&

-

'
|

i

3
ORNL-8328

Bayesian Variabje Selection
in Regression

T. J. Mitchell
J. J. Beauchamp



Printed in the United States of America. Availabie from
National Technical information Service
U.S. Depariment of Coimmerce
5285 Port Royat Road, Springfield, Virginia 22161
NTIS price codes—FPrinted Cony: A03; Microfiche AQ1

|

This report was prepared as ain account of work sponsored Sy an agency of the
United States Government. Neither the b nited States Govermment nor any agancy
thereof, nov any of their employees, inmakes any warranty, express of unphied, or
assumes any legat hability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclesed, or
reprasents thatits use wouid not infringe privately owned rights. Reference heremn
to any specific comiriiercial prodiict, piocess, or service by trade name, trademaik.
manufacturer, or otherwise, does not necessanly constitute or uinply its
endorserment, recommendation. or favoring by the United States Government or
any agency therect The views and opinions of authors expressed herein do not
necessartly state or reflect those of the United States Covernment or any agency
thereot




ORNL-6328

Engineering Physics and Mathematics Division

Mathematical Sciences Section

BAYESIAN VARIABLE SELECTION IN REGRESSION

T. J.-Mitchell
J. J. Beauchamp

Date Published: January 1987

This work was supported by the
Applied Mathematical Sciences Research Program
U.S. Department of Energy
Office of Energy Research

o R

Oak Ridge National Laboratory ‘ 3 445k 0145727 1
Oak Ridge, Tennessee 37831 P o ‘
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400






TABLE OF CONTENTS

ABSTRACUT  cooiiiececnrcceittttsessmassasssssasesannessssnssssssasmasnessnnasansessessssnsesssssnanes R RO |
1. INTRODUCTION ............. cesssnsrentassesssannsanes ereseenttetsssteasanssararie s n s nnanaons ceresserrarannenanes 1

2. METHOD ...ooreccrvenescenconrssismersssiimecnensannsnnces ersisnesenneseeeeeeusnsnseensertennsasasasrsanananrrasssrnanner &

2.1 The Data ..ccccveeceeicevcnonnns reeeesrennneereerasseessesansemnnes eeeeneeeeeeaaen reeeeineasreenasaneen wreranneerarien 2
2.2 The Prior Distribution ......cceevevee. o rerreererasesssaseemeneseeteniasiaansssiSesaseeseontss s R R RN R RS sR ke nTe s s s 3
2.3 The Posterior Distribution ..... eeeeraieeseresssaasessesssesssssnareressssnsirsseesescsnsirmoeniearenenesennanonoes &
2.4 Evaluation of ¥ ........... eeeetetessestsesstease b e R AR s b et a A e nnene 6

3- EXAWLES asananecssnssssonssmeusneoneny Py rennsnanmn seenecscannannan sareumressbssessananesanReRRRTRERINOY Rey 8

3.1 Background .....ccevorneeee eeesearesiiessteseesssensseanesnesanaaneessan s eanaseasntannns sersrenesearesneans 8
3.2 Example 1: The Real Data ....ccvoverenreicrreresssannnns ertteessresenessstvsossanssenasansassinsssosarannessras O
3.3 Example 2: “Important” and “Unimportant” Predictors ......ecceevmveeeceincncrivecens 9
3.4 Example 3: Collinearity .........cceceecverneaveian veveresenssneesnreeraneasanas SR eernresnes 11

4. DISCUSSION .....cccvveeee cesesttnesenin b e s e asnsas s e s as seesesseenesanaes . 13

4.1 Centering and Scaling .......ceeerverriessnsecsessueessccenas cevresareiseraiare et bn s pnnansesan e sannsane 13
4.2 Interpretation of Bayesian Probabilities ................. wasssssasssessesunnenans 16
4.3 A Couple of ParadoXes ....ccccciescimmsssrsnnsresssessmmessnessssssnsssasssssssssnsssssnsassasssssssssssnssasasss L1
4.4 Other MethOAS ...ccccoimirsiisriecsiiecinirnsnisessossesssssmsseesssssssssnasssassssnsssnsssssssssssssasssssssassasanes 18

APPENDIX aesecscssnrnsussnenn S anseesssesanansnanassas Msasaussessnoesesenecarasananntanren 21
ACKNOWLEDGEMENT ...o.coovvecreennnecranennes ememsesasetecsanetsesnnn LN hAe s sentnennrranannnsnannninnn veeeee 24

REFERENCES .......

coscransuinssnanccnarsoannsuRenn wweserasanerassasassscansesesn 25







-1~
BAYESIAN VARIABLE SELECTION IN REGRESSION

T. J. Mitchell
J. J. Beauchamp

ABSTRACT

This paper is concerned with the selection of subsets of "predictor” variables in a linear
regression model for the prediction of a "dependent” variable. We take a Bayesian
approach and assign a probability distribution to the dependent variable through a
specification of prior distributions for the unknown parameters in the regression model.
The appropriate posterior probabilities are derived for each submodel and methods are
proposed for evaluating the family of prior distributions. Examples are given that show
the application of the Bayesian methodology.

1. INTRODUCTION

This paper is concerned with the prediction of an unknown "dependent” variable given
known values of k£ "predictor” variables based on a statistical analysis of n cases in which
all variables are measured. This is often done using linear regressxon methods which are
based on the statistical model: ‘

k
y = ) Bx;te, (.0
i=1

where y corresponds to the dependent varxable. x; corresponds to the j* predictor, B ; is
the j* regression coefficient, and € is a "random error”. The regression coefficients are
model parameters whose values are constant over all cases, while the value of € varies
randomly from case to case. It will usually be desirable to include a constant term in the
model; in this case define x; = 1. We shall assume here that the remaining predictors
represent distinct observables and that none of them are defined as functions of others.
The reason for this limitation is that our primary method will be based on the specification
of independent and identical prior distributions for the regression coefficients that are
subject to deletion from the model. We think this is reasonable when there are no
functional dependencies among terms and when each predictor is suitably scaled. (See
Section 4.1.) However, it may not be reasonable when there are functional dependencies.
We have not investigated this case sufficiently to determine what change in our method
would be required.

At some point during the analysis, one may be interested in the possibility of omitting
some predictors from the model. The search for a "best” submodel (or set of submodels)
is called variable selection or subset selection. Some reasons for undertaking this search are:
(1) to express the relationship between y and the predictors as simply as possxble, ) to
reduce future cost of prediction; (3) to identify "important” and "negligible” predictors; or
(4) to increase the precision of statistical estimates and predictions.
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There are numerous classical approaches to variable selection. (For some of the most
popular, see Hocking (1976) or Chapter 6 of Draper and Smith (1981).) These generally
are based on sequences of hypothesis tests (e.g.. stepwise regression) or on estimates of
some type of mean squared error (e.g.. Allen (1971a, 1971b), Mallows (1973)).

Here we take a Bayesian approach. We shall assign a probability distribution (the
" prior distribution”) to the B’s and €’s, and hence to the y s, through (1.1). Following Box
and Meyer (1986), we require that the distribution of each 8; that is a candidate for
exclusion must include a discrete probability mass at the point 8; = 0. Posterior
probabilities are computed as usual using Bayes’ Theorem. We shall be concerned
primarily with the posterior probabilities of the various submodels, where each submodel
is defined by the event that a specific subset of the 8's has the value O and the remaining
B’s do not. These can then be used to generate other probabilities of interest in variable
selection, e.g.. P(B; =0) for each j. Other Bayesian approaches have been developed in the
context of model discrimination; we shall discuss these in Section 4.4.

Frequentist and Bayesian approaches alike usually start with the assumption that the
observations on y, given the value of the predictor vector x, are generated by a mechanism
that produces stochastic data whose frequency distribution is based on the distribution of
€ in (1.1). The elements of the parameter vector B are then regarded as "real" but
unknown quantities. If one takes this view, then the placement of a discrete prior
probability mass at 8; =0 is a recognition of the possibility that 8; might be precisely zero,
or at least close enough to zero to make this type of prior a reasonable approximation to
one’s "true” prior. In most applications, however, it is more appropriate to regard the
model solely as a predictive device. As such, its parameters are artificial components of
that device, not properties of the real world that are to be estimated. Then B8; is whatever
one chooses it to be, and the type of prior we consider allows for the possibility that it is
chosen to be zero.

In Section 2, we describe our family of Bayesian models, present the appropriate
posterior distributions, and propose methods for evaluating the prior distributions within
the family. Examples of the application of these methods are given in Section 3. Section 4
considers the relationship of this paper to previous work on this subject, and also discusses
philosophical and technical issues that we found convenient to defer until the end. The
Appendix provides some useful formulas and computational details.

2. METHOD

2.1 THE DATA

The observed data on the predictors are contained in the n X & matrix X, where the it
row of X contains the values of the predictors in the i case. We shall assume
throughout that the rank of X is X, and that &k <n. All probability statements in this
paper are implicitly conditioned on X. The observed data on the dependent variable y are
contained in the n ~vector y.

There are 2¥ possible submodels of the model (1.1), where each submodel excludes a
particular subset of the predictors and includes the rest. We shall denote by X,, the
n X k, matrix consisting of those columns of X that correspond to the predictors included
in the m™ submodel A, for m = 1,2,..2%. The least-squares estimate of the
corresponding parameter vector f,, is given by:
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Ba = (X0 X ) X0y, 2.1)
and the residual sum of squares for this fit is given by:
52 = (9 =XnBn) =X Br) 2.2)
2.2 THE PRIOR DISTRIBUTION

For each case, we shall assign to € in (1.1) a normal distribution with mean O and
variance 07, and we shall take the €’s in distinct cases to be independent. Given B and o2,
then, the n -vector y has a multivariate normal distribution with mean X 8 and covariance
matrix 0. In Bayesian regression, B and (usually) o are also random variables, and
different Bayesian techniques are characterized by the choice of prior distributions for
these parameters. Here we assign o the standard "noninformative” prior, under which
in (o) is locally uniform. That is. In (o) will be uniformly distributed between —in (o)
and In (0p), where 0y is very large. We further assume that the prior distribution of 8 is
independent of o and that the individual §'s are mutually independent, each having a
"spike and slab" distribution. That is, B ; is uniformly distributed between the two limits

—f, and f;. except for a bit of probability mass concentrated at 0 if x; is vulnerable to
deletion. Formally, ?

P(B,;=0) = hy;. (2.32)
P(B;<b .B;#0)=(b + f;)hy. —f; <b<f;, (2.3v)
‘P(‘I‘ﬁj! >f;)=0, (2.3¢)

where hoj >0, hlj > 0. and hO} + 2h1jfj = 1. We shall take fj and Yj as the
parameters of this distribution, where

y) =hoj/hyy =2he; f;/(1~ho;) 2.4
i.e., y; is the height of the spike divided by the height of the slab. To exempt certain
terms (e.g., the constant term) from deletion from the model. set the corresponding A;
(and hence y; ) equal to O.
With the above model specification, our prior distribution over the submodels is :

P(4,) = []hq, I]I(zfjh”) = Iy, TICF DIIG; +2£,07! (2.5)
J J J J

where 7 is the set of subscripts corresponding to the terms that are included in 4,,. and J
is the set of subscripts for the terms omitted from A,,.

We are interested here in taking f; to be very large for all j, to specify prior
impartiality about the value of B; in those models in which x; appears.



2.3 THE POSTERIOR DISTRIBUTION

Under the Bayesian mode! specified above, the probability density function of y given
A, Bn,and ois:

Py 1AL .Br.0) = 2m)™ 207 exp [——i%;zw(sm 24 (B~ B )X X (B —B, N1, (2:6)

(We shall use a lower case p generically to mean "the density function of.")

If we multiply (2.6) by p (B, |A,.0). which is JT(2f;)! over the region of positive
7

probability, and integrate over 8,,. we obtain

P 14,,.0) = [IQF,)Quy Y 21x, %, 17467 exp [-5,,2/ (20%)] (2.7)
J

where &, is the number of terms in submodel A,,. To obtain (2.7), we assume that each
f; is large enough sc that, for all <0y, all the integrals from —f; to f; can be replaced
by integrals from minus infinity to infinity with arbitrarily small error. Now multiply
(2.7) by p(ol Ay ), which is proportional to 0™, and integrate over o to obtain

Py 1A,) = L, e®
Qtn (o) f )" Y 2y 2t
J

n -k ()
) X X 1748, D) 2

In deriving (2.8), we assume that oy is large enough so that the integral from gy to oy
can be replaced by the integral from O to infinity with arbitrarily small error. Now (2.8)
may be multiplied by P(4,,) from (2.5) to obtain p(y, A,,), from which we obtain:

") (2.9)

-k
—k,, (T
e NXp' X |75, 2

2

k,/2

P(Anly) =gy, “I(
7

where g is a normalizing constant. (For the "empty” or "null" model, replace the
determinant by 1.)

To use (2.9), one needs to specify all the y,’s. This can be done using (2.4) if all the
parameters of the prior distribution (2.3) are prescribed. Here we propose a less direct
approach, which requires no prior information from the user regarding the relative effects
of the predictors. A modification of this approach, which allows the user more control
over the prior distribution, is suggested briefly at the end of Section 4.2.

We suppose that the B's corresponding to the vulnerable predictors have identical prior
distributions. (Whether or not this is a sensible choice is bound to the question of how to
scale the predictors. We shall discuss this in Section 4.1. For now, assume that all
vulnerable predictors have been "suitably scaled.”) For all submodels having positive prior
probability, (2.9) becomes

-~k
—k ~2m, (2.10)
ky ko/2. . 7 m )Ixm,xml,..%(sz) 5 i

PALIy)=g'y o™ “I(
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where g’ is another normalizing constant, and vy is the common value of all the positive
¥;'s . We consider y to be a measure of one’s prior inclination to omit predictors from the
model. We treat it here as an adjustable parameter of the Bayes model, i.e., we shall not
assign a distribution to it, nor do we intend it to be chosen a priori. Methods for assessing
values of y will be presented in Section 2.4 and illustrated in the examples of Section 3.

Equation (2.10) can also be written:

Z 2.11
PALly) =w,/ T w, 21D
: u=1
where the logarithm of any positive " weight” w,, is given by
In(w,) = (2.12)

K (—in (y)+¥aln (m)) +in (T(%(n —k,, D)—Ydn | X, 'X,, | =%(n —k,, )n (S,2).

‘Remark 1. Note that Gt
[ X' X | = IXX IV, 1(0®) T (2.13)

where V,, is the variance-covariance matrix of the least squares estimates of the B's
omitted by submodel m. Thus, if two competing submodels with the same number of
terms yield the same residual sum of squares. the one for which the information about the
omitted B8’s is least (in the sense that the generalized variance |V, | is greatest) will be
least favored. *

Remark 2. If all columns of X are multiplied by the same constant ¢, the effect on

(2.10) is to replace y by cv, i.e., the same family of posterior distributions will result.

Similarly, multiplying any predictor that is forced into all submodels by a constant ¢ will
have no effect. Apart from this, if the relative scales of the columns of X are changed, a
different family will result. We shall discuss scaling in more detail in Section 4.1.

From the posterior distribution given in (2.10), one can compute and plot various
quantities of interest as functions of ¥, where small values of y reflect a strong prior
inclination to include all of the predictors in the model and large values of y reflect a
strong inclination to omit all of the predictors.

When there is interest in evaluating‘ a particular coefficient, 8;, then the following
posterior probability is useful: .
P(BR;=0ly)=3P(A,1y) (2.14)

where the summation is over all submodels that do not include the coefficient Bj. The

posterior probability given in (2.10) can also be used to calculate the posterior expected
number of terms in the model:

E(kyly) = Thkn P(Anly) (2.15)

and the posterior entropy:
H=~3PAxly)in(P(4,1y)). (2.16)
m
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The entropy is a measure of the degree of dispersion of the posterior probability among
the submodels. We find the antilog of the entropy eaéier to interpret, noting that if the
posterior probability were distributed equally among s submodels, the antilog of the
entropy would be 5.

Plots of (2.14-2.16) as functions of Yy are useful in assessing the importance of
individual predictors, the number of model terms required, and the extent of uncertainty
about the choice of a "best” submodel.

Although we are primarily interested here in the posterior distribution of the
submodels, we note that the posterior density of 8 is given by

pBly) =3 P(A,ly)p(BiA,.y). 2.17)

where p(B14,,.y) is a multivariate ¢ density centered at 8, (Box and Tiao (1973),
p. 117). In particular, the posterior distribution of 8; is a mixture of scaled and shifted ¢
distributions. The m* such distribution has n —%,, degrees of freedom and is centered at
Bn, With scale factor ¢, ;. where B, ; is the least squares estimate of B; in A, . and g,,
is its standard error.

The .posterior distribution of the dependent variable y, at a specified value x, of the
predictors is also a mixture of shifted and scaled ¢ -distributions. The m™ of these has
n—k, degrees of freedom and is centered at x',,,B, Wwith scale factor

sp 14, » X' X )Y 1% 5, Where x,, is the subvector of predictors in x, that are

present in model A, and 5,218 8,2/ (n—k,,). These results can be obtained as special cases
of results given by Geisser (1965). For fixed 7y, the posterior distribution of y, is a
Bayesian predictive distribution (Geisser (1971)). In the next section, we shall suggest a
way of using this to assess choices of 7.

2.4 EVALUATION OF ¥
2.4.1 Bayesian Cross-Validation

Suppose that we use the Bayesian approach presented here to generate a predictive
density p(;) of y;. the dependent variable in the i case. given all the data except Y;, the
observed value of the dependent variable in the {** case. All submodels having positive
posterior probability will contribute to p(;). i.e.. we do not require selection of a "best"
submodel first. The goodness of the predictive distribution can be assessed by comparing
it to ¥; using some loss function L (y;.Y;), which will itself have a distribution generated
by the predictive density p(;). Often a single property of the loss distribution, like the
mean, can serve as a useful measure of deficiency in the predictive distribution. For
squared error loss, the mean of the loss distribution is

MSE; = E(y;~Y;)? (2.18)

where ¥; is known and the expectation E is taken over p(;).
In the spirit of cross-validation, this can be computed for each Y; in the data set, where
the predictive density p(;) in each case is based on all the data except ¥';. We shall take as

a measure of the deficiency of prediction the square root of the average of MSE; over all
cases. We shall refer to this as the predictive error:
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2.19)
PE=\/ %«iMSE, . (
1

For our variable selection method, PE depends on vy, and can be used as a guide in choosing
it. Formulas for the computation of PE are given in Section A.2. It is shown there that
PE is finite only if n~k, >3, so this approach to assessing ¥y will not be useful unless
there are at least four degrees of freedom for error.

Remark 3. In the usual approach to cross-validation, one first defines a prescription
(Stone (1974)) or predictive function (Geisser (1975)) that produces a unique prediction
9 () for the i case given all the data except ¥;. A loss functlon L(3).Y;) is then defined
as a measure of the deficiency of the prescription in the i case: a common example is the
squared error (3;)—Y;)%. In a Bayesian analysis, y(;) would be some function of the
predictive distribution P(;); a reasonable choice ml%ht be the mean ;). Under squared
error loss, the deficiency of the prescription in the i case would then be (E(;y—Y; )2 This
would ignore the variance V(;) of the distribution P(;). i.e., all predictive distributions
having the same mean would be regarded as equally good. If we try to fix this by
weighting the loss by V(;} we will overpenalize predictive distributions that are near Y;
and are fairly sharp. We bave avoided such difficulties by defining the loss, or deficiency
of prediction at a given x;, directly as a function of ¥; and P(;). That is, we do not first
reduce P(;) to a scalar y(;). In this respect, our approach is similar to that of Geisser and
Eddy (1979). who, in effect. defined the loss to be —log p(;)(Y;), where p;) is the density
of P)».

Remark 4. A plot of PE as a function of y is useful, since it provides a visual
assessment of the effect of y on the predictive ability of the posterior distribution.
Although one could minimize PE as a formal way of choosing vy, we prefer to use the PE
plot as an informal guide. Consideration of PE allows us to avoid choosing values of y
that may lead to unacceptably large predictive errors. One should keep in mind, however,
that PE is a measure of predictive ability averaged over the cases in the data set at hand.
Thus, it is useful when the cases at hand are "representative” of the cases for which one
intends to make predictions, but not so useful otherwise.

2.4.2 Goodness of Fit Plot

Another useful way of evaluating y is to plot the posterior probability of goodness of
fit. G, as a function of y, where G is the sum of the posterior probabilities of all
submodels that pass a standard F -test for goodness of fit relative to the full £ variable
model, at a specified level of significance. For small values of ¥y, this measure is near 1
since most of the posterior probability is concentrated on the full model. For large values
of y,the measure decreases as more post.enor probablhty is placed on submodels that show
significant lack of fit.

This approach to the choice of 'y allows us to avoid "Lindley’s Paradox," if we so desire.
That is, we shall not be in a situation in which high posterior probability is assigned to a
model that shows highly signiﬁcant lack of fit. We should note, however, that it is not
always desirable to include terms in a model simply because their exclysmn would result
in significant lack of fit. Consider, for example, the situation in which 8 ; is small enough
to bave a neghglble effect on predictions, yet is significantly different from O because its
standard error is even smaller. We discuss Lindley’s paradox further in Section 4.3. For a
1(nmre ():letaxled discussion, see Lindley (1957), Shafer (1982), and Smith and Spiegelhalter

1980
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3. EXAMPLES
3.1 BACKGROUND

All of our examples here are based on data from an energy conservation study (Hirst
et al., 1985). These data consist of observations on the electricity savings, which is the
dependent variable here, for a sample of 401 households that participated in a residential
weatherization program. Table 1 contains a list of the ten predictor variables and
dependent variable used in this analysis. The first example consists of an analysis of the
actual data. In the second and third examples we simulated some of the data to make the
analysis more interesting.

Table 1. Variables From Residential Weatherization Program

Dependent Variable
Y: Electricity Savings (KWh/year)

Predictor Variables

X Presence of air conditioning equipment (0 or 1)

X, Long-run beating degree days

X Change in number of household members

X, Wood use in 1982-1983

Xs: Change in electricity price

X Switched primary heating fuel from electricity (0 or 1)
X Household income

Xg: Preprogram electricity use

Xoq: Heated floor area

X6 Audit prediction of saving

3.2 EXAMPLE 1: THE REAL DATA

The first step in the analysis of this data set was to do the usual regression analyses,
using a first order model with 11 terms, including a constant term. (We shall depart
slightly from the notation of (1.1) here, in that the dummy predictor associated with the
constant term will be denoted by x4 and its coefficient by B.) The results of this analysis
included residual plots, calculations of R? and Mallows’ (1973) C, for all possible subset
regressions, and calculations of regression diagnostics. The residual plots did not show any
obvious problems. The magnitude of the variance inflation factors (all < 1.5) and the
maximum condition index (2.04) did not imply any significant problems of collinearity
among the predictor variables. The full model did not have a high R? (0.4652). All of
the regression coefficients were significant at the 0.05 level, except for B8;, for which P was
0.497. The submodel that omitted x; was the only one for which C, was less than 1.1k.
(Note: Throughout this section, we shall somewhat arbitrarily regard all submodels that
satisfy this criterion as being "acceptable” with respect to C,.)
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We then analyzed these data using Bayesian variable selection as described in Section 2,
where all predictors other than the constant term were subject to possible omission from
the regression equation. Except for the constant, the original predictors (which we shall
denote by 1,X,, - -+ ,X10) were scaled by subtracting their respective means and dividing
by their respective standard deviations. We shall denote these centered and scaled
predictors by x1.X3.....X 10-

The results of the Bayesian analysis included the following plots. all as functions of
In(y): ‘ ‘ ‘

1. posterior probability that each regression coefficient equals 0 (Fig. 1a);
2. posterior expected number of terms in the model (Fig. 1b);

3. antilog of the postérior entiopy (Fig. 1¢;

4. predictive error (Fig. 1d);

5. posterior probability of goodness of fit (Fig. 1e).

Figure 1a shows the relative strengths of the individual predictors, the weaker ones
rising earlier and increasing to 1 sooner than the stronger ones, as y increases. We see that
the preprogram electricity use (xg) is a far stronger predictor than the others. Figures 1d
and le suggest that In(y) should be less than 6 if we want to minimize our measure of
predictive error and maintain a high posterior probability on the submodels that show no
lack of fit. For values of In(y) in this range, the posterior probability is concentrated on
the full model, so we would not omit any predictors. Note in Figure 1c that the antilog of
the entropy starts to rise sharply at In(y) = 6, showing increasing confusion about the
best submodel. For values of in{(y) between 25 and 50, Figures 1a, 1b, and 1c show that
the posterior distribution is concentrated on a single submodel, having only two terms, the
intercept and Bgrg. Figure 1d shows that this greatly simplified model is acceptable if one
is willing to tolerate a predictive error of about 5000 instead of the minimum of 4550.
Figure le reminds us, however, that this model shows a significant lack of fit.

3.3 EXAMPLE 2 "IMPORTANT" AND "UNIMPORTANT" PREDICTORS

Here we used the same data set, but replaced the values of the dependent variable with
values that were generated from a known set of coeflicients. The predictors were the same
as in Example 1. :

The new "observed” values of the dependent variable were generated from:

y=f (x)+e (3.1)

where
f (x)=13312 + 4755x;{ 4+ 5196x, + 455x 4
+ 532x 4+ 538x 5+ 104x ¢ + 91x4 3.2)

and € represents a normal random variable with mean equal to O and a standard deviation
of 1000. (We chose the coefficients in (3.2) by selecting 8, and @, randomly from a
population of "large” values, 8. B4, and Bs from a population of "moderate” values, and
Bs and B, from a population of "small” values; B3, By, and By, were set to zero.)
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FIGURE 1. Plots of (a) posterior probabilities that each B;=0, p (8;=01y), (b)
posterior expected number of terms in model, E (k, 1y ), (c) antilog of the posterior
entropy, exp (H ), (d) predictive error, PE, and (e) posterior probability of goodness
of fit, G, as functions of In (y) for weatherization data with ten predictor variables
and observed dependent variable (Table 1).
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The least-squares estimate of f (x) was found to be

5 = 3289 + 4712x, + 5148x, + 440x 5 + 44dx , + 546x 5
+ 51.‘56 + 58.”7 - 202:3 + SSX9 + 35x 10- (3,3)

The value of R? for the full model is 0.9802. The P-values for Student’s ¢ tests of
significance of the "small" and "null® B's, Bg—Bjo. are 0.31, 0.27, 0.73, 0.13, and 0.48,
respectively. There are 22 submodels for which C, is less than 1.1k. All of these include
the terms in x;—xs: 11 of them include at least two of the three null terms. -‘The lowest
value of C, is 5.598, for the model that omits the terms in x¢, X9, X3, and x 4o.

The results of the Bayesian procedure are illustrated in Figure 2. Figure 2a sorts out
the predictors nicely with respect to strength, although it cannot distinguish between the
small ones ( x¢.x4) and the null ones ( x3.x9.x10). Figures 2d and 2e show that In (y) can
be as great as about 32 without increasing the predictive error or detracting from the
goodness of fit. (The predictive error actually decreases slightly from a value of 1377 at
In(y) = -10 to a value of 1372 at In(y) = 25.) Figures 2b and 2¢ show that for In (y)
about 32, the posterior probability is concentrated on a single model having 6 terms:;
Figure 2a shows that this model contains the predictors x ;~xs. This is clearly the model
of choice, unless one were willing to tolerate an increase in predictive error to about 1700
(Figure 2d) in order to obtain an even simpler model. In this case, one would choose In (y)
greater than about 37, where the posterior probability is concentrated on the model
containing predictors x; and x,. ‘

3.4 EXAMPLE 3: COLLINEARITY

In this example, strong collinearity was introduced among some of the predictor
variables. This was done by replacing the predictor X4 by

‘Xg,Ngw = 5(9 + O.OI(XQ"")‘(Q) (3.4)

where X ¢ is the least squares predicted value of X9 when it is regressed on X;, X3, X,
X4, and X with a constant term included in the regression equation. A second collinear
relation was introduced by replacing the predictor X, by

XZ,NEW,= 5(2 + 0.01(X2—'5(2) (3.5)

where X, is the least squares predicted value of X, when it is regressed on X;. X3, X4,
X¢. and X, with a constant included in the regression equation. Before the "observed”
values of the dependent variable (y) were generated, the ten predictor variables were
centered and scaled using the same constants used in the previous examples. The generated
values of the dependent variable were obtained using the same B's and €'s used in Example
2. Thus the only difference between Examples 2 and 3 is in the data for predictors x, and
xg¢. The "true” response function, the vector of errors, and the prior distribution of the 8's
are unchanged.

The least squares estimates of the regression coefficients, the P-values for the associated
¢ -statistics, and the variance inflation factors are given in the following table.
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FIGURE 2. Plots of (a) posterior probabilities that each 8 ;=0, p(B;=01y), (b)
posterior expected number of terms in model, E(k, 1y), (c) antilog of the posterior
entropy, exp (H ), (d) predictive error, PE, and (e) posterior probability of goodness
of fit, G, as functions of In (y) for weatherization data with ten predictor variables
and simulated values of dependent variable (Section 3.3).
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B; B, P VIF
4755 3863 <001 123.0
5196 338 095  263.5
455 220 047 406
532 824 004 704
538 546 <0.01 1.2
104  -455 037 1121

91 -1968  0.16 8322

0 -2964  0.13 16798

0 8507 0.3 3143.1

0 35 048 1.1

D000 i W~

The effects of the collinearity are evident. As one might expect, this leads to
considerable confusion regarding the choice of a "best” model. The value of R? for the full
model is 0.952; there are 89 submodels having values of R? greater than 0.950. There are
13esubmodels having values of C, less than 1.1k ; these all include the terms in x, x4, x5,
and x4. Six of the thirteen exclude x,, and eight of them include at least two of the three
null terms. The lowest C, is 5.87, for the model that includes x ;. x3, X4, X5. X, and x 4.

The results of the Bayesian analysis are illustrated in Figure 3. It appears that one can
choose In(y) as great as about 10 without degrading goodness of fit (Figure 3e) or
predictive capability (Figure 3d). At this point, the posterior distribution is spread over
several submodels (the antilog of the entropy being about 4 in Figure 3c). Figure 3a
suggests that at in (y) = 10 the terms in x4, x5, x9, and x ;0 can be omitted, and the rest
should probably be kept, though there is some doubt about x4 and x4. An examination of

the posterior probabilities of the submodels when In (y) = 10 reveals that the two most
favored submodels are ‘

BotB1x1+Byx2+Baxs+Bsx s+Bexe.
which has probability 0.48, and
BotBix 1+B5x2+Bsx 3+B4x 4 +Bsx 5.
which has probability 0.38.: The next most favored has probability 0.02.
If one does not mind lack of fit, but is concerned mainly with predictive error, larger
values of In(y) (up to about 40) are acceptable. At this point, all of the posterior

probability is concentrated on the model that includes x;, x 4. x5.and x4

The non-monotone behavior of some of the curves in Figure 3a is obviously caused by
the collinearity, but we have not investigated the relationship.

4. DISCUSSION

4.1 CENTERING AND SCALING

In kgeneral, the predictors x; used in the analysis are the result of “centering and
scaling” the original predictors X . i.e.,
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FIGURE 3. Plots of (a) posterior probabilities that each 8;=0, p(B;=01y), (b)
posterior expected number of terms in model, E(k,, |y), (c) antilog of the posterior
entropy, exp (H ), (d) predictive error, PE, and (e) posterior probability of goodness
of fit, G, as functions of ln (y) for weatherization data with ten predictor variables
and simulated values of dependent variable and collinear predictor variables

(Section 3.4).
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X5 - (XJ“CJ)/ dj v (4.1)

where ¢; is the "centering constant” and d; is the "scaling constant” for the j* predictor.
Here we discuss the effect of these constants on the Bayesian analysis described in Section
2, and offer some suggestions for choosing them.

The choice of centering constants will rarely cause any problems. Usually, there is a
constant term in the model, and it is exempt from deletion; then any choice of centering
constants will do, since the posterior probabilities in (2.9) will be unaffected.
Occasionally, one may want to fix E(y )=u, at some point X 10.X 50, - * * .Xzo. In this case,
take c; =X;,. replace y by y —p and omit the constant term from the model equation.

When the values of y; in (2.9) are "known," through prior specification of f; and hy;
in (2.4), scaling doesn’t matter. since any rescaling would be accompanied by a suitable
modification of the f 's and the ¥’s. This is not the case, however, for the approach we
developed following (2.9) to avoid having to specify the y’s a priori. This approach,
which uses (2.10), requires identical prior distributions for all 8’s that are subject to
omission from the regression equation:. If we adhere to this, then as noted in Remark 2 in
Section 2.3, a change in the relative scales of the columns of X essentially changes the
prior distribution, resulting in a different family of posterior distributions. Our intent in
choosing identical priors was to reflect prior impartiality about the relative "importance”
of the predictors. We propose that the "importance” of the j* predictor be defined in
some reasonable way as a multiple of 10,1, where 8; is the coefficient of the original
predictor X;, and that the scaling constant d; be set equal to the multipler for each j.
The choice of identical priors for the B’s then implies that the prior distribution of
importance is the same for all predictors. Note that this requires no prior information
about the values of the 8’s.

We suggest the following two types of scaling based on this approach.

Type 1. For each raw predictor X;, choose a "range of prediction,” an interval of
width r; that covers the values of X; for which one expects to use the regression equation.
Define the "importance” of X; to be 18,r; |, the absolute change in E(y) effected by
moving X; across its range of prediction. Now set the scaling constant d; equal to ; ; this
will make the importance of the j* predictor equal to I8, 1.

Type 2. Another definition of importance depends on the distribution of future
predictor values. Suppose that the future distribution of values of X; at which one
expects 1o use the regression equation has a standard deviation ¢;. Then the standard
deviation of the contribution 8 ; X; to the prediction of y is 18 ; 0; |; define the importance
of the j* predictor to be equal to this. Now choose the scaling constant d; equal to o;;
this will make the importance of the j® predictor equal to |18 ;1. If the values of X; in
the data at hand are "representative” of the population for which one intends to make
future predictions, then one can use the standard deviation of X; computed from the
observed data to estimate 0. This justifies the "standard” scaling used in our examples,

Note, however, that the rationale for both types of scaling is much weaker if the values
of the predictors at which one would like to make predictions are correlated. In this case,
it is much more difficult to define the "importance” of a predictor, and hence to justify a
particular choice of scaling constants. The same remark applies to models in which some
of the predictors are known functions of others, e.g., a quadratic response surface model.
More attention to this point is needed. we think, before the methods proposed in this paper
can be applied to such models.
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4.2 INTERPRETATION OF BAYESIAN PROBABILITIES

When the regression coefficients are regarded not as properties of the real world, but as
part of a mathematical device (the model) that has been made up for the purpose of
prediction, we find the following approach helpful in defining the meaning of probability
statements about them.

We envision a hypothetical population J of "experts,” each of whom can produce,
a priori, a predicted value of the dependent variable y in any case given the values of the
predictors in that case. Each of these experts bases all of his predictions on a specific value
of B and 0. In a single case, a prediction is made using (1.1), where € is drawn randomly
from a normal distribution with mean 0 and standard deviation 0. In multiple cases,
these drawings are made independently.

Prior probabilities are defined in terms of the distribution of choices of the model
parameters within the population J. For example, the prior probability that 8; = O is the
proportion of experts in J who choose to omit x; from the model. We are defining
probability here as frequency within a hypothetical population of experts, in contrast to
the "classical” statistical models in which probability is defined as frequency within a
hypothetical population of similar experiments.

Having taken n observations on the predictors and the dependent variable, suppose we
remove from J all of the experts who did not predict all of the y ‘s correctly (to within an
arbitrarily small tolerance). The posterior distribution of the 8's and &, as obtained from
Bayes' Theorem, can be regarded as the distribution of these parameters within the
population J* of surviving experts.

This approach does not really require an expression of prior belief by the user, although
it is unlikely that one would use it if one disapproved of the prior makeup of J. To
interpret probabilities here as a measure of personal belief, one would need to assert that,
in any "thought experiment,” the joint distribution of y implied by the prior distribution
on the model parameters represents one’s prior uncertainty about y. Even if it were
possible to do this in practice, it would still be difficult to explain what is meant by
probability statements that involve the model parameters, which are artificial constructs.

We have deliberately tried to choose a Bayesian approach in which the prior beliefs of
the user are as unobtrusive as possible. The prior marginal distributions of the 8’s are all
the same, which, under the scaling conventions suggested above, should make the
procedure fair to all predictors. Moreover, given a particular submodel, the 8's that appear
in that submodel have the most commonly accepted "noninformative” joint prior. Finally,
the user need not specify in advance his strength of belief that any particular predictor is
null, since ¥ is an adjustable constant that can be assessed using the data (Section 2.4).

Our approach can be modified, if desired, to give the user more control over the prior
distribution without having to specify all of its parameters explicitly. As before, we
assume the predictors have been suitably scaled. Set all the f; s in (2.3) to be equal to an
unspecified constant; then choose the "odds for deletion” ¢; = ho;/(1 — ho;) for each
predictor. By (2.4), y; = y$;. where ¥ is an unspecified constant. Now use (2.9), and
evaluate the parameter y as described in Section 2.4. Note that it is only the relative odds
for deletion that matter, since if all the ¢'s are multiplied by a constant, the same family
of posterior distributions arises.
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4.3 A COUPLE OF PARADOXES

Since our Bayesian model places probability at a specific point ( 0 ) in the distribution
of any B that is a candidate for omission from the regression equation, we should expect
"Lindley's paradox” to occur. In fact. the Bayesian model used by Lindley (1957) to
demonstrate the paradox is the same as ours, restricted to one dimension and with o?
known. In our setting, Lindley’'s paradox is that, given any value of y, there are data sets
such that a submodel can show significant lack of fit based on the usual F-test and can
also have posterior probability close to 1. This occurs when, for example, 8; is close to 0
yet its standard error is small enough to make it significantly different from 0. This
phenomenon, which was first noted by Jefireys (1967). has caused considerable discussion
in the literature. We have little to add, except to explain why we are not worried about it
here.

In the context of the population of predicting experts J described ;in Section 4.2, the
significance of 8; at the 0.01 level, for example, means that

(A) among those experts who omitted x; from the model. less than 1% predicted that the
lack of fit statistic would be greater than the value that was actually observed. ‘

At the same time (if Lindley’s paradox occurs) the posterior probability that 8; =0 may
be close to 1, indicating that S

(B) the proportion of experts who correctly predicted y was far greater among those who
omitted x; from the model than among those who included this term but were not in
agreement about the valueof B;. o

In this context there is no paradox. since there is no particular reason why (A) should
necessarily be consistent with (B). In the first place, the two events are different, as
Lindley (1957) pointed out. Secondly, (A) refers only to those experts who omit the term
in x; , while (B) considers their performance relative to those who include it.

We think that statements like (B) are usually more relevant to the variable selection
problem than are statements like (A). In any case, we note that our "goodness of fit"
assessment of the choice of 'y (Section 2.4) allows us to avoid, if we want, values of ¥ that
would result in a high posterior probability for submodels that showed a significant lack
of fit by the classical test. For further discussion of Lindley's paradox. see Lindley
(1957), Bartlett (1957), Shafer (1982), and Smith and Spiegelhalter (1980).

While on the subject of paradoxes, note that if we fix h, (the prior probability that
B; = 0), then as f (the half-width of the interval on which each B; has positive prior
probability) approaches oo, the posterior probability concentrates totally on the submodel
baving the fewest possible predictors no matter what the data. (This can be seen easily
from equation (2.10), since y approaches o0.) This was noted by Bartlett (1957) in the
one-dimensional example used by Lindley (1957). and has been the subject of more
extensive investigation by Atkinson (1978) and Pericchi (1984). _ :

The difficulty can be discussed most easily in one dimension. Here the prior probability
that B is in any interval that does not include O approaches O as f approaches oo, while
the prior probability that 8 is in any interval that includes O approaches a constant. We
have avoided this difficulty by introducing the parameter y; in the limiting process,
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¥ is held fixed so h, approaches O as f approaches oa This was suggested by Lindley in
correspondence with Bartlett, but Bartlett (1957) regarded it as "rather an artificial
evasion of the difficulty.” To us it seems a sensible evasion of the difficulty; it is the
difficulty itself that is artificial. This can be seen by observing that, as long as f is large
enough for (2.7) to hold, the effect of the prior distribution on the posterior distribution is
a function of y only. Thus, a whole family of posterior distributions, indexed by 7. can
be generated. Letting f approach oo while A is fixed drives the posterior distribution
toward the one member of this family that corresponds to y=eca. This seems to us
unnecessarily restrictive,

4.4 OTHER METHODS

Box and Meyer (1986) developed a Bayesian variable selection approach for the
problem of identifying the important effects in unreplicated fractional factorial designs.
They supposed that each effect B; is "active” (non-zero) with probability «, and that all
effects are independently and identically distributed. Our approach, in the somewhat more
general linear regression setting, stems from the same idea, but differs in some major
respects. We specify a locally uniform prior for each active 8,. while Box and Meyer use
a normal prior, the variance of which is a "known” multiple ¢ of 02, where ¢ =k -1, (k
being a known parameter here, not the number of model terms). Their posterior
distributions depend on two parameters, a and k&, which are supplied by the user. Our
posterior distributions depend on one parameter, 7, which is treated as an adjustable
constant and assessed as suggested in Section 2.4.

In the Box-Meyer model, the prior variance of each active 8; is specified to be a
multiple of o? This practice, which greatly simplifies the derivation of the posterior
distributions, seems to be adopted without guestion by most authors. One of its
consequences is that one always has n degrees of freedom for the estimation of 02, no
matter how many terms there are in the regression equation. In the Box-Meyer setting, for
gxamFlg, if all effects are known to be active, the inference about ¢ is the same as if
Bik ™%, Bk 7L, ..., were treated as a sample from a normal distribution with known mean
0. If there is no link between the variances of the 8’s and 0%, then the data provide no
information about 02 when the rank of X is n. We have chosen not to provide such a
link, so there are some restrictions on the maximum rank of X if one is to apply the
methods of Section 2.4 to assess values of .

Several closely related Bayesian variable selection methods have been considered by
other authors (Atkinson (1978), Halpern (1973), Pericchi (1984)), from the viewpoint of
model selection or model discrimination. This is a somewhat more general framework
than the one set up by Box and Meyer and by us. As a point of reference, consider the
following "standard” setup (Pericchi (1984)), in which the components of the prior
distribution are as follows:

2B | A, .0) is a multinormal density with mean 8%, and covariance matrix a°V,,.
p(07%14,,) is a two-parameter gamma density whose parameters may depend on m.
P(A,,) is specified by the user.
If the user can supply the needed parameters P(A,,), f*,, and V,, for all m, as well as

the parameters of the gamma distributions for 072, the analysis is straightforward. (See
Pericchi (1984) for the formulas needed to compute the posterior probabilities of the
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competing models.) To relieve the user of the burden of specifying all these parameters
(and the fear of having to defend his choices), various simplifications can be adopted to
express ignorance or impartiality. For example, one might choose B*,=0 and V,,=ql,
where g is a parameter that can be specified or treated as an adjustable constant. One
might also choose the standard noninformative prior distribution for o, and thus avoid
having to choose the parameters of the gamma priors for o2 None of these
simplifications cause any special difficulties, and can be used whenever they seem sensible.
Unfortunately, seemingly sensible attempts to express impartiality toward the competing
models and prior ignorance about the magnitudes of the B’s within those models have led
to difficulties of the type exemplified by Bartlett’s paradox. (See Atkinson (1978) for a
more extensive discussion of these difficulties.)

Pericchi (1984) argued that the prior submodel probabilities should be adjusted by the
factor exp(l,). where I,, is the expected gain in information (defined as the expected
change in entropy) in the distribution of the submodel parameters. The effect of this is to
remove from the posterior distribution of the submodels those terms that are responsible
for paradoxes of the kind described Section 4.3. One unsatisfying aspect of this is that the
prior distribution of the submodels becomes dependent on the design. Moreover, the effect
of the design on the posterior probabilities seems to us to be in the wrong direction.
Consider two competing models; one containing only the predictor x; and the other
containing only the predictor x,. If the design is good for estimating B; but bad for
estimating B,. the first model will be favored, a priori, by Pericchi’s rule. That is, the
expectation of weak information about B, will increase the probability that B, is declared
to be 0. To our minds, this presents more of a difficulty than does Lindley’s paradox,
which Pericchi’s rule effectively banishes.

There are, of course, numerous non-Bayesian techniques for variable selection. See, e.g..
the review by Hocking (1976). Classical approaches have produced many useful statistics,
e.g.. Mallows’ (1973) C,. Allen’s (1971b) PRESS, P-values for specified lack-of-fit tests,
and so forth, which the experienced statistician considers in arriving at a reasoned opinion
regarding the consequences of omitting predictors from the model. However. most
classical methods are based on statements of the form: "If the data are generated by
submodel A, , then the probability of the event E (or the expectation of the statistic Z ) is
Q." There are a great many potentially informative statements of this type. corresponding
to different choices of A,, and £ or Z. The process of synthesizing this information and
resolving the inevitable conflicts is not an easy one, especially when data-guided strategies
change the Q’s in unknown ways. For a good exposition of the difficulties. see the paper
by Miller (1984). :

In contrast, the process of synthesizing the available information using a Bayesian
approach is relatively straightforward, subject to computational limitations. All of the
agony centers on the choice of prior distribution(s). We have simplified further by
reducing this agony to the choice of a single parameter 7y, in addition to the choice of
scaling. We have suggested, in Sections 4.1 and 2.4, some ways to make these choices.
Although it might be argued that we have oversimplified by restricting attention to too
narrow a class of priors, we think that this class is flexible enough to be of practical use.

Another feature we find appealing about a Bayesian approach to the problem of
selecting predictors is that the results are produced in the form of probabilities for the
various submodels. This is unlikely to impress those who think that Bayesian
probabilities are of questionable value, although we hope that our attempt in Section 4.2 to
endow these probabilities with a frequentist meaning will help.
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We think that the major practical limitations of the methods we have presented here
are the exclusion of functional dependencies among predictors, the computational effort
required if there are many predictors, and the restriction of the error model to the normal
distribution. We hope that these limitations will be removed as a result of further work
in this area, and that, in meantime, the methods we have described here will be a useful
adjunct to methods of variable selection that are currently in use.
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APPENDIX
Here we present some formulas and computational details that we have used in
carrying out the methods described in this paper.

A.1 NOTATION

Consider a single regression model, where the data is in the form of an n X ¥ matrix X
and an n-vector y. The following defines the necessary notation:

x;'is the i” rowof X
=X ),
hi=x;(X'X)"'x;=¢;'x;
B=(XX)'Xy
yi=x;'b=¢;'X'y
€=y~

fi=e;i/ (1—h;)

52=8%/ (n~k )
A.2 PREDICTIVE ERROR FOR THE i"" CASE
~ For the moment, assume there is only one regression model, with k terms. Let X(i),
G e;G) A (G 6G). 5,G). ¢,(i). 82 ), 52G ) be defined as above when the i?* case is
omitted from the data set. The following formulas are useful in computing the effect of
omitting a case:

W) = R/ Q=h)) (a2

bG)=b~f;c; | (A2.2)

5:G) = 5,—h; f; (A2.3)

S2G) = S%—e; f; (A2.9)

5%i) = (8%—¢; f;)/ (n—k=1) (A2.5)

det [X'G)X ()] = det [X'X T/ (1-h;) (A2.6)

The posterior distribution of the dependent variable in the i case given all the data other
than y; is a scaled and shifted t-distribution, centered at y:(Gi) with scale factor
5 (i )y/ 14A;(@) and n —k; —1 degrees of freedom.
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The mean squared predictive error for the i case is

MSE, = (3% G )26 X1+h, )22l (A2.7)

the last factor on the right being the variance of the t-distribution with n —k —1 degrees of
freedom.

Substituting (A.2.1, A.2.3, and A.2.5) into (A.2.7) yields
MSE; = f;24(S%—e; f; Y1~k ) Mn—-k—3)71 . (A.2.8)

This pertains to a single model with £ terms. When there are several models, indexed
by m=12,..., it can be shown that MSE; is a weighted average of terms of the form
(A2.8), ie.,

MSE; = TP A NS i n 24+ (Sn2~€ipn f i YA=hi ) M —k,~3)"],  (A2.9)

where P(;)(A,,) is the posterior probability of model m given all the data except y;.

Our summary measure (PE in equation (2.19)) of the predictive error is the square root
of the average of MSE; over all n cases.

A.3 COMPUTATION

To calculate the posterior probabilities of the submodels, one needs to compute the
residual sum of squares S,2 and 1X,,'X,, | for every submodel that has been assigned a
positive prior probability.

If one wants to compute the predictive error PE, more computational work is required.
Most of this involves the computation of the vectors h,, and e, for each submodel. One's
approach will depend on the numerical software available; here we describe the main
components of our computer program, which is written in FORTRAN 77 and makes use of
the NAG subroutine library.

Given n, k., X, y. Xn'X,. and X'y, the main subroutine first does a Cholesky
decomposition of X,,'X,,, using the NAG routine FO1BQF. That is, U and D are found
such that X,,'X,, = U'DU, where U is a unit upper triangular matrix and D is a diagonal
matrix with diagonal 4.

The determinant of X,,'X,, is just the product of the d;s.

The inverse of U, which is the unit upper triangular matrix Q, is computed using

ji—1
Qiy =Vi;— X UixQe, i <j. (A3.1)
k=i+1

(The summation on the right is omitted if j =i +1.)
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For each case i, let z; = Q'xi, Furtber, let w = Q'X'y. The residuals are obtained
from e¢; “-‘-=y,~--):;. where 3;, = Ezi,wj/ d;. S? is then computed directly from the
i=1

£
residuals. The elements of the hat vector A are obtained from h; = Zzi, 2/ d ;- The

) J=
elements of the mean squared predictive error vector for the submodel are given by
equation (A.2.8). The log model weights w,,, as given by equation (2.12), are also
calculated and returned by the subroutine, T ‘

To save storage space, the predictive mean squared error vector, whose i element is
given by (A.2.9), is accumulated as a running weighted average and is updated after the
calculations for each submodel have been made.

When all possible submodels have been considered, the posterior distribution P(A,, 1y)
is obtained from the log submodel weights, and the posterior entropy is computed. Other
properties of the posterior distribution. e.g.. P(B;=01y), can now be easily obtained.

Remark Al. Once In(w,) in (2.12) has been computed for one value of 1y, the
computation for other values of y is immediate. This should be exploited in the program.

Remark A2. Our current program does the main computations for each submodel
independently. We expect that our current program could benefit from a more efficient
approach, under which computations made for one submodel can be used in obtaining the
results for another. See, for example, Furnival and Wilson (1974).
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