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ABSTRACT 

The stability of the ideal and resistive rn = 1 internal modes is investigated 

for tokamak equilibria having a variety of different q ( r )  profiles, including non- 

monotonic q(r)  with multiple q = 1 surfaces. Detailed comparisons between ana- 

lytic theory and numerical results from a linear toroidal MHD code are presented. 

Particular attention is paid to the study of equilibria near marginal stability. 

V 





1. INTRODUCTION 

Theoretical investigations of the internal disruptions (sawtooth behavior) ob- 

served in most tokamak discharges have concentrated on three separate aspects of 

the phenomenon: 

1. the reconnection occurring1-6 during the nonlinear phase of the rn = 1, 

2. the simulation by transport codes3y4 of the slow evolution of the dis- 

charge that returns it to a kink-unstable state, resulting in the cyclic 

behavior observed, 

n = 1 kink instability, 

3. the establishment of marginal stability criteria for the internal kink 

mode (resistive as well as ideal) and studies of linear g r o ~ t h ~ - ~ ~  near 

to marginal stability. 

Without the third ingredient, the transport simulations lack credibility because 

they assume that the plasma reconnects when some arbitrary criterion is satisfied, 

and the nonlinear reconnection studies lack credibility because they start from a 

strongly unstable equilibrium. 

Recent sawtooth ~ i m u l a t i o n s ' ~ 1 ~ ~  have employed reduced fluid equations that 

follow both the fast Alfvknic time scales and the transport time scale. The equations 

include electron thermal transport both along and across the magnetic field, as well 

as resistivity. These simulations extend the earlier work of Sykes and Wesson5 and 

have been very successful in producing cyclical reconnecting behavior. However, the 

geometry is cylindrical, and the stability properties of the internal kink mode are 

quite different in cylindrical and toroidal geometry.* The conditions under which 

each thermal collapse is triggered may therefore be rather different in this simulation 

from those holding in a real tokamak discharge. 

Another difficulty encountered in sawtooth simulations concerns the very fast 

collapse time frequently observed in large tokamaks (100 ps in JET). As noted by 

W e ~ s o n , ~  this collapse time is at variance with the estimate given by Kadomtsev, 

and it is difficult to reconcile with any mechanism involving a transport-induced 

evolution through a linear stability boundary, be it of an ideal or a resistive mode. 

If such a mechanism is responsible for the temperature collapse, an exceedingly 

sharp stability boundary must be involved: sharp, that is, in the sense of large 

growth rates being possible for equilibrium parameters close to marginality. 

1 



2 Iat r d u c  t ion 

A knowledge of linear stability criteria and linear growth rates near marginal 

stability is therefore an important ingredient in understanding sawtoothin 

maks. An important contribution in this field is the toroidal calculation of the 

ideal MHD ener y 6W by Bussac et aL8 (subsequently presented in more detail in 

refs. 15-17). From a later paper by Bussac et a1.,l0 one can obtain analytic expres- 

sions for the linear growth rate of the internal kink mode in a resistive plasma as 

well as in the ideal limit S 4 00 (where S is the magnetic Reynolds number). These 

results are limited in several ways, all of which may be relevant to understanding 

saw toothing, 

1. The analysis assumes an aspect ratio expansion of the equilibrium, and 

orders p - c2,  where e i s  the inverse aspect ratio. 

2. Only q ( r )  profiles (where q is the safety factor) having a single q = 1 

3. In the inner region, T 5 r l ,  where q ( r l )  = 1, the ordering Iq - 11 >> E is 

radius are considered. 

assumed. 

It is the purpose of this paper to remove these limitations and to establish the 

internal kink stability properties of tokamaks for a variety of q( r )  profiles, including 

nonmonotonic q ( r ) ,  at finite as well as l aqe  aspect ratio. We devote particular 

attention to identifying marginally stable equilibrium configurations and to evalu- 

ating growth rates close to marginality, €or both the ideal and resistive internal kink 

modes. Detailed quantitative comparisons are made between the computational re- 

sults obtained from a linear toroidal resistive MHD code (FAR)18j19 and analytic 

results. 

The structure of the paper is as follows. Section 2 summarizes the analytic 

theory for ideal internal kink modes when a single q = 1 surface is present in the 

plasma and extends it to cases for which two q = I radii are present. In Sect. 3, 

results from analytic theory are compared with numerical growth rates obtained 

from the FAR code. Section 4 presents numerical results for tight-aspect-ratio 

devices, strong shaping, and very low shear profiles. These calculations include 

examples that model the measured q profiles in ASDEX2' and in TEXTOR.2' Many 

of the calculations are for equilibria consistent with JET. These cases are strictly 

beyond the regime of validity of the analytic theories. Section 5 summarizes the 

results, and conclusions on the nature of the sawtooth collapse are drawn. 



2. ANALYTIC THEORY OF 
INTERNAL KINK STABILITY 

2.1 CASES WITH A SINGLE q = L  SURFACE 

The ideal MHD toroidal stability problem was considered for a large-aspect- 

ratio torus by Bussac et a1.,8 and the effect of shaping was analyzed by Edery et 

a1.22 Shaping effects decouple from toroidal effects in the large-aspect-ratio limit, so 

that the combined effects are additive. For an equilibrium of circular cross section, 

the energy integral 6W,  after minimization, is given by 

where 

9 
GWT = 8 ~ ( 6  - C> + - ( b  - 1)(1 - C) - 6(6 - l ) ( c  + 3 ) ( p p  + S )  [ 4 

-4(c + 3 ) ( b  + 3 ) ( 4  + s ) ~ ]  x [16(b - , 

with B, the poloidal field strength and rl the radius at which q ( r )  = 1. The 

quantities b and c in SWT are the values of the logarithmic derivatives 

obtained by integrating the rn = 2 Euler equation, 

dr dr 

3 



4 Analytic Theory of Internal Kink Stability 

from the axis (with regular boundary conditions there) to give 6 and from the q = 2 

surface (or the plasma boundary, if there is  no q = 2 surface within the plasma) to 

give c .  

An important consequence of the toroidal geometry’ is that the cylindrical 

contribution to 6W is identically cancelled out for an n = 1, rn = 1 mode. It follows 

that if the value of the ideal MMD energy, 6W, is important in determining the 

trigger for internal disruption and reconnection, cylindrical simulations must give 

incorrect results. 

To obtain the linear growth rate of either the ideal MHD mode or the resistive 

kink mode, the calculation of dW must be supplemented by a theory of the singular 

layer. 

In the case of the ideal mode, the growth rate may be obtained by equating the 

kinetic energy, 

to the potential energy available for instability, ( -6W).23 Because of the inertial 

layer a t  r l ,  K is dominated by the contributions from (,” and 6: in the inertial 

layer, where 

while the discontinuity at  the singular layer is resolved by the inertia, and one finds 

with W A  = V A / R  and VA the Alfvdn velocity. 

The factor 3 appearing in Eq. (9) is the inertial enhancement factor M fi 1 + 2q2 

found by Glasser, Greene, and Johnsonz4 in toroidal geometry. To obtain the correct 

linear growth, one must add the field line bending modification to the potential 

energy that comes from the layer. This is given by 

At marginal stability this contribution vanishes; however, 

give the layer solution, a finite contribution is obtained. 

(10) 

when Eq. (9) is used to 



Analytic Theory of Internal Kink Stability 5 

Finally, equating K = - (6W + 6w), one obtains the linear growth rate 

ds 

--oo 3 ( 7 2 / w 2 )  + (a - 112 

where z = ( r  - r l )  / r l  is the local radial variable. 

1. 

2. 

3. 

4. 

Several cases can now be distinguished. 

Monotonic q ( r ) ,  with q ( r l )  = 1 and q' (rl)  # 0 (soiid line in Fig. 1), 

Nonmonotonic q(r ) ,  with a minimum at ~1~ q(r1) = 1 and q'(t-1) = 0 (dashed 

(13) 

Nonmonotonie q ( r ) ,  with q(r1) # 1 and q' (r1)  = 0 (dot-dashed line in Fig. I), 

where 7 = [ 3 r 2 / w ;  + (6q )2 ]  ' I 2  and S q  = q ( T I )  - 1 << 1. Equation (14) is valid 

for both positive and negative values of Sq, provided that when 6q < 0, ISql does 

not become large enough for the inertial layer to separate into two layers at the 

different q = 1 radii. For positive Sq, there is a strong stabilizing effect from 

the field line bending at r l ,  and an equilibrium that is unstable when qmin = 1 

(Le., for which 6WT is negative) is marginally stable for 

The ideal growth rate peaks for negative S q  at rmax = 1.0970, with 70 the 

6q = 0 growth rate. As bq becomes more negative, the growth rate decreases, 

but the single-layer theory eventually becomes invalid. These analytic results 

are compared with computed growth rates in the next section. 

Monotonic q(r), with a point of inflection at r1, q ( r l )  = 1 and q ' ( r l )  = q" 
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Pig. 1. Profiles of the safety factor q(r) for which ideal MHD growth 
rates are calculated in Eqs. (12) (solid line), (13) (dashed line), and (14) 
(dot-dashed line). 

The presence of a point of inflection of q at r l ,  therefore, enhances the ideal MHD 

growth rate 7a ( T I / R ) ~ ’ ~ ]  when 6WT < 0. For 6WT > 0 the resistive stability of 

such q ( r )  profiles is investigated in Sect. 4. 
[ 

2.2 THE ROLE OF RESISTIVITY 
In the foregoing estimates of growth rates, it has been assumed that 6WT < 0, 

that is, that energy is available to  drive the ideal MHD instability. However, even 

when this is the case, it does not follow that the ideal growth rates calculated 

above are correct. Resistivity may dominate the layer behavior. To estimate the 

magnitude of resistive effects, we compare the inductive contribution to the parallel 

electric field, 7.411, with the resistive term in the layer cc qc2Al1/d2, where d is 

a measure of the layer width. 



Analytic Theory of Internal Kink Stability 7 

From this we find that resistivity is negligible if the condition 

is satisfied. 
2 2  Here, S = W A r ,  with T, = qc  / r l ,  and a is the minor radius of the device. 

Estimating the layer width d from Eq. (9) and the growth rates from Eqs. (12) 

and (13), we find that for q'(r1) # 0, Ea. (17) becomes 

while for the nonmonotonic case, with qmin = 1, it becomes 

where the layer width is 

Inequality (18) gives the familiar result that resistivity (even with S in the range 

from lQG to lo8) tends to dominate the linear growth of rn = 1 modes. Inequality 

(19), however, shows that because of the broader inertial layer and larger ideal 

growth rate, the internal kink becomes an essentially ideal mode when the shear 

vanishes at the q = 1 surface. 

When 6WT > 0, no ideal instability is possible and a resistive layer theory 

is required. Coppi et al.' have given this theory in cylindrical geometry (with 

q ' ( T 1 )  $ 0) and Bussac et a1.l' have extended this to toroidal geometry. The 

dispersion relation is given in ref. 10 with diamagnetic and toroidal coupling effects 

included. In single-fluid resistive theory, neglecting coupling to the q = 2 tearing 

mode, it reduces to 

with 



8 

This yields the ideal MHD growth rate when 6WT < 0 and S -+ 00, and the familiar 

Analytic Theory oi .internal Kink Stability 

For very large S ,  very tight aspect ratio, or small shear [q’(r1) 4 01, the scaling 

of 7 is modified to the &T3/‘ of conventional tearing modes. No theory of the 

resistive layer appears to have been done when q‘ (r l )  = 0, but, as we shall see from 

the numerical results, no unstable m = 1 resistive mode is found when g(r) 2 1 

everywhere, provided the rippling modes are excluded. 

2.3 EQIJILIBRIA WITH TWO q = l  SURFACES 

The analytic estimate of the growth rate given by Eq. (14) breaks down when 

the characteristic layer width d becomes less than the separation of the two q = 1 

radii when qmin < 1. 

The analytic minimization of 6W for two q = 1 radii is similar to the origi- 

nal analysis of Bussac et al. The analysis is outlined in the appendix, where the 

following expression for 6W is obtained: 

with r1 the radius of the first and r2 the radius of the second q = 1 surface, the 

amplitude of the “top hat” m = 1 eigenfunetion in [ O , r l ] ,  and the amplitude in 

[r l ,r2] .  The expressions for SW1, SVV,, and 6W3 are given in the appendix. They 

depend on the quantities 

and 

which are obvious generalizations of the single-surface case. 



Analytic Theory of Internal Kink Stability 9 

to z) of the two possible The ideal growth rates and eigenfunctions (ratio of 

ideal modes are also caiculated in the appendix. The results are 

[ (AE + C D )  f &E + C D ) 2  + (B2  - 4AC)DEI (24) 
7 -  a 1  

W A  &2DE 
- _ - -  

and 

r2 1 
r l  B E  

r / z  = 1 + - - [ - ( A E  - C D )  f: d ( A E  + C D ) 2  + (a2 - 4AC)DEl , (25) 

where 



3. COMPARISON OF ANALYTIC 
AND NUMERICAL RESULTS 

In this section we demonstrate the very close agreement between the aspect 

ratio expansion analytic techniques presented in Sect. 2 and computational results 

obtained using a modified version of the FAR code.” The modified FAR code” 

solves the linear compressible (or incompressible) resistive MHD equations in full 

toroidal geometry, with no ordering assumptions. The double equations of state, 

d p / d t  = 0 and V .  (v_/R”) = 0, employed in the original FAR code’* have therefore 

been replaced by the adiabatic equation of state or, in the incompressible case, by 

c7 II. = 0. As a result, the localized resistive-pressure-driven modes that appeared 

in earlier rn = 1 simulations using the original FAR code,18 and in simulations with 

reduced equations using the RST code,25 do not appear at finite beta. 

In all other respects, the new version of FAR is identical to the original code as 

described in ref. 18. As input to the FAR code, the flux coordinates are computed 

from numerical solution of the Grad-Shafranov equation. 

3.1 MONOTONIC q ( T )  

Figure 2 shows the variation of ideal MHD growth rate with beta for monotonic 

q ( r )  = 0.9 (1 + r ’ ) .  The aspect ratio A = lo2,  and the pressure profile is a parabolic 

function of r, the flux coordinate used in ref. 8. For this comparison the logarithmic 

derivatives 6 and c of Eq. ( 5 )  were evaluated numerically and found to be 1.15 and 

-2.02, respectively. The code was run incompressibly with resistivity set to zero. As 

predicted analytically, 7 oc p2 ,  and close agreement exists between computational 

and analytic results. 

Figure 3 shows the growth rate of the resistive mode as a function of the mag- 

netic Reynolds number S for the equilibrium of Fig. 2, but at zero beta. The 

comparison is now with the analytic prediction taken from Eq. (20). Within the 

range of S values investigated, the dispersion relation is efFectively p = I, so that 

6WT plays no role. The growth rate scales as S -‘/3. At even higher S, a transition 

to S-3 /5  behavior should occur (probably beyond S = lo1’ for this case). This 

transition is demonstrated for an equilibrium of tight aspect ratio in Sect. 4. 

10 
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Fig. 2. Comparison of analytic [Eq. (12)] and computed growth rates 
= 2p(O)/B$. A = lo2, for the ideal MHD mode, as functions of peak 

q(r) = Q.9(1+ ra), p(r) = po(1 - r2). 



12 Comparison of Analytic and Numerical Results 

In Fig. 4 we compare the ideal MHD growth rates computed from the FAR code 

with those calculated analytically for the nonmonotonic profile, 

at zero beta and A = 10. 

The solid curve is that given by E¶. (24 )1  which should be valid whenever two 

separate inertial layers are present. The dashed curve is evaluated from Eq. (14), 

which should apply when only one inertial layer is present. A striking feature is the 

very sharp stability boundary close to qmin = 1. Results from the compressible FAR 

code are also shown in Fig. 4.  At zero beta, the sound waves no longer propagate in 

a compressible formulation, and the inertial enhancement factor M N 1 (as opposed 

to M 1 -t-2q2 when the sound waves propagate faster than the mode grows). Thus, 

the compressible and incompressible growth rates should and do differ by the factor 

4 m =  fi. 
The spatial dependence of the radial displacement eigenfunction is shown in 

Fig. 5 for various values of qmin. The transition from one inertial layer, when 

qmin = 0.99, to two separate layers, when qmin 5 0.97, is apparent. In the cases 

with two distinct layers, the ratios of the constant values for the eigenfunction in 

(0, r l ]  and [rl, r2] are in good agreement with the analytic prediction in Eq. (25). 

Figure 6 shows the variation of growth rate with aspect ratio for this case with 

qmin = 1 .O, again with close agreement between analytic and computed results. 

The nonmonotonic class of profiles studied here includes a marginally stable 

equilibrium (for ideal MHD modes). This remains true when finite resistivity is 

introduced and will be demonstrated for JET-like equilibria in Sect. 4. 
Figure 7 shows a comparison of analytic [E¶. (13)] and computed growth rates 

as functions of beta, for the nonmonotonic q ( r )  = 1+Aq[l-(r/r1) ] with Aq = 0.1, 

rl  = 0.33, and an aspect ratio A = 10. In this case, the term in 6W that is linear in 

beta is weakly stabilizing but is rapidly dominated by the quadratic term as beta 

is increased. Thereafter, the growth rate y scales as /?4/3. 

2 2  

The remarkable quantitative agreement found in the foregoing comparisons 

demonstrates that the analytic, large-aspect-ratio theory provides an extremely 

valuable framework for understanding the varied scalings of linear growth rate with 

S ,  p, 6,  etc., which emer e when different equilibrium q(r )  profiles are investigated. 
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Fig. 4. Comparison of analytic and computed ideal growth rates for 
the non-monotonic safety factor 4(r) = qmin + 0.2(1- 4r3)2, plotted against 
minimum value of 4. The dashed curve is calculated from Eq. (14) (appro- 
priate for a single inertial layer), the solid curve from Eq. (24) (appro- 
priate for two distinct layers). Solid circles were computed using the 
compressible FAR code (and corrected by the factor lfi, see text). Open 
circles were computed using the incompressible code. A = 10, Po = 0. 
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Fig. 7 .  Growth rate plotted vs Po, peak value of beta. Ana- 
lytic results (solid line) are from Eq. (13). A = 10, q = l + 0.1(1- 9rS)', 
p = po[q  - @/@(u)]~ with 4 = Jl &B@t.fr. 



4- NUMERICAL 

In this section we extend the results of Sect. 3 by computing growth rates of 

ideal and resistive MHD modes in various equilibria for which the analytic theory 

should be expected to break down; namely, equilibria of small aspect ratio ( A  < 3), 

strongly shaped cross section, very flat Q(T) within [O,r l ] ,  or very low shear at the 

q : 1 surface. 

Figure 8 shows the transition from resistive kink behavior (7 cx S-- ' /3 )  to the 

more slowly growing tearing mode (reconnecting rnode,12 7 cx S13/5) at high values 

of S, for the profile Q ( P )  = 0.9 1 + ( ~ / O . 6 5 ) ~ ]  at A =; 1.4. [We are forced to use 

this very tight aspect ratio to recover tearing mode behavior even for the high 

S values (- lo*) used.] In the high-Si, or tearing, regime, this mode should be 

sensitive to the stabilizing effect of favorable average curva t~res . '~  This effect is, 

however, rather weak at  the q = 1 surface, since the DR of ref. 24 is much reduced 

there. 

1 / 2  

[ 

Figure 9 contrasts the resistive kink mode eigenfunction corresponding to Fig. 3 

with the very localized tearing mode eigenfunction corresponding to Fig. 8 (at 

s = 107). 

Figure 10 shows the growth rate of the rn L= 1 mode at the JET aspect ratio 

of A = 2.5 for the nonmonotonic q ( r )  = qmin + 0.1 (1 - 8r' + 16r4) and several 

values of S .  The equilibria in this case have a circular boundary. The behavior 

of 7 is qualitatively the same as that found at  large aspect ratio (Fig. 4), and a 

notable feature is again the sharp stability boundary. In this case, when qrllill 2 1, 

the growth rates are almost independent of "9, with very weak resistive.daanping 

when qnliln > 1 (Fig. 11). As noted in the previous section, this shows that the non- 

monotonic profile considered is marginally stable to both ideal and resistive rn = 1 

instability when qmin is slighly above unity. For qmin < 1, the usual 7 cx S-1/3 
scaling of resistive kink modes is also displayed in Fig. 11. 

Figure 12 shows the destabilizing effect of beta for the previous ca.se with qmin = 

1, while Fig. 13 shows a new important destabilizing effect from triangular shaping. 

This last result is in qualitative agreemeilt with analytic theory. Previous 

have indicated that triangular, quadrangular, and high-order shaping is stabilizing 

for internal kink modes, but in these calculations monotonic q ( r )  wm assumed. 

16 
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g = 0.9 [I  + ( r / 0 . 6 5 ) ~ ] ~ / ' ,  s = 107). 
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The present result shows that this stabilizing effect is profile-dependent and can be 

reversed for nonrnonotonic q ( r ) .  

Recently, Wesson7 has suggested a sawtooth model that is quite different from 

the original Madomtsev model and has as its crux the assumption of an “ultra-flat” 

q(r )  profile for 0 < r 5 r l .  This assumption is supported both by the measurements 

on ASDEX2’ and by transport code simulations, which, once such a flat q is estab- 

lished, tend to show very small deviations from it. Figure 14 shows the growth rate 

as a function of q on axis for an “ultra-flat’’ profile, 

0.462 
at the JET aspect ratio A = 2.5 for a central beta of 2%. Various values of S are 

shown, but it is clear that the unstable mode is essentially ideal near qo - 1. For 

qo 2 1.02, the m 2 tearing mode becomes unstable: the transition from an m = 1 

to an m = 2 mode is clear in the energy spectra of the eigenmodes. The sharp ideal 

stability boundary similar to that found for nonmonotonic q(r )  is again evident. 

Growth rates calculated from the compressible FAR code are also shown in Fig. 14. 

For this finite beta, equilibrium sound propagation along the magnetic field is faster 

than mode growth, so that the compressible and incompressible results are in good 

quantitative agreement. 

In Fig. 15 the dependence of the linear growth on beta i s  shown for the case in 

Fig. 14 (S = lo6) ,  and in Fig. 16 the eigenfunctions are compared for various values 

of Po and qo. In all cases, the eigenfunctions extend out to a significant radius; in 

addition, those closest to marginal stability show the rounded feature observed in 

the experimentally reconstructed flows using soft X-ray data.26 

Figure 17 shows a similar plot of 7 vs qo for a somewhat less flat profile, 

with all other parameters identical to Fi , 14. The increasingly sharp ideal stability 

boundary as the shear within the q = 1 radius decreases is evident when Figs. 14 

and 17 are compared. 

Experimental measurements on TEXTOR2 have produced evidence of some- 

what different profiles of the safety factor and longitudinal current. In TEXTOR, 

measurements of the poloidal magnetic field indicate an axial value of the safety 
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factor qo 5 0.7, with a point of inflection in the current J I I  (r) and somewhalt reduced 

shear at the q = 1 surface. For such an equilibrium, the original theory of Bussac 

et al. for ideal* and resistivelo stability is valid. This theory predicts that, at large 

aspect ratio, the ideal MHD mode should be stable below some critical beta values, 

while the resistive m = 1 mode should be unstable (whatever the beta). 

Since the effective A' for driving the resistive rn = 1 mode in toroidal gt?metryl0 

is [qf (rl)12 / (c;6WT) for a large-aspect-ratio device, it is of interest to investigate 

what might be gained by modifying the current profile to remove the shear com- 

pletely at r1 [q' ( r l )  -+ 01 in a tight-aspect-ratio torus. To study the general prop- 

erties of profiles of this class, we adopt the simple parameterization 

q = 0.6 + 2.2r2 - 2.2 ( r2  - r f )  exp [-100(2 - r : )2 ]  , 

with T I  = 0.426 so that 

qf (rl) = q" ( r l )  = O 

with q(r1)  = 1. 

Results from the FAR code for this equilibrium profile (with /3 = 0) are shown in 

Fig. 18, where a strong stabilizing trend is evident as A is reduced. Surprisingly, for 

a force-free equilibrium, the mode becomes overstable at small aspect ratio. Over- 

stability may (as in the favorable curvature stabilizationa4 of conventional tearing 

modes) be symptomatic of a stabilizing mechanism within the layer, which could 

yield absolute stability below some critical value of A. This is difficult to establish 

computationally and remains a conjecture. 
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5.  DISCUSSION AND CQNCLUSI 

A key ingredient in understanding, and possibly controlling, internal disruptions 

in tokamaks is an understanding of the stability boundary that is crossed at the 

instant of the fast temperature crash. An important clue is provided by the ex- 

perimental observation that the phase inversion radius of the temperature collapse, 

which is usually interpreted as the radius of the q = 1 surface, is not small. The 

marginal q ( r )  profiles therefore appear to pass through, or close to, unity at a finite 

distance r l  from the axis of the discharge. 

As a result of the calculations presented here, we can distinguish three distinct 

classes of q(r )  profile that possess this property and can be marginally stable to 

m = 1 modes: 

1. nonmonotonic q(r) with a minimum value close to unity at r = r1,  

2. ASDEX-like, or ultra-flat, q(r )  profiles that are close to unity over the 

3. monotonic q(r )  profiles for which qo is well below unity, q ( r l )  =+: 1, and 

whole region [ Q ,  r l ] ,  

r1 is a point of inflection for q, or at least a point of weak shear. 

Examples of these profiles have been analyzed for ideal and resistive growth close 

to marginal stability, and earlier analytic theory8 has been extended to provide a 

framework for understanding computational results from the initial value code FAR. 

Remarkable agreement has also been found in comparing analytic and computed 

growth rates. 

Among the new results presented here are the following observations. 

0 Very sharp stability boundaries can be found when a critical q value deter- 

mines stability. Examples are given for ‘“ultra-flat” and non-monotonic q 

profiles. 

e S-lI3 scaling of linear growth rates is not found close to marginal stability 

for any of the three classes of profiles just described. 

0 Triangular shaping of the plasma cram section can be destabilizing. Its 

effect is dependent on the q(r) profile. 

0 Equilibria with axial q values well below unity have been found and may 

be stable to resistive as well as ideal MHD m = 1 modes, in a tight-aspect- 

ratio torus. Overstability of the mode makes the determination of a stability 

boundary in A difficult. 

27 



28 Discussion and Conclusions 

Many of the features of the sawtooth in smaller tokamaks were explained by the 

model of Jahns et a1.,27 which invoked island growth of the resistive kink mode. In 

particular, the precursor oscillations and their growth rates agreed with the model 

proposed. In larger tokamaks, such as JET, however, precursor oscillations are not 

usually observed2* in conditions of constant current. In addition, the initial platma 

displacement in the sawtooth collapse is too fast (100 ps in JET)'* for the model of 

ref. 27. This suggests that the steep, ideal NHD,  stability boundaries apparent in 

Figs. 4 and 10 might be involved. We can calculate the initial time dependence to be 

expected as an equilibrium evolves resistively through such a boundary. Assuming 

a time dependence of the q profile such that 

with 

and using Eq. (14) for the growth rate [for a nonmonotonic q(r )  with (qmin - I) = 

6 q ] ,  we find that the mode growth is initially given by e x p ( t / r ~ ) ~ / ' ,  with the hybrid 

time 'TH defined by 

7 H  (3r,427,/6qc)1/3 , (26) 

where 6qc is the value of 6 q  at the stability boundary. Thus, even though the mode 

is an ideal MHD instability, the resistive evolution of q introduces v1l3 into the time 

scale. Estimating this hybrid growth time for JET parameters, we find TH - 300 ps, 

which is still a little too long to account for the experimental observations. To 

understand the fast time scales involved, it therefore appears that theory must look 

to nonlinear, or kinetic theory, phenomena. 

To understand the nature of the internal disruptions in tokamaks, it is necessary 

to study the nonlinear evolution of the m = 1, n = 1 kink mode. The present paper 

suggests a number of equilibrium q( r )  profiles that could be marginally stable in 

linear studies. Because of the considerable differences in these q profiles, a wide 

variety of nonlinear behavior is to be expected, with the classic Kadomtsev recon- 

nection as one possibility. Such studies are under way using a nonlinear version of 

the FAR code and will form the basis of a future paper. 
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APPENDIX 

The ideal MHD theory of Bussac et a1.l can be readily extended tTo the case 

with two distinct radii at which q is unity. Denoting these by rl  and 7-2, we follow 

refs. 1 and 2 in expanding the ideal energy integral 6W in powers of the inverse 

aspect ratio, for a large-aspect-ratio equilibrium with circular plasma cross section 

and poloidal beta of order unity. Using the straight-field-line coordinates of refs. 1 

and 2, ( r ,  0, @I, 

and 4 is the axisymmetric angle. In Eqs. (A.l )  and (A.2), !P is the poloidal flux 
function, the magnetic field is given by 

= v!P x v4 + r(qvfp , 

and e measures arc length along E. 

chosen to satisfy 

In lowest order of the aspect ratio expansion, one finds SWO = 0, provided [O is 

where oc ei (me-n+)  with m = n = 1. 
N O  

In second order, [ is also required to satisfy Eq. (A.3) and 
-1 

This is minimized by the choice 

when SW2 = 0. The relative magnitudes of the “top-hat” solutions 

arbitrary at this stage. 

and &, are 
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32 Appendix 

In fourth order, after minimizing with respect to E , the second-order correction 
N 2  

to the rn - 1 component, and with respect to the rn = 0 part of 

6w4=6W4(O,ri)+GVCh(rl,r2)-t6W4(r2,a) , 

, one obtains 
-1 

where 

3 + ,Eo€ 

ra 4 

Here 

d p  r2 j = 1 , 2 ,  
2 p . - .________ l" dr (--) 

PI - B2 p ( j) dr $ ' 
and El(r ) ,  z l ( r ) ,  T1(r) are all solutions of the homogeneous, m = 2 Euler equation, 

Since the full rn - 2 solutions in the three regions are given by 
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continuity of E(m=2) requires that 

and 

(A.11) 

In addition, (1(r) must be regular as r --f 0, and E(r) must be small at the q = 2 

surface if that falls within the plasma, or $,(a) must vanish if qa < 2. 
In these equations, A(r) is the Shafranov shift, so that 

To proceed with the minimization of SW4, we choose to represent zl(r), which 

is a solution of Eq. (A.9), by a linear superposition of tl(r) and $ l ( r ) ,  the solutions 

for which are regular at r = 0 and at the q = 2 surface. 

Thus writing 
- Em = W r )  + P W  Y 

the two continuity relations (A.lO) and (A. l l )  are used to eliminate CY and p. The 

energy integral may now be expressed in terms of Eo, &,, and two quantities char- 

acterizing the magnitude of the Il(r) and zl(r)  solution [El(r) and $l(r2), say], 

together with six quantities that characterize the solutions e 1  and :I, 

Thus 
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The next step is to minimize 6W4 with respect to (1 and (1. These minimizations 

are algebraic but tediously complicated. The final result is 

.-, 

(A.12) 

with 

9 = 2 3  { 2 ~ 1  + ( b  -t- 3) ( P P l  -1.- SI) + (b - 1) (p,l + sl) + - 16 ( 6  - 1) 

(A.13) 
1 ( e  - e )  

cy (d  - b) 
- _ _ _ _ _  

1 3 
6Wz = (2.52 - ( e  + 3 )  (pp2 + ~ 2 ) ~  (1 + ( e  + 3 ) / a ]  - ( e  + 3) ( P p 2  + 32) 

(A.14) 
9 

16 
x (1 + ( e  - 1>/a]  -t - (1 -- e) [I  + ( e  - l ) / a ] }  

(A.15) 

The necessary and sufficient condition for ideal MHD M = 1 stability can now 

be expressed as 
6 W 1 > 0 ,  

b W 3 > 0 ,  

(;;)* (6w2y - 46W1 aw3 < 0 .  

(A.17) 

If any one of these three inequalities is violated, an ideal rn = 1 mode is unstable. 
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The appropriate ideal growth rates and eigenfunctions of unstable modes are 

obtained by equating Eq. (A.12) to the energy contributions from the two inertial 

layers at r1 and r2, in a way analogous to that discussed in the main text for a 

single inertial layer. The single-surface result [Eq. (11)) now becomes 

where 

(A.18) 

and SW4 ( [ o , t o >  is given by Eq. (A.12). 

we obtain 

the growth rates and eigenfunctions of the ideal modes. It is these results [Eqs. (24) 
and (25) of the main text] that have been used in the comparison of analytic growth 

rates with those obtained from the FAR code. 

On solving for Y / W A  and extremizing with respect to the ratio 
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