

........... __ ___ __ __ - _- ~

Tnis report ‘WES prcpared as a11 ;~ccoun; of $%?rk spmsared by an zgency of the
Ufiried Statcs Governl?;c,yt. Neither lheZfii!Cd StatsGovsrnri imt nor any a g e x y

x y ?varranty. expmss 0 -
for tha :cc::rrcy, cornp
PFOdiiCt, or process di

n--. r/yl l lJ - L A - R L , . , ~ ~ . u ~ ~ ~ e ~ ~ i n ^fnrnnrc, & - - - ’

to any specific coriiir+eiaial product, process, or ssi?rice by trade nari:s. iiz.de
manufccturer, or oiiie; does not nececs2:ily constiiutc or imply iis

by tk:a l lnited StatesG0v:::mefi:or
any aoency thereT)!. in:: vie.13 and oplnions of authors expicssed herein do not
nex:s.i:ily state 3: reflect those 3f the”nitedStatesGovsin~li.7cnt 3 r any zgeccy
therm!

.___ __ ___

ORNL/TM- 103 84

Engineering Physics and Mathematics Division

Mathematical Sciences Section

PARALLEL SOLUTION OF TRIANGULAR SYSTEMS
ON DISTRIBUTEDMEMORY h4UL"IPR(XXSSORS

M. T. Heath

C. H. Romine

Date Published - March 1987

Research was supported by the
Applied Mathematical Sciences Research Program

of the Office of Energy Research,
U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge. Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

iii

Table of Contents

Abstract ...
1 .

2 .

3 .

4 .

5 .

Introduction ...
1 . 1 .
1.2. Parallel matrix computations ...

2.1 . Serial algorithms ..
2.2. Parallel algorithms ..
2.3. Fan-out and f an-in algorithms ...
2.4. Wavefront algorithms ...
2.5. Cyclic algorithms ..

3.1. Fan-out and fan-in algorithms ...
3.2. Cyclic algorithms ..

Distributed-memory multiprocessors ..

Algorithms ...

Analysis ..

3.3. Wavefront algorithms ...
3.4. Comparison of models ..

Numerical experiments ...
4.1. Preliminary tests ...

4.1.1. Connectivity ...

4.1.3. Mapping ..
4.1.4. Segment size ...

4.1.2. Acceleration ..

4.2. Comprehensive tests ..
4.2.1. Performance as a function of p ...
4.2.2. Performance as a function of n ..

Conclusion ...
References ..
Appendix ...
Illustrations ..

1
1
2
2
3
3
4
5
7
9

12
12
13
13
16
17
17
17
18
19
19
19
19
20
20
20
22
34

I

Parallel Solution of Triangular Systems
on Distributed-Memory Multiprocessors

Michael T. Heath* and Charles H. Romine*

Abstract. Several parallel algorithms are presented for solving triangular systems of linear
equations on distributed-memory multiprocessors. New wavefront algorithms arc developed
for both row-oriented and column-oriented matrix storage. Performance of the new
algorithms and several previously proposed algorithms is analyzed theoretically and illustrated
empirically using implementations on commercially available hypercube multiprocessors.

1. Introduction. On conventional serial computers, the solution of triangular systems of
linear equations is often thought of as an essentially trivial computation. The O(nz) arithmetic
operations required for the triangular solution are usually a mere postscript to the dominant
cost of the U(n3) arithmetic operations required to factor a general matrix into a product of
triangular matrices. On the other hand, if repeated triangular solutions are required, for
example, in computing the inverse of a matrix or in using a triangular preconditioner to
accelerate an iterative method, then the cost of triangular solutions takes on greater
significance.

On many types of multiprocessor architectures, particularly those with distributed
memory, necessary communication among processors causes the relative costs of matrix
factorization and triangular solution to be quite different from the serial case, with good
efficiency being much more difficult to attain for triangular solution than for matrix
factorization. Thus, on some multiprocessor architectures, the triangular solution phase can
require a significant portion of the total time for solving a general system of linear equations
and is therefore worthy of closer study than it has traditionally received. The surveys of
Heller [IO] and Ortega and Voigt [151 cite numerous parallel algorithms for solving triangular
systems, but most of them require a very large number of processors (as many as 0 (n 3)) , and
are therefore of mainly theoretical interest.

In this paper we will examine and compare, both theoretically and empirically, several
practical algorithms for solving triangular systems on various types of distributed-memory
multiprocessors. Although progress in parallel triangular solution algorithms has lagged
somewhat behind that for paralfel factorization algorithms (see, e.g., [7] and references
therein), several recently proposed algorithms, as well as some new ones proposed here, can
attain satisfactory efficiency on distributed-memory multiprocessors. In the remainder of this
section we outline some background material on distributed-memory multiprocessors and on
parallel matrix computations. Section 2 presents the motivation for and statement of several
algorithms, including two new wavefront algorithms, for solving triangular systems of
equations on such architectures. Section 3 contains theoretical analyses of the algorithms and
Section 4 gives results of extensive numerical experiments comparing the algorithms on
hypercubes.

I* Mathematical Sciences Section, Oak Ilidge National Laboratory, P.O. Box Y, Oak Ridge, Tennessee 37831.
Research supported by the Applied Mathematical Sciences Research Program, Ofice of Energy Research, US.
Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc.

2

1.1. Distributed-memory ~ ~ l t i ~ ~ o ~ ~ $ s o r $ * In solving a problem on a multiprocessor
system, the computational work is divided among the processors. Ideally, the workload should
be evenly balanced and concurrency maximized so that all of the processors are kept busy
doing useful work as much as possible, In a distributed-memory system, the problem data
(e-g., the matrix and right-hand-side vector) must also be partitioned and spread across the
memories of individual processors. If one processor needs data stored in the memory of
another, the necessary information is sent between the processors through a network
interconnecting the processors. Possible interconnectio schemes include bus, ring, grid, tree,
and hypercube networks. Most of the triangular solution algorithms we will discuss can be
implemented on many different types of multiprocessor networks. Hypercubes were used in
all of our experiments, however, because of their ready availability and because many other
networks are included as subsets (see, e.g., [181).

The cost of communication between adjacent processors in a message-passing system can
usually be modeled with reasonable accuracy by the linear form

t = n % / 3 M , (1.1)
where a is a start-up cost for any message independent of its length, /3 i s the incremental cost
per unit length, and M is the length of the message in bytes or words. There may also be a
packetizing effect in some systems, in which large messages are broken up into smaller pieces
for transmission. The relative magnitudes of CY and /3 determine the most efficient message
size for a given system. Thus, for example, if a is relatively large, then for a given
communication volume, small messages will be much less efficient than large messages.
Another important characteristic determining the overall efficiency of parallel algorithms is
the relative cost of communication and computation. Thus, for example, if communication is
relatively slow, then coarse-grain algorithms in which a relatively large amount of computation
is done between communications will be more efficient than fine-grain algorithms. Typical
measured communication parameters for some commercially available hypercubes are shown
in Table 1, which is taken from [4], The values shown for (Y and /3 were obtained by a least
squares fit to data taken over a wide range of message sizes, while the
comniunication/computation cost ratio is based on the cost of transmitting an eight-byte
message vs. the cost of a floating-point multiplication. Note that the start-up cost is relatively
high and communication is relatively slow compared to floating-point computation for all of
these machines.

Table 1. Approximate comlazunicntian pcu’ameters
for some commercially available hypercubes.

Parameter Ametek Intel

n (start-up cost in microseconds) 560 860
p (transfer cost in microseconds/byte) 9.5 1.8

communication/computation cost ratio 19 26

Ncube

Table 1. Approximate comlazunicntian pcu’ameters
for some commercially available hypercubes.

p (transfer cost in microseconds/byte)

450
2.4
32

1.2. Parallel matrix computations. The above considerations have a direct and important
bearing on the design of parallel algorithms for matrix factorization and triangular solution on
distributed-memory multiprocessors. In particular, they explain why good efficiency is much
more difficult to attain for triangular solution than for matrix factorization on multiprocessors
having characteristics such as those shown in Table 1. Simply stated, triangular solution is
inherently a finer-grain process that has an order of magnitude less computation over which to

3

amortize its significant communication cost. Moreover, the communication required by
triangular solution algorithms tends to be composed of small messages, so that start-up
overhead is a relatively large proportion of the total communication cost. The result is that on
commercial hypercubes, communication cost in solving triangular systems tends to dominate.
Thus, efficiency as high as 50% for triangular solution is difficult to attain, whereas
efficiencies of 80-90% are easily attained for matrix factorization. These issues will be
discussed in greater detail and illustrated in subsequent sections.

The characteristics of the target architecture criticaily affect the partitioning of matrices
for factorization on a distributed-memory multiprocessor, and hence the distributed data
structures with which subsequent triangular solutions will have to work. Several possible
partitionings are plausible, including those by rows, columns, submatrices, or diagonals.
Partitioning by diagonals can be effective for matrices having various special structures (e.g.,
banded, circulant, Toeplitz), but is usually not optimal for general matrices. Partitioning by
submatrices tends to minimize the resulting communication volume, since it minimizes the
perimeter of the individual pieces [6]. However, it also tends to spread this volume over a
relatively large number of messages, yielding poor performance on machines having high
start-up costs €or communication. We will therefore restrict our altention to purtitioning by rows
and by colwnns.

Given such a partitioning, the rows or columns can be mapped onto the processors in
numerous ways, including wrap, block, and reflection mappings (see, eg . , [7] for definitions
and comparisons). Due to its good load balancing properties, an effective mapping in many
contexts is given by wrapping (or interleaving) the rows or columns onto the processors, much
as one would deal cards. One row or column is assigned to each processor (in some given
order) until all processors are exhausted, whereupon the assignment returns to the first
processor and continues through the processors again (in the same order), and so on until all
rows or columns have been assigned. In a hypercube, taking the processors in the order given
by a binary reflected Gray code ensures that adjacent rows or columns will be assigned to
processors that are physically connected. The correctness of most of the triangular solution
algorithms we will discuss is independent of the mapping employed, although performance is
often best with wrap mapping; in a few cases noted below, wrap mapping is essential to the
correctness of the algorithm. Insensitivity to the mapping is a desirable trait because in some
cases, for example, when pivoting is required during the factorization to maintain numerical
stability, it may not be convenient to preserve a preassigned mapping.

2, Algorithms. We will present two basic types of parallel algorithms for solving triangular
systems on distributed-memory multiprocessors; in addition, there are many variations on
each algorithm, some major and some minor. One fundamental distinction is whether the
matrix is stored by rows or by columns: row-oriented algorithms and column-oriented
algorithms come in “dual” pairs. The triangular matrix can be either lower or upper
triangular, so that either forward or back substitution i s required, respectively. The
interconnection network among processors can be used in various ways to meet the
communication needs of a given basic algorithm, especially with a flexible network such as a
hypercube. Finally, there are various techniques that can potentially enhance performance, at
the expense of complicating the basic algorithms somewhat.

2.1. Serial algorithms. In order to establish notation and help motivate the parallel
algorithms, we first state two serial algorithms that have the same dual relationship we will see
later in pairs of parallel algorithms. For definiteness, we consider the solution of the lower
triangular linear system

4

L x = b ,

where L is a lower triangular matrix of order I ! , b is a known right-hand-side vector of
dimension n , and x is the un~nown solution vector of dimension n . On a serial computer,
this system is solved by forward substitution using a doubly nested loop that can be ordered in
either of two ways:

Vector-sum ~ 1 ~ 0 ~ ~ ~ ~ ~

for j = 1 to II
x --- b . l L ..

j - . 3 33
for r = j + l to IZ

bi= bi- x j Lij

~ c ~ ~ a ~ - ~ r o ~ ~ ~ t algorith

for i= 1 to p2

foaj:- 1 to i-1
h.= b . - x . L . .

8 3 v
xi = bi Lid

The names we use for these algorithms were chosen to emphasize the duality between
them and to characterize the computations in their respective inner loops. In the vector-sum
algorithm, the inner loop updates the vector b by a multiple of a column of L . In the scalar-
product algorithm, the inner loop updates a single component of b by an inner-product of a
row of L and the portion of x already computed. (It is tempting to use the names outer-
product and inner-product for the two algorithms, but the inner-loop computation in the
vector-sum algorithm is not really an outer product.)

2.2. Parallel algorithms. In partitioning the data and computational work for solving
triangular systems on distributed-memory multiprocessors, we will consider four possibilities:
partitioning the matrix by rows or by columns, and partitioning the work according to the
inner loop or the outer loop. Due to data dependencies in the problem, we do not have
complete freedom to exploit parallelism in solving a triangular system of equations. In
particular, each component of the solution vector must be completed in the correct sequential
order dictated by forward or back substitution. Thus, our only opportunities for exploiting
parallelism are in the computations that modify the right-hand-side vector prior to the division
that determines the next component of the solution. We may exploit parallelism, while still
satisfying this precedence constraint, in two distinct ways: in the inner loop or in the outer
loop. The work within the inner loop can be partitioned and distributed across the processors
while maintaining strictly serial execution of the outer loop. Alternatively, successive
executions of the outer loop can be partially overlapped so that different processors are
working on different components of the solution simultaneously, yet the sequential order of
completion is still honored. We present algorithms of both types below.

The choice of inner loop or outer loop parallelism determines the appropriate partitioning
of the matrix for a given algorithm. To partition the work in the inner loop of the vector-sum
algorithm, the matrix and right-hand side must be partitioned and distributed by rows, so that
each processor can update the portion of b it owns by the appropriate column of L in those
lows i t owns, and these updates can occur simultaneously. Similarly, to partition the work in
the inner loop of the scalar-product algorithm, the matrix must be partitioned and distributed
by columns, so that each processor can contribute to the inner-product those terms
corresponding to thc columns of L it owns, and these “subtotals” can be computed
simultaneously.

5

Exploiting parallelism in the outer loop suggests the opposite data organization. Thus, in
the vector-sum algorithm, if the matrix is partitioned and distributed by columns, then the
updating due to each column must be computed solely by the one processor that owns it.
Similarly, in the scalar-product algorithm, if the matrix is partitioned and distributed by rows,
then each inner product wili be computed entirely by the one processor that owns the
corresponding row. Despite this serial execution of the inner loops, parallelism is attainable in
both cases by overlapping the work on successive components of the solution, as we will
demonstrate below.

2.3. Fan-out and fan-in algorithms. Partitioning the work in the inner loop of the vector-
sum and scalar-product algorithms leads to what we will call the fan-out and fan-in parallel
algorithms, respectively, for solving triangular systems. The names refer to the communication
pattern of these algorithms, in which information is either broadcast from one processor to all
others or gathered into one processor from all others. The duality between fan-out and fan-in
communication matches that between the vector-sum and scalar-product algorithms, as will
soon be made clear.

In implementing the vector-sum algorithm using fan-out communication, we assume that
the matrix L and vector b are distributed among the processors by rows; for each processor,
the row numbers it is assigned are contained in the set myrows. (All of the sets in the
algorithms to follow have a natural order associated with them, and when we indicate a loop
over the elements of a set, the elements are to be taken in that natural order.) We adopt the
notation that processor m a p (j) is assigned row j of L (or column j if the assignment is by
columns), and map is known by all processors. The result of the operation fan-out(t,root) is
that processor root sends, and all other processors receive, t . The details of the fan-out
broadcast depend on the particular interconnection network. The fan-out operation provides
all necessary synchronization in the algorithm below, since we assume that each processor
waits until an expected message arrives before proceeding. The fan-out vector-sum algorithm
was first stated by Kuck [111, who called it the “column-sweep” algorithm. The basic
algorithm for each processor is as follows:

Fan-out vector-sum algorithm

for j = 1 t o n do
if j 6 myrows then xi= bj fL j j
fan-out (x i , map (j))
for i c myrows, i > j ,

bj= bi-xj Lij

In implementing the scalar-product algorithm using fan-in communication, we assume that
the matrix L is distributed among the processors by columns; for each processor, the column
numbers it is assigned are contained in the set mycols. The components of b are distributed
among the processors correspondingly. The result of the operation fan-in(t ,root) is that
processor root receives the sum of the I ’ S over all processors. The details of the fan-in
operation depend on the particular interconnection network. The fan-in algorithm is due to
Romine and Ortcga [173, [163. The basic algorithm for each processor is as follows:

6

fori= 1 ton do
t = O
for j e rnycols, j < i ,

s = fan-in (t , map (i))
if ie mycols them xi= (bj-s) /LG

t = t -4- x j L,

With most multiprocessor networks, the fan-out or fan-in of information i s implemented
by nieans of a spanning tree, with information either originating or culminating, respectively,
at the root. The necessary flow of information is implemented by a “bucket brigade” from
processor to processor. In a richly connected network, such as a hypercube, the terms “fan-
out” and “fan-in” can be interpreted quite literally, and global communication is quite
efficient. In more sparsely connected topologies, such as a ring, the degree of fan-out or fan-in
in the spanning tree i s necessarily limited, so that the height of the spanning tree (equivalently,
the diameter of the network) is much greater. In a fully connected network (eg., a cross-bar),
or one which efficiently emulates full connections, the global dissemination or collection of
information can be accomplished directly between any node and all other nodes. With a bus
architecture, the duality between fan-out and fan-in breaks down somewhat, since global
broadcasting can be accomplished with a single message, while collecting global information
into a single processor requires multiple messages. For our experiments on hypercubes, we
have implemented both fan-out and fan-in algorithms using four different types of
communication:

c minimal spanning tree (logarithmic fan-out/fan-in)

m unidirectional ring

m bidirectional ring

o complete connectivity (simulated by automatic routing)

The relative performance of these options will be examined in Sections 3 and 4.
The fan-out and fan-in algorithms were stated above in their simplest forms. Both are

subject to modifications that can potentially enhance performance. Consider the j - t h step of
the fan-out algorithm, in which the computation of xi is completed. Following the fan-out of
x j , each processor updates all of its components of b ; not until the next iteration of the outer
loop does each processor check whether it is responsible for computing Processor
i7zap(j+-1) could in fact have computed as soon as bj+l was updated, before updating its
remaining components of b , and therefore could have started the next fan-out somewhat
earlier (of course, it must eventually complete the postponed updates). Such a strategy of
sending out results needed by other processors at the earliest possible moment is intended to
minimize possible idle waiting times in the receiving processors. The extent to which the
potential gain in performance is realized in practice depends on a number of factors, including
the particular connectivity used for the fan-out and the particular mapping of the rows onto
the processors. Since messages will arrive at unpredictable times, the implementation of this
strategy requires a communication system capable of queuing incoming messages in system
buffers until the user program is ready to receive them, and this capability may not be
available in some message-passing multiprocessors. By contrast, the basic fan-out algorithm
stated above is easily implemented on systems that support only synchronous communication.

By analogy with the “send-ahead” strategy for accelerating the fan-out algorithm, Cleary
has suggested a “compute-ahead” strategy for accelerating the fan-in algorithm [3]. His idea is
based an the observation that processor znap(i) , because it must compute x i , will be the last

7

processor to compute its contribution to the inner product for the next component of the
solution, xi+l. In order to avoid being the bottleneck at the i+l-st stage, processor mnp(i)
could go ahead and compute most of its contribution to the it-1-st inner product (all but the
one term corresponding to xi) while it would otherwise be idle waiting for the contributions
from the other processors to the i- th inner product. After computing xi, processor map(i)
will then require only a trivial amount of computing to complete its contribution to the i + 1-st
inner product and therefore will not unnecessarily delay the computation of xi+1. Again, the
effectiveness of this potential performance enhancement depends on the communication
pattern used and the mapping of the columns onto the processors, among other factors. Note
that both of these modifications introduce some degree of pipelining into the basic fan-out and
fan-in algorithms by partially overlapping successive executions of the outer loops, although
their dominant source of parallelism is still found in the inner loops.

2.4. Wavefront atgorithms. We turn now to algorithms whose source of parallelism is the
overlapping, or pipelining, of work on many components of the solution at once. First,
consider the vector-sum algorithm with the matrix partitioned and distributed by columns.
After processor m a p (j) computes x i , the work of updating b cannot be shared with the other
processors, since only processor map (j) has direct access to column j of L . Serial execution
of the inner loop by a single processor, however, would limit us to an entirely serial algorithm
unless we can somehow overlap successive iterations of the outer loop so that all processors
are working simuitaneously on different components of the solution. This can be
accomplished by breaking the update vector into segments and pipelining the segments
through the processors in a wavefront fashion. In the discussion and algorithm to follow, we
introduce the n-vector z in which to accumulate the updates to b , so that b itself need not be
collected into any one processor, but instead its components remain distributed among the
processors in the same manner as the columns of L .

Processor map(1) first computes xl, then proceeds to compute the components z i=xlLi l
of the update vector z. After computing the first u such components, l<oSn, processor
map(1) sends them on to processor mup(2) so that the latter can compute: x2 and begin
further updates of z. Meanwhile, processor mup(1) has resumed work on the next c
components of z , and so on through successive segments of 4 components each (if Q does not
divide n, then the last segment of z may have fewer than u components). As soon as it
completes updating each segment of z , each processor forwards the segment to the next
processor. Depending on a number of factors (the segment size, the mapping of the columns
onto the processors, the relative speeds of communication and computation, etc.), it may be
possible for all of the processors to become busy simultaneously, each working on a different
segment. In effect, the segment size u is an adjustable parameter that controls the granularity
of the algorithm. A smaller segment size tends to increase the potential amount of
concurrency, but also increases the number of messages required, which may be prohibitively
expensive on a message-passing system with high start-up cost. A larger segment size, on the
other hand, reduces the number of messages, but m a y severly limit the amount of concurrency
attainable (in the extreme, o= n gives a purely serial algorithm). Thus, there is a trade-off in
performance as segment size varies, and the optimal value depends on the characteristics of
the particular architecture on which the algorithm is implemented. We will address this issue
analytically in Section 3 and empirically in Section 4.

We now state the wavefront vector-sum algorithm somewhat more formaliy, although in
the interest of brevity and simplicity we omit the initialization phase of the algorithm, checks
for termination conditions, and the details of computing how many segments each processor
should expect at each stage. These details can be found in the program listings in the
appendix below. In the following pseudo-code, segment is a set containing at most Q
components of the update vector z . The algorithm for each processor is as follows:

8

Wavefront vector-su

for j c mycols do
for k = 1 to #seg

receive segment
i f k = 1 then do

x j = (bj--Zj)/Ljj

zi= z;+ x j Lij

segment= segment - (z j)
for zi e segment do

i f I segment I > 0 then send segment to processor map (j + 1)

Several additional points about this algorithm bear mentioning. We no longer have a
simple serial outer loop that goes through all values from 1 to n , since each processor no
longer contributes directly to the computation of every component of the solution. Another
interesting feature i s that the “first” segment shrinks by one element after each component of
the solution is computed, disappearing entirely after u steps, at which time the next segment
becomes the “first” segment. By the time the algorithm reaches the final component of the
solution, only one segment remains and it contains only one element. This declining
communication volume as the algorithm progresses offsets to some extent the undesirable
property that segments may pass through the same processor multiple times (albeit in altered
form).

A fundamental assumption behind the wavefront algorithm is that it is always possible to
send messages from processor map (j) to processor map (j I- 1). Whether processors holding
contiguous columns of the matrix are physically adjacent in the multiprocessor network
depends on the interconnection scheme and the mapping of columns to processors. In a ring,
for example, such direct communication would be possible only if the mapping were
compatible with the ordering of the processors in the ring. Even if processors are not directly
connected, however, some systems provide automatic routing through intermediate nodes
between arbitrary sender and destination, although there is usually a performance penalty
associated with longer paths. In most hypercubes, for example, the wavefront vector-sum
algorithm is valid for any mapping, but performs best using the wrap mapping with Gray code
ordering.

‘The wavefront idea can also be applicd to the scalar-product algorithm, producing a
parallel algorithm that is the dual of the wavefront vector-sum algorithm. Consider the
scalar-product algorithm with the matrix partitioned and distributed by rows. Computation of
the i - tk inner product cannot be shared, since only processor map(i) has direct access to row
i of L. Thus, once again, if we are to attain any concurrency it must be through the
overlapping of work on different components of the solution by multiple processors. The dual
concept here i s to break the solution vector x into segments that are pipelined through the
processors in a wavefront fashion.

Processor map(1) first computes x 1 and sends it to processor map(2) . Processor map(2)
can them compute the second inner product and x p . Processor map(2) now sends both x 1 and
x 2 (Le., a segment of x of size 2) to processor map(3), which uses them in computing the third
inner product. This process continues (serially in this early stage) until u components of x
have been computed, at which point the receiving processors begin forwarding any full-sized
segments before they are used in computing inner products, so that subsequent processors can
get started on their inner products. Forwarding of the one segment that is currently
incomplete is delayed until the next component of x can be appended to it. Depending on the
segment size and other factors, it may be possible for all processors to become busy
simultaneously, each working an a different segment. As before, the segment size (T is an
adjustable parameter that determines the granularity of the algorithm, with a similar

9

performance trade-off between communication and concurrency as u varies. The optimal
value of CT depends on the characteristics of the particular architecture. We now give a
somewhat more formal statement of the algorithm, again omitting such details as initialization
and termination. The algorithm for each processor is as follows:

Wavefront scalar-product algorithm

for i~ myrows do
for k = B to #segments- 1

receive segment
send segment to processor map (i + 1
for xi e segment do

b i z bi-xj Lij
receive segment
for x j E segment do

/* last segment may be empty */

b i z bi- x j Lij

xi= bi/LG
segment = segmenl (J {xi>
send segment to processor map (i + 1)

Similar remarks apply to this algorithm as were made for the wavefront vector-sum
algorithm, except that many of its features are the “duals” of those for the earlier algorithm.
Thus, for example, instead of starting with a full set of segments that shrink and eventually
disappear until no segments remain, the scalar-product version starts with no segments, but
segments appear and grow until there is a full set of them. Again, the algorithm depends on
the ability to send messages between processors holding contiguous rows of the matrix, which
may or may not be possible and may or may not be direct, depending on the interconnection
network and the mapping of rows to processors. On most hypercubes, the wavefront scalar-
product algoritbrn is valid for any mapping, but performs best using the wrap mapping with
Gray code ordering. We will see in Section 4 that the two wavefront algorithms performed
similarly, but by no means identically, in our experiments.

To the best of our knowledge, both of the wavefront algorithms presented here are new,
although many other wavefront algorithms (and closely related dataflow and systolic
algorithms) have been proposed for various matrix computations (see, e.g., [121, [14]), and the
idea of an adjustable segment size has also been used in other contexts (see, e.g., [9]). Parallel
wavefront algorithms for solving triangular systems were proposed by Evans and Dunbar {5] ,
but their algorithms have a very different flavor from those presented here. In particular,
their algorithms require at least (n-1)/2 processors and they involve a rather complicated
reassignment of processors to rows as the algorithms proceed that would be difficult to
implement efficiently in a distributed-memory environment.

2.5. Cyclic algorithms. The motivation for the final pair of dual algorithm we present is
to attempt to gain performance by taking specific advantage of the wrap mapping to attain
minimal communication volume. The resulting algorithms are therefore less widely applicable
than the other algorithms presented above, but they can have very attractive performance
characteristics under some conditions. We use the term “cyclic” to describe these algorithms
for reasons that will become clear shortly. Cyclic algorithms bear a superficial resemblance to
the wavefront algorithms in that they are based on partitioning the outer loop of the vector-
sum and scalar-product algorithms, and they send a segment of z or x between processors.
Their motivating philosophy and performance characteristics, however, are entirely different
from the wavefront algorithms. In particular, rather than having a variable number of
segments of an adjustable length, cyclic algorithms circulate a single segment of a fixed and
specially chosen size, namely p -1, where p is the number of processors.

10

We first describe the cyclic vector-sum algorithm, with the matrix partitioned and
distributed by columns according to the wrap mapping. This algorithm is due to Li and
Coleman 1131. A segment of size p-1 passes from processor to processor, one step for each
column of the matrix, cycling through all of the other p-1 processors before returning to a
given processor (hence the name cyclic). The function of the segment is to contain partially
accumulated components of the update vector z . At stage j of the algorithm, processor
m n p (j) receives the segment from processor map(j-1) and uses its first element (which has
accumulated all necessary prior updates except that computed by processor map (j) itself) to
determine xi . Processor map(j) then modifies the segment by deleting the first element,
updating the remaining p - 1 elements, and appending a new element to begin accumulation of
the next component of z . Processor m a p (j) then sends the segment to processor map(j-t-1),
where a similar process is repeated. After forwarding the modified segment, processor
m n p (j) then computes the remaining update components due to x j , which will be needed
when the segment returns to processor map (j) again. These latter update computations,
which take place in each processor while the segment passes through the other processors,
provide the source of concurrency in the algorithm, since the computations on the segment
itself are strictly serial.

We now state the cyclic vector-sum algorithm somewhat more formally. We need to make
a distinction between the updates that accumulate in the elements of the segment and the
updates computed by each processor while the segment is circulating elsewhere. We denote
the former by the vector z and the latter by the vector t . For convenience, we use the
corresponding row numbers in the matrix as subscripts for the elements zi of the segment; in a
real program one would use relative positions in a smaller array (see program listing in
appendix). Again, for simplicity and brevity, we omit details such as initialization and
termination conditions. In particular, toward the end of the algorithm (for the last n-p+l
columns), the segment is less than p-1 in size, shrinking by one element each time until
termination. The algorithm for each processor is as follows:

Cyclic vector-su

for j r mycoIs do
receive segment

segment = segment - (zi)
for zi E segment do

x j = (b j --z j - t j)/ Ljj

zi= z i s ti+ x j L,
j +p -I= tj+p -I+ X j Lj +p -1, j

segment = segmeiit u (z ~ + ~ - ~)
send segment to processor map (j + 1)
f s r i = j + p ton

t . - t . + x . L . .
1 8 3

We turn now to the cyclic scalar-product algorithm, with the matrix partitioned and
distributed by rows according to the wrap mapping. This algorithm is due to Chamberlain [11.
In this algorithm, the segment that passes from processor to processor contains components of
the solution vector x . At stage i of the algorithm, processor map(i) receives the segment
from processor map(i-1) and uses the elements of x it contains to complete the i - th inner
product (processor map (i) will have previously accumulated all other terms in the inner
product while the segment was circulating through the other processors), so that xi can then
be computed. Processor map(i) now modifies the segment by deleting the first element and
appending the new element xi just computed. Processor map(i) then sends the segment to
processor map (i + 1 lp where a similar process is repeated. After forwarding the modified
segment, processor map (i) then computes the partial inner products that use the components

11

of the segment, which will be further accumulated when the segment returns to processor
map(i) again. These latter computations, which take place in each processor while the
segment passes through the other processors, provide the source of concurrency in the
algorithm, since the computations on the segment itself are strictly serial.

We now state the cyclic scalar-product algorithm somewhat more formally. For
convenience, we use the actual elements of the solution vector x to denote the elements of the
segment; in a real program one would use relative positions in a smaller array (see program
listing in appendix). Again, we omit details such as initialization and termination conditions.
In particular, in the beginning of the algorithm (for the first p-1 rows), the segment contains
fewer than p-1 elements; it grows by one element each time until it contains p-I elements,
where it remains fixed in size thereafter. The algorithm for each processor is as foIlows:

Cyclic scalar-product algorithm

for it: myruws do
receive segment
for xi e segment do

b,= b,-xj Le
xi= b,lL;i
segment = segment - (xi+) u (xi)
send segment to processor rnap(if 1)
for me rnyruws, m>i,

for xi e segment do
b,= b,-xi L,.

In both cyclic algorithms, the moving segment must pass through all other processors
before returning to any given processor. Thus, the correctness of these algorithms depends on
the use of the wrap mapping. The cyclic algorithms, like the wavefront algorithms, also
depend on the ability to send messages between pairs of processors containing consecutive
rows or columns. For this reason, the cyclic algorithms were originally proposed as algorithms
for rings or hypercubes using the wrap mapping with Gray code ordering, but they might also
be suitable for other message-passing multiprocessors as well. For 3 bus-based distributed-
memory system, in particular, the cyclic algorithms have the highly desirable property that
only one pair of processors is communicating at any one time. In contrast, most of the other
algorithms we have considered would encounter contention for the bus due to simultaneous
message traffic. On the other hand, this lack of concurrency in communication implies that
the cyclic algorithms use very little of the available bandwidth in more richly connected
multiprocessor networks.

The efficiency of the cyclic algorithms depends on whether the time interval between
successive appearances of the segment at any given processor is balanced by the time required
for the intervening computations in that processor. Since the latency of the segment cycle
tends to grow with the number of processors, there may be a point for a given problem size at
which the use of more processors will increase rather than decrease the execution time. The
proposers of the cyclic algorithms have suggested modifications to both algorithms aimed at
improving their performance for large numbers of processors []I], [131. These modifications,
which include reorganizing the computations for better load balancing and breaking a
hypercube into several subrings, have not been worked out in detail, however, and we have
not implemented them We have also considered a hybrid combination of the cyclic and
wavefront algorithms that would attempt to combine the best features of both, but this also
remains unimplemented. Our experiments reported in Section 4 used only the basic wavefront
and cyclic algorithms.

12

lysis. In this section we present theoretical analyses of the algorithms described in
Section 2. For those algorithms whose analyses have appeared in the literature, we merely cite
known results; readers should consult the original references for further details. For the new
wavefront algorithms, we present a more detailed analysis. As originally presented, the
analyses of the various algorithms have been based on a variety of models of communication
and computation. To make the theoretical results for different algorithms more directly
comparable, we couch all pcrformance estimates in terms of the model of communication
given by (1.1). This approach provides a convenient means of accounting for the different
message sizes employed by the various algorithms. In addition, we use pops (linked scalar
multiply-add pairs of the form nx+y) as the basic units of arithmetic computation. For a
given machine, we assume that one flop (including any necessary indexing and addressing
overhead) requires f microseconds. For compatibility of units, we take ,6 in (1.1) to be the
message transfer cost per word rather than per byte.

In modeling performance for a specific machine, we use the machine constants shown in
Table 2. These differ slightly from those in Table 1 because in our experiments we used a
faster version of the Ncube hypercube than was used in [4] (8 MHz clock speed instead of 7
MWz) and because we restricted the least squares fit of (1.1) to the range of message lengths
actually used in our experiments.

Table 2. Machine parameters used in theoretical models
of performance on hypercubes.

3.1. Fan-~ut and fan

Parameter

o (microseconds)

,6 (microseconds/word)

f (microseconds/flop)

I_-

in algorithms. The performance of the fan-out and fan-in algorithms
is analyzed in detail in [17] and [16] for the case in which logarithmic hypercube
communication i s used. Upper bounds on execution time are obtained by assuming that there
is no overlap between successive stages of the algorithms, nor between communication and
computation. Under these assumptions, an upper bound on execution time for the row-
oriented fan-out algorithm is

(3.1)

Similarly, an upper bound on execution time for the column-oriented fan-in algorithm is

(3.2)
1 T= -(n2+(2+log2p)np-2n If 4- (if -l)(log,p)(a+p),

2P
which is the same as for the fan-out algorithm except for an additional % n (l o g 2 p) f to
account for the sums done during the fan-in.

These upper bounds can be adapted to other communication schemes simply by replacing
the log2p latency of the cube fan-out/fan-in by another appropriate maximum path length.
However, the validity of the underlying assumptions of nonoverlapping stages and
nonoverlapping communication and computation becomes more untenable for some of these
communication schemes. With logarithmic fan-out or fan-in, these assumptions are not grossly
in error, due to the fact that many of the processors are occupied with forwarding messages

13

throughout the logap stages of the fan-out or fan-in. But with a ring, for example, each
processor forwards only one message and can then resume computation. Thus, if the matrix is
mapped onto the ring in a compatible order so that successive stages can be pipelined, the
high communication latency of ring fan-out or fan-in can be almost completely masked (as will
be shown experimentally below). Moreover, many stages may be in progress simultaneously,
thereby significantly reducing execution time below the value that a pessimistic upper bound
such as (3.1) or (3.2) would suggest. Use of the “compute-ahead” or “send-ahead”
acceleration techniques discussed in Section 2.3 would further invalidate the nonoverlapping
assumptions.

In a somewhat more subtle form, these effects also have a bearing on the relative
performance of the fan-out and fan-in algorithms using logarithmic hypercube communication.
The slightly larger upper bound for the cube fan-in algorithm compared to the cube fan-out
algorithm is offset by an effect discussed in detail in [16J. Specifically, the fan-in, which
originates at the leaves and terminates at the root of the spanning tree, frees more processors
earlier to resume computing than the fan-out, which originates at the root and terminates at
the leaves. The fan-in algorithm should therefore permit a greater degree of overlapping than
the fan-out algorithm, thereby enhancing performance. Given these offsetting factors, either
algorithm could be superior, depending on the specific machine and implementation.

3.2. Cyclic algorithms. The performance of the column-oriented cyclic algorithm is
analyzed in [131. It is shown that for a given number of processors p , the execution time of
the algorithm increases linearly with n until n reaches a threshold, and increases quadratically
thereafter. More specifically,

T= [n(tp+p)-%p(p-I)-tp]f whenever n < p (t , + p) , (3.3a)

and

(3.3b)

where t , is the cost, measured in flops, of sending a message of length p--l to a neighboring
processor. Thus, in our model of communication performance, tp= (a+&- l)) / f . For the
hypercubes listed in Table 1, the minimum value for t, is approximately 12.

A rough calculation is given in I131 of the value of n required to achieve 50 percent
efficiency with the column-oriented cyclic algorithm using a given number of proc:essors. This
value is approximately n= p (t , + p) , which suggests that the algorithm will be highly efficient
for small p , but much less efficient for large p . For example, if p= 8 and t,= 12, then this
model predicts that 50 percent efficiency will be achieved for n== 160, However, for p= 64, n
must be greater than 4800 for the algorithm to achieve an efficiency of 50 percent. There
appears to be something of a paradox in the two-phase performance behavior given by (3.3):
one would expect linear behavior to be superior to quadratic behavior, yet it is when the
linear portion is brief that the algorithm performs well, while a lengthier linear portion
indicates relatively poor performance. The explanation is that since the underlying
computational task is 0 (n2), linear behavior can hold only when communication dominates
computation, so that an early transition to quadratic behavior is necessary for high, efficiency.

Chamberlain [11 does not provide a detailed performance analysis of the row-oriented
cyclic algorithm. However, the characteristics of that algorithm are sufficiently similar to the
column-oriented version that similar behavior should be expected.

T= [- (na+np)+ 1 ~ ((f p + p) 2 - t * - p + l)-t,]f otherwise,
2P

3.3. Wavefront algorithms. Since the wavefront algorithms are new, we will give a more
detailed analysis of their performance. Unlike the other algorithms, the performance of the

14

wavefront algorithm depends upon the choice of an adjustable parameter, the segment size u.
In addition to descri ing the performance of the algorithms, the theoretical. performance
models should also enable us to predict the optimal choice of a to minimize execution time.

We begin by analyzing the column-oriented wavefront algorithm. We assume that the
columns are distributed to the processors using a wrap mapping in Gray code order. Several
important observations will make the behavior of the algorithm clear. First, each segment can
be worked on by only one processor at a time, and the ideal situation is to have all processors
working simultaneously on different segments. Hence, the segment size should be chosen so
that thcre are at least p segments (ie. , a < n / p) . Second, once the start-up phase of the
algorithm is over so that all processors have become busy, then as long as there are at least p
segments remaining (recall that segments disappear throughout the algorithm), all processors
will remain busy. (This does not imply that one should take cr= 1 to maximize the number of
segments. While this would keep all processors busy throughout most of the algorithm, almost
all of their time would be spent performing communication unless the latter were
extraordinarily inexpensive). Third, when fewer than p segments remain, the time required
for the last segment to make one circuit through all the processors is independent of the
number of segments remaining, since each processor will be ready to receive this segment
when it is sent. Fourth, at any stage of the algorithm, all but (perhaps) the first of the
segments will be of length (T. Thus, to simplify the model, we assume that the cast of each
communication is a+@rr, and the cost of the operations performed on each segment is af .

To simplify notation in the following argument, we will number both the processors and
the colunms of the matrix starting from 0 rather than 1. For convenience, we model the total
execution time as the total execution time of the first processor (i.e., processor map(O), which
under the wrap mapping is processor 0) and assume that y divides n . The execution time can
be split into two parts, depending upon whether there are at least p segments remaining. We
must determine which of the columns contained in processor 0 is the first to have only p
segments remaining. Under the wrap mapping, the first processor contains all columns
k p (O5k cn / p) . Column kp will have [(t i -kp)/al segments, Setting this equal to p we see
that when k -s (n / p)- a, column lip will have p segments.

To compute the first part of the execution time (when the number of segments is greater
than p >, we now let k range from 0 to (n / p)- c. For each column kp in processor 0, there are
(n --kp)/a segments to be processed. Hence, since no idle time occurs during this phase of the
computation, the execution time is

n

Once fewer than p segments remain, we must account for the induced idle time in
processor 0. Since we have noted that the time required for the final segment to make one
circuit through all the processors is now independent of the number of segments, we can
model thc execution time by assuming that p segments remain until the computation is
complete. That is, regardless of the number of remaining segments, the time required for the
last segment to return to processor 0, including the idle time, is the same as if p segments
remained. This yields

as the expression for the

k = nr --o+l
P

second part of the execution time.

(3.5)

15

Adding the expressions in (3.4) and (3.5) together to obtain the total execution time yields

1
T= -(n2+np 2P +a(a- 1)pZ) (5 U +@+f).

The performance model of the column-oriented wavefront algorithm given by (3.6) exhibits
the expected trade-off between communication and computation as the segment length varies.
Specifically, a large value of u reduces the communication start-up cost (given by the Q term)
at the expense of greater computation cost, while a small value of u does the opposite. Fig. l a
shows the execution time as a function of u predicted by (3.6) for a typical problem (n= 500)
using various numbers of processors and the Ncube machine parameters. (In producing Fig.
la, whenever or>n/p, the term given by (3.4) drops out and the model reduces to linear
behavior given by T=n(a+pc+fu)) . Fig. la should be compared to Fig. 4a in Section 4,
which shows the same curves resulting from actual runs on the Ncube hypercube.

To determine the optimal segment size to minimize execution time, we differentiate (3.6)
with respect to u and equate to 0, producing (after some algebraic manipulation)

(These calculations have been verified by the Maple symbolic algebra package 121.) For
convenience, we define the machine constant K = cr/(P+f), so that (3.7) is simplified to

Kn n
P P

2 2 + (K - 1) 2 - - (- + 1) = 0. (3.8)

For the Ncube and Intel hypercubes, the constant K has the values 8.5 and 15.2, respectively.
Using these values for K , Newton’s method was applied to find the roots of equation (3.8). In
each case, only one real root was found, which was taken to be the optimal segment size u.
Table 3 gives the computed values of 0 for various n and p using the values of K
corresponding to the two hypercubes. These theoretical results based on the model are
compared with numerical experiments in Section 4.

Table 3. Estimated optimal values of segment size c for the wavefront algorithms.

We turn now to an analysis of the row-oriented wavefront algorithm. The most important
difference between the row- and column-oriented wavefront algorithms is that at a given stage
of the row-oriented algorithm, all but the last (currently incomplete) segment can be
forwarded immediately after receipt by each processor, bejure any floating-point processing of
the segment is done. This permits more than one processor to be working on the same
segment at the same time (unlike the column-oriented algorithm), which means that it may not
be necessary to have a full set of p segments in order to keep all processors busy, We would
therefore expect that the optimal segment size for the row-oriented algorithm might be
somewhat larger than for the column-oriented algorithm, since a larger segment size would
tend to reduce communication cost without necessarily sacrificing computational parallelism.

16

To simplify the analysis, we make similar assumptions (wrap mapping, p divides 1 1 , etc.)
to those made for the analysis of the column-oriented wavefront algorithm. We focus our
attention on the first segment (which contains the first u components of x) . Until the first
segment is complete, there is an initial serial phase whose duration is about

5 (a+Bu+ f a).
k = l

(3.9)

Beyond this point, the first segment and all other complete segments are forwarded
immediately upon receipt by each processor. Thus, the first segment will be propagated
without delay, provided the receiving processors are not busy with computation when it
arrives. Initially, the processors are waiting in an idle state for the first segment to arrive, but
as the algorithm progresses each processor has more and more work to do between successive
appearances of the first segment, so that eventually a processor may not be able to finish work
on other segments before the first segment reappears. We wish to determine this point, prior
to which the algorithm is communication bound and after which the algorithm is computation
bound.

As long as the first segment propagates without delay, each circuit through all of the
processors takes time

P (a+B 4. (3.10)

After forwarding the first segment, a given processor must process it and all remaining
segments before receiving the first segment back again. If there are currently j segments, the
time required for this processing will be about

j(a+Bo+fa). (3.1 1)

To determine the trade-off point we equate (3.10) and (3.11), so that when there are more
than [K o p l segments, where

(3.12)

the algorithm will be computation bound. Note that K, is always less than 1, in agreement
with our expectation that fewer than p segments are required for full processor utilization.

We can now determine the total execution time by summing up the initial serial phase
given by (3.9), the communication bound phase given by (3.10), and the computation bound
phase given by (3.1 1). If a given processor contains all rows kp (0 9 <n / p) , then the trade-off
point between the latter two phases will occur at row number rKUa] , so the total execution
time is given by

n

(3.13)

Unfortunately, due to the complicated limits of summation, (3.13) cannot be reduced to a
simple form comparable to (3.6), but it can be evaluated numerically for any given values of
the parameters. This approach was used to generate the curves in Fig. Ib. A one-dimensional
minimization procedure was used to determine the optimal segment sizes for the row-oriented
wavefront algorithm shown in Table 3. We observe that the predicted optimal segment sizes
arc indeed somewhat larger than the corresponding ones for the column-oriented algorithm.

3.4. Comparison of models. The three basic column-oriented algorithms can be compared
theoretically using the models given by (3.2), (3.3), and (3.6). Fig. 2 shows the performance of
the three algorithms for fixed m as p varies. The hypercube fan-in algorithm is fairly

17

insensitive to the number of processors, with increasing communication overhead offsetting
computational gains as p increases. The cyclic algorithm performs best for small p , reaching a
minimum at p = 16, but its execution rime increases sharply for large p as the algorithm
becomes strongly communication bound The wavefront algorithm displays the opposite
behavior, performing worst for small p but improving markedly as p grows.

Fig. 3 shows the performance of the three algorithms for fixed p as n varies. For this
relatively large number of processors, the cyclic algorithm never gets out of the
communication-bound range given by (3.3a) in which it displays linear behavior, and is
consequently the poorest performer. The hypercube fan-in algorithm performs slightly better
and does show quadratic behavior. The wavefront algorithm shows superior performance.
Figs. 2 and 3 should be compared to Figs. 5a and 6a in Section 4, which show the same curves
for actual runs on the Ncube hypercube.

4. Numerical experiments. We have conducted a series of numerical experiments on
commercially available hypercubes to compare the basic triangular solution algorithms and to
determine the effectiveness of the variations discussed in Section 2. Our programs are written
in C and use single-precision floating-point data. While we believe the programs to be
reasonably efficient, no attempt was made to optimize the source code through special
techniques such as loop unrolling, nor were any assembler language modules used. The
programs are written in a generic message-passing style, so that the source code can be ported
without change across hypercubes from different manufacturers. The various algorithms were
implemented in the same coding style and with equal care, so we believe that the tests
represent their relative performance fairly. For sample listings of the programs, see the
appendix below.

The hypercubes used in our tests were those shown in Table 1. At the time these tests
were run, the Ametek hypercube available to us had only 16 processors, which was
inadequate for running our full test suite. We therefore give results only for the Ncube and
Intel machines, each of which had 64 processors. The results from the Ncube machine turned
out to match the predictions of our theoretical models much more closely than did the Intel
results. The principal reason for this is that the communication behavior of the Ncube
machine is described almost exactly by the linear model (l,l], upon which our performance
models are based, whereas the Intel machine deviates significantly from linear behavior as the
message size varies. Thus, the parameter estimates for the Intel machine are less well
determined and less meaningful. We also observed a substantially greater degree of
nondeterminism in the Intel communication system, leading to somewhat erratic results that
are inherently more difficult to model analytically. For these reasons we will focus primarily
on the Ncube results, but will give enough Intel results to show that they were qualitatively
similar.

4.1. Preliminary tests. We first give preliminary results on such issues as connectivity,
mapping, and acceleration techniques. These preliminary findings will enable us to reduce the
large number of algorithms and variations down to a more manageable number for the more
comprehensive comparisons to ftdlow, in which we study performance as a function of the
number of processors and the size of problem.

4.1.1. Connectivity. As noted in Section 2.3, the fan-out and fan-in algorithms can be
implemented using a number of different communication patterns, depending on the
connectivity of the underlying network. Each of these types of communication has its
advantages and disadvantages. The minimal spanning tree in a hypercube with p processors
has a maximum path length of log2p. Thus, logarithmic fan-out and fan-in have the smallest
communication latency of any method of global communication, but at least some of the

18

processors must participate in up to log,p stages of the fan-out or fan-in procedure before
resuming computational work. For brevity, we will refer to this type of communication as
cube fan-out or fan-in. A unidirectional ring, in which messages flow in only one direction,
has a maximum path length of p-1, but each processor forwards only one message, so that all
processors can return to computational work quickly. This permits a pipelining effect,
substantially overlapping communication with computation, which can result in a considerable
gain in efficiency. This gain will be realized, however, only if the problem is mapped onto the
processors in a compatible fashion. In a hypercube, the wrap mapping in Gray code order is
one such mapping. A bidirectional ring, in which messages flow in both directions, has a
smaller maximum path length of p / 2 , but is somewhat less amenable to pipelining. Finally,
using complete connectivity requires no user-level forwarding at all, thus permitting pipelining
at the user level, but requires that a large number of messages be sent sequentially and entails
a great deal of system-level forwarding by intermediate processors.

Typical test results are shown in the first column of data in Tables 4a-b (for comparison,
results for the wavefront and cyclic algorithms are also shown). Here the matrix has been
mapped onto the processors using a wrap mapping in Gray code order. The unidirectional
and bidirectional ring algorithms have similar performance and both substantially outperform
the cube and completely-connected algorithms.

Table 4a. Execution time in seconds on the Nethe hypercube for
column-oriented algorithms on a matrix of order 1000 using 64 processors.

bidirectional ring fan-in

Table 4b. Execution time in seconds on the Ncube hypercube for
row-oriented algorithms on a matri.x of order 1000 using 64 processors.

4.1.2. Acceleration. The second column of data in Tables 4a-b gives results for the
“send-ahead” and “compute-ahead” acceleration techniques discussed in Section 2.3. The
results are disappointing in that the hoped-for acceleration effects are not evident. Indeed,
performance is worsened as often as it is helped by these modifications to the basic
algorithms. This behavior is at odds with our prior experience using similar acceleration
techniques in matrix factorization, where they provide a significant reduction in execution
time. Matrix factorization is largely computation bound, however, so that any technique that
enables processors to get an earlier start on computational tasks is likely to be beneficial. By

19

contrast, triangular solution algorithms are much more communication bound, so getting a
head start on computational tasks is less significant. In fact, the acceleration techniques may
even disrupt an otherwise smooth (systolic-like) flow of data

4.1.3. Mapphg The third and fourth columns of data in Tables 4a-b show the
performance of the algorithms with a random mapping of rows or columns to processors, as
might result, for example, from pivoting for numerical stability during the factorization phase.
We see that the algorithms based on logarithmic hypercube fan-out and fan-in are almost
unaffected by the change in mapping, while performance of the other algorithms is
substantially degraded. The orderly pipelining in the ring algorithms, which accounts for their
superior performance using the Gray wrap mapping, is destroyed by a random mapping,
resulting in performance that reflects the full latency caused by their longer communication
paths. We conclude that the cube fan-in and fan-out algorithms are preferable over all other
algorithms unless the mapping is known to be compatible with the ring algorithms.

4.1.4. Segment size. Our next series of tests is an empirical study of the effect of the
segment size Q on the performance of the wavefront algorithms. Figs. 4a-b show the execution
time of the wavefront algorithms as a function of segment size using various numbers of
processors. The curves have the roughly convex shape one would expect from the trade-off
between concurrency and communication overhead. These curves should be compared with
Figs. la-b, which show the same curves predicted by the theoretical performance models of
the wavefront algorithms. The optimal segment size for each curve predicted by the model
and shown in Table 3 is indicated by the corresponding symbols along the horizontal axis in
Figs. 4a-b. The agreement between model and experiment is remarkably good for the
column-oriented algorithm. The model accurately predicts the magnitude and variation of the
execution time as a function of 4. The model of the row-oriented aigorithm is less accurate in
predicting the actual execution time, but still predicts the optimal u quite well.

4.2. Comprehensive tests. To keep the number of algorithms and variations manageable
for our more comprehensive tests, we will discard the acceleration techniques, which proved
largely ineffective anyway. We will restrict our attention to the Gray wrap mapping, since this
is the only mapping for which every algorithm is valid and since the performance models are
based on it. Since the two types of ring communication perform similarly far the wrap
mapping, we will use only the simpler unidirectional ring communication, hereafter referred to
simply as ring communication. Similarly, we discard completely-connected communication,
since its performance at best resembles that of cube fan-out and fan-in. This leaves us with
four types of basic algorithms (cube and ring fan-out or fan-in, wavefront, and cyclic), and
two types of storage organization {rows and columns) on which to make more extensive
comparisons. In particular, we are interested in the performance of the algorithms as the
number of processors and the size of the problem vary.

4.2.1. Performance as a function of p . Figs. 5a-b give results for a matrix af fixed size
using a varying number of processors. The cyclic algorithms perform extremely well for 16 or
fewer processors, but their performance degrades rapidly as p grows. The wavefront
algorithms behave in just the opposite manner: they fare badly for small p , but their
performance improves markedly as p increases. Performance of the fan-in and fan-out
algorithms is less sensitive to the number of processors; ring communication performs better
than cube communication, with the gap widening significantly as p grows. Fig. 5a should be
compared with Fig. 2, which shows the same curves for three of the four algorithms using the
theoretical performance models. There are slight differences between predicted and observed
behavior, but the models capture remarkably well the order of magnitude and general shape of
the performance curves and the crossover points between them.

20

4.2.2. Performance as a ~ ~ ~ ~ t ~ o ~ of n . Figs. 6a-d give results for matrices of varying order
using a fixed number of processors, this time including Intel as well as Ncube results. We used
the maximum number of processors available (64 for both hypercubes) for this test because
our primary interest is in the effectiveness of parallel algorithms for very large numbers of
processors. Generally speaking, the wavefront algorithms perform best, with ring fan-in or
fan-out second, cube fan-in or fan-out third, and the cyclic algorithms worst. There are some
exceptions to this order, however: on both machines there is a crossover point beyond which
the ring fan-in algorithm outperforms the column-oriented wavefront algorithm for very large
problems, and on the Intel machine the cube fan-out algorithm performs uniformly more
poorly than the row-oriented cyclic algorithm Fig. Sa should be compared with Fig. 3, which
shows the same curves for three of the four algorithms using the theoretical performance
models. Again, agreement between predicted and observed behavior is quite good.

5. ~ ~ ~ ~ c l ~ s ~ o ~ ~ We have presented two new wavefront algorithms for solving triangular
systems of equations on distributed-memory multiprocessors, with matrices partitioned and
distributed among the processors by rows or by columns. Both algorithms feature an
adjustable parameter, the segment size, that controls the granularity of the algorithm and can
be tuned to a specific architecture. Performance models were developed for both algorithms
that accurately predict the optimal segment size for given machine parameters.

The new wavefront algorithms were placed in the context of other message-passing
algorithms for solving triangular systems. These basic algorithms and several variations were
implemented and tested on commercially available hypercube multiprocessors. No one type
of algorithm proved to be superior in all cases. If the matrix is not compatibly mapped onto
the processors, then logarithmic hypercube fan-in and fan-out are the best performing
algorithms. The best absolute performance occurs, however, when the matrix is mapped
compatibly onto the processors, such as in the Gray wrap mapping. In this case, for small
numbers of processors cyclic algorithms are best, while for large numbers of processors
wavefront algorithms are best. Ring fan-in and fan-out perform well across a wide range of
numbers of processors, but provide the overall winner only in the case of a very large matrix
mapped by columns onto a large number of processors.

Parallel algorithms for solving triangular systems tend to be inherently less efficient than
similar algorithms for matrix factorization on the same architectures, The difference is due to
the relatively high proportion of comunication required for triangular solution compared to
that for factorization. On the other hand, only one of the triangular solution algorithms we
have discussed (column-sweep) was known prior to 1986. This substantial recent progress has
produced algorithms with acceptable efficiency, so that the triangular solution phase no longer
requires a severely disproportionate amount of the tota! time in solving a general system of
equations, regardless of whether the matrix is partitioned by rows or by columns. Moreover,
further investigation may lead to still niore efficient algorithms. A combination of the best
features of the cyclic and wavefront algorithms appears especially promising, since their
regions of greatest effectiveness are complementary.

References

[I] R. M. Chamberlain, An algorithm for LU factorization with partial pivoting on the
hypercube, Tech. Kept. CCS 86/11, Dept. of Science and Technology, Chr. Michelsen
Institute, Bergen, Norway, June 1986.

[2] E. W. Char, 6. J. Fee, K. 8. Geddes, G. H. Gonnet and M. B. Monagan, A tutorial
introduction to Maple, J. Symbolic Comput., 2 (1986), pp. 179-200. (Maple is an
interactive system for algebraic computation developed and distributed by the Symbolic

21

r31

141

[51

r61

[71

Computation Group of the Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1.)
A. C€eary, private communication, Dept. of Applied Mathematics, University of
Virginia, Charlottesville, Virginia, October 1986.
T. H. Dunigan, Hypercube performance, to appear in Hypercube Multiprocessors 1987,
ed. by MA T. Heath, SIAM, Philadelphia, 1987.
D. J. Evans and R. C. Dunbar, The parallel solution of triangular systems of equations,
IEEE Trans. Computers, C-32 (1983), pp. 201-204.
G. C. Fox, Square matrix decompositions - symmetric, local, scattered, Tech. Rept. HM-
97, California Institute of Technology, Pasadena, California, 1984.

G. A. Geist and M T. Heath, Matrix factorization on a hypercube multiprocessor, in
Hypercube Multiprocessors 1986, ed. by M. T. Heath, SIAM, Philadelphia, 1986, pp.

M T. Heath and C. H. Romine, Parallel solution of triangular systems on distributed-
memory multiprocessors, manuscript submitted for publication in SIAM J. Sci. Stat.
CompuL, 1987.
M. T. Heath and D. 6. Sorensen, A pipeiined Givens method for computing the QR
factorization of a sparse matrix, Linear Algebra Appl., 77 (1986), pp. 189-203.
D. E. Heller, A survey of parailel algorithms in numerical linear algebra, STAM Rev., 20

D. J. Kuck, Parallel processing of ordinary programs, Advances in Computers, 15

S. Y. Kung, On supercomputing with systolic/wavefront array processors, Proc. IEEE, 72

G. Li and T. E Coleman, A parallel triangular solver for a hypercube multiprocessor,
Tech. Rept. TR 86-787, Dept. of Computer Science, Cornel1 University, Ithaca, New
York, October 1986.
D. P. O'Leary and G. W. Stewart, Data-flow algorithms for parallel matrix computations,
Comm ACM, 28 (1985), pp. 840-853.
J. M. Ortega and R. G. Voigt, Solution of partial differential equations on vector and
parallel computers, SIAM Rev., 27 (1985), pp. 149-240.
C. H. Romine, Parallel solutiou of triangular systems on a hypercube, to appear in
Hypercube Multiprocessors 1987, ed. by M. T. Heath, SIAM, Fhiladelphia, 1987.

C. H. Romine and J. M. Ortega, Parallel solution of triangular systems of equations, Tech.
Rept. RM-86-05, Dept. of Applied Mathematics, University of Virginia, Charlottesville,
Virginia, August 1986.
C. L. Seitz, The cosmic cube, Comm. ACM, 28 (1985), pp. 22-33.

161-1 80.

(1978), pp. 740-777.

(1976), pp. 1 19- 179.

(1984), pp. 867-884.

22

In this appendix we give selected program listings for our implementations of the
algorithms presented in this paper. Our purpose is to provide details that were omitted from
the high-level statements of the algorithms given earlier. These listings may also help readers
in making comparisons with their own programs and timings.

The programs that follow are straightforward implementations of the algorithms. We
believe that the coding is clean enough to make our performance results meaningful, but no
special attempt was made to optimize the source code for highest possible performance. All of
the algorithms were implemented in the same coding style and with the same degree of care,
so comparisons based on these programs should be fair. The close correspondence between
our empirical results and the results from our theoretical performance models bears this out.

The programs are written in a generic message-passing style so that the source code can
run on hypercubes from different manufacturers without change. The generic communication
procedures nsend and nrecv in turn invoke the native communication procedures of a given
machine. A receive call blocks further execution by the receiving processor until the
expected message arrives. The parameters of the communication procedures include a
channel identifier ci, a message buffer, the length of the message in bytes, the source or
destination node, and a message type. The latter permits discrimination among messages in
the input queue of a processor and can be helpful in synchronization.

The following program listings include the eight basic algorithms comprehensively
compared in Section 4.2. To illustrate the other two topologies and the two acceleration
techniques, we also give program listings for the column-oriented fully connected fan-in
algorithm with compute-ahead and the row-oriented bidirectional ring fan-out algorithm with
send-ahead. All of the programs solve a lower triangular system by forward substitution. We
have also implemented all of the algorithms in this paper to solve upper triangular systems by
backward substitution. In most cases the programs are similar to their forward-substitution
counterparts, with the loops simply running backward. The wavefront algorithm is a bit
trickier to adapt, and the unidircctional ring algorithms communicate in the opposite direction
around the ring.

The parameters for the triangular solution procedures are as follows:

n
ncols or nrows

map
mycols or pnyrows

col or row
b

P

ci
me

size of matrix
number of columns or rows owned by this processor
vector giving mapping of columns or rows to processors
the set of columns or rows owned by this processor
vector of pointers to the columns or rows of matrix
components of right-hand-side vector owned by this processor
(on exit contains components of solution computed by this processor)
number of processors
identification number of this processor
communication channel identifier

In addition, for the wavefront algorithms the parameter segment gives the segment size. The
ring algorithms use a few utility routines for determining neighbors in a Gray code ordering,
and these are given in a separate listing at the end.

23

col-cf (n, ncols, map, mycols, co l , b, p, me, c i 1

/*

i n t n, ncols, *map, *mycols, p, me. c i ;
f l o a t **cot, *b ;

* Lower t r i angu la r forward solve
* column-oriented cube fan- in a lgor i thm
*/

c
int i, j , k ;
f l o a t t ;

j = O ;
i f (mapro1 == me 1
c

b r j l /= *colCjl ;
j++ ;

1
for (k = 1 ; k < n ; k++)
c

t = O ;
f o r (i = 0 ; i < j ; i++)

fan-in (c i , me, k, gt, maptkl, p) ;
i f (map[kl == me 1
c

bCjl -= t ;
bCj1 /= *colCjl ;

t += b [i] * * (co l [i l+k-mycols [i l) ;

j++ ;
1

1
>
fan-in (c i , mynode, type, S W ~ , root, p 1

/* *
*
*/

in t mynode, type, root, p ;
f l o a t *sun ;

global sum over a l l processors
using minimal spanning t r e e with given root

c
i n t me, bytes, cnt, node ;
f l o a t t ;

bytes = s izeof (f1oat) ;
me = mynode*root ;
p / = 2 ;
1 f (r n e < p)
c

nrecv (c i , &t, bytes, &cnt, &node, &type) ;
*sm += t ;
i f (p != 1) fan-in (c i , mynode, type, sun, root, p 1 ;

3

1
e lse nsend (c i , sun, bytes, (me-p)”root, type) ;

24

row-cf (n, nrows, map, imyrows, row, b, p, me, c i 1

/*

in t n, nrows, *map, *myrows, p, me, c i ;
f l o a t **row, *b ;

* Lower t r i angu la r forward solve
* row-oriented cube fan-out algori thm
*/

c
int i, j, k ;
f l o a t x ;

j = O ;
f o r [: k = 0 ; k n-1 ; k++ 1
c

i f (maplk3 == me 1
c

b [j l /= * (row[j l+k) ;
x = b [j l ;
j++ ;

>
fan-out (c i , me, k, B x , s izeof(f loat1, maplkl, p) ;
f o r (i = j ; i < nrows ; i++)

bCil -= x * *(rowCil+k) ;
>
i f (map[n-l] == me) brjl /= * (row l j l +n - l) ;

>
fan-out (c i , mynode, type, vec, bytes, root, p 1

i n t c i , mynode, type, bytes, root, p ;
char *vec ;

/*
* broadcast vector vec o f length bytes t o a l l processors
* using minimal spanning t ree wi th given root
*/

c
i n t me, cnt, node ;

me = mynodeAroot ;
p / = 2 ;
i f (m e c p)
c

i f (p != 1) fan-out(c i , mynode, type, vec, bytes, root, p 1 ;
mend (c i , vec, bytes, (me+p)^root, type) ;

1
else
c
1

nrecv (c i , vec, bytes, tcnt , &node, &type 1 ;

>

25

col - r f (n, ncols, map, mycols, cot, b, p, me, c i 1

/*
in t n, ncols, *map, *mycoLs, p, me , c i ;
f l o a t **cot, *b ;

* lower t r i angu la r forward solve
* c o l u n r o r i e n t d r i n g fan- in a lgor i thm
*/

c
i n t i, j, k, cnt, node, type, forward, back ;
f l o a t sum, t ;

forward = rightCme,p) ;
back = left(me,p) ;
j - 0 ;
i f (mapr.01 == me 1
C

b t j l /= *co lCj l ;
j++ ;

>
f o r (k = 1 ; k e n ; k++)
c

t = O ;
f o r (i = O ; i < j ; i + +)

s u m = o ;
t += b [i l * * (c o l ~ i l + k - m y c o l s E i l l ;

i f (back != maptkl)
c

type = k ;
nrecv (c i , &sum, s i zeo f (f l oa t) , &cnt, &node, &type 1 ;

1
sun += t ;
i f (maptkl == me 1
c

b r j l -= sun ;
b [j l /= *co lCj I ;
j++ ;

1
e lse mend (c i , &sun, s i zeo f (f l oa t) , forward, k) ;

>
3

26

row-rf (n, nrows, map, myrows, row, b, p, me, c i
int n, nrows, *map, *myrows, pI me, c i ;
f l o a t **row, *b ;

* lower t r iangu lar forward solve
* row-oriented r i n g fan-out algor i thm
*/

/*

C
i n t i, j , k, cnt, node, type, forward ;
f l o a t x ;

forward = right(me,p) ;
j = O ;
f o r (k = 0 ; k < n-1 ; k++ 1
C

i f (mapCkl == me)
c

b t j] /= *(row[j l+k) ;
x = bCjl ;
nserd (c i , &x, sizeof(f loat1, forward, k) ;
jt+ ;

1
e lse
c

type = k ;
nrecv (c i , &x, s izeof (f loa t) , &cnt, &node, &type) ;
if (forward != map[k]) nsend (c i , &x, cnt, forward, type) ;

>
f o r (i = j ; i < nrows ; i++)

b [i] -= x * *(rouCil+k) ;
>
i f (mapEn-11 == me 1 bCjl /= *(rowCjl+n-l) ;

?

27

cot-wv (segment, n, ncols, map, mycols, col, b, p, me, ci 1

/*

int segment, n, ncols, *imp, *mycols, p, me, ci ;
ftoat **col, *b ;

* lower triangular forward solve
* column-oriented wavefront algorithm
*/
c

int i, j, k, m, Lim, tag, bytes, cnt, node, type ;
float *z ;

bytes = segment*sizeof(float) ;
z = (float *)malloc(bytes) ;

j = O ;
f o r (k = O ; k < n ; k++)
i

if (mapCkl == me)
c

tag = 1 ;
m = O ;
while (m < n-k)
c
i f (k > O)
i

t y p e = k ;
nrecv (ci, z, bytes, &cnt, &node, &type) ;

>
else
C

cnt = segmnt*sizeof(float) ;
for (i 0 ; i c segment ; i++ 1 z l i l = 0 ;

>
l i m = cnt/sizeof(float) ;
if (l i m > n-m) l i m = n-n ;
i f (tag)
c

bCjl -= zCO3 ;
btjl /= *colCjl ;
m++ ;

1
for (i = tag ; i < l i m ; i++ 1
i

z l i l += brjl * *(colCjl+m) ;
m++ ;

nsend (ci, &t[tag], (Limtag)*sizeof(float), mapCk+ll, k+l) ;

1
i f (k n-1 && lim-tag > 0 1

tag = 0 ;
>
j++ ;

>
>
free(z) ;

>

28

row-uv (segment, n, nrows, map, myrows, row, b, p, me, c i 1

I*

i n t segment, n, nrows, *map, *myrow, p, me, c i ;
f l o a t **row, *b ;

* lower t r i angu la r forward solve
* row-oriented uavefront algori thm
*/

c
i n t i, j, k, m, l i m , nseg, iseg, bytes, cnt, node, type ;
f l o a t * 2 ;

bytes = segment*sizeof(f l oa t) ;
z = (f l o a t *)malloc(bytes) ;

j = O ;
f o r (k = 0 ; k < n ; k++ 1
c

i f (mapCkl == me)
c

m = O
nseg =
f o r (
c

k/segment ;
seg = 0 ; iseg nseg ; iseg++)

type = k ;
nrecv (c i , z, bytes, Lcnt, &node, &type ;
i f (k < n-1) nsend (c i , z, cnt, mapCk+ll, k+l 1 ;
f o r (i = 0 ; i < segment ; i++)
C

b [j l -= z l i l * *(rouCjl+m) ;
m++ ;

>
if (k > 0 && k%segment != 0)
C

type = k ;
nrecv (c i , z, bytes, &cnt, &node, &type 1 ;

>
e lse cn t = 0 ;
L i m = cn t / s i zeo f (f l oa t) ;
fo r (i = 0 ; i < l i m ; i++)
c

btjl -= zCi1 * *(rowCjl+m) ;
m++ ;

>
b t j l /= * (rowl j l+k) ;
i f (k < n-1)
c

z C l i m l = bCjl ;
nsend (c i , z, (l im+l)*s izeof (f loat) , rnapCk+ll, k + l) ;

>

29

cot-cy (n, ncols, map, mycols, cot, b, p, me, c i)

/*
int n, mots , *map, *mycoLs, p, me, c i ;
f l o a t **cot, *b ;

* lower t r i angu la r forward solve
* column-oriented c y c l i c a lgor i thm
*/

C
int i, j , k, l i m , bytes, cnt, node, type ;
f l o a t *z, *t ;

bytes = (p- l) *s izeof (f loat) ;
z = (f l o a t *)malloc(p*sizeof(float)) ;
f o r (i = O ; i < p ; i + +) z [i l = O ;
t = (f l o a t *)maLloc(n*sizeof(float)) ;
f o r (i = O ; i < n ; i + +) t l i l = O ;

j = O ;
f o r (k = O ; k < n ; k + +)
c

i f (maptkl == me 1
c

i f (k > O)
c

t y p e = k ;
nrecv (c i , z, bytes, &cnt, &node, &type) :

1
btjl -= zl0l + tCkl ;
btjl /= *co lCj l ;
i f (k < n-I 1
c

i f (p <= n-k)
c

Lim = p-1 ;
f o r (i = 1 ; i < L i m ; i++)

z t l im] = t f k + l i m l + b r j l * *(col~jl+Lim) ;
r t i] += t t k + i l + btj l * * (c o l t j l + i) ;

>
e l se
c

l i m = n-k ;
f o r (i = 1 ; i < l i m ; i++)

z [i] += tCk+i l + b t j l * * (co lC j l+ i) ;
>
nsend (c i , z+l, l im*s izeof(f loat) , maptX+ll, k+ l) ;
fo r (i = k+p ; i < n ; i++ 1

t [i] += bCjl * * (c o l [j l + i - k) ;
1
j++ ;

1
>
f r e e C t) ;
f r e e (2) ;

>

30

row- cy (n, nrows, map, rnyrows, row, b, p, me, c i)
int n, nrows, *map, *myrows, p, me, c i ;
f l o a t **row, *b ;

* lower t r iangu lar forward solve
* row-oriented c y c l i c algor i thm
*/

/*

c
i n t i, j, k, m, l i m , tag, bytes, cnt, node, type ;
f l o a t *z ;

bytes = (p - l) *s izeo f (f loa t) ;
z = (f l o a t *)maLloc(p*sizeof(float)) ;

j = O ;
f o r (k = O ; k < n ; k + +)
c

i f (maptkl == me)
c

i f (k > O)
C

type = k ;
nrecv (c i , z, bytes, Bcnt, &node, &type) ;

>
e lse cnt = 0 ;
L i m = cn t /s izeo f (f loa t) ;
for (i = 0 ; i c l i m ; i++ 1

bCjl /= *(rowt j l+k) ;
i f (k < n - l)
C

b [j l -= z [i l * (rouCj l+i) ;

z C l i m l = b r j l ;
tag = l i m 4 p-1 ? 0 : 1 ;
nsend (c i , z+tag, (l ini+l-tag)*sizeof(f loat) , maptk+ll, k + l) ;
f o r (m = j + l ; m 4 nrows ; m++

f o r (i = 0 ; i <= l i m ; i++)
b[m] -= z [i] * *(rowtml+k+il ;

>

1
j++ ;

31

cot-ff (n, ncols, map, mycols, col, b, p, m, ci)

/*

int n, ncols, *map, *mycoLs, p, me, ci ;
float **cot, *b ;

* lower triangular forward solve
* column-oriented fully connected fan-in algorithm with compute-ahead
*/

c
int i, j, k, cnt, node, type ;
float sun, t, next ;

j = O ;
if (map[Ol == me)
c

bCjl /= *col[j] ;
t = btjl * *(colCjl+l) ;
j++ ;

1
for (k = 1 ; k < n ; k++)
c

if (mapCk-I] ! = me
c

t = o ;
for (i = 0 ; i j ; i++)

t += b[il * *(colCi3+k-mycolstil) ;
1
if (maptkl == me 1
c

next = 0 ;
if (k < n-1 > for (i = 0 ; i < j ; i + +)

s m = t ;
for (i = 1 ; i < p ; i++ 1
c

type = k ;
nrecv (ci, Bt, sireof(float), Bcnt, &node, &type) ;
sun += t ;

next += bCi3 * *~col~i~+k+l-mycolsIi3~ ;

1
btjl -= sun ;
bCjl /= *toltjl ;
if (k < n-1) t = next + btj] * *(col[jl+l) ;
j++ ;

1
else nsend (c i , &t, sizeof(float), map[kl, k 1 ;

1

32

row-bf (n, nrous, map, myrows, row, b, p, me! c i)

/*

i n t n, nrows, *map, *myrow, p, me, c i ;
f l o a t **row, *b ;

* lower t r i angu la r forward solve
* row-oriented b i d i r e c t i o n a l r i n g fan-out algori thm wi th send-ahead
*/

c
int i, j, k, rn, cnt, node, type# forward,
f l o a t x ;

forward -- right(me,p) ;
back = left(me,p) ;
j = O ;
i f (mapC01 == me 1
c

b r j l /= * r o w l j l ;
nsend (c i , & b I j l , s izeof (f loat) ,
nsend (c i , & b t j l , s i zeo f (f l oa t) ,
nsend (c i , & b l j l , s i zeo f (f l oa t) ,
j++ ;

1
f o r (k = 0 ; k < n-I ; k+*)
c

type = k :

back, antipode ;

forward, 0 1 ;
back, 0) ;
m e , O) ;

. .
nrecv (c i , Lx, s i zeo f (f l oa t) , Bcnt, &node, &type) ;
antipode = gray((invgray(maplk1)+p/2)%pP) ;
if (ne != antipode S& me ? = maplkl 1
c

if (node == back) nsend (c i , Bx, cnt, forward, type ;
else i f (back != antipode 1 nsend (c i , Bx, cnt, back, type 1 ;

1
f o r (i = j ; i < nrows ; i++ 1
c

b [i l -= x * * (rowl i l+k) ;
i f (k == rnyrowsljl-1)
c

m = myrows1jl ;
b [j l /= *(row[jl+rn) ;
i f (myrows[jl < n-l 1
c

nsend (c i , Bbt j] , s i zeo f (f l oa t) , forward, myrowslj l ;
nsend (c i , &b[j l , s i zeo f (f l oa t) , back, rnyrows[jl ;
nsend (c i , Lb[j] , s i zeo f (f l oa t) , me, myrowsIjl) ;

>
j++ ;

1

33

i n t r ight (node, p)
int node, p ;

c
int gray(), invgray0 ;
return(gray((invgray(node)+l ,%p) 1 ;

>
i n t Left (node, p 1

C
i n t node, p ;

i n t gray(), invgray0 ;
return(gray((invgray(node)+p-l)%p) 1 ;

1

int gray (i)

c
1

i n t invgray (i)
i n t i ;

c

i n t i ;

return((i > > l) A i 1 ;

i n t k ;
k = i ;
while (k * 0)

c
k >>= 1 ;
i A = k ;

>
return (i) ;

34

4.4

3 .(

S
e
C

n

S

$3 2.(

d

1 .(

O.(

Ncube. n-580 + p-4
x I""8
o p-16
a p32
A g-64

A 01 0 I X I +I I I I

0 10 20 30 40 50 60 70 80
segment size

Fig. la . Predicted execution time as a function of segment size for the
cdumn-oriented wavefront dgmithm on the N& hypercube with a W i x of order 500.

3.0

s

C

n

s

e

0 2.0

d

i n

4.

I- p"-r

x p 8
o p-16

A p=64
a p-32 -

-

P I u I O I X I I + I I 4
0 10 20 30 40 50 60 70 80

segment si78

Fig. Ib. Predicted execution time as a fumtion of segment size for the
row-oriented wavefj-mt algorithm on the N& hyperatbe with a nratrix of order 500.

35

Ncube, 11-500

x cube fan-in

3 4 5
log P

6 2

Fig. 2. Predicted execution time as Q function of nlMzmer of processors for
cdumn-oriented algorithms on the Ncube hyper& with a matrix of order 500.

x cube fan-in
D wave front

S
e
C
0

n

S
d

0 lo00 1500
n

Fig. 3. Predicted execution time as a ftwtccion of matrix size for
column-oriented algorithms on the Ncube hypcube using 64 processors.

36

0 10 20 30 40 50 60 70 80
segment size

Fig. 4a. Execution time as a fwtction of s e g m M size for the colum-oriented
wavefront algorithm on the Ncube hypercube with a matrix of order 500.

4.

3.

S
e
c

n

S

0 2.

a

1.

0.
0 10 20 30 40 50 60 70 80

segment size

Ncube, n-500 -+ p=4
x p=8
Q p-I6
0 p=32 '

A p-64

Fig. 4b. Execution time as a function of segment size for the rw-m-knted
wavefront algorithm on the N& hypercube with a matrix of order 500.

37

2.5

2 .a

S

C
0

e 1.5

n
d 1.0
S

0.5

0.0

I I

Column-oriented algorithms
Ncube. 11400

I I I

3 4
log P

5 6

Fig. 5a. Execution time as a function of nwnber of prmessors f o r
cdumn-oriened algorithms on the Ncube hypercube with a matrix of order 500.

Ncube. n-500

x cube fan-out

2 3 4 5 6
1% P

Fig. 5b. Execution time as a function of ruunber of p-ocessors for
rw-oritmted algorithms on the Ncube hypercube with a matrix of order J;oo.

38

n

Fig. 6a. Execution tim as a function of matrix size fw edumn-oriented
algorithms on the Ncube hyper using 64 prwe5sws.

S
e
C
0
n
Q
S

0 1W 1500 2800
n

Fig. 6b. Execution time as e function of matrix size for rav-oriented
algorithms on t h N& hypercube using 64 processars.

39

x cube fan-in

0 lo00
n

1500

Fig. 6c. Execution time as a function of motrix size for cwlum-m-iented
algorithms on t h Intel hyper& using 64 processors.

0 500
n

1500

Fig. 6d. Execution time as a function of matrix size for row-orknted
aigorithms on the Intel hyper& using 64 processop=r.

41

ORNL,'TM-103 84

LNTEIWAL DISTlUBUTlON

1-2.
3-7.

13-17.
18-22.
23-27.

8-12.

28.
29.
30.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

R. F. Harbison
M. T. Heath
J. K. Ingersoll
F. C. Maienschein
@. H. Romine
R. C. Ward
A. Zucker
P. W. Dickson (Consultant)
G. H. Golub (Consultant)

31.
32.
33.
34.
35.
36.

37.
38-39.

R. M. Haralick (Consultant)
D. Steiner (Consultant)
Central Research Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library
/Document Reference Station
Laboratory Records -. RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

Dr. Donald M. Austin. Office of Scientific Computing, Office of Energy Research. ER-7.
Germantown Building, U.S. Department of Energy, Washington. DC 20545
Lawrence J. Baker, Exxon Production Research Company, P.O.Box 2189, Houston. TX

Dr. Jesse L. Barlow. Department of Computer Science. Pennsylvania State University,
University Park, PA 16802

Dr. Adam Beguelin, Department of Computer Science, University of Colorado.
Boulder, CO 80309

Prof. Ake Bjorck. Department of Mathematics, Linkoping University, Linkoping
58183, Sweden

Dr. Bill L. Buzbee. C-3, Applications Support & Research, Los Alamos National
Laboratory. P.O. Box 1663. Los Alamos, NM 87545

Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan. Ann Arbor, MI 48109

Dr. Richard Chamberlain, Intel Scientific Computers, Intel International LTD., Pipers
Way, Swindon. England SN31RJ

Dr. Tony Chan. Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520
Dr. Jagdish Chandra. Army Research Office. P.O. Box 12211, Research Triangle Park.
North Carolina 27709

Andrew Cleary, Department of Applied Mathematics, University of Virginia. Char-
lottesville. VA 22903
Dr. Tom Coleman, Computer Science Department. Cornel1 University, Ithaca, NY
14853

Dr. Paul Concus. Mathematics and Computing. Lawrence Berkeley Laboratory, Berke-
ley, CA 94720
Dr. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. BOX 218, Yorktown
Heights, NY 10598

77252-2189

42

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.
75.

76.

77.

Dr. George Cybenko. Department of Computer Science, Tufts University, Medford,
MA 02155
Dr. George J. Davis, Department of Mathematics. Georgia State University, Atlanta.
GA 30303
Dr. Jack J. Dongarra. Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue. Argonne, IL 60439
Dr. Stanley Eisenstat, Department of Computer Science. Yale University, P.O. Box
2158 Yale Station. New Haven. CT 06520
Dr. Howard C. Elman. Computer Science Department, University of Maryland, Col-
lege Park. MD 20742
Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West, Tukwila,
W A 98188
Dr. Jeff Fier. Computer Research Division. Ametek Corporation. 610 North Santa
Anita Avenue, Arcadia. CA 91006
Dr. Geoffrey @. Fox. Booth Computing Center 158-79, California Institute of Tech-
nology. Pasadena, CA 91125
Dr. Paul 0. Frederickson, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545
Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University. Raleigh. NC 27650
Dr. Dennis B. Cannon. Computer Science Department. Indiana University, Blooming-
ton. IN 47405
Dr. David M. Gay. Bell Laboratories, 600 Mountain Avenue, Murray Hill. NJ 07974
Dr. C. William Gear. Computer Science Department, University of Illinois, Urbana,
Illinois 61801
Dr. Don E. Heller. Physics and Computer Science Department. Shell Development Co..
P.O. Box 481, Houston. TX 77001
Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore. CA 94550
Dr. Ilse Ipsen. Department of Computer Science, Yale University. P.O. Box 2158 Yale
Station. New Haven, CT 06520

Dr. Harry Jordan, Department of Electrical and Computer Engineering. University of
Colorado, Boulder. CO 80309
Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Dr. Robert J. Kee, Applied Mathematics Division 8331. Sandia National Laboratories.
Livermore. CA 94550
Dr. David Kuck. Computer Science Department, University of Illinois, Urbana, IL
61801
Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101
Dr. Alan J. Laub. Department of Electrical and Computer Engineering, University of
California. Santa Barbara, CA 93106
Dr. Robert L. Launer. Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709
Prof. Peter D. Lax, Director. Courant Institute of Mathematical Sciences. New York
University. 251 Mercer Street, New York. NY 10012

43

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Dr. Michael R. Leuze, Computer Science Department. Box 1679 Station B, Vanderbilt
University, Nashville, TN 37235
Dr. Joseph Liu, Department of Computer Science. York University, 4700 Keele Street,
Downsview, Qntario. Canada M3J iP3

Dr. Franklin Luk. Electrical Engineering Department, Cornell University. Ithaca, NY
14853
James G. Malone General Motors Research Laboratories. Warren, Michigan 48090-
9055
Dr. Thomas A. Manteuffel, Computing Division. Los Alamos National Laboratory.
Los Alamos, NM 87545
Dr. Paul C. Messina. Applied Mathematics Division. Argonne National Laboratory.
Argonne, IL 60439
Dr. Cleve Moler. Intel Scientific Computers, 15201 N.W. Greenbrier Parkway. Beaver-
ton, OR 97006
Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742
Maj. C. E. Oliver, Office of the Chief Scientist. Air Force Weapons Laboratory, Kirt-
land Air Force Base. Albuquerque. NM 87115
Dr. James M. Ortega, Department of Applied Mathematics. University of Virginia,
Charlottesville, VA 22903
Prof. Chris Paige, Basser Department of Computer Science, Madsen Building F09.
University of Sydney, N.S.W.. Sydney. Australia 2006
Dr. John F. Palmer, NCUBE Corporation. 915 E. LaVieve Lane, Tempe, AZ 85284
Prof. Beresford N. Parlett. Department of Mathematics, University of California,
Berkeley, CA 94720
Prof. Merrell Patrick, Department of Computer Science, Duke University. Durham,
NC 27706
Dr. Robert J. Plemmons. Departments of Mathematics and Computer Science, North
Carolina State University. Raleigh. NC 27650
Dr. John K. Reid, CSS Division, Building 8.9. AERE Harwell, Didcot. Oxon. England
OX11 O R A
Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette.
IN 47907
Dr. Garry Rodrigue, Numerical Mathematics Group. Lawrence Livermore Laboratory,
Livermore, CA 94550

Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham. NC
27706
Dr. Ahmed H. Satneh, Computer Science Department. University of Illinois, Urbana,
IL 61801
Dr. Michael Saunders, Systems Optimization Laboratory. Operations Research Depart-
ment, Stanford University, Stanford, CA 94305
Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic Insti-
tute, Troy, NY 12180
Dr. Martin H. Schultz. Department of Computer Science, Yale University, P.O. 3 o x
2158 Yale Station, New Haven. CT 06520

44

101. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway.

102. Dr. Lawrence F. Shampine. Mathematics Department Southern Methodist University

103. Dr. Danny C. Sorensen, Mathematics and Computer Science Division. Argonne

104. Prof. 6. W. Stewart. Computer Science Department. University of Maryland. College

105. Capt. John P. Thomas. Air Force Office of Scientific Research, Building 410. Bolling

106. Prof. Charles Van Loan, Department of Computer Science. Cornell University, Ithaca,

107. Dr. Robert G. Voigt. ICASE, MS 132-C, NASA Langley Research Center. Hampton.

108. Dr. Andrew B. White. Computing Division. Los Alamos National Laboratory. Los

109. Mr. Patrick H. Worley. Computer Science Department. Stanford University. Stanford.

110. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211. Research Triangle Park,

11 1. Dr. Margaret Wright. Systems Optimization Laboratory, Operations Research Depart-

112. Office of Assistant Manager for Energy Research and Development, Department of

Beaverton, OR 97006

Dallas, Texas 75275

National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Park, MD 20742

Air Force Base, Washington. DC 20332

NY 14853

VA 23665

Alamos, NM 87545

CA 94305

North Carolina 27709

ment, Stanford University, Stanford, CA 94305

Energy. Oak Ridge Operations Office, Oak Ridge. TN 37830

Technical Information Center
113-142.

