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SOLUTION QF SPARSE POSITIVE DEFINITE SYSTEMS 
ON A SHARED-MEMORY MULTIPROCESSOR 

Algorithms and software for performing sparse Cholaky decomposition and wing 
the Cholesky factors in the solution of sparse symmetric positive definite systems 
on serial computers have reached a high state of development. In this paper we 
present algorithms for performing these two phases on a shared-memory 
multiprocessor computer, along with some numerical experiments demonstrating 
their performance on a Sequent Balance 8000 system. 
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1. introduction 

This article deais with the problem of solving a large sparse positive definite 
system of equations A x  = b on a shared memory multiprocessor system. In [31, a 
parallel algorithm was developed for solving dense positive definite systems in 
such an environment, so this article can be regarded as a sequel to that work, in 
which the sparsity of the problem ks addressed and exploited. 

The solution of large sparse positive definite systems typically involves four 
distinct steps [61: 

1. 

2. 

3. 

4. 

Ordering 
Find a good ordering P for A .  That is, find a permutation matrix P so 
that PAPT has a sparse Cholesky factor L [i.e., PAPT = LLT 1. 
Symbdic f actwizatim 
Determine the structure of the Cholesky factor of PAPT, and set up a 
data structure that exploits the sparsity of L . 
Numerical f actorizatiopz 
Place the elements of PAPT into the data structure, and then compute 
L .  

Triangular solutioa 
Using the computed L , solve the triangular systems L y  = Pb , L Tz = y , 
and then set x = PTz. 

The problems of implementing an ordering algorithm and a symbolic 
factorization algorithm on a multiprocessor machine are major projects and will be 
considered elsewhere. In this paper we develop and test parallel algorithms for 
steps 3 and 4. 

The computing regime we adopt employs the notion of a pool of tasks whose 
parallel execution is controlled by a self-scheduling discipline 171. In our context, 
the tasks are those computations associated with columns of the coefficient matrix, 
and thus have a well-defined order associated with them. 

In some parallel algorithms, specific tasks are mapped onto specific processors 
in advance of initiating the computation. In this situation, effective (static) load 
balancing among the processors requires that the distribution of work be 
reasonably uniform. Self-scheduling can be regarded as a mechanism for 
implementing dynamic load balancing; p processes are initiated to perform T tasks 
( p  <TI. When a given process completes a task, it checks to see if any unassigned 
tasks remain, and if so it is assigned the next one. Thus, if a process happens to 
have drawn a relatively small task, it will become free to perform another one 
sooner than a process occupied by a larger task. Ln this way, processors tend to be 
kept busy even if the tasks vary in their computational requirements. 
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This self-scheduled pol-of-tasks approach is flexible in that it is not very 
strongly dependent on the number of processors available. However, its effective 
use depends upon certain computational and hardware characteristics. 

Since the pool of tasks must be made available to each processor, there must 
be either a significant amount of shared global memory, or very high 
communication bandwidth among processors. This is particularly important if the 
tasks involve a substantial amount of data and/or if the computation involved 
with each task is small compared to the time required for the processor to acquire 
the task. 

This latter issue of granularity is complicated in the context of using the 
self-scheduling pool-of-tasks approach. On one hand, unless the overhead 
associated with the initiation of a process is small, one would prefer to have the 
computation associated with each task quite substantial, so as to amortize the 
initiation overhead over a large amount of computation. On the other hand, large 
tasks imply that there will be fewer of them, and the problem of allocating them 
to processors in a way that will keep them all gainfully employed over time will 
be more difficult. 

In light of the remarks above, we will assume that T >>p, and that the 
balance between hardware s and task size is such that the time associated with 
assigning a task to a processor is low compared to the time it takes to perform that 
task. Computers for which such assumptions are reasonable include the Cray X- 
MP, Elxsi, Encore, Flex, and the Sequent, each of which has a moderate number of 
processors (4-30) and considerable memory, all attached to a very fast bus. 

An outline of the paper is as follows. In Section 2 we briefly review the ideas 
in [31 and some basic results about sparse Cholesky factorization. We then 
describe a parallel version of the algorithm. In Section 3 we consider the parallel 
solution of sparse triangular systems. In Section 4 we present numerical 
experiments which demonstrate the performance characteristics of the algorithms. 
These were performed on a Sequent multiprocessor, which has a shared-memory 
architecture. Finally, Section 5 contains our concluding remarks. 

Recent work on parallel sparse Cholesky factorization includes the following. 
In [I], Duff consides the implementation of the multifrontal approach for solving 
sparse symmetric systems on a shared-memory multiprocessor, and in 141, the 
authors of this paper have proposed a parallel sparse Cholesky factorization 
algorithm for a distributed-memory multiprocessor. 
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2. Parallel Sparse Cholesky Factorization 

2.1. Parallel Dense Column-Cholesky 

In 131, the column-Cholesky formulation is recommended for parallel 
Cholesky factorization of dense symmetric positive definite linear systems on a 
shared-memory multiprocessor. Following 131, we let T c d ( j  ) be the task that 
computes the j -th column of the Cholesky factor. Each such task consists of the 
following two types of subtasks: 

1. c d  ( j  , k ) : 

2. cdiv ( j  1 : division of column j by a scalar. 

modification of column j by column k (k < j  ); 

We first review the version of dense column-Cholesky in [31. The self- 
scheduling of the tasks Tcd ( j  ) is implemented by maintaining a vector of flags 
ready. They can be viewed as a vector of semaphores to ensure synchronization 
among these column tasks. The value ready [j 1 indicates whether column j is 
ready to be used for modification of subsequent columns. The following gives an 
algorithmic description of the implementation. 

f o r j  := 1 t o n  

f o r j  := 1 t o n  
ready [ j  I := 0; 

schedule TcoZ ( j  ); 

The task Tad ( j  can then be implemented as follows. 

fork  := 1 to j - 1  
begin 

wait until ready [k 1 = 1; 
docmxf ( j , k ) ;  

end 
do cdiv ( j  1; 
r d y  [ j  1 := 1; 

It should be clear that the columns of the matrix become ready in order of the 
column subscripts, so that the tasks are completed in the sequence: 

Tcd(1) , Tcd(2) , . - *  , Tcd(n1 . 
We now introduce a different version of parallel dense factorization. It is the 

basis for the parallel sparse colurnn-Cholesky algorithm to be described in Section 
2.2, but is easier to understand. Its purpose here is to facilitate a better 



appreciation of the underlying idea for the sparse case. 

The new formulation maintains a set of n non-ovalapping linked lists, one 
for each column of the matrix. Since they are non-overlapping, an n-vector link 
will be enough to implement them. In the following discussion, link [ j 1 denotes 
the rn-th element in the linked list for column j ;  for example, 
link 3 [ j  ] = link [link [link [ j  I]]. We assume that the lists are null-terminated, so 
that the j -th list is given by: 

Link [ j  I , link 2Cj I , - - * , l i n k ' [ j ]  , 

where for some r ,  link'"[j I =  0. These linked lists are often used in the 
sequential algorithms for s n e  Cholesky factorization 1101. Furthermore, we 
define next ( j  , k ) to be the row subscript of the next nonzero in column k of L 
immediately beneath L j k .  (In the dense case, 
next (1, k ) is independent of k , but next ( j  , k will depend on both j and k in 
the sparse case.) The new algorithm is shown below. 

That is, next ( j  , k = j + 1. 

f o r j  := 1 t o n  

begin 
link [ j  I := 0; 
nntod[j]:=j--1; 

end 
for j := 1 t o n  

schedule Tcol ( j  1; 

Each task Tcd ( j  1 is as follows. 
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whilenmod[jl >Odo 

begin 
wait until link j 1 > 0; 
k := link [ j  I ;  
link [ j  1 := Link Ik I ;  

/* remove first column k from j -th list */ 

do cmod ( j  , k 1; 

~ [ j l : = n m O d [ j l -  1; 
nextnz := next ( j  , k 1; 
if nextnz < n  then 

besin /* add k to next ( j  , k 1-th list */ 
link [k 1 := link [nextnz 1; 
link [nextnz 1 := k ; 

end 
end 

do cdiv ( j  1; 

nextnz := next ( j  , j 1; 
if nextfzz <n then 

begin /* add j to next ( j  , j 1-th list */ 
Link [ j  I := link Cnextnz 1; 
Link [nextnz 1 := j ; 

end 

In this version, & [ j ]  is used to keep track of the number of column 
modifications that remain to be performed on column j ; and it is initialized to 
j -1. For column j , the linked list: 

1ink[jI  , l ink2[j1 , - - -  
gives the columns that are currently ready to modify column j .  As each (say, 
column k ) is used for the column modification, it is removed from the linked list 
for j and passed onto that for next ( j  , k 1 (namely, column j +1 in the dense 
case). Moreover, after the cdiv ( j  operation, column j is now ready to modify 
subsequent columns, and it is placed in the linked list for next ( j  , j (which is 
again equal to j + 1). 

Compared to the previous algorithm (using the ready vector), this version has 
several drawbacks. Two n-vectors are required in the current version. More 
importantly, some form of critical section has to be set up during the update of the 
link vector. This will avoid simultaneous update of the link vector by different 
T a l  tasks. Such a mechanism is not necessary in the ready-version. However, the 
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changes are important in order to take advantage of the parallelism derived from 
the sparsity of L a 

2.2, Parallel Sparse CdumtrGolesky 

An; we have pointed out in the previous subsection, general sparse matrix 
packages (on serial machines] often use a variant of the link -version described in 
k%ction 2.1 for sparse Cholesky factorization; examples are the Yale sparse matrix 
package [2] and SPARSPAK [SI. One important difference from the dense case is 
that nekz ( j  , k ) is no longer always equal to j + 1. Recall that next ( j  , k ) is the 
row subscript of the next nonzero in column k of L immediately beneath L j k .  
Hence, nexf ( j  , k ) will depend on both j and k in the sparse case. More precisely, 
nea ( j  ,k ) depends on the structure of L .  Thus column k (after a cmod) or j 
(after a cdiv ) of L will not be passed to the ( j  +l)-st list in general, but instead 

ed to the list determined by the structure of the Cholesky factor. For 
Lj ,  is the last nonzem in column k , we put next ( j  , k ) = n 4- 1. 

The link -version for the sparse factorization is similar to that for the dense 
factorization in Section 2.1. One difference is that nmod [ j  1 should be initialized to 
be q ( E j ,  ), where q(Lj ,  ) is the number of offdiagonal nonzeros in the j -th row of 
L .  This information can be obtained easily from the structure of L (which is 
computed in the sym Ilc factorization phase). Also the function next can be 
evaluated easily if the nonzmos of a column are stored in ascending order of the 
row subscripts. 

Another implementational difference from the dense case is in the execution of 
cntai ( j  , k 1. In the sparse case, the columns Lj,  and Lk, are stored in a compact 
form. To perform cmod (1, k 1, we need to unpack the compact form of the 
column E,, so that modifications from other columns can be done efficiently. This 
implies that the p r m r  executing the task T c o l ( j )  requires a local working 
array of sjize n to facilitate the column update operations on column j . However 
the data structure for storing L in the parallel sparse Cholesky algorithm is 
the Same as that in the sequential sparse Cholesky algorithm, since it is stored in a 
global memory and is accessible by all processors. 

In terms of behavior, the dense and the sparse cases differ in the order the 
cdiv 's are performed. In the dense case, the cdiv ' s  are performed in a sequential 
order. However, in the sparse case, only a few cmod's have to be applied to 
column j and cdiv ( j  can be performed once all the necessary cmod 's have been 
applied. Thus not only can the c d  's be carried out in parallel in the sparse case, 
some of the cdiv 's may also be completed simultaneously. 

In the discussion above, we have not addressed the problem of scheduling the 
tasks. We have assumed that the column tasks are scheduled according to the 
ordering of the columns. Recall from Section 1 that the columns of A are ordered 
at the beginning so as to redue fill in the Cholesky factor. (In our experiments, 



- 7 -  

we have used a variant of the minimum degree algorithm [SI.) Thus we implicitly 
assume that such an ordering is appropriate for parallel computation on a shared- 
memory multiprocessor. In general, because the Cholesky factor is sparse, the 
completion time of parallel sparse Cholesky factorization will depend on how the 
column tasks are scheduled. It is possible to reorder the columns of the permuted 
matrix PAPT so that the Cholesky factor has the same amaunt of fill, but when 
the new ordering is used to schedule the column tasks, the completion time on a 
shared-memory multiprocessor will be reduced. See 191 for details. 

3. Parallel Sparse Triangular Solutions 

In this section we consider the parallel solutions of the triangular systems 

Lv = u and L T W  = v , 
where I, and u are either given or computed elsewhere. It is assumed that the 
elements of L are stored column by column. We shall first describe a parallel 
algorithm for the backward solve and then present two parallel algorithms for the 
forward solve. 

3.1. Parallel Backward Solve 

denote the task that computes wj . A parallel algorithm for 
computing w is given below and it makes use of the vector ready described in the 
previous section. 

Let Tw (1 

for j := 1 t o n  
ready [ j  1 := 0; 

for j := n down to 1 
schedule Tw ( j  1; 

Here each task Tw ( j  ) is given as follows. 

for each offdiagonal nonzero Lkj in the j -th column, do 
begin 

wait until ready [k 1 = 1; 
do w d ( j  ,k 1; 

end 
do wdiv ( j  1; 
ready [ j  ]I := 1; 

The functions wmod ( j  , k and wdiv ( j  are similar to cmod and cdiv in the 
Cholesky factorization respectively. More precisely, wmod ( j  , k ) modifies vi by 
wk using Lkj , and wdiv (i divides vi by Lj j  to yield the result w j  . Note that 
once a component w/ is computed, it can be used to modify m y  v i ,  i < j . The flag 
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ready [ j  1 is used to signal when wj  Is available. The parallel algorithm described 
above is effident in terms of accessing the elements of L , since L is stored column 
by column. 

When L is dense, the wmod I s  can be performed in parallel, but the wdiv 's are 
completed sequentially. However, when L is sparse, wnmi ( j  , k 1 is performed 
only when L k j  is nonzero. As a result, not only can the w d  I s  be carried out in 
parallel, some of the wdiv's may also be completed simultaneously. Thus the 

ibed above exploits the parallelism inherent in the backward solve 
and that provided by the sparsity of L . 
3.2. Parallel Forward Solive 

Now we consider the problem of solving the lower triangular system Lv = u 
in parallel. We first recall that the elements of L, are assumed to be stored column 
by column. Let Tv ( j  1 denote the task that computes vi.  In the following 
discussion, vmal ( j  , k ) mdiiies u j  by v k  using Ljk and vdiv ( j  divides uj by 
Lj j  to yield the result v j  . 

We shall consider the dense case first. We note that v j  can be computed only 
when uj has been modified by the product of vi and L j i ,  1 < i  < j - 1 .  This 
requires accessing the elements of L by rows. Note that our ultimate goal is to 
develop a parallel algorithm for sparse forward solve. Since we assume that, when 
L is sparse, the nonzeros are stored column by column in a compact data 
structure, it is awkward to access the elements by rows. This difficulty can be 
alleviated by using the ideas in the link-version of the parallel algorithm for 
Cholesky factorization given in Section 2. That is, the nonzeros in row j of L 
that will be used to modify uj  are put in a linked list and the linked lists are 
updated after these nonzeros are used. However, it should be noted that the 
amount of computing is small in forward solve compared to the overhead (for 
synchronization purposes and updating the linked lists) involved. Indeed, 
preliminary experiments on a !%quent multiprocessor have shown that the 
performance of this approach is poor, 

We now describe a second approach for parallel forward solve. It makes use 
of only nmock and it is column-oriented. The algorithm is shown below. (Recall 
that q(L,, ) denotes the number of offdiagonal nonzeros in row j of L .) 

f o r j  := 1 t o n  

f o r j  := 1 t o n  
[I 1 := q(Lj* 1; 

schadule Tv ( j  1; 

Here each task Tv ( j  is defined as follows. 
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wait until nmod r j  1 = 0; 
do vdiv ( j  1; 
for each off diagonal nonzero L k  in column j , do 

begh 
do v d  ( k  , j  1; 
d f k ]  := M l o d [ k ]  - 1; 

end 

h this version, once vl is computed, it can be used, together with column j of L , 
to modify the right hand side vector. Thus accessing the elements of L is very 
efficient. 

Obviously, some form of critical section must be, set up when performing the 
wltod ’s and decranenting RMod. This is particularly important in the sparse case 
since the sparsity of L may cause a component of u to be modified simultaneously 
by several components of v .  Thus, in general, there must be some form of 
synchronization lock for each component of u .  The second algorithm therefore 
requires the same amount of storage as the link version (assuming a 
synchronization lock and an integer location both require the same amount of 
space), but the overhead is smaller (since no linked lists have to be maintained). 
However, the second algorithm suffers from the drawback that it requires n 
synchronization locks (n is the order of L ) .  There will be a difficulty if the 
multiprocessor system provides only a small number of such locks. 

4. Numerical Results 

The numerical experiments were performed on a Sequent Balance 8000, which 
is a multiprocessor system with shared memory. On our system, there are 8 
p r o c m r s  attached to a high speed bus, and these processors share 8M bytes of 
global memory. The operating system running on the Sequent multiprocessor is 
Dynix, which is a variant of the Unix operating system. Special library functions 
are provided for creating multiple cooperating processes and for synchronizing 
these processes. 

The parallel algorithms described in this paper were implemented in 
FORTRAN and the programs were compiled using the Sequent FORTRAN 
compiler. The programs have been tested on p processors, where 1 <p <7 (the 
eighth processor was reserved for operating system functions), The test problems 
used in the experiments were matrices defined on a sequence of L-shaped finite 
element meshes, and these matrices have been reordered wing a variant of the 
minimum degree algorithm [SI. For comparison purposes, we have run 
SPARSPAK, which is a software package for solving large sparse symmetric 
positive definite systems on serial machines [51, on a single processor in order to 
obtain the “sequential” times. The results are provided in Table 4.1. 
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265 
408 
577 
778 

1009 
1270 
1561 
1882 
2233 
2614 
3025 
3466 

I_ - 
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1753 
2716 
3889 
5272 
6865 
8668 
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12904 
15337 
17980 
20833 
23896 
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Sequel 

Pactmimtian 

1.350 
2.950 
4.917 
8.350 

11.700 
16.433 
23.733 
32.950 
42.450 
55.367 
67.817 
92.583 

a1 Algori: 
Forward 
solve 
.150 
"267 
.400 
.600 
-817 

1.083 
1.433 
1.800 
2.217 
2.733 
3.233 
3.917 

ns 
Backward 

Solve 
.150 
-267 
.417 
.600 
.817 

1.083 
1.400 
1.783 
2.167 
2.650 
3.117 
3.800 

Performance of the sequential algorithms. 
(Times are in seconds.) 

The results of the multiple-processor experiments are presented in Tables 
4.2-4.7. In order to gain some insights into the performance of the parallel 
algorithms, we have computed the speedup ratios 0, which are defined to be 

time required by the sequential algorithm 
time required by the parallel algorithm on p processors 

o = =  ' 

Thus a parallel algorithm on p processors has a good performance if the speedup 
ratios are close to p . 

Table 4.2 contains the execution times (in seconds) and speedup ratios of the 
parallel sparse numeric factorization algorithm on p processors, for 2 <p <7. It is 
worthwhile to point out that the speedup ratios on a fixed number of processors 
improve as the problem size increases. When p =2, the speedup ratios approach 
1.8 for our set of test problems. Thus the efficiency (which is defined to be 0 / p ) 
approaches 90%. On 7 processors, the efficiency approaches 77% and we expect it 
to improve as the problem size increases. Table 4.3 contains the performance 
statistics of running the parallel sparse numeric factorization algorithm on only 1 
processor. This provides an indication of the amount of synchronization overhead 
in the parallel algorithm. As one can see, the overhead is fairly small. From these 
results we conclude that our parallel sparse numeric factorization algorithm is 
capable of producing good efficiencies for large enough problems. 
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Table 4.3 : Performance of the parallel sparse numeric factorization algorithm 
on 1 processor. (Times are in smndsl. 

The results for the parallel sparse forward solve algorithm (cslumn-oriented 
version) are given in Tables 4.4-4.5. Note that the performance of the column- 
oriented algorithm is fairly good despite the fact that updating a component of the 
right hand side vector must be done in a synchronized manner. The efficiency is 
about 45%. 
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II Forward Solve 

1009 1.ooo 
1270 1.317 
1561 1.733 
1882 2.200 
2233 2.717 
2614 3.317 
3025 3.950 
3466 4.767 

I 

U 

.82 

.84 

.80 

.82 

.82 

.82 

.83 

.82 

.82 

.82 
-82 
.82 

L - 

L 

P = a  - 
time 
.133 
.217 
.350 
.500 
.683 
.917 

1.183 
1 Sa0  
1.850 
2.250 
2.683 
3.250 

~ - 

- 

(r 

1.23 
1.14 
1.20 
l”20 
1.18 
1.21 
1.20 
1.20 
1.21 
1.20 
1.21 

~ 

i;ls 

- 
p = 4  

time 

.117 

.183 

.267 

.400 

.533 

.700 

.900 
1.150 
1.417 
1.717 
2.050 
2.483 

-- -- 

-- 

0- - - 
1.28 
1.46 
1.50 
1.50 
1.53 
1.55 
1.59 
1.57 
1.56 
1.59 
1.58 
1.58 - 

v = 5  11 p = 6  - 
time 
.083 
.150 
,217 
.333 
A33 
367 
.767 
.950 

1.150 
1 .m 
1.683 
2.017 

- - 

- 

0- - I_ 

2.24 
2.01 
2.00 
2.25 
2.23 
2.24 
2.26 
2.20 
2.26 
2.28 
2.31 
2.28 
.__ 

- 
- time 

.083 

.117 

.183 
2 3 3  
.333 
.433 
.550 
.717 
.850 

1.050 
1.233 
1.483 

__. 

_I 

~ 

U - _I 

1.81 
2.28 
2.19 
2.58 
2.45 
2.50 
2.61 
2.51 
2.61 
2.60 
2.62 
2.64 - 

Table 4.4 : Performance of the parallel sparse forward solve algorithm 
(column-oriented version) on p processors. (Times are in seconds). 

11 Forward Solve 

- 
~ 

265 
406 
577 
77 8 

1009 
1270 
1561 
1882 
223 3 
261 4 
3025 
3466 

Table 4.5 : Performance of the parallel sparse forward solve algorithm 
(column-orientd version) on 1 p r ~ ~ o r .  (Times are in seconds). 

Tables 4.6 and 4.7 contain the results of the parallel sparse backward solve 
algorithm. The performance is between those of the factorization and column- 
oriented forward solve algorithms. We can achieve an efficiency of about 60%. As 
we can see from Tables 4.3, 4.5 and 4.7, the synchronization overhead in the 
parallel forward and backward solves is higher than that in parallel numeric 
factorization. This is becam the forward and backward solve algorithms require 
relatively little computing. 
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n 

- - 
265 
406 
577 
778 

1009 
1270 
1561 
1882 
2233 
2614 
3025 
3466 
_I 

,117 1.28 

.300 1.39 

.467 1.28 

.600 1.36 

.817 1.33 
1.033 1.36 
1.333 1.34 
1.633 1.33 
1983 1.34 
2.333 1.34 
2.817 1.35 

11 p :  p = 3  
time I u If t!z7 
.OS3 1.81 

ckward Solve - 
I 
~ 

(T 
I_ - 
2.24 
2.28 
2.50 
2.25 
2.45 
230  
2.40 
2.49 
2.45 
2.48 
2.49 
2.50 
I_ 

n = 6  11 n 
time 1 u 11 
.050 3.00 
.067 3.99 .083 
.117 3.56 .117 
.183 3.28 -167 
.250 3.27 -200 
.333 3.25 .283 
.417 3.36 ,367 
.517 3.45 .450 
.617 3.51 .M7 
.767 3.46 .667 
917 3.40 A17 

1.067 3.56 -950 

: 7  
Q - __. 

3.00 
3.22 
3.56 
3.59 
4.08 
3.83 
3.81 
3.96 
3.82 
3.97 
3.82 

I 4.00 - 
Table 4.6 : Performance of the parallel sparse backward solve algorithm 

on p processors. (Times are in seconds). 

Table 4.7 : Performance of the parallel sparse backward solve algorithm 
on 1 processor. (Times are in seconds). 

To summarize our results, we have plotted the speedup ratios versus 
problem sizes in Figures 4.1-4.3. 

the 
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Figure 4.1 : Speedup graph for parallel sparse numeric factorization. 
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np = 7 

np = 6 

np = S 

np = 1 

I I I I I 1 I 

500 100015002~00250030003500 
n 

Figure 4.2 : Speedup graph for parallel sparse forward solve. 
(Column-oriented version.) 
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np = i 
7---- 

np = 1 

I 
I I I L I I 

508 1808 1s 0200~258038883508 
n 

Figure 4.3 : Speedup graph for parallel sparse backward solve. 

5. Concluding Remarks 

In this paper, we have develo algorithms for sparse Cholesky factorization 
and triangular solutions that are suitable for multiprocessor systems with shared 
memory. We have presented numerical experiments perfomed on a Sequent 
multiprocessor system to demonstrate the eEIiciencies of our algorithms. The 
results indicate that inherent parallelism in the problem and parallelism provided 
by sparsity can be exploited on shared-memory multiprocessor systems. Good 
efficiency is achieved in the sparse factorization because the synchronization 
overhead is small compared to the amount of computing required. However, the 
efficiencies in the triangular solutions are relatively poor since the amount of 
computing is small and is approximately the Same as the synchronization overhead. 

Even though. the programs were written for a particular multiprocessor 
system with shared memory, they can be used with minor changes on any 
multiprocessor system with shared memory that provides synchronization 
primitives. Parallel algorithms for ordering and symbolic factorization are under 
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investigation and the results will be described elsewhere. 
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