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IMPLEMENTING FRACFUTSE MEt2€€.ANI@s ANALYSIS 
ON A DISTRIBUTED-MEMORY PARALLEL PROCESSOR* 

J .  A ,  Glinard 

Engineering Technology Division 
Oak Ridge National Laboratory 

G. A .  Geist 

Engineering Physics and Mathematics Division 
Oak Ridge National Laboratory 

ABSTRACT 
As part of an exploratory studies initiative at  Oak Ridge National Laboratory, a 

pasallel algorithm was developed and implemented for finite-element fracture mechanics. 
I t  was actually implemented on an Intel iPSC hypercube, although the algorithm was 
designed for any distributed-memory parallel computer with message passing primitives, 
A p-frontal method was developed for the solution of the equilibrium equations. This 
method required only logz p communication exchanges between processors during the 
solution. On four processors, the parallel code solved a sample problem 2.7 times faster 
than the serial code, 0RVIRT.PC. from which it was derived. 

* Research supported by the Exploratory Studies Program of Oak Ridge National Laboratory and the 
Applied Mathematical Sciences Research Program of the Office of Energy Research, U.S. Department of 
Energy under contract DE-AC05-840B21400 with Martin Marietta Energy Systems Inc. 
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1. INTRODUCTION 
For more than a decade, ORNL research in fracture mechanics has centered around 

the NRC-sponsored Weavy-Section Steel Technology (HST)  program 111. The HST 
program is devoted to extending and developing technology for assessing the margin of 
safety against fracture of thick-walled steel pressure vessels used in light-wa.ter-cooled 
nuclear power reactors. The program couples materials and structures testing with 
analytical studies using finite-element fracture mechanics to determine the behavior and 
structural integrity of steel pressure vessels containing crack-like flaws. These efforts have 
been performed in the Engineering Technology and Metals and Ceramics Divisions of 
ORNL. 

ORMGEN.PC/ORVIRT.PC l2.31. a fracture analysis system developed by the H S T  
program and designed to accommodate the limitations of microcomputers. offered an 
appropriate starting point for the parallel code development. The 0RVIRT.PC program 
deals with 2-D geometries, linear elastic material behavior, and static loadings and 
contains a virtual crack extension technique 14.51 for evaluation of the crack.-tip stress 
intensity parameters. 

The fracture mechanics approach accepts that some flaws will be present in a 
structure, but assumes that conditions can be established to ensure that the flaws do not 
grow to an unacceptable size during the life of the structure. Life prediction in fracture 
mechanics requires calculation of crack-tip stress intensity parameters to quantify both 
stable crack growth and the conditions for unstable fracture in complex geometries under 
complex loading conditions. 

In the linear elastic fracture mechanics (LEFM) model a cracked geometry is assumed. 
The structure is modeled in the usual finite-element manner except that special crack-tip 
elements, which allow for the proper variation in the near-tip stress and strain fields, are 
substituted at the crack-tip. After this pre-process modeling of the region near the crack- 
tip. the assembly and solution phases of the fracture mechanics analysis proceed in the 
same manner as standard finite-element structural analysis. The results are the nodal 
displacements, elemental stresses, and elemental strains in the model. The pertinent 
crack-tip stress intensity parameters are evaluated in a post-process step as a combination 
of volume integrals calculated only over the crack-tip region elements. Thus, the fracture 
mechanics evaluation is confined to the pre- and post-process steps, and the bulk of the 
computation is contained in the assembly and solution phases. 

2.ORVIRT.PC 
The ORVIRT-BC finite-element program was designed for fracture analysis on a 

microcomputer. The program uses modified versions of subroutines presented in the 
finite-element texts by Owen and Fawkes 171 and Hinton and Owen [8l. The frontal solver 
of [SI is used unmodified in ORVIRT-PC. The solver allows any number of degrees of 
freedom to be assigned to the nodes. and thus could accommodate applications ranging 
from 2-D and 3-D solid element models to plate and shell element models. ORVIRT.PC, 
however. is a single-element 2-D code using eight-node isoparametric quadrilateral 
elements exclusively (including the crack-tip region). 

The eight-node element has special utility for elastic crack-tip modeling because the 
element has a 1/ Jr singularity in the stress and strain fields at the neighboring corner 
node 19.101 when the mid-side nodes are placed at the quarter-point positions. This allows 
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the appropriate LEFM solution to be found in the high-gradient crack-tip region with 
fewer elements than if ordinary nonsingular elements were wed. 

ORVIRT.PC permits linear thermoelastic stress and fracture mechanics analysis. (The 
material is assumed to be isotropic.) The virtual crack extension is based on a modified 
deLorenzi technique [4]. This technique allows thermal loadings as well as standard 
mechanical loadings. including crack-f ace pressure loadings. This crack exlension 
technique has been shown to be accurate to within 1Yo for problems with closed-form 
solutions 131. 

The virtual crack extension technique for parameter evaluation used in ORVIRT.P@ 
can be shown [3] to reduce to the J-integral [111. The technique offers an advantage over 
the J-integral because only volume integrals are evaluated over the crack region elements, 
as opposed to a mixture of volume and area integrals needed for the J-integral. The 
virtual crack extension technique (as well as the J-integral! is also applicable to nonlinear 
material behavior (plastic and/or viscoplastic). The application of parallel processing to 
nonlinear fracture mechanics problems is discussed in the final section. 

Over the last decade. numerical techniques such as the finite-element method have 
been established as powerful aids to  fracture analysis. Solutions can now be obtained with 
confidence for complex linear and nonlinear engineering problems. However. these 
numerical solutions are often obtained at  a considerable computing cost. When a high 
degree of accuracy is demanded, such as in nuclear power plant pressure-containing 
components and aerospace structures. simplified methods often cannot be relied upon and 
the engineer must resort to a detailed rigorous finite-element solution. There are several 
classes of problems, such as large 3-B nonlinear structural problems, that are so costly in 
practice that they are usually avoided. 

The overall effectiveness of the finite-element structuraVfracture analysis depends to 
a large degree on the numerical procedures used for the solution of the equilibrium 
equations. The accuracy of the analysis can be improved by using a more refined Enite- 
element mesh. Therefore, the engineer tends to employ larger and larger finite-element 
systems to approximate the actual structure. This means the cost of the analysis and its 
practical feasibility depend on the efficiencies of the algorithms available for the solution 
of the resulting systems of equations. Because large and/or multiple systems must be 
solved, much research effort has gone into optimizing solution algorithms for sequential 
processors. (Dynamic or nonlinear structures require multiple solutions of their systems.) 

Large complex structural/fracture analysis problems requiring a high degree of 
accuracy are the target for the current work. Mapping of key finite-element algorithms to 
the parallel processor and demonstration of cost savings of parallel algorithms over serial 
algorithms are the initial goals of t!iis work. This work forms the foundation for 
additional lahor required to produce a finite-element program that can routinely solve the 
target problems defined above. 

The first problem to be addressed in mapping a large application code across several 
processors is the division of computational work. The cornputationally intensive routines 
in the application must be identified and a partitioning of the algorithm developed. In 
some applications this may be quite straightforward. For instance. if the computations 
involve the solution of many independent systems of linear equations. then it is reasonab1.e 
to solve a few of these systems on each of p processors with an essentially serial code. 
Another consideration is whether the processors have access to shaxed memory. We 
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address the case where the processors have only local memory. such &s in a hypercube 
multiprocessor. The restriction of using only local memory requires that the data b 
partitioned among the processors. Several methods of data partitioning have been 
investigated [lzl]. with the most general conclusion being that efficient par t i things are 
usually spatial in nature. 

The most computationally intensive routines in fracture analysis involve the 
assembly of the global stiffness matrix K and the subsequent solution of the equation 
Ku=f . where u is the deflection of the finite element mesh under loads f . For large 
meshes. these two steps routinely consume more than 90% of the total execution time. A 
natural partitioning then is to use the hypercube processors to perform these two steps and 
let the host: processor do all the input/outgut. The crack-tip intensity parameters are 
evaluated by the host because the computation involved is small and becaw global 
information is required about the stresses around the cracks. 

The second task is to decide on a method for performing the assembly and solution in 
parallel on the processors and from this to decide how to partition and assign the 
algorithm and data to each processor. The next section describes how this is implemented. 

5. THE MULTI-FXONTAL SOLUTION TECHNIQUE 
In the original serial code the elemental stiffness matrices are calculated and stored on 

secondary storage (disk). The solution of Ku=f is performed by a frontal solver [6] .  
Thus at  each step one elemental stiffness matrix is read from the disk and assembled into 
K . The frontal solver then performs some operations on K and writes parts of the factors 
back out to disk. Once the factors are determined they are read back in from the disk and 
used in the back substitution phase. At the end of this phase the solution vector Y is 
known and the solver is finished. The advantage of a frontal solver is its m l l  primary 
memory requirements. Only a small portion of the problem is in the main memory a t  any 
one time. The rest of the information is kept on disk. This allows computers’ to solve 
very large problems. In general. a frontal solution technique is more d c i e n t  than a band 
solution technique. another popular method for solving these types of problems, because it 
takes better advantage of the sparsity structure of the global stiffness matrix K. This 
often leads to a lower operation count for the solution. 

There are several problems in implementing a parallel frontal solver on the 
hypercube processors. including the lack of access to secondary storage and the strictly 
sequential order that the frontal method uses to eliminate elements. One alternative is to 
have p fronts, all working simultaneously on different parts of the mesh, where p is the 
number of processors. The idea of having multiple fronts was proposed in [I31 in the 
context of a serial algorithm and more recently in the context of a parallel algorithm for 
shared memory multiprocessors l.141. One advantage of having p fronts is that each 
processor can use the original frontal solver, avoiding the problem of programming the 
much more complicated multi-frontal algorithm. A second advantage of having p fronts 
is that it removes the necessity of following a sequential element elimination order. 
However, the lack of access to secondary storage remains. To work around this lack, a 
temporary storage vector can be built into the frontal code, allowing most of I.he existing 
software to be used. One necessary change is  in the storage of all the elemental stiffness 
matrices. Even for small problems this requires more storage than is available on our 
hypercube processors. The solution is to generate these matrices one a t  a time as they are 
needed on the node. rather than storing them. 

The p f r o n t  approach was designed so that each processor thinks it is solving an 
entire problem. In reality only the host processor knows what the whole problem looks 
like. The host reconstructs the mesh deflections. given the deflections computed by the 
individual processors. To solve its subproblem. each processor perfalrms some 



communication and some redundant calculations. The advantage of this approach is that 
the back substitution can be done without any communication and thus is very fast. This 
can Ire important in finite element problems where several load cases may be applied to the 
same mesh (such as in nonlinear problems). The communication and redundant 
calculations revolve around special elements. called super boundat-y elements (SBE's), 
created for this finite element approach. 

The SBE"s are formed from the shared nodes between processors. It is unlikely that 
they correspond to an actual element: thus their elemental stiffness matricks cannot be 
determined in the normal way. Instead, we use the fact that an SBE elemental stiffness 
matrix is some permutation of the irontal matrix on another processor. Pairs of processors 
assemble super boundary elements and then exchange them. This exchange is the only 
node-to-node communication required. At each stage there are p / 2 exchanges. which can 
be performed in parallel. After each exchange, all the processors proceed normally. 
assembling and eliminating nodes From the super boundary element they received. This 
allows the solution to proceed to the end without developing special CQ& to handle the 
shared nodes. In the p-front case there will be log;!p stages during the course of the 
factorization since this is how many stages are required for one processor to receive 
information about all the other processors' fronts. One can think o f  it as combining all 
the fronts on all the processors, with nodes being eliminated during the process in order to 
keep the front as small as possible. This is in the same spirit as in the serial frontal 
method. Super boundary elements are the key to the efficient parallel implementation of 
the algorithm. 

A difficult task in this approach is determining a good partitioning of the mesh into p 
blocks and reorganizing the global problem into p smaller complete problems. The original 
serial code (and initially the parallel code) requires the engineer to set up the data files in 
the way he wants the problem to be solved. The routines read the reorganizing 
information from a data file set up by the engineer. Automation of this reordering is 
under development and will be described in detail in a future report. The objective can be 
simply stated: the original problem must be reorganized into p tasks such that both the 
communication and the the operation count are small, while maximizing the parallelism 
among the p processors. 

The amount of communication is reduced in two ways. First, only mesh information 
is passed between the host and the nodes instead of the entire stiffness matrix K. Second, 
the number of shared nodes between processors at each of the log2p stages must be 
mininaized. The number of shared nodes is a property of how the original problem is 
partitioned and the order in which the exchanges are performed. 

The operation count is a function of the front width and thus the diameter of each of 
the subproblems, which i s  dictated by the partitioning of the elements. Since K is sparse, 
the operation count can often be reduced by reordering the elimination of the element 
nodes. Initially. we have used a profile minimization ordering because it is the best 
ordering for a frontal solver. Recently there has been evidence that a minimum degree 
ordering [lS] coupled with a multi-frontal solver can dramatically reduce the operation 
count and thus the execution time of finite element analysis codes. We have begun 
investigating the possibility of using a multi-frontal solver on each of the p problems. 
The main drawback is that these codes are complex and could easily double the size of the 
entire program. 

The final constraint of maximizing the parallelism among the p tasks is accomplished 
by partitioning the original problem into p blocks of eleinents such that the number of 
operations in each block i s  approximately the same. An automatic way of partitioning a 
problem into p balanced pieces i s  under investigation and preliminary results indicate that 
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this can be accomplished in O ( p )  time. The constraint on having only p blocks of 
elements is an attempt to keep communication costs reasonable. The next section will 
illustrate this reorganization on a small example problem and present results from runs on 
an Intel iPSC hypercube. 

6. EXKMPLE PROBLEM 
Figure 1 shows the configuration of the original problem, which arose from studies of 

crack formation in neutron hardened boiler plates exposed to thermal shocks. The 
problem contains 28 eight-node isoparametric elements, for a tutal of 101 nodes. Because 
the problem is small, we decided to implement it on only 5 processors (four hypercube 
processors and the host processor). This gives fewer than 10 elementis in each of the four 
subproblems. If more processors were used, the subproblems would become trivial. but 
the communication would grow t o  be a dominant portion of the execution time. For large 
enough problems. many processors could be involved in the computation, but this will 
require automation of the problem reorganization. 

In this small example we performed the reorganization manually as follows. First, 
the mesh was divided symmetrically down through the virtual crack. (Since the host will 
reconstruct the problem, it is not necessary that the crack actually exist in m e  of the 
subproblems). Second. the 14 elements in each half were separated into two blocks such 
that 6 elements were assigned to one processor and 8 elements were assigned to another 
processor. (It was noticed that assigning 7 elements to each processor balanced the 
computational load better but increased the volume of comunication by almost 309b.) This 
gave the partitioning of elements seen in figure 2, which minimizes the maximum front 
generated in any of the subproblems. 

The next step in the reorganization is to determine the SBEs and the order in which 
they are exchanged. For each exchange, each processor is paired with a partner with 
whom it shares a t  least one node. The SBE of each processor is defined to be the set of all 
of its partner's shared nodes. The shape and size of the SBE's are affected by the order in 
which the partners are chosen. and these parameters are directly related to the 
communication volume and computation to communication ratio. The problem of choosing 
an exchange order is greatly simplified in this example since we are only using four 
processors and thus have only two SBE's per processor. In general, the criterion for 
choosing partners is that the number of shared nodes that can be eliminated due to  all the 
exchanges should be maximized. This involves choosing partners according to how many 
common nodes they have in their respective fronts a t  this stage of the factorization. Once 
the exchange is performed, all these shared nodes will be eliminated simultaneously by the 
two processors. This procedure is repeated for each of the logzp steps. Note that even if 
we use 64 processors. there will be only 6 of these exchange steps regardless of the 
complexity of the finite element problem. Thus the search for good partners is often a 
small part of the reorganization algorithm. 

The two SBE's of processor 1 are illustrated in figure 2. Processor 1's first partner is 
P3, and i ts  second partner is P2. The SBE's resemble mesh separators as described in 
George and Liu [151. In fact they are related, but because of required communication. the 
best choice for a separator may not be the best choice for an SBE. 

An outline of an algorithm for determining SBE's and partners can be described as 
follows: 
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Figure 1 Finite Element Mesh of Simple Fracture Analysis Problem 

P3 P4 

Figure 2. Partitioning of Sample Problem into 4 Blocks. 
The two Super Boundary Elements of Processor 1 
are highlighted. SBE 1 = -------- 

S R E 2  = - - -  
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Determine an initial mesh partition into p blocks 
For logzp steps 

loop over all processors 

choose partners to maximize eliminations 
loop over all processors 

determine their shared nodes and with whom 

assign SBE as the shared nodes of your partner 
mark all nodes in common in exchange as eliminated 

End for 

Once all the SBE's are determined, the p subproblems are complete and the ordering of the 
elements (or nodes) on each of these tasks must be done. Since this implementation uses 
the original frontal solver, the elements of each of these problems were ordered using a 
frontwidth reduction algorithm. 

In summary there are three major stages to the reorganization of the original 
problem. First, the mesh must be partitioned into p blocks such that the size of the block 
separators is minimized and each of the blocks contains approximately the same amount of 
work. Second, the super-boundary-elements and partners must be determined for exch of 
the subproblems so that the amount of computation between exchanges is balanced across 
the processors. Third. the individual subproblems must be numbered (ordered) to  
minimize the number of operations on each of them. Once the reorganization is complete, 
the host processor sends one subproblem to each hypercube processor. 

Table 1. Performance Results for Sample Problem 

Code assemble/ factor Iota1 time* 

1 Serial on host 32.2 0.88 55 (sed I 
Parallel w/4 nodes 7.6 0.27 24 (sed 

*Total time includes I/O, Host to Node communication, and fracture analysis. 

The results from running the sample problem on four processors are encouraging. As 
seen in Table 1, the overall execution time for the problem has been decreased by more 
than 58% compared to the serial code. even though the parallel time includes such purely 
serial phases as host YO. host-to-node communication, and the fracture analysis. The 
results from the two parts of the code that were parallelized. the assembly/factorization 
of K and the solution of K u = f  , are somewhat deceiving. Notice that the parallel 
assembly/factorization step performs 4.2 times faster than the serial step. This is because 
the multifrontal ordering has a lower operation count than the frontal ordering so the 
parallel code has an advantage beyond having more processors. A similar but less 
dramatic improvement can be seen in the solution time for the m e  reason. Also the 
assembly/factorization time is reduced by 24.6 seconds and the solution time is reduced by 
0.6 seconds. whereas the reduction in total time is 31 seconds. The extra time savings 
occurs because the host processor performs useful work while the nodes are computing. 

Although this test problem is quite small, when automated partitioning, allows the 
solution of much larger problems the results are expected to improve even further, since 
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reformulation of f’ for each step of the solution cannot be avoided. While this potentially 
produces a requirement for node-to-node communication. if mapping of the problem onto 
the processors can place all nonlinearities within the boundaries of a single super-element, 
then the communication may be avoided. If the nonlinearities cannot be contained so 
neatly. then the necessary node-to-node communication can be accomplished through a 
simple extension of our algorithm. 

Accurate solution by the initial strain approach requires smaller solution steps than 
in the tangent stiffness method. Even so, drifting of the solution can occur. This drifting 
can be monitored through calculation of an equilibrium imbalance vector. If the solution 
begins to drift, then the stiffness matrix needs to be reformulated and refactored along the 
steps of the solution process. Such a hybrid approach is mandatory in the case: of 
geometric nonlinearity. All problems in this class require frequent updating of the 
stiffness matrix because of the need to update the geometry of the deformed body. 

We have addressed only a subclass of nonlinear fracture problems that may be 
labeled as mildly nonlinear. It is not clear that methods for treating severely nonlinear 
cases (where initial strain methods tend to break down) will allow all the advantages of 
our present parallel approach. 
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