
1 d
RY

3 4 4 5 6 0 3 4 9 0 7 4 0

ORNL/TM-10260

Solution of Sparse Positive
Definite Systems on a

Shared-Memory Multiprocessor

Alan George
Michael T. Heath
Joseph Liu
Esmond Ng

OPERATED BY
M A R T I N MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

.

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road, Springfield, Virginia 22161

This report was prepared as an account of work sponsored by an agency of the
United StatesGovernment Neither theU nited StatesGovernment nor any agency
thereof, nor any of their employees, makes any warranty, express or implied. or
assumes any legal liability or responsrbility for the accuracy, completeness, or
usefulness of any information. apparatus, product. or process disclosed. or
represents that its use would not infringe privately owned rights Reference herein
to any specific commercial product. process, or service by trade name, trademark,
manufacturer, or otherwise. does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof The views and opinions of authors expressed herein do not
necessarily state or reflect those of theUnitedStatesGovernment or any agency
thereof

.

ORNL/TM-l0260

t

tt

Engineering Physics and Mathematics Division

Mathematical Sciences Section

SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS
ON A SHARED-MEMORY MuLTlpROCESSOa

Alan George '
Michael T. Heath

Joseph Liu tt
Esmond Ng

Also a member of the Departments of Computer Science
and Mathematics
The University of Tennessee
Knoxville. Tennessee 3 7996 -1 308

Department of Computer Science
York University
Downsview, Ontario, Canada M3J lP3

Date Published: January 1987

I
Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Research.
U.S. Department of Energy. by the U.S. Air Force Office of
Scientific Research under contract AFOSR-ISSA-85-00083,
and by the Canadian Natural Sciences and Engineering
Research Council under grants A8 11 1 and A5509.

I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831
operated by

Martin Marietta Energy Systems. Inc.
for the

US. DEPARTMENT OF ENEJilGY
under Contract No. DE-AC05-840R21400 ~

3 4 4 5 6 0 1 4 9 0 7 4 0

. iii .

Table of Contents

1 . Introduction ..
2 . Parallel Sparse Cholesky Factorization ..

2.1. Parallel Dense Column-Cholesky ...
2.2. Parallel Sparse Column-Cholesky ..

3.1. Parallel Backward Solve ..
3.2. Parallel Forward Solve ..

4 . Numerical Results ..
5 . Concluding Remarks ..

3 . Parallel Sparse Triangular Solutions ..

6 . References ..

1

3
3

6
7
7

8
9
16
17

- v -

SOLUTION QF SPARSE POSITIVE DEFINITE SYSTEMS
ON A SHARED-MEMORY MULTIPROCESSOR

Algorithms and software for performing sparse Cholaky decomposition and wing
the Cholesky factors in the solution of sparse symmetric positive definite systems
on serial computers have reached a high state of development. In this paper we
present algorithms for performing these two phases on a shared-memory
multiprocessor computer, along with some numerical experiments demonstrating
their performance on a Sequent Balance 8000 system.

Research was supported in part by the Applied Mathematical Sciences Research Program of the Office of Ener-
gy Research, U.S. Department of Energy under contract DE-ACOS-84OR21400, by the U.S. Air Force Office of
Scientific Research under contract AFOSB-ISSA-85-00083 with Martin Marietta Energy S y s t m Inc., and by
the Canadian Natural Sciences and Engineering Research Council under grants A8111 and A55W.
Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee. The Erst author is also
a member of the Departments of Computer Science and Mathematics, The Univmity of Tennessee, Knoxville,
Tennessee.
Department of Computer Science, York University, Downsview. Ontario, Canada.

f

f t

1. introduction

This article deais with the problem of solving a large sparse positive definite
system of equations A x = b on a shared memory multiprocessor system. In [31, a
parallel algorithm was developed for solving dense positive definite systems in
such an environment, so this article can be regarded as a sequel to that work, in
which the sparsity of the problem ks addressed and exploited.

The solution of large sparse positive definite systems typically involves four
distinct steps [61:

1.

2.

3.

4.

Ordering
Find a good ordering P for A . That is, find a permutation matrix P so
that PAPT has a sparse Cholesky factor L [i.e., PAPT = LLT 1.
Symbdic f actwizatim
Determine the structure of the Cholesky factor of PAPT, and set up a
data structure that exploits the sparsity of L .
Numerical f actorizatiopz
Place the elements of PAPT into the data structure, and then compute
L .

Triangular solutioa
Using the computed L , solve the triangular systems L y = Pb , L Tz = y ,
and then set x = PTz.

The problems of implementing an ordering algorithm and a symbolic
factorization algorithm on a multiprocessor machine are major projects and will be
considered elsewhere. In this paper we develop and test parallel algorithms for
steps 3 and 4.

The computing regime we adopt employs the notion of a pool of tasks whose
parallel execution is controlled by a self-scheduling discipline 171. In our context,
the tasks are those computations associated with columns of the coefficient matrix,
and thus have a well-defined order associated with them.

In some parallel algorithms, specific tasks are mapped onto specific processors
in advance of initiating the computation. In this situation, effective (static) load
balancing among the processors requires that the distribution of work be
reasonably uniform. Self-scheduling can be regarded as a mechanism for
implementing dynamic load balancing; p processes are initiated to perform T tasks
(p <TI. When a given process completes a task, it checks to see if any unassigned
tasks remain, and if so it is assigned the next one. Thus, if a process happens to
have drawn a relatively small task, it will become free to perform another one
sooner than a process occupied by a larger task. Ln this way, processors tend to be
kept busy even if the tasks vary in their computational requirements.

- 2 -

This self-scheduled pol-of-tasks approach is flexible in that it is not very
strongly dependent on the number of processors available. However, its effective
use depends upon certain computational and hardware characteristics.

Since the pool of tasks must be made available to each processor, there must
be either a significant amount of shared global memory, or very high
communication bandwidth among processors. This is particularly important if the
tasks involve a substantial amount of data and/or if the computation involved
with each task is small compared to the time required for the processor to acquire
the task.

This latter issue of granularity is complicated in the context of using the
self-scheduling pool-of-tasks approach. On one hand, unless the overhead
associated with the initiation of a process is small, one would prefer to have the
computation associated with each task quite substantial, so as to amortize the
initiation overhead over a large amount of computation. On the other hand, large
tasks imply that there will be fewer of them, and the problem of allocating them
to processors in a way that will keep them all gainfully employed over time will
be more difficult.

In light of the remarks above, we will assume that T >>p, and that the
balance between hardware s and task size is such that the time associated with
assigning a task to a processor is low compared to the time it takes to perform that
task. Computers for which such assumptions are reasonable include the Cray X-
MP, Elxsi, Encore, Flex, and the Sequent, each of which has a moderate number of
processors (4-30) and considerable memory, all attached to a very fast bus.

An outline of the paper is as follows. In Section 2 we briefly review the ideas
in [31 and some basic results about sparse Cholesky factorization. We then
describe a parallel version of the algorithm. In Section 3 we consider the parallel
solution of sparse triangular systems. In Section 4 we present numerical
experiments which demonstrate the performance characteristics of the algorithms.
These were performed on a Sequent multiprocessor, which has a shared-memory
architecture. Finally, Section 5 contains our concluding remarks.

Recent work on parallel sparse Cholesky factorization includes the following.
In [I], Duff consides the implementation of the multifrontal approach for solving
sparse symmetric systems on a shared-memory multiprocessor, and in 141, the
authors of this paper have proposed a parallel sparse Cholesky factorization
algorithm for a distributed-memory multiprocessor.

- 3 -

2. Parallel Sparse Cholesky Factorization

2.1. Parallel Dense Column-Cholesky

In 131, the column-Cholesky formulation is recommended for parallel
Cholesky factorization of dense symmetric positive definite linear systems on a
shared-memory multiprocessor. Following 131, we let T c d (j) be the task that
computes the j -th column of the Cholesky factor. Each such task consists of the
following two types of subtasks:

1. c d (j , k) :

2. cdiv (j 1 : division of column j by a scalar.

modification of column j by column k (k < j);

We first review the version of dense column-Cholesky in [31. The self-
scheduling of the tasks Tcd (j) is implemented by maintaining a vector of flags
ready. They can be viewed as a vector of semaphores to ensure synchronization
among these column tasks. The value ready [j 1 indicates whether column j is
ready to be used for modification of subsequent columns. The following gives an
algorithmic description of the implementation.

f o r j := 1 t o n

f o r j := 1 t o n
ready [j I := 0;

schedule TcoZ (j);

The task Tad (j can then be implemented as follows.

fork := 1 to j - 1
begin

wait until ready [k 1 = 1;
docmxf (j , k) ;

end
do cdiv (j 1;
r d y [j 1 := 1;

It should be clear that the columns of the matrix become ready in order of the
column subscripts, so that the tasks are completed in the sequence:

Tcd(1) , Tcd(2) , . - * , Tcd(n1 .
We now introduce a different version of parallel dense factorization. It is the

basis for the parallel sparse colurnn-Cholesky algorithm to be described in Section
2.2, but is easier to understand. Its purpose here is to facilitate a better

appreciation of the underlying idea for the sparse case.

The new formulation maintains a set of n non-ovalapping linked lists, one
for each column of the matrix. Since they are non-overlapping, an n-vector link
will be enough to implement them. In the following discussion, link [j 1 denotes
the rn-th element in the linked list for column j ; for example,
link 3 [j] = link [link [link [j I]]. We assume that the lists are null-terminated, so
that the j -th list is given by:

Link [j I , link 2Cj I , - - * , l i n k ' [j] ,

where for some r , link'"[j I = 0. These linked lists are often used in the
sequential algorithms for s n e Cholesky factorization 1101. Furthermore, we
define next (j , k) to be the row subscript of the next nonzero in column k of L
immediately beneath L j k . (In the dense case,
next (1, k) is independent of k , but next (j , k will depend on both j and k in
the sparse case.) The new algorithm is shown below.

That is, next (j , k = j + 1.

f o r j := 1 t o n

begin
link [j I := 0;
nntod[j]:=j--1;

end
for j := 1 t o n

schedule Tcol (j 1;

Each task Tcd (j 1 is as follows.

- 5 -

whilenmod[jl >Odo

begin
wait until link j 1 > 0;
k := link [j I ;
link [j 1 := Link Ik I ;

/* remove first column k from j -th list */

do cmod (j , k 1;

~ [j l : = n m O d [j l - 1;
nextnz := next (j , k 1;
if nextnz < n then

besin /* add k to next (j , k 1-th list */
link [k 1 := link [nextnz 1;
link [nextnz 1 := k ;

end
end

do cdiv (j 1;

nextnz := next (j , j 1;
if nextfzz <n then

begin /* add j to next (j , j 1-th list */
Link [j I := link Cnextnz 1;
Link [nextnz 1 := j ;

end

In this version, & [j] is used to keep track of the number of column
modifications that remain to be performed on column j ; and it is initialized to
j -1. For column j , the linked list:

1ink[jI , l ink2[j1 , - - -
gives the columns that are currently ready to modify column j . As each (say,
column k) is used for the column modification, it is removed from the linked list
for j and passed onto that for next (j , k 1 (namely, column j +1 in the dense
case). Moreover, after the cdiv (j operation, column j is now ready to modify
subsequent columns, and it is placed in the linked list for next (j , j (which is
again equal to j + 1).

Compared to the previous algorithm (using the ready vector), this version has
several drawbacks. Two n-vectors are required in the current version. More
importantly, some form of critical section has to be set up during the update of the
link vector. This will avoid simultaneous update of the link vector by different
T a l tasks. Such a mechanism is not necessary in the ready-version. However, the

- 6 -

changes are important in order to take advantage of the parallelism derived from
the sparsity of L a

2.2, Parallel Sparse CdumtrGolesky

An; we have pointed out in the previous subsection, general sparse matrix
packages (on serial machines] often use a variant of the link -version described in
k%ction 2.1 for sparse Cholesky factorization; examples are the Yale sparse matrix
package [2] and SPARSPAK [SI. One important difference from the dense case is
that nekz (j , k) is no longer always equal to j + 1. Recall that next (j , k) is the
row subscript of the next nonzero in column k of L immediately beneath L j k .
Hence, nexf (j , k) will depend on both j and k in the sparse case. More precisely,
nea (j ,k) depends on the structure of L . Thus column k (after a cmod) or j
(after a cdiv) of L will not be passed to the (j +l)-st list in general, but instead

ed to the list determined by the structure of the Cholesky factor. For
Lj , is the last nonzem in column k , we put next (j , k) = n 4- 1.

The link -version for the sparse factorization is similar to that for the dense
factorization in Section 2.1. One difference is that nmod [j 1 should be initialized to
be q (E j ,), where q(Lj ,) is the number of offdiagonal nonzeros in the j -th row of
L . This information can be obtained easily from the structure of L (which is
computed in the sym Ilc factorization phase). Also the function next can be
evaluated easily if the nonzmos of a column are stored in ascending order of the
row subscripts.

Another implementational difference from the dense case is in the execution of
cntai (j , k 1. In the sparse case, the columns Lj, and Lk, are stored in a compact
form. To perform cmod (1, k 1, we need to unpack the compact form of the
column E,, so that modifications from other columns can be done efficiently. This
implies that the p r m r executing the task T c o l (j) requires a local working
array of sjize n to facilitate the column update operations on column j . However
the data structure for storing L in the parallel sparse Cholesky algorithm is
the Same as that in the sequential sparse Cholesky algorithm, since it is stored in a
global memory and is accessible by all processors.

In terms of behavior, the dense and the sparse cases differ in the order the
cdiv 's are performed. In the dense case, the cdiv ' s are performed in a sequential
order. However, in the sparse case, only a few cmod's have to be applied to
column j and cdiv (j can be performed once all the necessary cmod 's have been
applied. Thus not only can the c d 's be carried out in parallel in the sparse case,
some of the cdiv 's may also be completed simultaneously.

In the discussion above, we have not addressed the problem of scheduling the
tasks. We have assumed that the column tasks are scheduled according to the
ordering of the columns. Recall from Section 1 that the columns of A are ordered
at the beginning so as to redue fill in the Cholesky factor. (In our experiments,

- 7 -

we have used a variant of the minimum degree algorithm [SI.) Thus we implicitly
assume that such an ordering is appropriate for parallel computation on a shared-
memory multiprocessor. In general, because the Cholesky factor is sparse, the
completion time of parallel sparse Cholesky factorization will depend on how the
column tasks are scheduled. It is possible to reorder the columns of the permuted
matrix PAPT so that the Cholesky factor has the same amaunt of fill, but when
the new ordering is used to schedule the column tasks, the completion time on a
shared-memory multiprocessor will be reduced. See 191 for details.

3. Parallel Sparse Triangular Solutions

In this section we consider the parallel solutions of the triangular systems

Lv = u and L T W = v ,
where I, and u are either given or computed elsewhere. It is assumed that the
elements of L are stored column by column. We shall first describe a parallel
algorithm for the backward solve and then present two parallel algorithms for the
forward solve.

3.1. Parallel Backward Solve

denote the task that computes wj . A parallel algorithm for
computing w is given below and it makes use of the vector ready described in the
previous section.

Let Tw (1

for j := 1 t o n
ready [j 1 := 0;

for j := n down to 1
schedule Tw (j 1;

Here each task Tw (j) is given as follows.

for each offdiagonal nonzero Lkj in the j -th column, do
begin

wait until ready [k 1 = 1;
do w d (j ,k 1;

end
do wdiv (j 1;
ready [j]I := 1;

The functions wmod (j , k and wdiv (j are similar to cmod and cdiv in the
Cholesky factorization respectively. More precisely, wmod (j , k) modifies vi by
wk using Lkj , and wdiv (i divides vi by Lj j to yield the result w j . Note that
once a component w/ is computed, it can be used to modify m y v i , i < j . The flag

- 8 -

ready [j 1 is used to signal when wj Is available. The parallel algorithm described
above is effident in terms of accessing the elements of L , since L is stored column
by column.

When L is dense, the wmod I s can be performed in parallel, but the wdiv 's are
completed sequentially. However, when L is sparse, wnmi (j , k 1 is performed
only when L k j is nonzero. As a result, not only can the w d I s be carried out in
parallel, some of the wdiv's may also be completed simultaneously. Thus the

ibed above exploits the parallelism inherent in the backward solve
and that provided by the sparsity of L .
3.2. Parallel Forward Solive

Now we consider the problem of solving the lower triangular system Lv = u
in parallel. We first recall that the elements of L, are assumed to be stored column
by column. Let Tv (j 1 denote the task that computes vi. In the following
discussion, vmal (j , k) mdiiies u j by v k using Ljk and vdiv (j divides uj by
Lj j to yield the result v j .

We shall consider the dense case first. We note that v j can be computed only
when uj has been modified by the product of vi and L j i , 1 < i < j - 1 . This
requires accessing the elements of L by rows. Note that our ultimate goal is to
develop a parallel algorithm for sparse forward solve. Since we assume that, when
L is sparse, the nonzeros are stored column by column in a compact data
structure, it is awkward to access the elements by rows. This difficulty can be
alleviated by using the ideas in the link-version of the parallel algorithm for
Cholesky factorization given in Section 2. That is, the nonzeros in row j of L
that will be used to modify uj are put in a linked list and the linked lists are
updated after these nonzeros are used. However, it should be noted that the
amount of computing is small in forward solve compared to the overhead (for
synchronization purposes and updating the linked lists) involved. Indeed,
preliminary experiments on a !%quent multiprocessor have shown that the
performance of this approach is poor,

We now describe a second approach for parallel forward solve. It makes use
of only nmock and it is column-oriented. The algorithm is shown below. (Recall
that q(L,,) denotes the number of offdiagonal nonzeros in row j of L .)

f o r j := 1 t o n

f o r j := 1 t o n
[I 1 := q(Lj* 1;

schadule Tv (j 1;

Here each task Tv (j is defined as follows.

- 9 -

wait until nmod r j 1 = 0;
do vdiv (j 1;
for each off diagonal nonzero L k in column j , do

begh
do v d (k , j 1;
d f k] := M l o d [k] - 1;

end

h this version, once vl is computed, it can be used, together with column j of L ,
to modify the right hand side vector. Thus accessing the elements of L is very
efficient.

Obviously, some form of critical section must be, set up when performing the
wltod ’s and decranenting RMod. This is particularly important in the sparse case
since the sparsity of L may cause a component of u to be modified simultaneously
by several components of v . Thus, in general, there must be some form of
synchronization lock for each component of u . The second algorithm therefore
requires the same amount of storage as the link version (assuming a
synchronization lock and an integer location both require the same amount of
space), but the overhead is smaller (since no linked lists have to be maintained).
However, the second algorithm suffers from the drawback that it requires n
synchronization locks (n is the order of L) . There will be a difficulty if the
multiprocessor system provides only a small number of such locks.

4. Numerical Results

The numerical experiments were performed on a Sequent Balance 8000, which
is a multiprocessor system with shared memory. On our system, there are 8
p r o c m r s attached to a high speed bus, and these processors share 8M bytes of
global memory. The operating system running on the Sequent multiprocessor is
Dynix, which is a variant of the Unix operating system. Special library functions
are provided for creating multiple cooperating processes and for synchronizing
these processes.

The parallel algorithms described in this paper were implemented in
FORTRAN and the programs were compiled using the Sequent FORTRAN
compiler. The programs have been tested on p processors, where 1 <p <7 (the
eighth processor was reserved for operating system functions), The test problems
used in the experiments were matrices defined on a sequence of L-shaped finite
element meshes, and these matrices have been reordered wing a variant of the
minimum degree algorithm [SI. For comparison purposes, we have run
SPARSPAK, which is a software package for solving large sparse symmetric
positive definite systems on serial machines [51, on a single processor in order to
obtain the “sequential” times. The results are provided in Table 4.1.

n

265
408
577
778

1009
1270
1561
1882
2233
2614
3025
3466

I_ -

-
Table 4.1 :

I A I

1753
2716
3889
5272
6865
8668

10681
12904
15337
17980
20833
23896
-_I

- 10 -

Sequel

Pactmimtian

1.350
2.950
4.917
8.350

11.700
16.433
23.733
32.950
42.450
55.367
67.817
92.583

a1 Algori:
Forward
solve
.150
"267
.400
.600
-817

1.083
1.433
1.800
2.217
2.733
3.233
3.917

ns
Backward

Solve
.150
-267
.417
.600
.817

1.083
1.400
1.783
2.167
2.650
3.117
3.800

Performance of the sequential algorithms.
(Times are in seconds.)

The results of the multiple-processor experiments are presented in Tables
4.2-4.7. In order to gain some insights into the performance of the parallel
algorithms, we have computed the speedup ratios 0, which are defined to be

time required by the sequential algorithm
time required by the parallel algorithm on p processors

o = = '

Thus a parallel algorithm on p processors has a good performance if the speedup
ratios are close to p .

Table 4.2 contains the execution times (in seconds) and speedup ratios of the
parallel sparse numeric factorization algorithm on p processors, for 2 <p <7. It is
worthwhile to point out that the speedup ratios on a fixed number of processors
improve as the problem size increases. When p =2, the speedup ratios approach
1.8 for our set of test problems. Thus the efficiency (which is defined to be 0 / p)
approaches 90%. On 7 processors, the efficiency approaches 77% and we expect it
to improve as the problem size increases. Table 4.3 contains the performance
statistics of running the parallel sparse numeric factorization algorithm on only 1
processor. This provides an indication of the amount of synchronization overhead
in the parallel algorithm. As one can see, the overhead is fairly small. From these
results we conclude that our parallel sparse numeric factorization algorithm is
capable of producing good efficiencies for large enough problems.

- 11 -

Table 4.3 : Performance of the parallel sparse numeric factorization algorithm
on 1 processor. (Times are in smndsl.

The results for the parallel sparse forward solve algorithm (cslumn-oriented
version) are given in Tables 4.4-4.5. Note that the performance of the column-
oriented algorithm is fairly good despite the fact that updating a component of the
right hand side vector must be done in a synchronized manner. The efficiency is
about 45%.

- 12 -

II Forward Solve

1009 1.ooo
1270 1.317
1561 1.733
1882 2.200
2233 2.717
2614 3.317
3025 3.950
3466 4.767

I

U

.82

.84

.80

.82

.82

.82

.83

.82

.82

.82
-82
.82

L -

L

P = a -
time
.133
.217
.350
.500
.683
.917

1.183
1 Sa0
1.850
2.250
2.683
3.250

~ -

-

(r

1.23
1.14
1.20
l”20
1.18
1.21
1.20
1.20
1.21
1.20
1.21

~

i;ls

-
p = 4

time

.117

.183

.267

.400

.533

.700

.900
1.150
1.417
1.717
2.050
2.483

-- --

--

0- - -
1.28
1.46
1.50
1.50
1.53
1.55
1.59
1.57
1.56
1.59
1.58
1.58 -

v = 5 11 p = 6 -
time
.083
.150
,217
.333
A33
367
.767
.950

1.150
1 .m
1.683
2.017

- -

-

0- - I_

2.24
2.01
2.00
2.25
2.23
2.24
2.26
2.20
2.26
2.28
2.31
2.28
.__

-
- time

.083

.117

.183
2 3 3
.333
.433
.550
.717
.850

1.050
1.233
1.483

__.

_I

~

U - _I

1.81
2.28
2.19
2.58
2.45
2.50
2.61
2.51
2.61
2.60
2.62
2.64 -

Table 4.4 : Performance of the parallel sparse forward solve algorithm
(column-oriented version) on p processors. (Times are in seconds).

11 Forward Solve

-
~

265
406
577
77 8

1009
1270
1561
1882
223 3
261 4
3025
3466

Table 4.5 : Performance of the parallel sparse forward solve algorithm
(column-orientd version) on 1 p r ~ ~ o r . (Times are in seconds).

Tables 4.6 and 4.7 contain the results of the parallel sparse backward solve
algorithm. The performance is between those of the factorization and column-
oriented forward solve algorithms. We can achieve an efficiency of about 60%. As
we can see from Tables 4.3, 4.5 and 4.7, the synchronization overhead in the
parallel forward and backward solves is higher than that in parallel numeric
factorization. This is becam the forward and backward solve algorithms require
relatively little computing.

- 13 -

n

- -
265
406
577
778

1009
1270
1561
1882
2233
2614
3025
3466
_I

,117 1.28

.300 1.39

.467 1.28

.600 1.36

.817 1.33
1.033 1.36
1.333 1.34
1.633 1.33
1983 1.34
2.333 1.34
2.817 1.35

11 p : p = 3
time I u If t!z7
.OS3 1.81

ckward Solve -
I
~

(T
I_ -
2.24
2.28
2.50
2.25
2.45
230
2.40
2.49
2.45
2.48
2.49
2.50
I_

n = 6 11 n
time 1 u 11
.050 3.00
.067 3.99 .083
.117 3.56 .117
.183 3.28 -167
.250 3.27 -200
.333 3.25 .283
.417 3.36 ,367
.517 3.45 .450
.617 3.51 .M7
.767 3.46 .667
917 3.40 A17

1.067 3.56 -950

: 7
Q - __.

3.00
3.22
3.56
3.59
4.08
3.83
3.81
3.96
3.82
3.97
3.82

I 4.00 -
Table 4.6 : Performance of the parallel sparse backward solve algorithm

on p processors. (Times are in seconds).

Table 4.7 : Performance of the parallel sparse backward solve algorithm
on 1 processor. (Times are in seconds).

To summarize our results, we have plotted the speedup ratios versus
problem sizes in Figures 4.1-4.3.

the

- 14 -

Figure 4.1 : Speedup graph for parallel sparse numeric factorization.

- 15-

np = 7

np = 6

np = S

np = 1

I I I I I 1 I

500 100015002~00250030003500
n

Figure 4.2 : Speedup graph for parallel sparse forward solve.
(Column-oriented version.)

- 1 6 -

np = i
7----

np = 1

I
I I I L I I

508 1808 1s 0200~258038883508
n

Figure 4.3 : Speedup graph for parallel sparse backward solve.

5. Concluding Remarks

In this paper, we have develo algorithms for sparse Cholesky factorization
and triangular solutions that are suitable for multiprocessor systems with shared
memory. We have presented numerical experiments perfomed on a Sequent
multiprocessor system to demonstrate the eEIiciencies of our algorithms. The
results indicate that inherent parallelism in the problem and parallelism provided
by sparsity can be exploited on shared-memory multiprocessor systems. Good
efficiency is achieved in the sparse factorization because the synchronization
overhead is small compared to the amount of computing required. However, the
efficiencies in the triangular solutions are relatively poor since the amount of
computing is small and is approximately the Same as the synchronization overhead.

Even though. the programs were written for a particular multiprocessor
system with shared memory, they can be used with minor changes on any
multiprocessor system with shared memory that provides synchronization
primitives. Parallel algorithms for ordering and symbolic factorization are under

- 17 -

investigation and the results will be described elsewhere.

6. References

[l] I. S. Duff, “Parallel implementation of multifrontal schemes”, Parallel
Computing, 3 (19861, pp.193-204.

[2] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, “The Yale
sparse matrix package, I. the symmetric codes”, I n t e r m . J. Numer. Meth.
Engrg., 181 (19821, pp.1145-1151.

[3] J. A. George, M. T. Heath, and J. W-H. Liu, “Parallel Chslesky Factorization
on a Shared-Memory Multiprocessor”, Linear Algebra cutd its Appl., 77

J. A. George, M. T. Heath, J. W-H. Liu, E. G-Y. Ng, Sparse Cholesky
factorizcrtion on a local-memory muLliprmsmr, Technical report QRNL/TM-
9962, Oak Ridge National Laboratory, Oak Ridge, Tennessee (19863.

[5] J. A. George and J. W-H. Liu, “The design of a user interface for a sparse
matrix package”, ACM Trans. Math. Software, 5 (19791, pp.134-162.

[61 J. A. George and J. W-H. Liu, Comptaer Solution of Large Sparse positive
&&zite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[71 H. F. Jordan, ‘“Experience with pipefined multiple instruction streams”, Proc.

181 J. W-€-I. Liu, “Modification of the minimum-degree algorithm by multiple
elimination”, ACM Trans. Math. Somare, 11 (19851, pp.141-153.

191 J. W-H. Liu, “Computational models and task scheduling for parallel sparse
Cholesky factorization”, to appear in Parallel Computing (1986).

[lo] A. H. Sherman, On the eficient soltaion of sparse systems of linear and
nonlinear etpafions, Research Report M6, Dept. of Computer Science, Yale
University (1975).

(1986), pp.165-187.

[La]

r m , 72 (19841, pp.113-123.

- 19 -

1.
2.
3.
4.

5-9.
10.

11-12.
13-17.

18.
19.
20.

21-25.
26.
27.
28.

44.

45.

46.

47.

48.

49.

50 e

M, V. Denson
J. B. Drake
E. L. Frome
G. A. Geist
J. A. George
L. J. Gray
R. F. Harbison
M. T. Heath
J. K. Ingersoll
F. C. Maienschein
T. J. Mitchell
E. G. Ng
G. Ostrouchov
C. H. Romine
S . Thompson

29
30.
31.
32.
33.
34 *
35.
36.
37.
38.
39.
40.

41.
42-43.

R. C . Ward
M. A. Williams
D. 6. Wilson
A. Zucker
P. W. Dickson (Consultant)
G. H. Golub (Consultant)
R. M. Haralick (Consultant)
D. Steiner (Consultant)
Central Research Library
K-25 Plant Library
ORNL Patent Office
Y- 12 Technical Library
/Document Reference Station
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy
Research, ER-7, Germantown Building, U.S. Department of Energy,
Washington, DC 20545

Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon
Graduate Center, 1%00 N.W. Walker Road, Beaverton, OR 97006

Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State
University, University Park, PA 16802

Prof. Ake Bjorck, Department of Mathematics, Linkoping University,
Linkoping 58 183, Sweden

Dr. James C. Browne, Department of Computer Sciences, University of Texas,
Austin, TX 78712

Dr. Bill L. Buzbee, C-3, Applications Support & Research, Los Alamos
National Laboratory, P.O. Box 1663, Los Alamos, NM 87545

Dr. Donald A. Calahan, Department of Electrical and Computer Engineering,
University of Michigan, Ann Arbor, MI 48109

.....

- 20 -

51.

52.

53.

54

55.

56.

57.

58.

59.

60.

61.

62 a

63.

64.

65.

66.

67.

68.

Dr. Tony Chan, Department of Computer Science, Yale University, P.Q. Box
2158 Yale Station, New Haven, CT 06520
Dr. Jagdisb Chandra, Army Research Office, P.O. Box 12211, Research
Triangle Park, North Carolina 27709

Dr. Paul Concus, Mathematics and Computing, I ,awrenc% Berkeley
Laboratory, Berkeley, CA 94720

Br. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598

Dr. George Cybenko, Department of Computer Science, Tufts University,
Medford, MA 02 155

Dr. George J. Davis, Department of Mathematics, Georgia State IJniversity,
Atlanta, GA 30303

Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

Dr, Stanley Eismstat, Department of Computer Science, Yale University, P.O.
Box 2158 Yale Station, New Haven, CT 06520

Dr. Howard C. Elman, Computer Science Department, University of
Maryland, College Park, MD 20742

Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West,
Tukwila, WA 98188

Dr. Geoffrey C . Fox, th Computing Center 158-79, California Institute of
Technology, Pasadena, CA 91 125

Dr. Paul 0. Fxxderickson, Computing Division, Los Alamos National
hboratory, Los Alarnos, NM 87545

Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. Robert E. Funderlic, Department of Computer Science, North Carolina
State University, Raleigh, NC 27650

Dr. Dennis A. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47.405
Dr. David M. Gay, Bell. L.aboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

Dr. C. William Gear, Computer Science Department, University of Illinois,
Urbana, Illinois 6 1 80 1

Dr. W. Morven Gentleman, Division of Electrical Engineering, National
Research Council, Building M-50, Room 344, Montreal Road, Ottawa,
Ontario, Canada klA OR8

-21 -

69.

70.

71.

72.

73.

74.

75.

76.

77,

78.

79.

80,

81.

82.

83.

84.

85.

86.

87.

Prof. Gene H. Golub, Department of Computer Science, Stanford University,
Stanford, CA 94305

Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore,
CA 94550

Dr. Don E. Heller, Physics and Computer Science Department, Shell
Development Co., P.O. Box 481, Houston, ?X 77001

Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

Dr. Lzse Ipsen, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Dr. Harry Jordan, Department of Electrical and Computer Engineering,
University of Colorado, Boulder, CO 80309

Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill,
NJ 07974

Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National
Laboratories, Livermore, CA 94550

Ms. Virginia Klema, Statistics Center, E40-131, MIT, Cambridge, MA 02139

Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA
91 101

Dr. Alan J. h u b , Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106

Dr. Robert L. Lamer, Army Research Office, P.0. Box 12211, Research
Triangle Park, North Carolina 27709

Prof. Peter D. Lax, Diractor, Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, NY 10012

Dr. Michael R. Leuze, Computer Science Department, Box 1679 Station B,
Vanderbilt University, Nashville, TN 37235

Dr. Joseph Liu, Department of Computer Science, York University, 4700
Keele Street, Downsview, Ontario, Canada M3J 1P3

Dr. Franklin Luk, Electrical Engineering Department, Cornell University,
Ithaca, NY 14853

Dr. Thomas A. ManteuffeP, Computing Division, Los Alamos National
Laboratory, Los Alamos, NM 87545

Dr. Paul C. Messina, Applied Mathematics Division, Argonne National
Laboratory, Argonne, E. 60439

Dr. Cleve Moler, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,
Beaverton, OR 97006

- 22 -

88.

89.

90.

91.

92.

93.

94.

95.

9s.

97.

98.

99.

Br. Dianne P. O'Leary, Computer Science Department, University of
Maryland, College Park, MD 20742

Maj. C. E. Oliver, Office of the Chief Scientist, Air Force Weapons Laboratory,
Kirtland Air Force Base, Albuquerque, NM 87 11 5

Dr. James M. Ortega, Department of Applied Mathematics, University of
Virginia, Charlottesville, VA 22983
Prof. Chris Paige, Baser Department of Computer Science, Madsen Building
FO9, University of Sydney, M.S. W., Sydney, Australia 2006

Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ
85284

Prof. Beresford N. Parlett, Department of Mathematics, University of
California, Berkeley, CA 94720

Prof. Merrell Patrick, Department of Computer Science, Duke University,
Durham, NC 27706

Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science,
North Carolina State University, Raleigh, NC 27650

Br. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon,
England OX1 1 O R A

Dr. John R. Rice, Computer Scienm Department, Punlue University, West
Lafayette, IN 47907
Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore
Laboratory, Livernore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University,
Durham, NC 27706

100. Dr, Ahmed €1. Sameh, Computer Science Department, University of Illinois,

10 1. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research

102. Dr. Robert Schreiber, Department of Computer Science, Rensselaer

103. Dr. Martin H. Schultz, Department of Computer Science, Yale University,

104. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier

105. Dr. Lawrencx: F. Shampine, Numerical Mathematics Division 5642, Sandia

106. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne

Urbana, IL 61801

Department, Stanford University, Stanford, CA 94305

Polytechnic Institute, Troy, NY 12 180

P.O. Box 2158 Yale Station, New Haven, CT 06520

Parkway, Beaverton, OR 97006

National Laboratories, P.O. Box 5800, Albuquerque, NM 87 11 5

National Laboratory, 9700 South C a s Avenue, Argonne, TL 60439

- 23 -

107. Prof. G. W. Stewart, Computer Science Department, University of Maryland,
College Park, MD 20742

108. a p t . John P. Thomas, Air Force Qffice of Scientific Research, Building 418,
Bolling Air Force Base, Washington, aC 20332

109. Prof. Charles Van Loan, Department of Computer Science, Cornell
University, Ithaca, NY 14853

110. Dr. Robert 6. Voigt, ICASE, MS 132-C, NASA Langley Research Center,
Hampton, VA 23665

11 1. Dr. Andrew €3. White, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

112. Mr. Patrick H. Worley, Computer Science Department, Stanford University,
Stanford, CA 94305

113. Dr. Arthur Wouk, Army Research office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

1 14. Dr. Margaret Wright, Systems Optimization Laboratory, Operations Research
Department, Stanford University, Stanford, CA 94305

115. Office of Assistant Manager for Enexgy Research and Development,
Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830

116-146. Technical Information Center

