
FKM3RE = 1.D0
PRMIR7 = 100
PKM3KEG = 1.D0
FRM3LZ = 0.DO
FRM3IE = 000
PKM31Z = 0«00
PRKM3IG = 0.D0
H¥ = X*%16.D0
FUMZRZ = (HX + 9.00)2/9.D0
PKM2RZ = (HX + 7.D0Y/9.00
FyY = Xk 3.2D0
FKM2REG = FX + 1.00
PRMPRGD = FKM2RE + «2D0
FKMEIE = Y*3.200
PRMZ2IG = FRMZ210
HY = Y% 16.D0D
FEM2IZz = HY/9.D0
PRI21TIZ = FRMZIZ
HYS = HY#%Z2
T = H¥Y + 25.00
FRMIEZ = (HX*T + 75.D0 = HYS>/75.D0
FRM1I7Z = HY®R(HX + TX>/75.00
T = HX + 23.D0
PHMIR7 = C(HX¥T + 43.D0 - HYS)/T75.D0
PHrM1IZ = HY®{HX + T)/75.D0
T = HX + 21.D0C
FRMIEG = (HXsT + 35.D0 ~ HYE)/35.D0
FRM1IP = HY®R(HX + T)Y/35.D0
T = HX + 27.D0
PRMIRE = (HXCRT + 131.D0 = HYS)/35.D0
PRMITE = HY#s(HX + TI/35.D0
C
C BEGIN RECURRENCE
C
DE 110 K = 3. NTERY
Kt = K + 1
C
C CALCULATIGNSG OF FKRZ» FKIZs PKxZs AND PKIZ FOR N = 0O

C




(@R eNe!

F1

P
P3
a1

HX
HY
T1

T2
K
FK

NG
17

88

P17ECKP)
PEZREIKPL)
P37EC(KF1)
SRWANG SR’
Q1%X
O1*Y
FRKMIRZ + FEMRR7
FKM1IZ + FRM217Z
HX#T1 « PI*EKMINZ - P2%FKMZRZ - HY*TR
= HX*T2 = PlI#FKMILZ - PRFKMZIZ + HY*T1

FKM3KZ = FRM2R/

FKM2RZ

i

FKMIR7Z

FKMIRZ = FKR7

FKM317
FKMZ217

2]

FRM2 17
FRMIIZ

i

FKM117 = FKI17

T
T2
PK

1217
it

KZ
17

PKM1 -7 + PKME2HRZ
PMITIZ + PRMZ2IZ
= HX%T1 - Pl#&PKMIRZ - PZ2¥%PKM2KZ -~ HY*T2
= HX*T2 - PlPKMIIZ - PakirrMzIz + HY*TI

PKM3K7Z = FPKMZRZ
PKM2R7 = PKMIRZ
PKMIE? = PKR7
PKM317 = PRKMZ21Z
PRM2IZ = PKM117
PKMII7” = FK17Z

1
Pe
3
G

F¥
HY
T
Te

FK
FK

1

3

P3¥FRKMEK L
P3*kFKM31 2

P3*PKM3K ¢
F3*¥PKM31 L

CALCULATIGNS @F FKHG, FKIG, PKROU> AND PKIG Fok N = 1

il

Pe
I6

PIONCKPT D

PRONCKF 1)

P3GNIKP1)

DIGNCKPLD

O1%%

D1%kY

FRMIRE + FKM2RO

FAXMIIE + FKM2IG

= HXKT1 - PLRPKMIRG - PR2*FKM2KE HYy#*72
= HA®T2 -~ Pl*FKM1IQ@ - PR*¥FKM218 + HY*TI

i

FXM3RE = FKM2RO
FKMPREG = FKMIKG
FKMIRE = FKRE

FKM31€
FRM210

FKM210
FKM1 10

H

FrM1Ie = FKIG

11
T2
PK
PK

K@
10

PKMIRE + PKM2RG
PKMIIQ + PKMZIE
HX&HTD -~ PIRPRKMIRE - P2¥PRKM2RE HY®T2
HX*T2 - P1*PKM1IIG - P2xPKMZ216 + HY*T1

PKM3RE = FPKM2KQ
PKM2RE = PKMIRG
PKMIRE = PKRG
PKM3I0Q = PKM2I0
PKM21G = PKMIIO
PKMITI@ = PKI®O
CONT INUE

]

P3%FKM3RE
P3*kFKM31w

P3*PHUMIKD
P3*PKM31€



C

C

@RS Re]

C

c

115

120

125

EVALUATE C

C 15

X2 = -

EMX =

X

A
SCUARE RE@

89

PN

oF PI/2

DEXPCX2)

D o= DEARTIRSO)D

cez 3

MX*C 2D

SE = DCBsCY?

DSINCY

b

IFCY.NE.0.D0Y GO TE 120
IFC(XGEL.0.DDY GE T 115

0
¢

D

D

G
GE
GR
HI
Go
CR
HI

Lo B TR T T VS 4}

[

i

b

DO
125
SORTOX)
-0
125

SERTOLK

DEQRTOXZ)

DEORTCLX + DI/2.00)

2 + DY/E.0DO)

IFCYLTA0.DOXGO T 125

HI=-HI

B1I

CAlL.

DEN =
Uk
Vi
BKZR
BRZ

i L ]

Hon

caL

DEN =
LFe
2
BKOH =
BKOL =
RETURN
£ND

<

[

CULATE

FRRZ% %2

ARAUR

BIxUR

CULATE

FRRERRR
PHIEGHFK

AFRUR
BI*liz

Ak = C2%(GR*IR - HI*TI)>
= C2Kx(HI*SR + GR*¥TID

KOC(7) = BKZR + BKzZIx*1

+ FRIZA*2

(PHRRZ¥FKRZ + PRIZHRFKIZY/ZDEN
(PKIZKRFKRZ ~ PHKRZ¥FKIZ)/DEN

- BI#VI
+ AfEV]

K1C7Z) = BKOH + BKgI#l

+ FKIPpkR2
RO o+ PHKIG=FKI@Y/DEN

(PKIGHFKIIE ~ PRROKFKIG) /DEN

- BIxVI
+ AREVI

NT TERM FoR KOCZ)Y AND K147
T
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Ir. B(3cii) CMI

The CMI subroutine is used to obtain the modified Bessel functions,
Io(z) and Il(z), for a complex independent variable z = xtiy. A back-

ward recurrence method is used, which is derived from the recurrence
11
relations (9.£.26), p. 376.

A listing of the CMI program follows.



C
C
C
C
C

C

G
C

C

C

100

105

110

120
125
130
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SUBROUTINE CHMICHsY-BIZR.BIZI.BICK.BIGI)
IMPLICIT REAL®H (A-Hs 0-22

COMPUTES THE REAL AND IMAGINARY PARTS
FUNCTIONS 8F THE FIRST KIND, 10CZ) AN 11C(Z),

BACKWARD BRECURRENCE

DIMENSTON FRE(S2)»FIMS2)
DATA AsB/1.D-3551.D0~35/

CALCULATE No>THE NUMBEY OF TERMS

HEDESORT (X302 +Yk%2)
IF(RLT«7.D02G0 T 100
N=30

G TY 130

IF(R.LEL 600368 T@ 100
IN=5.DOFR=-4.5D0

Gd T 125
IF(RLT3.D03G8 TH 110
N=25

Gg 1@ 130
IF(R.LE-2.D02GE TO 115
ZN=5DO¥R+10.5D0

G T& 125
IFC(RLT1D02GE TG 120
N=20

6@ T 130
ZN=15.D0%R+5.5D0

N=7N

CONTINUE

COMPUTE U AND V., REAL AND IMAG PAKTS

T=Y/X
U=2.00/(THY+X)
Vs =UkT

INITIALIZE

FREN+2)=0.L0
FIMIN+2)Y=0.D0
SRiE=4
FRE(N+1)=4
SimM=n
FIMON+1Y=R
XN=DFLEATND
TNUGZR=KNRL
TNUGZT =X NRY
Ni=N+1

BACKWARD RECURRENCE

DG 135 K=1,N

FRECNU=1I=FRE(NU+I) +TNUDZRAFRECNU) ~TNUGZI4F IMONUD

SRE=FREINU-1I+SRE

oF

oF

THE

277

MODIFIED



[ON PN !

135

FIMONU~1)=FTITMONUFT) +TNUCZIGRF IMONUY TNV L¥e Kb ONUD

STM=F IMONU-1)+5TM
RUREERE |

G/ =TNUE Zr-U
TNUCGZI=TNUCZI-V
CONTINLUE

TN

ADJUST SUmM

SRE=SHE+SRE-FRECL)
SIM=STM+SIM-FIMCL)
TI=S1IM/orRE

=1 .DO/CTIEIM+ELE)
Vi=-U1:#T1

NORMALTZE

E¥=DEXE X))
SY=DEINCY)D
Cy=oCusdy)
FANRE=EXR(CYHUL=-5Y*V 1)
FANIM=EXR(CYXRYT+o w01

92

BI7ZR=FANPERrmE () =FANIM&IMOL)D
BIZI=FANKFERF IMOI D +FANTIVRFRECT)

BICH=FANEF

Bk R (2 =F ey

g

Y

BIGI=FANPEXF IM(2)+FANIMEPRECZ2)

ETURN
FEND
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I1I. EXECUTION OF INNMUL

A. TELINC.F4 Program

We shall give some comments and instructions for the execution of the
INNMUL subroutine. It must be used on the IBM/360 computer because of the

critical importance of the real*8 arithmetic.

The program may be submitteéd with data to the IMB/56O computer from
a user's teletype via the PDP-10 computer. The results of the calcula-
tion may then be stored on the PDP-10 user's disk file to be printed on

the user's teletype.

However, INNMUL and its subroutines are residing on a disk pack,
which 1s a part of the Direct Access Storage of the IBM/ﬁGO computer.
Therefore, the program may be submitted in any other convenient way to the
360, for example, by card job deck. One may also obtain the usual print-

out from the high-speed printer.

When the INNMUL program and its DRIVER are submitted to the 360
computer for execution, the data which are to be processed must be
included in a data file. This data file is read by the DRIVER program
during execution on the 360, and must be in a certain required format,

corresponding to card-columns.

The TELINC.F4 program was written for help to the user in preparing
this data file at the teletype. It allows the user to give the data at
the teletype in free form, rather than spaced out exactly to correct card-
image format. The user types the data numbers, separated by commas, in
regsponse to the program as it executes interactively on the PDP-10. The
TELINC.F4 program then creates the necessary data file in correct format
and stores it on the user's disk. On the user's disk this data file is
then feady to be submitted via the PDP-10 with the INNMUL program and its
DRIVER to the IBM/360 for execution.

A listing of the TELINC.FL program follows. The next section will

be a description of data requirements.



cccaoccccaocaacacoc oG

100

94

PRUGRAM [ PREPAKE DATA FOK RUN IN LUBKRBUTINE INNVUL

T I PossIBlE TU CONTROL pPRINIOUT DUdriINg USE GF

IS INTERACTIVE PrEGiSAM Y urbwsINag "=1' A1 (HE FIxST
rREgURS ] FUR DATA rPRUOM bk TELELYPRe PUKTHERs Ok MAY
TYPeE CuNtiRul "' sl AxNY Tivie Ir THE NEATD MOVE p @ T
jebe lYire 19 ALrk8oy ANUYN BY THiL PhsSON LSING [THE INTER-
AU T IVE PrIekAM. [ ApDITLIoN Ty {rtss IN VERIFYING PLAYED
cAUK Ualas JUsT A <ep> 1S eNausH (v ACUEPRPT T A UK,
AlTAGUl FPIKST TYPING "1' A9 lro INSIRUCTIUNS PROVIOE.

Frvundy (U nECELIVE » mdlM TELETYPEJRIGEK UATA FUr NURMALIZED
VoIl IMPEUDANCE PruonraM I ek paniAle DATA JILL b PREPARED
I AaNgiAeEr PILE T e skAL IN FunMal oY PRObLEN FRDIRNAM.

RUALES LaMUsMUZs il

UALA FI/361419 9265E0/,CONST1/70.0254K0/
DAL1A MUl 4017/

DIMENSTIUN KC1G et (101 PERMOI0) s xHO (1O
MU=MU% P ]

Lr =1}

Wl e CIF Ik, 1)

PURMATC /700« T50r 001 D %)

fYPE 2

Plnbiag ! PirlsalkAaM Pk bhkEAaTING UATa PILE ON USER'T'™S UlsK'/
i’ PO UseE OF SUbRGBUCINE INNMUL ¢ CabuvUbaTe COIL IMPrEUoANUECN)T
27" FOoR CabBE GF A COIL Iosive & Vdok UF SEVERAL CunuiiCTOrs'//
3" Furo oA MINIndh o EXPLICIT INSTRUCTIONS rdin TYPING IN DATAS '/
4° PYps= **'«1''; pgR MURKE EXPLICIE PrINTZUT lYro "'17"'/
S FoLLod Jr ALL I'Yrbo balAa WITH cannlave KelUrN <CKk>"/ )
P! IN rRUREEK TG vExIFY rLAYeL BAUK unlis '/
1t TYPe *'1'' Fell.uwry bY <Cr>» EVERY 1IMEY/
2" ik P LE UATA NEELS T b KELYPED'/Z)

AUk PT 4, LMURE
ForMa 12D

TYPE 3
IrCIMnEeL iU 3@ 10 100
IYrPE 5

PiamAalT( 204, "NOREMALIZou COLL IMPEDANCE PROGRAMS '/
I 164Gl InNsIUE COAXKIAL CYLINURIUAL CUNDUCTBRS 7/
2 12X *PLEASE TYFE IN THE DRATA A3 THREY wilIbLt BE REQUESTEDS'/14aXs
3 "IHE VARIASLES 10 bBE netdlnel Axk ¢ IRST DorINtus*/)

1Yre 6

FURMALC
1! FInst UALA L[S kKedAu rOR OIHE COIL aNuw Ity vIMENSLYNS'/
2" IalReut« 0 MEANS Alr VAL UL MU bl GIVEN AS waATA'/
3 Ialw=u [F ALK vALUL NohkMALLIZATIoN FPACTOK I35 NGT GIVEN DATA'/
4° IAIReLT«0 FORK Itk eND Or ANY ADDITIVUNABL Colls - ENO LF DALA'/
S NUKMAL =1 MEANS I'nb COIL DIMENSIONS ARE GIVEN N@UMALIZES DATAC/
5" A9=AlK VALUJE FACTIEBR r¥nh NUOKMAL IZATION @F COln IMPEDRDANCE'/ZD
FYPE 7

FokiMal ' vAlA SHGULD bl TYPED wlid COMMAS Ty SEPARATE NUMBRERS'/Z)
1 €d TR Y

CONLINURK
NCQLIL=0



105 Tyek 8

& FORMAT (! TYFE IN IAIR, NURMAL'/)
ACCEPT 4, TATHS NDKMAL
IFCIAIREW.0) LAIKR=1
TYFPE 9, IAIRs NURMAL

9 FORMATC? IALIR ="1I%," NOERMAL ='15/)
IfCIMURE-LT0) GO 9 110
fYrPeE 10
10 FPORMAT (! FR VERIFICATIEN OF DATASTYFE ""1°'' rUK Vere '/
i IYPE "'=1"'"" PO DATA 1D bBE RETYFED'/

2" LU THE SAME PRUCESS FOr THE KREST @F THE DATA INPUT'/Z)
110 ACLCEPL 4s iuK
IF CLORLT«0) GV 0 105
ArlITECIFILES 11) LTAIRs NERMAL
11 FORMAT(415) :
IFrCIAaln«LT 0202 18 230

NCASE=0
115 TYPE 12
[ FORMATC! FYre InN A9/

ACCEPT 13509
13 FORMATC(4E)
[YPE 14,A2
14 FORKMAT (" A9 ='"E15.87)
ACCEPT 4, 168K
IFCIUKLT0) GO 10 115
ARITECIFILES15) AY
1o PUrMA (U1 58)
IFCIMOKELT-0) G 18 120
TYPE 16
16 PORVMATCE NEXT DATA IS REAU FOR THE C@IL GEGMETRY ~-'/
1’ RI=INNER COIL RADIUS (INCHES 6 NORMALIZEDY '/
2! RZ=QUTER CBIL RADIUS C(INUHES BiKk NUxMALLZED)®/
3° L=bENGTA 9r Cyll C(INCHES UK NORMALIZED)Y '/
4" LI1=DISTANCE FROM BOTTEM @F COIL 10 2=0 PLANE CINCHES UK N@pMY T/
St Ir L1 I3 NUT Os THEN L I5 DISTANCE FROM [0P OF CBIL TG 7220 '/
[ NURMALLZATTION 98 COLL  AND CONDUCTYUKRS IS5 2Y MEAN CwiLl RADIUS* /)
120 NCgiL=NCBIL+1 i
125 [YPE 17
17 FOxMAT (! TYFE IN Klag25L.0L1%7)
ACCEPT 13sklsReslal ]
L=L=-L1
L1=0.D0
Uri=Rk1
BRZ=RK2
ot =L
TYPE 18sK1skKZslsotl
13 FORMATC GIVEN UDATA R1 ='E15%:8s° K2 ='E15.8s7
15X 'L ="E15968s° L1 ='E15.8/)
ACUEPRPT 4» 19K
IFCiukLT«02 GO 18 125
IF(NORMAL «NE-O)U6 1Y 130
KBAR=(K1+K2)*0+5D0
RI1=R1/7RGAR
H2=s= e/ KBAK
L=L/RBAR
130 TYPE 19.NC@ILs»lsRE,L2AY
19 FORMATC® NORMALIZED DATA FOR COUIL NE«'13," WiLL 5E ‘7



135

21

23

140
24

25

145
26

27

150

96

6Xs "INNER CUIL RADIUS (K1) =',Fr15.9/
6K "OUIER CULL RKADLIUS (R2) ='5115.9/
13K, COIL LENGTH (L) =',F15e9

/14K "SR VALUE CA9) ='5F15.97)
ALUEF I 4s LUK

IFCIKe T Q) GO TQ 125
ALITE (IR ILEs 1D9)YURLISORZ, UL

IFr CIMORE L. I«Q) Gi 1T 139

[YPE =20
rianMmal ¢

1! NeXT Sl ©F UATA ulve S INPORMATIGN Asvyl THE CIONDULDTORS'/
2" NENUMBER OF CONUJCTORS'/
3! NeLTe O MEANS END OF ANY ADOITISGNAL CAsEs WITH GIVEN CRIL DATA'/
4 IHAVEM=1 MEANS DATA I35 GIVEN roRk EMmUMESAXMUKSIOMA*RBARSW "/
S5 THAVEM=0 MEANS EM MUST bE CALCULATED BY IHIS FORMULAS '/
6° IHAvEM==1 MEANS E£M MdsT bk CALUCULATED FROM RESISTIVITY'/Z)
BN Linue

fyvre 21

PsMATC! TYPe IN No IdAvVEM' /)

ACCEPRPT 45 Ns LAavey

[Yre 22sNs IHAVEM

FORMATCY N ="I3,"' 1lHAveEM =' 137)

AULEP T 42 16K

lr CLOKLT«0) wed [0 135

URITHCIFILEs 11)Ns IHAVEM

Ird(N.LE«UYa0 T¥ 105

NCASE=NUASE+ ]

IFCIHAVEMe GT«0XG3 TE 190

IPCIMORESLT0)0QU T 140

TYPE 23

FuKMAa(

1' FREWG IS FrowUENCY OF lde unIvING CURKRENT (KHZ) '/
2" gMEaA I35 ANGULAR P REQUENCY 0OF THE DRIVING CURRENT» =2PI#F REQ*EZ’
37" pMmeEuf Wltl be CALCULATED IN PRPGRAM ¢ xOM FREG GIVEN AS DATA'Y/
4" MAN CEOIL rRADIUS RbARr MUST bE GIveN IN INCHES WITH DATA'/
St Ir IHAVEM«LT0O AND NOKMALNESO' /)

fYFE 24
PORMATC! FYPe IN FREG'/Z)
ALLUERPT 13sFReEW
UM LATZ2. UL BRIP4 REGQ
TYPE 25, F REQs OMraa
FORMATC! FREQ ='rml5e8s " OMREGA ='D15.%/)
ALCERPT 4, 108K
IFCIBKLT«0Y Gl T@ 140
Willte CIrlbts15) FREQ

IF(NORMAL <EW.0) w TO 150

LYeP, 256
FOorMATC® IYPE IN RbAK'™/Z)
ACCEP T 13, RiSAR

TYPE 27»RKBAR
FaMATC!" RbsAk =" 1587
Aol 4,10K

L CLBKel 1o 0) GG [ 145
WRITE (IrllEs15) kopAK

Ir CIHAVEMSL T« GO TG 170
CONST=(RBANKCONS [ 1) +%2

IFCIMBRESLT«O) GO 1¥ 155

I'YPE 28

&N e



LG

28

29

155
160
30

31

170

33
175
180
34

30

185
170
195
36

o7

FORMATC
1'  EMCI) IS THIS VALUE FUK EACH CONDUCTOR I=1 18 N'/
2 SIGMACLY 15 CONDUCTIVITY FOR EAGH CONDUCIGR IF IHAVEM=0'/
' PERMCI) IS RELATIVE PERMEASILLIIY UF EACH CONDUCTGR'/)
TYPE 29

FORMATC

1’ KCOLY I35 bk INNER RADIUS €F EACH CBNDUCTOR (INCHES OR NORM) '/

2! sl SURE T¢ GIVE CONDUCTER nADIL AS NURMALIZEDs IF '/
3! CeIL DIMENSIUNS wikE GIVEN AS NURMALIZED OxIGINALLY'Z )
D 160 I=1,N

TYPE 30.1

FormAarc! fYre IN R SIGMALPFERM FZk CONDUCTOR N8.' 137
ACCEPT 13sKCI)s 5TGMASPERMCL)

MUZ=MUXPERMOI)

FYPE 315 12RCOID»MUZs SIGMAS PERMCI)

FERMATC?T FRR CUNDUCTOR NG« "I3/5Xs 'K ='5815.85 34,
MU ='E15.8/7" SIGMA ='E15.85 " PERM ='E15.8/)

ACCEPT 45 10K

IFCIQK.LT-0) 6@ 1@ 1640

EMCOI) =MEGARMUXSIGMARXCUNST*PERMOL)

TYPE 32,eMl)

FERrRMAT (! THESE DATA olvE EM ="E£15.387)

ACUEPT 4» LUK '

I[P CIBKLTL0) Gl T8 160
WRITECIFILES 15IRCIY» SIGMAS PERMCID

CONTINUE

GE T 05

NUMBER GeD093979E3 L5 THE ProUCT i CENVERSION FACTORSs
(2P IRE32R 4R PLRE~7 IR CEBIRCa0254%%2)

CONST=0+509397IEIXRBARFRBARKF KEQ

IFCIMBRESLT-0)GO T8 175

TYypPe 33

FERMATC? KHG (L) IS5 KRESISTIVITY F@R EACH CONDUCTOR
I (MICKEAM-CM2 ' /)

Lg 185 I=1.N

I'YPe 3451

FxMAT(® TYPE IN wokHB, PERM FOR CONUDUCTER NUG."s 13/
ACUEPT 13ROI e KHGCL)» PERMCOL )

TYPE 39 €I RAWCI) » PERMLTD

FORMATC? RET k1Dt RHG="2 115685 PERM="3E13.58/)
ACCEPT 45 IDK

IFCIEKs LT« 002G 1o 180

LEM=CONBSTH#PLRMCOI) /RAB DD

{YPE 32sZEM

ACCEPT 451K

IFCIUK-LT-U)GE T 180

EMCOL)=ZeM

WRITEIFILE» 1S RCID B RAGCI) s PIKRMCT)D

CONTINUE

a8 Tg 205

Uy 200 I=1,N

FYPE 3651

ForMAaTC! TYPE IN ReEMsPERM FOR CONOUCTOR NBe'137)
AUCEPT 130 ROIDSEMUII» PERMCOL)

TYPe 37,8010, 8M0I1), PERMCDD



37

200
205

38

210
215

40
220

41

225
qe

230
43
235
44

240

98

FORMAT(C! o ='E1Se8s " ENM ='"E1S5.8,
1’ PERM ="215e8/)

ALUEPT 4s1eK

IFrCigrneLT«0) GB TW 195

kiR CIrILES I5) nCl)or (D)o ninCI)
CnN 1 INnue

cionN INUe

TYPE 38sNUASEsNCOULL

FORMATC/6X5 "UASE ND« "» L3, " Gr COLL N9e's 13/
1YHE 39sN

ForMmale 113, " ConNbUCTOrE OUTSIE COLL'"/5Xs "INNER EADIUS'
1 510X, "M 11X "FPERMEARILITY ")

I (NURMAL o« NE«O) 2B 10 <15

U 210 I=1,N

KC1)=m (1) A spin

VB 220 A=1sN

Iy 40,Keon(K)» M) s PERM (KD
PEomal(I3s3E15e6)

CuNiINUz

TYrPe 4l

FORMATCS)

AclePl 4s 16K

Ir CLUK L T-0) ulb 19 225

aull 1Y 135

irre az

FORMATC! IRETRIEVABLE ERKAKRS LN OAIA, MUST wEDEG IT ALL'/Z)
Le 9 240

IYPe 43

FURMATCOXs "ENL @r UALA rUr CASES T8 o KUN UN INNMUL PROGRAM®/Z)

AT LI ILEs 44)
PORMAIC /R /27D
I EIINN O I SR O o DY

Shlor

bV



III. (B) Data Description

The data are defined for the TELINC.F4 program in the same order that
the DRIVER program requires them for execution of INNMUL. The FORTRAN
names of the variables, with their meanings and units, if any, will be
given below. The format specifications apply only to the final form of
the data file when it is submitted with INNMUL and its DRIVER to the
IBM/%60 for execution. The outline of data entry given in Fig. 13
corresponds to the order given for the lines on the teletype, or card-

image equivalents.

First, data are given for a coil and its dimensions.

ORNL-DWG 72-13762 R

i a

[

IAIR, : WRITE
FREQ
NORMAL (015.8)

(218}

-
- ~.

o ~_*0 WRITE

RBaAR
(015.8)

[
WRITE WRITE
) 7 <0 R{1),RHO {1
R, 82, L, Lt [HAVEM > ‘p;w“ﬁ’
{4nt5.8) FOR I=1TO N
} (3015.8)
2
WRITE
. R(1), SIGMA ()
PERM{1)
WRITE FOR | =1 TON
N, THAVEM (3015.8)
(215}

CND "
OF DATA

WRITE
R{1), £MUI),
PERM(I)

FFOR T =1 TON
(3D15.8)

Fig. 13. Flow Qutline of Data for the Program DRIVER.
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Line 1:
IATR,NORMAL Format (215 )*

IAIR (a flag) > O if A9 is to be read as data;

if A9 is to be calculated by the INNMUL program;

< 0 if input data are ended and no new coil data are
to be given.

il
(]

v

NORMAL (a flag) O if the coil dimensions are given in inches, or
some other unit;
= 1 if coil dimensions are given in normalized form,

that is, divided by the mean coil radius.

I

Line la:
A9 Format (D15.8 )**
A9 is the air value factor for normalization of the coil imped-
ance. In practice, it is usually calculated by another pro-
gram, called AIRCO.
Line 2:
R1,R2, 1,11 Format (4LD15.8 )#

Rl is the inner coil radius.

RZ is the outer coil radius.

L is the distance to the top of the coil from the z=0 plane.

L1 is the distance to the bottom of the coil from the z=0
plane.

Alternatively, L is conveniently given as the length of the

coil, and then L1=0 is given. Only the length of the coil

is actually needed by the program.

The value given to the flag NORMAL dictates units used. If
inches are not used for unnormalized dimensions, caution must
be exercised in other data requiring mean coil radius. Must
use THAVEM > O.
The next set of data gives information about the conduciors.
Line 3:
N, THAVEM Format (215 )*

N is the number of conductors in one set of conductor data.

*All values with an I5 format should be entered right-justified as an
integer, no decimal point, in a field of 5 places, with as many blanks
as needed on the left to fill up the 5 places. 2I5 is used for two
such fields, making 10 spaces in all.

*¥
All values with a D15.8 format should be entered as a number with deci-

mal point in a field of 15 places. The D exponent form should be used
positioned so that the exponent is right-justified in the 15-place
field. 3D15.8 or 4D15.8 allows 3 or L such fields, respectively,
making 45 or 60 spaces.

2
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N < O indicates that no more sets of conductor data are to be
given. Then recycle to Line 1 for a new coil and then
further conductors for that coil.

~
P

IHAVEM (flag) indicates how the quantities, wpof =, are to be
given for the conductors (see sect. IIA of this appendix).

IHAVEM > O indicates that the quantities will be given directly;
= 0 indicates that those quantities will be calculated from
other data including o;
<. O indicates the quantities will be calculated from other
data, using vesistivity, p rather than o.

Line 4: (used if IHAVEM > O)
Use as many lines as the number N of conductors.
R(I),EM(I), PERM(T) Format (3D15.8 )xx

R(I) is the inner coil radius of conductor I. It is given
according to the flag NORMAL which was given as part of
the coil data.

The radii are given in descending order of size. All
radii will be-greater than one if they are normalized
when given as data.
EM(I) is the quantity mpc?ﬁg for conductor I.
PERM(I) is the relative permeability, MREL’ for conductor I.

Then recycle to line » for another set of conductors or to indicate end

of data for this coil.

Line 5: (used if IHAVEM < O)

FREQ Format (DI5.8 )
FREQ is the frequency of the driving current given in kilohertz.
The angular frequency is calculated to be w = 27 x (FREQ)
x 103,
Line Sa: (use if THAVEM < O and NORMAL = 1)
RBAR Format (D15.8 )x*

RBAR is the mean coil radius in inches. This is needed since
coil data is given as normalized and hence RBAR is not
calculated by the program.

Line 6: (used if IHAVEM = 0)
Use as many lines as the number N of conductors.
R(I),SIGMA(L), PERM(I) Format (3D15.8 )xx
R{I) and PERM(I1) are the same as Line 4.
SIGMA(I) is the conductivity, o, of conductor I, in mhos/m.
Then recycle to Line 3 for another set of conductors, or to indicate the

end of data for this coil.
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Line Ga: (used if IHAVEM < O)

Use as many lines as the number N of conductors.
R(1 ), RHO(T ), PERM(T ) Format (3%D15.8 )**

R(I) and PERM(I) are the same as Line 4.
RHO(I) is the resistivity, p, for each conductory, in pQ-cm.

Then recycle to line % for another set of conductors, or to indicate the

end of data for this coil.

III. (C) Sample Data and Results

In relation to the PDP-10, there are four steps to processing data
with INNMUL by remote methods. Each step is a response to the Monitor

i1t

symbol , which appears at the left of a new line when in Monitor Mode.

A sample teletype printout may be seen at the end of this section.

(1.) .EXECUTE TELINC.F4

Then the user responds from the keyboard, with the input data.

(2.) .TYPE FOROL.DAT

Then the user may inspect the typed-out data block that has been
created in the preceding step, to see if it is satisfactory. Changes
may be made using TECO.

(3.) .R SUBMIT

*=CVDSAV.JCL

*=USELNN.FL
*

*=AZ7277%.JCL
*=FOROL .DAT
*ENDINPUT
This step submits the job to the IMB/360 computer. After it has had

time to run, the next step is to type out the results.
(+.) -.TYPE CVDC.PRT

Some sample cases have been submitted in this manner, using three different

coils from the work being done.

The first coil to be used has an air value, AQ, given as 0.0463502.
The dimensions, given in unnormalized form, are Rl = 0.350, R2 = 0.360,

and T = 15.625. There are three conductors outside the coil, and data
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for them are to be given with resistivity, indicated by the flag, -1.
The frequency is 24.7, and the radius, resistivity, and relative permea-
bility‘are given for the three conductors. The three radii are 1.813,
0.%925, and 0.3625. The three resistivities are 16.97, 1h2.9, 16.57.

The three permeabilities are all one.

Looking again at the sample data, another case is done using the
same coil. Again there are three conductors outside the coil, and this
time the data are to include the M value for each conductor, as indicated
by the flag of one. Then the radius, M value, and relative permeability
are given for each conductor. The three M values are 95.69L792, O, and

95 . 69k 792,

No more cases are given in this data block for this coil, as sig-
nalled by a value of -1 for the number of conductors. The next coil
has an air value of 8.45005 x 10*&) and unnormalized given dimensions,
RL = 0.27625, R2 = 0.27875, and L = 2.0625. There are three conductors
outside the coil, and radius, resistivity, and permeability are given
for each conductor as well as the frequency of 20 kHz. The three radii
are 0.376, 0.375, and 0.%3%6. The three resistivities are 10, 70, and

Z
Afl-Ccm. ‘he three relative permeabilities are O an .
80 s The th lati p biliti 1, 107, d 1

The third coil which is given in the sample data block has an air
value 0.117776, and this time the coil dimensions are given in normalized
form. These normalized values are Rl = 0.97761194, RZ = 1.0223881, and
L = 38.80597. The first case consists of two conductors, with normalized
radii, M value, and relative permeability given for each conductor. The
radii are 1.201:9% and 1.0820G.° The two M values are 7.778%99 and

2.874167. The relative permeabilities are both one.

The second case of the third sample coil is the same as the first,
with data presented differently. Data for the two conductors are to be
given with resistivity, indicated by a flag of -1. Then the frequency
is given, 10 kHz, and also the mean coil radius in inches, 0.335, since
the coil was given as already normalized. This is followed by the
radius, resistivity, and relative permeability for each conductor. The
two resistivities are 151.% and 19.89 uQ-cm. The relative permeabilities

are both one.
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Again, no more cases are to be submitted for the third coil, as
indicated by -1 for the number of conductors. The data are closed out

when another -1 is given as the first datum for another possible coil.

The teletype listings follow for this sample. They show the four
steps involved, and the data file with results of the execution of the

program.



e EXECUTE

/GBS F TS0F00L

(1.)

FPURTRAN:

TELINC.F 4
TELINCF 4

105

(Interactive preparation of data block. )

(2.)
$TYPE FUKOL.DAT

i U
U»463502000~01
Ge350000000+G0O

3 -1
0« 24700000D+02
O0«1831300000+01
0e392500000+00
U»36£500000+00

3 1
V.18130000D+01
Q«392500000U+00

0362500000+00
-1 0
i 0

0«34500501D~03
Ue2/6250000+00
3 ~1
020000000+ 02
0s37600000U+ 00
U« 37500000D+40
0e356000000+00
-1 v
H 1
U L17771600D+0QU0
Oe?771611940D+00
2 1
0120149300+ 01
0.108209000+01
pd -1
U« 10000000D+02
0« 335000000+00
Ue12014930L+01
U«108209000+01
=1 ¢]
-1 o

fE
/7

o *

0. 3600000D0CL+OC

0« 165700000+02
Oe142930000+03
Qe 165700000+02

0+956947920+02
0. 00006000DL+00
Ue 206947920+ 02

0-278750000+00

0. 100000U0B+02
0. 700000C0OL+0E
0.30000000UL+02

0.102235810+01

03775339900+ 01
0e287416700+02

0.151300000+03
O« 19890000U LR

Oe 1 36250000+02

D+1000006000+01
B3- 100000000+
0« 10000000U+G1
0100000000+ 01
0.-10000000D+01
0-1006000000+01

0+ 206250000+01

U« 100000000+ 0
0« 100000000+04
G« 10000CO00+01}

0.38805970B+02

Ue 10000000D+0 L
0.10000000p+061

G« 10000000L+D1
U« LUOGO0O0L+ U
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(3-)
ok SuUbMil

*=UVESAV e JCL
*kz{ELNNeF 4
, /%
k=PNZLLLL - JCL
#=p KOl « UAY]
xeND INPUT

JUb QURUED FBKk I'dke 360771

(%)

fYre CvlLerRl

SUMMARY WUTPPUT Fuix UsIb ND. 1

INNER COlL nAwiU> (nl) = UeI559104Y3
GUTER CulL wAaulus (rR2) = 1014054507
CUlL LENaIH (L) = 38380251690
Al VALUE (AY) = U 046350200
CASE N I o Culb NI 1

3 ueNDUCIuRS BUTSIDE Culb

InNEr xAaulds i PhvicAn i iy

Se 10U/Uazy OU 9e569247T30 01 1«000000L QGO
“ LelUD634 VO 11096311 01 1. 0000000 Q0
3 10211270 0O den6valy 01 1.000000D 00

NURMAL[ZeD Cwll. IMPEDANCHE

NenMAL L ZnD KEAL PAKY = 1.622770D-01

NEsMALLZLED IMAG PART =
MAaNI TUDE =
PAASE(RADLIANSD

PHASE (DEGREES)

1e559747D-01
2250820001
14655979001
463865530 Ul

i

i

LASE N 2 BF LUl N 1

3 cUnNuULILRD VUS> CYIL

INNEx rADIUS M FeRMeEAsILITY

1 21070420 UO FeD6Y4TI Q1 1.0000000 00
bt 11056340 GO V.0 1.0000000 OOQ
3 1.0211270 00 9.56347913 01 1.C000000L 0O

NURMALIZED COIL IMPEDANUE

NURMAL LZEU wKibAL PART = 2.117390L-01
NUsMALIZeo IMAG PART = 1.3543538u-01

MAGNL LUDE = 25301960-01
FHASE(RADIANG) = HeT7d93480-01
PHASE (UL GREES) = 33170520 01

SUMMARKY VUTPUL FOR COIL
IwNER Ukl RAulds (ki) =
CUTER COIL mRADIUS (Rr2?
CwlbL LENulH (L)
Al VALUE (A22

NG » e
0995495490
1+.0045045G5
1432432432
0. 0008450005

]

KRESISTIVITY

1.6570000 U1
1+ 4290000 Oz
16570000 01

mitSTS{IvIlY
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CASE N@. 1 9F CullL NG. 2

3 CONDUCIORS gUISIDE UBIL
INNER KADLUS v : PERMEABILITY RESISTIVIIY
123049550 0O (3433640 01 1.00000600 00 10000000 01
13513510 00 11207660 04 100060000 G3 /0000000 01
Le2828830 0O FeBUHTOHI QO 10000000 0O 3« 0000000 01

NORMALIZEL COLL IMPLOANCE

NURMALIZED REAL rAaxd
NERMALLZED IMas PART
MAGNI TUDE
PHASE (RADTANS)
PHASECDEGRIZES D

il

1+6704530~01
Be9604070~01
e l114/850-01
123864860 Q0
794393500 01

(1

H

SUMMAKY QUIPUL YK CBIL NG. 3

INNER Cull RADIUS (k1) = Ue977611940

BUTkEr COIL RADIUS (K& 10223858100
Cull LENGIHA (LD 38505970000
Alr VALUE (AY) = Ce 117776000

"

i

CASE NU. 1 wr GEil, N 3

2 UUNDUCTURS QUTSIDE CbiIu
INNER KADLIUS M PERMEASTLITY RESISTIVITY
1.2014930 00 37783990 00 1. 0000000 0O
10820900 Q0 2+8B7T41670 Ot 1.0000000 00
NORMALIZED COIL IMPEUDANCE

NURMAL LU wiAl PARLD = 20 3407300~-01
NURMALLZe0 IMAG PART = 3.563222D0-01
MAGNL TUDE = Qe 2633090-01
FPHASE(KADLIANS) = FeBIH8620-01
PHASECUDEGREED)Y = 9, 6697960 Ul

CASE Ne 2 GF COlL N 3

2 UBNDUCTOBRS auUtTSILE COIL
INNER RADTUS {4 PERMEABILITY RESISTIVITY
142014930 00 37733990 00 100060000 0O 15130000 o2
1.082090u 00 2e374167D 01 10000001 00 1.9%9000D 01
NURKMALLLZED CUIL IMPEDANCE
NERMAL LZED KEAL PART
NORMALIZED IMAG PART

i

22 34073800-01
3+563222D~01
MAGNTI TUDE 40 263309D~01
PHASE(RADIANS) FeBIDEE20-01
PHASKC(DEGREES )Y = 94669797 01

END OF CASES KUN @N INNMUL PrOGKAM

Hon

i
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IV. ATTEN PROGRAM

This program is written to calculate the voltage out, Vout’ by Eq.
(69), in consideration of the external electrical cixcuit (Fig. &) and
Eqs. (61) or (62). It is written to receive as input data the coil and
circuit data, as well as the normalized coil impedance, as calculated by

the subroutines INNMUL or ENCMUL.

The program is written in the form of a FORTRAN subroutine named
VOUT. The driver program must provide the necessary data. At present
this is written into the program directly for the execution of one case.
This may be called into execution on the PDP~10 by the teletype command,
.EXECUTE VOUT.F4 . The subroutine, VOUT, must be supplied by a driver

program with the familiar coil data:

OMEGA = angular frequency,
Rl = normalized inner coil radius,
R2 = normalized outer coil radius,
L = normalized coil length,

RBAR = mean coil radius (meters ), and

A9 = air normalization value.

The real and imaginary parts ZRL and ZIM of the normalized coil impedance

7Zn are required.

The required circuit data are identified in Fig. 4 as VO, RO, RO,

Cc6, C7, R6, and R7. Number of turns, TN, must also be given.

The result, VOUT, is given in terms of phase and magnitude, as well

as by real and imaginary parts.

The driver program which is listed here has all these data written
into the program, with some being calculated from other data. For
example, the magnitude and phase of the normalized coil impedance are
given first, then converted by the driver program into real and imaginary

parts for VOUT to use as data.

Other driver programs might be developed for more extensive cases,

or this one may be varied using TECO commands on the PDP-10.

A listing of the VOUT subroutine with its driver program follows.
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CUMMON/ CIRCT/VOJKO:CG:Ré:ZDHLJZDIM,LMRLJZMIM:£PUKLJZPUIM:
I R75C7sKIs TN
COMMBN/ INNML/OMEGAsL, R1s R2s 092 ZRL 7 I1M» RBAK
REAL R4 MUs L
DATA PL/341415 9265E0/2 CONST/Z0.02%4E0/
FREG=27.7T2E0
TYPE 1
1 FaRMATC' SAVS ')
UMEGA=2+ 0E3%PI*FREQ
R1=0+350E0
RZ2=0.36080
L=13.625E0
RBAR=(RI+RK23*%0.5E0
L=L/REAR
Kl=Ki/RBAR
R2=R2/ RBAR
TYPE 2o REGsUMEGAsSL s R1s K2
2 FORMAT (! FREG ='E15«75 " UMEGA ='Ei13.7s7
1’ Lo ="El1S5.7s° Rl ='E157s° K2 ="E15%.7)
HBAR=RUBAR®CYUNST
A9=0+463502E~1
Al=0.218077514E0
P1=0772603445E0
LRL=A1*COSCP1D
ZIM=A1%5INC(P1)
TYPE 3sRBAKsAIs LKL, ZIMsALS P
3 FURMAT(® RBAR ="E15.75 " A9 ="E£15.757
1 LRL ="E15e75° ZIM ="ElSeTs/
2° Al ='E15.7,° Fl1 2'E15.7)
VO=3.234180
RO=464.10
KI9=46 4+ £0
Cé6=3+83L~9
CT=3.83E~9
TYPE 4,V0s 80 K9206,C7

4 FORMATC! VO ='E15675° RO ="E15+75° R ="E15+7,5/
1? Ce6 ="E157s" C7T ="E15.7)
R6=6F» 4k 0
RT=R6

IN=190.75E0
TYPE S5sK6sRTs N

5 FOKMAT C* K6 ="sE15+75" RT ='E15+75" IN ='E15.7)
CALL VOUTCVBRL VI IMs VIABSs VI AKG)
IFCVBARG.LT»0s 0E0) VOARG=VUARGHPL
TYPE 65 VURL» VO IM» VBABSs VOARG

6 FERMATC'  VORL ="E1S5.75' VOIM ='E1S.75/"' YBABS ='E15.7
1' VBARG ='E15.7)
DEGR=VUARG*180.-£0/P1
TYPE 7sDEGR

7 FORMAT('  DEGR ='E15.7/)
TYPE 1
STOP
END
SUBRBUTINE VOUTC(VBRL, VB IMs VOABSs VBARG)
COMMBN/ CIRCT/VO0sR0»C6s R65>ZDRL ZDIMs LMRL» ZMIMs ZPURL s ZPUIMs
1 K7,C7sR9s TN
COMMUN/ INNML/GMEGA»Ls K15 R2s A9, ZRL » £ I4s RBAK
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REAL*4 MUs L
DATA G/ 1e0RO/Z72MMU/G«000001256637061107
R=R2-R1
A=2. EOXDMEGA* TNR ITNA MUK RBAR®AY
1 7 Gkl k)
LMRL=A8%4 KL
LDRL.= LM KL
LPURL=LMRL
IMIM=AxLIM
ZOIM=LmMIM
ZPUIM=ZM1IM
B=-VORRI*G
VYNUMRL =84 ZMRL
VINUMIM=B*ZMINM
P=C6%R0O
W=CT*RY
PMEGSO=MEGAXDMEGA
OMEGCUSIMEGSR*UMEGA
X=UMEGSQ%P*xQ~1+.0KE0
Y~ SMEGAX P+
SEFAVINIE VAT FAUN EVE FAUE R
T2 OLOXLMRL*ZMLIM
U=XkS=-Tx T
W=Y®RS+HXxT
A=IMEGAXE
BrZprbt 6
E=ARprLOIM
FEAXLDIM= (k0D
A=UMEGA*Q
B=APURL+KT
C=A%xb+LPrdinM
D=AXZLPUIM- (B+K9)
A=k~ Dk
B= Dok +CkE
VDENRL=A+Y
VDENIM=3+14
DENSWO=VDENRLAVDENRL+VDENIMXVDENIM
VU RL= CUNUMRLAVDENRL+VNUMIMAVDENIM) /DENSQ
VU IM= CUNUMIMAVDENRL ~VNUMRL*VDENIM) /DENSQ
VAADBS=SART (VU RL A VURL+ VO IMEVEIIM)
IF(VORL<EG0+£0266 T¥ 100
VUARG=ATAN (VB IM/ VO RL)
KETURN
100 VUARG=MU%Q.125L7
RE L URN
END



A listing of the data and results of the execution of the preceding program

is shown below.

¢ EXECUTE VBUT.F 4
FORTRANS VEUTsF 4
LA ING

YOUT 24 CURE
EXECUTIGN

SAVS

FRE@ 0«27T2000E+02 IMEGA 0«1741699E+06

ioH

L = 0.3838028E+02 Rt 0+9859155E+00 RZ2 =  (0.1014085E+01
RBAR = 0.9017000E-02 A9 = 0.4535020E-01
ZRL = 0+41561644E+00 ZIM =  0.1522185E£+00
Al =  0.2180775E+00 Pl = 0.7726034E+00
VO = 0.3234100E+01 RO = (0.4640000E+03 R = 0. 4640000E+03
6 = 0D.38B30000E-08 C7 = 0.3330000E~08
R6 = 0.6940000E+02 K7 = 0.69240000E+02 ™ =  0.,1907500£+03
VIARL = 0.5039879E-02 VUIM = 0U=4142019E-02
VBABS = 0+6523550E~02 VUARG = 068792228400
DEGR = 03941504E+02
SAVS

CrU TIME: 0«35 ELAFSED TIME: 59.08
NUO EXECUTION ErRRORS DETECTED -

EXTT
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