
t 

3 4 4 5 6  0 2 6 2 0 3 7  7 



.. - 

.. - 



Energy Division 

Evaluation of a Single-Board Microcontroller 
Suitable for Rapid Prototyping 

Robert Edwards 

Date Published - February 1987 

Prepared for the 
Smart House Project 

National Association of Home Builders 
Research Foundation 

NOTICE: This document contains information of 
a preliminary nature. It is subject to 
revision or correction and therefore does 
not represent a final report. 

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, Tennessee 37831 

operated by 
MARTIN MARIETTA ENERGY SYSTEMS, INC. 

for the 
U.S. DEPARTMENT OF ENERGY 

under Contract No. DE-AC05-840R21400 

3 4 4 5 b  0 2 6 2 0 3 7  7 





TABLE OF CONTENTS 

Page 
Number 

V LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . .  
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 

1 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .  1 

2 . FUNCTIONAL REQUIREMENTS FOR A PROTOTYPING MICROCONTROLLER . . 4 

3 . DESCRIPTION OF A SINGLE.BOARD. FORTH-BASED 

PROTOTYPING MICROCONTROLLER . . . . . . . . . . . . . . . . .  6 
3.1 The Zi log  28 Family of Microcomputers . . . . . . . . .  6 

3.2 Introduction to the 28 Architecture . . . . . . . . . .  7 
3.3 28 Addressing Methods . . . . . . . . . . . . . . . . .  7 

3 . 4  The Micromint 28-Based family of Microcontro~~er 

Products . . . . . . . . . . . . . . . . . . . . . . .  7 

3 . 5  28 FORTH Capabilities . . . . . . . . . . . . . . . . .  9 

4 . A FORTH EDITOR SUITABLE FOR RAPID PROTOTYPING . . . . . . . .  12 
5 . USE OF MACHINE LANGUAGE SUBROUTINES WITH 28 FORTH . . . . . .  1G 
6 . SUITABILITY OF THE 28 FORTH MICROCOMPUTER FOR RAPID 

PROTOTYPING . . . . . . . . . . . . . . . . . . . . . . . . .  16 

6.1 Functionality . . . . . . . . . . . . . . . . . . . . .  16 

6.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . .  17 

7 . CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . .  20 

8 . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . .  21 

APPENDIX I . INTRODUCTION TO FORTH . . . . . . . . . . . . .  22 

APPENDIX I1 . FORTH EDITOR FOR A VT52 EMULATOR . . . . . . .  25 
APPENDIX I11 . UNSTRUCTURED LISTING OF THE PROTOTYPE EDITOR . 29 
APPENDIX IV . AUXILIARY Z8 FORTH WORDS . . . . . . . . . . .  30 
APPENDIX V . ACRONYMS . . . . . . . . . . . . . . . . . . . .  31 

iii 





LIST OF' TABLES 

Page 
Nunibe r 

Table 1 . Words Provided by 28 FORTH . . . . . . . . . . . . . . .  10 
Table 1 . (Continued) Words Provided by 28 FORTH . . . . . . . . .  11 
Table 2 . Bench Marks of ZU and Personal Computer FORTH . . . . .  19 

V 





ABSTRACT 

This report presents an evaluation of a single-board microeontroller 
suitable for rapid prototyping. The work was conducted for the National 
Association of Home Builders Smart House Project, a cooperative research 
and development e f f o r t  involving American home builders and a number of 
major corporations. 
technology in the development of  new products for communications, energy 
distribution, and appliance control. By integrating home communication, 
control., and energy networks, Smart House products will provide homeowners 
with new functions and accommodate future technological advances. 

The Project will help manufacturers use advanced 

Testing Smart Mouse hardware prototypes will require a general-purpose 
microcontroller, riot only to help monitor test performance but also to 
simulate, if necessary, other Smart House devices associated with the 
device being tested. To provide this adaptability, a prototyping 
controller must offer a broad spectrum of functions that are easily used by 
a laboratory technician. 
prototyping microcontroller may not be suitable for commercially-available 
Smart House products. 
requirements based on past ORNL experience with laboratory testing and 
experimentation. 

Because it is optimized f o r  laboratory use, a 

The report presents a set of rapid-prototyping 

The evaluation showed that a Zilog 28 microcomputer with a FORTH 
development system in internal RQM meets most of the OmL-developed rapid- 
prototyping requirements. The report concludes that the 28 FORTH micro- 
controller may be deficient in its complement of internally-provided FORTH 
words, in the clarity of control algorithms written in FORTH, and in 
execution speed for 28 FORTH routines. Suggestions are provided for 
improving the understandability of FORTH programs and in using machine 
language routines to compensate for lack o f  execution speed. 

The intent of this report is to provide Smart House Project management with 
information regarding the equipment needed for developing and testing Smart 
House products. 

vii 





1. INTRODUCTION 

This report presents an evaluation of a FORTH-based, single-board 

microcontroller suitable for rapid prototyping. The work was conducted by 

the Oak Ridge National Laboratory (OWL) for the National Association of 

Home Builders Research Foundation (NAHB/RF) Smart House Project. The 

Project, a cooperative research and development effort involving American 

home builders and a number o f  major corporations, will incorporate current 

technology in the distribution and use of energy and communications 

services in the home. Through use of advanced electronics, improved 

designs for home communication, control, and energy distribution networks 

will provide opportunities for offering new functions and will provide a 

basis f o r  accommodating future technological advances. The schedule for 

the Project calls for availability of Smart House cabling, electrical 

control devices, consumer appliances, and gas pipl-ng and control products 

for homes constructed from 1990 onward. 

Certain parts of the designs now used for home electrical and gas 

distribution systems are as much as 100 years old. In the 1 8 8 0 ~ ~  utilities 

first provided gas to homes as a substitute for oil lamps and candles. A 

few years later, electricity was made available as a replacement for gas 

lighting. 

came much later as a way to use the excess generating capacity produced 

during daylight hours. Today, the amount of energy used €or illumination 

in homes is dwarfed by that required for heating and cooling appliances 

that were not even conceived of 50 years ago. In spite of the radical 

change in use patterns, the basic energy distribution and control systems 

used in homes have not changed in several decades. A s  a result, the needs 

of modern homes are not being met. 

coordination services among appliances and the devices used to control 

their operation, the Smart House will make possible functions that are 

accomplished with difficulty or not at all using present wiring and control 

systems. For example, programmed control of heating, ventilating, and air 

The use of electricity for appliances other than light fixtures 

By providing intelligent control and 

1 



conditioning (HVAC) units and remote control of entertainment centers are 

difficult to accommodate in a conventionally designed home, but are simple 

to support with the Smart House concept. 

The Smart House design for power distribution will also  establish a new 

standard of safety in the home, prirnar€ly by incorporating closed-loop 

control of electrical appliances. With this feature, branch circuits are 

de-energized except when power is necessary to operate appliances. The 

device controlling an appliance ( e . g . ,  a switch on a vacuum cleaner) must 

send an electronic message to the control for the circuit leading to the 

appliance to initiate the flow of power. After the circuit is powered, the 

control for the circuit requires a continuing "nominal-operation" signal 

from the appliance to continue the supply of power. Closed-loop protection 

of circuits in the Smart House can be thought of as the electrical 

equivalent of the thermocouple protection device used in gas appliances. 

The Smart House design must meet rigid requirements for reliability, 

installability, and maintainability. As an example of the attention being 

paid to reliability, a leading Smart House design proposal does not 

concentrate home control in one central computer. Rather, it calls for 

several distributed controllers all wired together, each with the ability 

to back up one another in case of failure. 

A s  manager of the Project, NAHB is responsible for the overall design of  

the Smart House system. The needs statement €or the design is documented 

in the recently issued Smart House Functional Specifications [I]. The 

manufacturers participating in the Project are using that document as a 

starting point for developing conceptual designs for their products. 

NAHB is also responsible for providing proof-of-principle and concept 

prototyping for the system as a whole. A s  a part of this task, NAWB is 

establishing a laboratory environment at their National Research Center tt; 

conduct studies using actual hardware in a simulated home environment. 

OWL is contributing to the Smart House Project by providing technical 

advice and consulting services to NANB in the areas of overall evaluation 

2 



4 

and design, project management, and development of facilities for use in 

design evaluation and system integration. This report concerns criteria 

OWL has developed for evaluating microcontrollers intended €or use in 

rapid prototyping, the adaptation of a conunercially-available micro- 

controller to meet these requirements, and a summary evaluation of b o t h  the 

prototyping requirements and the performance of the candidate micro- 

controller. 

management with information that can be used in making decisions regarding 

laboratory equipment for product development and testing. 

The purpose of this report is to provide Smar t  House Project 

3 



2. FUNCTIONAL REQUIREMENTS FOR A BROTOTYPING MICROCONTROLLER. 

The laboratory evaluation of Smart House concepts will require a general- 

purpose microcontroller that can be efficiently adapted to explore and 

validate designs for proposed Smart House products, This microcontroller 

must meet requirements that focus on its utility in laboratory 

experimentation and testing, and thus may not have characteristics 

necessary for controllers used in commercially-offered Smart House 

products. Also, because of  the significant adaptability required of a 

prototyping microcontroller, technicians using it may have to have 

experience with computer software such as programming interrupt drivers, 

and with specialized electronics such as analog signal conditioners. 

OWL proposes that a rapid-prototyping microcontroller should be able to 

meet the requirements listed below. The requirements are based on 

extensive experience in conducting laboratory testing and experimentation 

in areas such as the development of innovative heat pump designs, the 

field-test of  load management systems, and the evaluation of energy-saving 

construction practices. The technical activities involved in these ORNL 

projects have been similar to those likely to be used in the evaluation of 

electronic devices required by Smart House products. 

o Interfaces. A microcontroller suitable for rapid prototyping must 
be able to provide interfaces for digital (parallel), serial, and 
frequency-shift keying (FSK) input/output and for analog input. 
(Serial and FSK input/output and analog input are intended for 
laboratory instrumentation purposes and may o r  may not be the 
communication methods used in commercial Smart House products.) 

o S i z e .  To permit exploration of  the packaging and installation 
aspects of  proposed designs, the microcontroller should be 
sufficiently small to allow installation of the main board in the 
base of  a small appliance, such as a floor lamp or toaster. 

o Power Reauirements. The basic microcontroller hoard should not 
require more than a few hundred milliamps at 5 volts (approximately 
1 to 3 watts) for usual operation. (Use o f  serial RS232 
input/output may entail providing additional voltages to the 
microcontroller.) Adding auxiliary boards for FSK input/output, 

4 



additional memory, and analog input should not require than an 
additional 1 amp. 

o peliability. OIWL has found that relkability requirements are 
better stated in terms of the markek acceptance of the product 
rather than as a list of  specifications. 'Thus, a controller that 
has earned the trust of designers and gained wide acceptance for 
similar controller applications would be judged to be sufficiently 
reliable, 

o Cost/Availability. A basic microcontroller board, complete with 
power supply, should cost no more than $250-200 for a single unit 
and less than $100 in lots of 100. The controller board should be 
available as an off-the-shelf product. Auxiliary boards for FSK 
input/output or analog input should be similarly priced. 

o Adaptability. There are two aspects to this requirement. First, the 
control algorithms must be stated in terms easily transferable to a 
production controller suitable for initial Smart House products. 
Second, the functions performed by the controller used by the NAHB 
Research Foundation must be transferable to any of a number of  
different types of prototyping controllers used by the participating 
manufacturers in their product development areas. 

o Functionalitv. To expedite prototyping tests, a programer should 
be able to alter a program within a few minutes using only the 
microcomputer and a conventional American National Standards 
Institute (ANSI) terminal. (It is expected that a personal 
computer, with software for emulation of an ANSI terminal, will. be 
required for storing code and source program material between 
testing sessions.) 

o SDeed. The microcontroller must be able to handle functions that 
occur in time frames as short as several milliseconds. For example, 
the Smart House concept of closed-loop power distribution may 
require disabling a power feed within a few milliseconds to provide 
the shock protection afforded by present ground-fault circuit 
breakers. 

5 



3 .  DESCRIPTION OF A SINGLE-BOARD, FORTH-BASED PROTOTYPING CONTROLLER. 

ORNL used the requirements presented in Section 2 to test the rapid- 

prototyping potential of a currently available microcontroller. 

six requirements are addressed in this section in connection with a 

description of the device being evaluated. 

characteristics of  the device are presented in Section 6 .  

The first 

The speed and functionality 

The microcontroller chosen for the evaluation uses a Zilog 28 micro- 

computer, a chip that requires few additional electronic components to 

function as a stand-alone microcontroller. Microcomputers in the Z8 

product line, which was introduced in the late 1970s, are widely used in 

laboratory equipment and other specialized controller applications. 

wide use is a strong indicator that the device has the reliability required 

to withstand the abuse likely to be associated with laboratory 

experimentation. 

This 

3.1 THE ZILOG 28 FAMILY OF MICROCOMPUTERS. 

All members of the 28 family of  microcomputers are variations of the basic 

28 microcomputer, the 28601. The particular member of the family relevant 

to this evaluation is the 28611, which has available 4K bytes of on-chip 

ROM. 

microcomputer family: 

The following characteristics are common to all members of the 28 

o 128 general-purpose 8-bit registers, 

o 16 special-purpose system-function registers, 

o 16 lines of programmable parallel input/output (ports 2 and 3 ) ,  

o 2 counter/timers with pre-scalers, 

o 6 vectored interrupts, and 

o Universal Asynchronous Receiver/Transmitter (UART) for serial 
input/output. 



The 28 microcomputer itself provides the parallel and serial input/output 

required to meet the rapid pratotyging interfacing requirement. 

requirements f o r  FSK input/output and analog input must be met through use 

of auxiliary hoards described in Section 3 . 4 .  

The 

3.2. INTRODUCTION TO THE 28 ARCHITECTURE. 

All of the 28 general-purpose registers, which include the dedicated 

input/output ports, can be used as accumulators. 28 instructions may use 

these registers as individual accumulators, or use them in pairs as 

pointers for indirect addressing. Speed of execution is facilitated by a 

"working register area" concept that makes possible efficient reference to 

individual registers in 9 blocks, each block containing 16 registers. 

instructions are provided for operations on bits, bytes, 2-byte words, and 

binary coded decimal (BCD) digits. 

28 

The 28 achieves a high throughput by using instruction pipelining. This 

method overlaps the execution of an instruction with the fetch of its 

successor. Execution speed for the 28 is typically in the range! of 250,000 

instructions per second. 

available IBM PC personal computer. 

This is about one-fourth the rate of the widely- 

3 . 3  28 ADDRESSING METHODS. 

28 instructions can reference data by 8-bit register file location, 4-bit 

working register number, or 2-byte program memory address. Register file 

locations can be used as individual bytes of data, as 2-byte words, or as 

1- or 2-byte pointers for indirect reference. 

3 . 4  THE MICROMINT 28-BASED FAMILY OF MICROCONTROLLER PRODUCTS. 

7 



The 28 microcomputer based on the FORTH software system is offered by 

Micromint in an off-the-shelf line of microcomputer boards. The Micromint 

firm is owned by Steve Ciarcia, the author of the monthly "Circuit Cellar" 

column in BYTF, magazine. In 1981, Ciarcia presented the antecedent of the 

Micromint Z8 products, a single-board microcontroller using the BASIC 

programming language, as a construction project in BYTE [2]. 

The boards in the Micromint series are described below. Each board 

measures 4- by 4-1/2 inches, small enough to permit use in most appliances. 

o SBC11. The key Micromint product is a stand-alone microcontroller 
containing a 28611 microcomputer with a FORTH system in 4K bytes of 
internal ROM. The board provides sockets for 6116 (2K-byte) random- 
access memory (RAM) and 2716 (2K-byte) or 2732 (4K-byte) 
electrically programmable read-only memory (EPROM). The board 
provides easy access to two 8-bit por'cs (po r t s  2 and 3 of the 28611) 
for parallel input/output, and a memory-mapped 8-bit port for 
digital input. The SBCll requires 250 milliamps at 5 volts. Plus 
and minus 12 volts at 30 milliamps is required if serial 
input/output is used. (Quantity one price: $149; quantity 100 
price: $94) 

o SBC33. This memory expansion and input/output board permits 
expansion of the basic SBC11. controller with up to 12K bytes of any 
combination of 6116 RAM, 6264 (8K-byte) RAM, 2716 EPROM, or 2732 
EPROM. It also provides 3 parallel ports using an 8651 parallel 
input/output controller, and FSK input/output using an XR2211 
demodulator. (Price: $150) 

o SBC07. The Micromint EPROM board, which requires the BCC33 board 
f o r  operation, will program either 2716 or 2732 EPROMs. 
(Price: $145) 

o S B C 1 4 .  This 16K-byte memory expansion board accommodates any mix of 
2716/2732 EPROM or 6116 RAM. (Price: $120) 

o SBC13. This analog input board uses an Analog Devices AD7581 chip 
to provide 8-bit resolution for as many as 8 input channels. Maximum 
throughput is 10,000 samples per second. (Price: $140) 

o SBC30. This higher-capability analog-to-digital converter resolves 
as many as 1 6  channels to 12 bits of resolution. (Price: $197) 

All the tests for speed and functionality described in this paper were 

performed using only the SBCll board. Development of the full-screen 

8 



editor described in Section 3 . 4 ,  which entailed EPROM programing, required. 

use of the SBC33 Memory Expansion Board and the SBC07 EPROM Board. 

3 . 5  ZB FORTH CAPABILLTIES.~ 

The 96 FORTH words in 28611 internal ROM are based on the 1979 FORTH 

Interest Group standard rather than the more current 1983 standard. 

Table 1 presents the complement of 28 FORTH words grouped in the manner 

used by Leo Brodie in his book Startinq FORTH [ 3 ] .  The underlined words in 

Table 1 are those developed during the O W L  evaluation to adapt the 

Micromint-provided product to a rapid prototyping environment. 

28 FORTH is essentially a subset of the FORTH found on a wide range of 

minicomputers, microcomputers, and microcontrollers. This wide 

availability would facilitate moving NAHB-developed algorithms to other 

types of controllers used by Smart House participating manufacturers. It 

would also allow manufacturers to develop a control program in FORTH on a 

commonly available system (e.g. a personal computer), and then to transfer 

the program to 28 FORTH for use in laboratory testing. 

IAn introduction to tne FORTH language is provided Ln Appendix I. 

9 



Table 1. Words ProvFded by 28 FORTH 

Memory : 
! (STORE STACK TO MEMORY) C@ (FETCH CHARACTER TO STACK) 

@ (FETCH FROM MEMORY TO STACK) CMOVE (MOVE FROM START OF BLOCK) 
i-? (STORE INCREMENTED) <CMOVE (MOVE FROM END OF BLOCK) 
C! (STORE CHARACTER TO MEMORY) READEP (READ-EPROM) 

PROGRAM (PROGRAM-EPROM) 

Arithmetic and Logical: 
9 ( PLUS ) AND 

(MINUS ) OR 
U* (UNSIGNED MULTIPLY) XOR (EXCLUSIVE OR) 
u/ (UNSIGNED DIVIDE) l-t (INCREMENT TOP-OF-STACK) 
NEGATE S->D (SINGLE-TO-DOUBLE) 
DABS (DOUBLE WORD ABSOLUTE VALUE) DNEGATE (DOUBLE WORD NEGATE) 
D+ (DOUBLE WORD PLUS) 

Input/Output 

KEY 
EMIT 
EXPECT 
WORD 
PAD 
RDBLK 
H. 
D. 

(INPUT FROM SERIAL PORT) 
(OUTPUT TO SERIAL PORT) 
(EXPECT CHARACTERS) 
(SEARCH FOR WORD) 
(CREATE BUFFER) 
(READ BLOCK) 

(OUTPUT DOUBLE WORD) 
(HEX OUTPUT TOP-OF-STACK) 

Comparisons : 

= (STACK WORDS EQUAL) 
>= (TOP-OF-STACK LESS) 

CR 
SPACE 
TYPE 
<# 
# 
HOLD 
SIGN 
#> 
# S  

MIN 
0- 

(EMIT CARRIAGE RETURN) 
(EMIT SPACE) 
(TYPE BLOCK OF CHARACTERS) 
(SETUP OUTPUT BLOCK) 
(SETUP DIGIT IN BLOCK) 
(STORE CHARACTER IN BLOCK) 
(INSERT SIGN IN BLOCK) 
(TERMINATE OUTPUT BLOCK) 
(SETUP NUMBER IN BLOCK) 

(REPLACE WITH LESSER) 
(TOP-OF-STACK ZERO) 

Stack Manipulation (TOS means Top-of-Stack, 2nd means below TOS, etc.: 

SWAP (SWAP TOS WITH 2nd) 2DROP (DROP TOS AND 2nd) 
DUP (DUPLICATE TOS) I (COPY LOOP INDEX TO STACK) 
OVER (DUPLICATE 2nd ABOVE TOS) J (COPY OUTER INDEX TO STACK) 
ROT (MOVE 3rd TO ABOVE TOS) >R (COPY TOS TO RETURN STACK) 
DROP (DROP TOS) R> (COPY RETURN STACK TO TOS) 
NUMBER (CONVERT STRING TO WORD) DIGIT (CONVERT WORD TO CI-IAIPACTER) 
COUNT (COUNT CHARACTERS IN STRING) 

10 



Table 1 (Continued). Words Provided by Z8 FORTH 

Structure: 

IF CAS E 
ELSE OF 
THEN ENDCAS E 

DO BEGIN 
LOOP UNTIL 
+LOOP (INCREMENT INDEX FROM STACK) WHILE 
LEAVE 

Defining Words and Compilation: 

(START WORD DEFINITION) 
2 (STOP WORD DEFINITION) 
I (COMMA, COMPILE TOS) 
c, (COMPILE BYTE AT TOS) 

CREATE 
CONSTANT 
IMMEDIATE 
ALLOT (ALLOT SPACE IN DICTIONARY) 
COMPILE 

I (TICK, COMPILE ADDRESS) 

0 (NULL, END-OF-BLOCK FENCE) 

FORTH System Variables: 

BASE 
BLK (INTERPRETER INPUT BLOCK) 

FORTH System Commands: 

REPEAT 
AGAIN 

FIND 
FORGET 
SMUDGE 
LITEIZAL 
DLITERAL 
<BUILDS 
DOES> 
[ (ENTER IMMEDIATE MODE) 

(ENTER COMPILE MODE) 
(DEFINE CHARACTER STRING) I1 

1 

>IN (INTERPRETER INPUT INDEX) 
HERE (NEXT DICTIONARY ADDRESS) 

BOOT 
EDIT 
l722?2 

QUIT 
COLD 
EXECUTE 

11 



4 .  A FORTH EDITOR SUITABLE FOR RAPID PRQTOTYPING. 

The editor supplied with the Micromint microcontroller board is not 

suitable for full-screen operation using a personal computer as a "smart" 

terminal. To test the suitability of 28 FORTH for a non-trivial 

programming task, the author developed a full-screen editor under 

constraints similar to those that might be expected in rapid prototyping. 

The constraints assumed that 

o the source and the compiled form of the editor can be no longer than 
2K bytes ~ 

o the editor must accommodate character transmission rates up to 9600 
baud, and 

o the editor must have standard cursor movement and insert/delete 
features similar to those found in Wordstar [ 4 ] .  

A structured listing of the editor appears in Appendix I1 together with a 

line-by-line commentary for readers not familiar with the FORTH language. 

The program developed actually provides not only a full-screen editor, but 

also a screen initialization routine (.CLEAR), a screen loader (LSCR), a 

dump routine (DUMP) for viewing the hexidecimal (HEX) and American Standard 

Code for Information Interchange (ASCII) image of any 256-byte block of 

memory, and FORTH headers for EPROM programming routines. The compiled 

form of the editor, the auxiliary FORTH wards, and the EPROM subroutines 

themselves occupy only 2K bytes of EPROM. 

The functions and keys used to perform editing functions are listed below 

o Numeric Pad "Arrow" Keys: Up, down, left, and right movement, one 
character or line at a time 

o Page Up/Page Down Keys: Delete current line/Insert a blank line 

o Back Space Key: Left one space, replacing the character at that 
position with a blank 

o Insert-Delete/Typeover (a toggle): Insert or delete characters on 
the current line at the cursor position, or revert to the default 
type-over made 

1 2  



The rapid-prototyping editor is designed to work with an emulator that 

permits redefining personal computer keyboard codes, such as the VersaCom 

communications package from Solution Software [ 5 ] .  Users of packages, such 

as SmartCom, that do not offer this feature will have eo change the FORTH 

editor logic for control character recognition. 

The author, who had little experience with FORTH prior to this evaluation, 

was able to develop the full-screen edPtor in about 40 hours. However, 

people with no prior experience working in a microcomputer machine- 

instruction environment may find FORTH very difficult to use. 

Critics of FORTH state that FORTH programs are difficult to read. The 

unstructured editor listing in Appendix 111, which is an example of poor 

FORTH programming practice, supports their contention. However, a 

structured listing of the same program (Appendix XI) improves its 

readability by organizing the information to show the programmer's use of 

FORTH logic control words. 

13 



5 .  USE OF MACHINE LANGUAGE SUBROUTINES WITH 28 FORTH. 

I 

28 FORTH makes it easy to link FORTH routines to the easily-used 28 machine 

instruction code. 

because the FORTH in 28 ROM may be too slow for a particular time-critical 

task. 

A programmer may be forced to use this capability 

A programmer has two methods of calling a machine language subroutine in 28 

FORTH. The simplest i s  to place the address of a pointer to the subroutine 

on the stack followed by the FORTH word EXECUTE. Suppose the start of the 

subroutine to be call-ed is at C186 and the word at B456  is a pointer to the 

subroutine (that is, B456 contains the address Cl86). The FORTH definition 

for the word SUBCALL shown below 

: SUBCALL B 4 5 6  EXECUTE ; 

will pass control to the routine at C186 when the word SUBCALL is executed. 

A slightly more sophisticated method, which results in a shorter compiled 

code, is to create a FORTH word for the subroutine with CREATE: 

CREATE SUBCALL SMUDGE C186 , 

CREATE will create a FORTH word header followed by a single word that 

transfers control to the subroutine at C 1 8 6 .  (The FORTH word SMUDGE resets 

a bit in the header to make the created word executable; the FORTH word t ' , t t  

(comma) compiles the subroutine address into the FORTH definition for 

SUBCALL. ) 

Inserting a block of 28 instructions into a FORTH program is also quite 

simple. In the example on the next page the FORTH word TEST assumes that 

an iteration count is on the stack and uses this number to control the 

times an "empty" loop is repeated. 

14 



50EC TEST POP WRC Pop Top-of-Stack into working register 
50ED POP WTU) pair C and D (Iteration count) 
80EC LH DECW WRC Decrement count in C and D 
EBFC J R  NZ,LH Repeat loop if characcer count not  zero 
3050 JP VNEXT Exit to next FORTH word 

The FORTH words to define this subroutine are 

CREATE TEST SMUDGE HERE 2 + , 50EC , 50ED , 80EC , EBFC , 3050 , 

The sequence HERE 2 + defines the execution address in the FORTH header far 

TEST as the next location in the dictionary. The 28 instructions 

themselves are compiled by the sequence of number/comrna pairs in the 

definition. 

15 



6. SUITABILITY OF THE 28 FORTH MICROCOMPUTER FOR RAPID PROTOTYPING. 

As was sho-m in Section 3 ,  the Micromint microcontroller meets all rapid- 

prototyping requirements for interfaces, size, power requirements, 

reliability, cost/availability, and adaptability. The only remaining 

questions concern its ability to meet functionality and speed requirements. 

6.1 FUNCTIONALITY. 

Most FORTH programers will find the complement of 28 FORTH words too 

limiting and will want to add definitions usually thought to be part of a 

standard definition of FORTH. For example, 28 FORTH only provides words 

for two comparisons, "equal" and "greater-to-or-equal." Fortunately, it is 

easy to define other comparison words using those provided: 

FORTH FORTH Definition using the words 
Word provided in 28 FORTH 

> : > 1 + > - ;  
< : < SWAP >= ; 
<- : <- l+ SWAP >=; 

Similarly, the 28 FORTH mixture of single-length signed 2nd unsigned and 

double-length arithmetic words is limited. 28 FORTH provides single-length 

arithmetic words for plus, minus, negate, increment top-of-stack, and 

increment memory; unsigned arithmetic words for multiply, divide, and loop 

control; and double-length arithmetic words for plus, absolute value, and 

negate. Fortunately, as  was the case with the defini-tion of additional 

words for condition testing, it is relatively easy to define arithmetic 

words in terms o f  existing FORTH words, or in assembly language using the 

technique shown in Section 6 . 2 .  

1 6  



Many programmers are accustomed to using the "parenthesis" word that is 

provided in most implementations of FORTH to imbed comments within FORTH 

source material. The FORTH word "parenthesis" is easily defined in 28 

FORTH as follows: 

: ( 29 WORD 1 >IN d-! ; IMMEDIATE ( PERMITS COMMENTS ) 

A number of essential utility routines are missing from 28 FORTH, such as 

those for reading a black of characters from the serial port at any of the 

allowed baud rates, checking an EPROM to verify that it is blank, and 

comparing an EPROM with memory. Appendix IV provides definitions for FORTH 

words to provide these functions. (The routines for reading and verifying 

an EPROM are adapted from examples given in the 28 FORTH Reference 
Manual.[6]) 

In spite of the somewhat abbreviated extent of FORTH words in the 28611 

ROM, it is relatively easy to construct, in just a few minutes time, any 

additional FORTH words needed to alter a control program. 

6.2 SPEED. 

The time required to translate source text into compiled code is generally 

the limiting factor in making a change to a FORTH program. 

250 FORTH words (about as many as can be packed into a FORTH page of 1024 

bytes) take about 10 seconds to compile. 

For example, 

Execution of a 4-word FORTH loop that initializes a block of 16K bytes of 

memory to blanks takes 15 seconds with Z8 FORTH, which corresponds to an 

execution rate of about 5000 FORTH words per second. This speed is only 

marginally acceptable for the performance required €or Smart House 

prototyping. Fortunately, it is easy to "optimize" Z8 FORTH code to 

achieve very favorable performance. For example, the FORTH word TEST, used 

in establishing the bench mark just discussed 

17 



: TEST DO 20 1: C! LOOP ; 

can be replaced with the 28 instructions below, which will blank a block of 

memory 100 times faster. 

CRFATE TEST SMUDGE HERE 2 f , SOEC , 50ED , SOEA I 50EB , 9 C 2 0  , 
D29A , AOEA , 80EC , EBF8 , 3050 , 

The instructions in 28 assembly language are: 

50EC 
50ED 
50 EA 
50EB 
9 C 2 0  
D29A 
AOEA 
80EC 
EBF8 
3050 

TEST POP WRC 
POP WRD 
POP WRA 
POP WRB 
LD WR9,20 

LH LD @@JRA,Whc9 
INCW WRA 
DECW WRC 
J R  NZ,LH 
JP VNEXT 

Pop Top-of-Stack into working register 
pair C and D (Character count) 

Pop word underneath TOS in working 
register pair A and B (Address) 

Load a blank into working register 9 
Store blank in address pointed to by A&B 
Point A and IB to next address 
Decrement character count in C and D 
Repeat loop if character count not zero 
Exit to next FORTH word 

When machine language routines are used in FORTH code to optimize time- 

critical operations, 28 FORTH programs can be made to operate at speeds 

comparable to machines usually thought to be in an entirely different 

class, Table 2 presents comparisons of optimized and nonoptimized versions 

of 28 FORTH routines with other microcomputer FORTH bench marks. The last 

entry in Table 2 shows the performance of  the Novix NC4000 [ 9 ] ,  a 

microprocessor that has FORTH words as its native instruction set. 

18 



TABLE 2. 

Bench Marks of 28 and Personal Computer FORTH. 

Minutes:Seconds t o  Perform 
1,000,000 Iterations 

Z8 FORTH 
Non - optimized 
MVP - FORTH 
IBM-XT 

MVP - FORTH 
IBM-AT 

28 FORTH 
Optimized 

Novix 
FORTH 

- - - - -  Contents 
Empty Loop 

6:40.0 

1:47 .30  

0 :  35.85 

0:08.00 

0:02.50 

of Loop-- - - -  
16-Bit Store 

13: 20 .O 

5: 25.19 

1 : 07.25 

0 : 16.00 

0 :  03.22 

19 



7. CONCLUSIONS. 

The ORNL-determined requirements for a microcontroller suitable for Smart 

House related development and testing can be met using Micromint 28 FORTH 

products. However, the Micromint 28 FORTH microcontroller should be used 

with caution because of potential shortcomings in three areas: 

o the need to augment the basic complement of FORTH words provided in 
ROM with those customarily used in writing FORTH programs, 

o the potential difficulty in reading FORTH source material, and 

o the need to use 28 machine language subroutines to achieve the 
required execution speed. 

20 



8.  REFERENCES 

Smart House Functional Descriptioq, Smart House Development Venture 
Inc., October 1986. 

S .  Ciarcia, "Build a 28-Based Control Computer with BASIC," Parts I 
and 11, m, July-August, 1981. 
L. Brodie, Starting FORTH, Prentice-Hall, Englewood Cliffs, NJ, 1981. 

WordStar Reference Manual Release 3 . 3 ,  MicroPro International, 1983. 

VersaCom Users' Guide, Second Edition, Solution Software, Tucson, 
Arizona, July 1985. 

Z8 MiCrOCOmDUter Technical Reference Manual, Zilog Inc., 1984. 

28671 SinPle-ChiD BASIC InterDreter - BASIC/DEBUG Software Reference 
Manual, Zi log  Inc., June 1981. 

Micromint Z8 Reference Manuals: 

28 BASIC Svstem/Controller, 1983. 
Micromint 28 FORTH, December 1984. 
Z8 Svstem Controller Expansion Board 11, 
28 BASIC 16K Memory Expansion Board, 1983. 
Eivht Bit AnaloP to Digital Con verter Board, 1983. 
28 EPROM Programmer. 

"Fast Processor Chip Takes Its Instructions Directly From FORTH," 
Electronic Design, March 21, 1985. 

2 1  



APPENDIX I. 

INTRODUCTION TO FORTH 

FORTH was originally developed by Charles Moore in the 1970s to facilitate 

computer control of telescope operation. During the early 1980s it became 

very popular with microcomputer enthusiasts and with firms specializing in 

applications requiring dedicated mtcrocomputer controllers. FORTH is an 

unusual language in chat it is not strictly an interpreter, like most BASIC 

implementations, nor a source-to-object language converter, such as an 

assembler. Most computer professionals, when first introduced to FORTH, 

feel very uncomfortable because the language is so different from anything 

they have had experience with before. 

FORTH has two modes, execution and compilation. A FORTH programmer can 

shift back and forth between these modes during the course o f  an 

interactive session with a computer. The following example (computer 

output underlined) shows this process: 

: GREET . I t  Good evening CR ;OK [compiles a new FORTH word, GREET] 
GREET Good evening [executes the FORTH word GREET] 
- OK 

The "natural" method of stating a FORTH process is with post-fix (sometimes 

called reverse-Polish) notation, similar to the way calculations are done 

on a Hewlett-Packard calculator. Thus, adding 3 and 4 together, then 5 and 

6 ,  and finally determining the product of the two sums is thought of as 

3 4 + 5 6 + *  

Although FORTH programmers can reference memory in the same way as with a 

conventional programming language, FORTH encourages use o f  a utility stack 

to keep track o f  constants and operations to be performed. If a snapshot 

22 



of the FORTH stack could be taken after each step in the exercise just 

described, the result would be 

t o p  of stack > 3 4 + 7 5 6 + 11 * 77 
3 4  7 5 6  7 1 1  

3 7 5  7 
bottom of stack > 7 

The use of post-fix notation and extensive use of a stack for communicating 

information within a FORTH program is often viewed as an inconvenience at 

best, and a serious obstacle to readability at worst. It is the sort of 

thing that is considered to be either a valuable asset or a serious f l a w .  

FORTH is somewhat unique among programming languages in that any word in 

the FORTH system itself can be redefined. 

word KEY, which is used to obtain a character from the serial input port. 

The standard FORTH convention is to provide only the low seven bits of  an 

eight-bit word because those are the only bits defined in ASCII standard, 

However, if an application requires availability of all eight bits of the 

input byte, the programer simply redefines KEY, recompiles the FORTH word 

definitions dependent on the word KEY, and continues right along. 

For example, consider the FORTH 

Three groups of program structure words, IF-ELSE-THEN, DO-LEAVE-LOOP, and 

CASE-OF-THEN-ENDCASE, are significant aids in writing FORTH programs and 

contribute to readability of the final results. 

permits writing conditional clauses in a way similar to PASCAL. 

example, suppose the FORTH word TEST is to read a character from the serial 

input port and type the message "valid" if the character X was typed, 

"invalid" otherwise. Using the IF-ELSE-THEN construct, TEST is 

The IF-ELSE-THEN group 

For 

: TEST KEY 58 - IF . ' I  valid " ELSE . I 1  invalid 'I THEN ; 

23 



The value 58 (in HEX) is equivalent to the character X. Notice that the 

post-fix convention sets up the test ahead of the "-" word, which in turn 
precedes IF. 

The DO-LEAVE-LOOP group facilitates writing index-controlled iterations 

The example below shows how the phrase "Good Evening" can be repeated 8 

times by a program loop. 

: LTEST CR 8 1 BO .I1 Good Evening" CR LOOP ; 

The FORTH word CR sends a carriage return code to the serial output port. 

The word DO assumes that the stack has been set up with the final and 

initial values of the loop index. The loop index can be obtained through 

the FORTH word I. 

a loop can be used to accomplish a conditional loop exit. 

Loops can be nested to any level, The word LEAVE w i t h i n  

The CASE-OF-THEN-ENDCASE group can be used to advantage to accomplish 

different tasks corresponding to each of several values of  a given 

quantity. In the example given below, a character is obtained from the 

serial port and one of three messages is printed depending on whether the 

character is an X (HEX 58), Y (HEX 59), ox Z ( I X Y  5 A ) .  If the character i s  

none of these, a fourth message indicating this fact is displayed. 

: CTEST KEY 

CASE 58  OF . I 1  X was entered I' THEN 

ELSE 59 OF . It  Y was entered 'I THEN 

ELSE 5A OF . ' I  Z was entered 'I THEN 

ELSE DROP . "  Neither X, Y, nor Z was entered It 

ENDCASE ; 



APPENDIX TI. 

STRUCTURED SOURCE LISTING 

FORTH EDITOR FOR A VT52 EhJJLATOR 

1> : SCR 74 ; : S@ 74 @ ; : P@ 7 1  C@ ; : J& 70 C@ ; 
2> : G !  1B EMIT EMIT ; : BO 7 EMIT 0 ; : G> 59 G !  2 1  e EMIT 24 +- EMIT 
3> : C* 40 U* DROP + S@ + ; 
4, : ; S  BLK @ I F  R> DROP THEN ; IMMEDIATE 
5> : LSCR > I N  @ 70 ! 0 >IN ! S @  40 U* BLK ! DROP 662 EXECUTE 
6> 70 @ >IN ! 0 BLK ! ; 
7> : .CLEAR 20 S@ C! S@ S@ 1+ 3FF CMOVE 3853 S@ 3FD + ! ; 
8> : LIST DO I 0 <# # # #> TYPE . ' I  < I "  40 I C* 
9> 3F 0 DO 1 - DUP C@ 20 - I F  LEAVE THEN LOOP 
10> DUP FFCO AND DO I C@ EMIT LOOP 40 I G> . ' I  1 "  CR LOOP ; 

12> F L@ LIST 0 L@ G> 0 71 ! 0 ; 

14> : T = 72 @ OR ; : W 0- 72 @ OR ; : Q DUP 7 F  >9. OVER 1F SWAP >- + ; 
15> : DUMP 70 ! 48 G !  4 A  G !  F 0 DO CR I 10 U* DROP 7 0  @ + H .  .If <Ii 

16> F 0 DO SPACE I J 10 U* DROP + 70 @ + C@ 0 <# ## # #> TYPE LOOP 
17> SPACE . I 1  x" F 0 DO I 3  10 U* DROP + 70 @ + C@ 7F AND Q 
18> I F  20 EMIT DROP ELSE EMIT THEN LOOP 3E EMIT LOOP CR ; 

20> : EDIT 0 72 ! 0 7 0  ! 48 G!  4A G !  S@ 0 D.  
21> F 0 CR LIST 0 0 G> 

11> ZL C* DUP 20 ROT C !  DUP 1+ 3F CMOVE -4 L@ G> 4A G !  

13> : MP 0 I@ C* DUP 40 + DUP 40 F C* SWAP - ; 

19> 1 R 8 EHIT 20 EMIT 8 EMIT -1 ; 

22> BEGIN KEY DROP FO C@ DUP 1 B  - WHILE Q I F  
23> CASE CB OF P@ W I F  BO ELSE 8 EMIT -1 THEN 
24> ELSE 08 OF P@ WI IF BO ELSE 20  P@ 1 - L@ C* C !  R THEN 
2 5> ELSE CD OF P@ 40 T I F  BO ELSE 43 G! 1 THEN 
2 6> ELSE DO OF L@ F T I F  BO ELSE 42 G !  100 70 +! 0 THEN 
2 7> ELSE C 8  OF L@ W I F  BO ELSE 41 G !  -100 70 +! 0 THEN 
2 8> ELSE OD OF L@ F T I F  BO ELSE 0 7 1  C! 100 70 +! 0 L@ G> 0 THEN 
2 9> ELSE D 2  OF 72 @ 1 XOR DUP 72 ! DUP I F  4B G !  

3 1> I F  . I '  INSERT" ELSE . If  TYPOVR" THEN P@ L@ G> 0 
30> ELSE -4  I& G> L@ L@ LIST THEN 30 -1 G> 

3 2> 
3 3> I F  P@ L@ C* DUP 1 - OVER 40 I.@ C* SWAP - CMOVS 

ELSE 7F OF 72  @ 0- P@ O s  + I F  BO ELSE P@ 3F - 
34> 2 0  3F L@ C* C !  R THEN 
35> ELSE C9 OF L@ F T I F  BO ELSE MP ROT SWAP CMOVE 0 F 21. THEN 
3 6> ELSE D1 OF L@ F T I F  BO ELSE MP <CMOVE 0 I@ ZL THEN 
3 7> ELSE DROP BO ENDCASE 
38> ELSE P@ 40 - I F  DROP BO ELSE 
39> 3E  P@ >- 72 @ AND 
40> I F  P@ L@ C* DUP 1+ DUP 40 L@ C* SWAP - <CMOVE THEN 
41> DUP EMIT P@ L@ C* C! 1 THEN THEN 
42> 70 +! REPEAT DROP -4 18 G> ; ; S  

25 



Line-by-Line Commentary 

Source Listing - FORTH Editor f o r  VT52 Em.ulator 

Line 
No. 

1 SCR 7 4  defines the variable SCR as locations 7 4  and 75 in the 28 
register file. The word S@ places the data at locations 74/75 on 
the stack. I?@ and L@ place a character on the stzck; one from 
register file location 71, the other from reglster file location 
7 0 .  

2 G! assumes the second byte of a VT52 control string is on the 
stack. G !  outputs an ESC character (HEX 1.B) then the control 
character on the stack. BO sends a BEL code to the serial port 
and leaves a zero on the stack that causes the line position 
processing in line 41 to leave L unchanged (L is the 
position-in-line variable stored in register file location 70). 

G> places the VT52 gotoXY code on the stack and executes G !  to 
issue the ESC gotoXY string, then outputs the row and column 
codes of the desired screen position. 

3 C* assumes row and column numbers are on the stack and computes 
an address in the screen block corresponding to them. 

4 ; S  is an immediate word (a word that: can be executed during 
compilation rather than compiled) that terminates obtaining input 
from program memory, thus reverting the system to taking FORTH 
system input from the serial input port. 

5 LSCR begins a compilation from the screen defined by SCR. 
Compilation terminates on encountering a ; S  word. 

7 .CLEAR places blanks throughout the screen defined by SCR then 
places the compilation terminator word ;S at the very end of the 
screen. 

8 LIST assumes the beginning and ending line number to he listed 
are on the stack and lists the iildicated lines of  the current 
screen (as indicated by t h e  variable SCR) on the display 
terminal. 

11 ZL assumes the row index c f  d line to be s e t  to blanks is at 
top-of-stack and a zero ~t next-to-top-of-stack (indicating the 
row is to be zeroed starzing from column position zero). ZL 
zeros the indicated lihe chen lists the page starting from the 
current line index (I,, located at register file location 70). 
Finally the routine sets the cursor to the first column o f  the 
current line. 

2 6 



13 MP computes the parameters necessary for the  CMOVE and <CMOVE 
words tha t  are used t o  move blocks of characters .  

'3: and W a r e  used i n  the EDIT CASE logic  t o  determine whether the 
e d i t  is taking place En i n s e r t  or type-over mode. 
and backspace key a re  not recognized i n  i n s e r t  mode. 
whether a character received from the keyboard is a control  
character  o r  no t .  

14 
The arrow keys 

Q t e s t s  

15 DUMP assumes tha t  the address i s  on the s tack.  A 256-byte block 
of  memory i s  p r in t e r  i n  HEX and ASCII, 16 bytes t o  a l i n e .  

1 9  R backs up the screen cursor and erases  the byte a t  t ha t  
locat ion.  

20 EDIT presents the screen image of the FORTH page indicated by the 
address s tored a t  SCR ( r eg i s t e r  f i l e  locat ion 74).  The prologue 
t o  EDIT accomplishes the following: 

o row and colwnn indices a re  s e t  t o  zero, 
o the mode is  set  t o  type-over, 
o the  screen is  cleared,  
o 

o the page is l i s t e d  on the screen. 

the beginning address of the FORTH page being edtted is 
displayed, and 

2 1  The BEGIN on l i n e  2 1  pa i r s  with the REPEAT i n  l i n e  42. This loop 
repeatedly obtains characters from the s e r i a l  input l i n e  u n t i l  an 
ESC (ASCII code 18) i s  encountered. 

22 Because the FORTH word KEY only reads 7 b i t s  of the character 
being input ,  it i s  re-read by the sequence FO @ ( r eg i s t e r  f i l e  
locat ion FO is the serial 110 bu f fe r ) .  It  is then checked t o  see 
i f  it is  an ESC character (which terminates the e d i t ) .  I f  i t  is 
not ,  the word Q checks the character t o  see i f  it l i e s  outside 
the range of normal t e x t  characters .  

23 The word CASE on l i n e  23 pa i r s  with the ENDCASE i n  l i n e  3 7 .  CASE 
assumes tha t  a control  character i s  on the s tack  (This occurred 
a t  the DUP i n  l i n e  2 2 ) .  The constants C B ,  08,  CD, e t c .  a re  the 
HEX equivalents of the  control  codes fo r  character l e f t ,  
character  r i g h t ,  character up, character down, carr iage re turn ,  
i n s e r t ,  back space, page up, and page down. With each control  
character except fo r  i n s e r t ,  the row o r  column posi t ion is 
checked t o  determine whether the control  operation would be 
meaningful. For example, f o r  a move-left-one-character (code CB) 
it is  not meaningful t o  attempt t o  move t o  the l e f t  of  l i n e  
pos i t ion  0.  

27 



23 

24 

26 

2 9  

32 

36 

38 

42 

Each one of the CASE options leaves a xxwber on the s tack f o r  
incrementing the column index. The adjustment of the column 
index occurs a t  the very bottom of  the processlng (l€ne 4 2 ) .  
processing of  the code f a r  mo-Je-left-one-characteP (code CB) 
c a l l s  fo r  the column index t o  be decremented by one. 

The 

The processing fo r  the backspace code (HEX 08) s to re s  a blank 
(HEX 20) i n  the FORTH page, then backs up the cursor and s tores  a 
blank a t  t h a t  posi t ion on the screen (execution of the FORTH word 
R)  - 
The processing fo r  the move-cursor-up-one-line (HEX code CS) 
increments the l i n e  index b y  adding 1 to the high-order byte i n  
the word s tored a t  r eg i s t e r  f i l e  locations 70 and 7 1 .  

The processing f o r  the in se r t  code (HEX 72)  f i r s t  complements the 
code i n  locat ion 72 ( the  i n s e r t  i s  a toggle) then, according t o  
whether the current mode i s  type-over o r  i n se r t :  

In se r t :  Erases f rom the present cursor positi-on t o  the end of 
the l i n e  (even a t  4800 baud the character transmission 
r a t e  t o  refresh a l i n e  i s  too  slow t o  be acceptable) 
and places the message INSERT a t  the top of the screen. 

Type over: L i s t s  from the present cursor posi t ion t o  the end of  
the l i n e  and places the message TYPOVR a t  the top of  
the screen. 

The coding fo r  the de le te  key (control code 7F) i s  s imilar  t o  
t ha t  f o r  the backspace except t ha t  the remainder o f  the l i n e  t o  
the r igh t  of the cursor i s  moved l e f t  one space. 

The routine <CMOVE moves a block of  characters from one block t o  
another, moving f i r s t  the l a s t  character ,  then the next t o  l a s t ,  
and s o  on. This permits moving a block of characters even when 
the t a rge t  area overlaps the end of the source area.  

This sect ion (through l i n e  41) e i the r  overlays o r  i n se r t s  a 
character i n  the page. 

This l i n e  updates the charac te r - in- l ine  index ( the  byte a t  
locat ion 7 1 ) ,  and goes back t o  l i n e  2 2  f o r  another character .  A n  
e x i t  caused by typing an ESC code (HEX 1B) drops the code from 
the s tack and e x i t s  a f t e r  s e t t i n g  the cursor below t h e  display o f  
the page being edi ted.  

28 



APPENDIX III. 

UNSTRUCTURED SOURCE LISTING OF THE PROTOTHPYNG EDITOR 

(INCLUDING HEADERS FOR AUXILICSY FORTH VORDS) 

CREATE <CMOVE SMUDGE 1798 CREATE READEP SMUGGE 1 7 B 5  I CRFATE 
PROGRAM SMUDGE 1700 , CREATE RDBLK SMUDGE HERE 2 + , 50EC , 50ED , 
50EA , 5 0 E B  , D6 C ,  187 , D29A , AOEA , 80EC , EBF5 , 3050 , : SCR 
74 ; : S@ 7 4  @ ; : P@ 7 1  C@ ; : I@ 70 C@ ; : G ?  15 EMIT EMIT ; : 
BO 7 EMIT 0 ; : G> 59 G! 23  + EMIT 24 -+ EMIT ; : C* 40 U* DROP + 
S@ + ; : ; S  BLK @ I F  R> DROP THEN ; IMMEDIATE : LSCR >IN @ 70 ! Q 
> I N  ! S@ 40 U* BLK ? DROP 6 6 2  EXECUTE 70 @ > I N  ! 0 BkX ! ; : 
.CLEAR 20 S@ C! S@ S@ 1+ 3FF CMOVE 3B53 S@ 3FD + ! ; : L I S T  DO I O  

THEN LOOP DUP FFCO AND DO I C@ EMIT LOOP 40 I G> . I '  1 "  CR LOOP ; : 
<# # # #> TYPE . I '  < I "  40 I C* 3F 0 DO 1 - DUP C@ 20 - IF LEAVE 

ZL C* DUP 20 ROT C! F L@ L I S T  0 L@ 
G> 0 7 1  ! 0 ; : MP 0 L@ C* DUP 40 + DUP 40 F C* SWAP I ; : T - 72 

DUP 1+ 3F CMOVE -4  L@ G> 4A G! 

@ OR ; : W 0- 72 @ OR ; : Q DUP 7F >.. OVER 1F SWAP >a + ; : DUMP 
70 ! 48 G! 4 A  G! F 0 DO CR I 1 0  U* DROP 70 @ + H. ."  <" F 0 DO 
SPACE I J 10 U* DROP + 70 @ + C@ 0 <# # #$ #> TYPE LOOP SPACE . "  
X" F 0 DO I J 10 U* DROP + 70 @ -+ C@ 7F AND Q I F  20 EMIT DROP 

; : EDIT 0 7 2  ! 0 70 ! 48 G! 4 A  G! S@ 0 D. F 0 CR LIST 0 0 G> 
ELSE EMIT THEN LOOP 3E EMIT M O P  CR ; : R 8 EMIT 2 0  EMIT 8 EMIT -1 

BEGIN KEY DROP FO C@ DUP 1B 
ELSE 8 EMIT -1 THEN ELSE 8 OF P@ W I F  BO ELSE 20 P@ 1 - L@ C* C! R 

- WHILE Q I F  CASE CB OF P@ W I F  BO 

THEN ELSE CD OF P@ 40 T I F  BO ELSE 43 G! 1 THEN ELSE DO OF L@ F T 
I F  BO ELSE 42 G! 100 70 +! 0 THEN ELSE C8  OF L@ W I F  BO ELSE 41 G! 
-100 70 +! 0 THEN ELSE D OF L@ F T I F  BO ELSE 0 7 1  C! 100 70 +! 0 
L@ G> 0 THEN ELSE D2  OF 72 @ 1 XOR DUP 72 ! DUP I F  4 B  G! ELSE -4  
L@ G> L@ L@ L I S T  THEN 30 -1 G> I F  ." INSERT" ELSE ." TYPQYR" THEN 
P@ L@ G> 0 ELSE 7F OF 72 @ 0- P@ 0- + I F  BO ELSE P@ 3F - SF P@ L@ 
C* DUP 1 - OVER 40 L@ C* SWAP - CMOVE THEN 20 3F L@ C* C! R THEN 
ELSE C 9  OF L@ F T I F  BO ELSE MP ROT SWAP CMOVE 0 F ZL THEN ELSE D 1  
OF L@ F T I F  BO ELSE MP <CMOVE 0 L@ ZL THEN ELSE DROP BO ENDCASE 
ELSE P@ 40 - I F  DROP BO ELSE 3 E  P@ >L 72 @ AND I F  P@ L@ C* DUP 1+ 
DUP 40 L@ C* SWAP 
70 +! REPEAT DROP -4  10 G> ; ; S  

- <CMOVE THEN DUP EMIT P@ L@ C* C! 1 THEN THEN 

2 9  

. ............................................ _.. 



APPENDIX IV. 

AUXILIARY Z8 FORTH WORDS 

?BLANK - Determine if EPROM is Blank 
Arguments: Top-of-Stack is 1 for 2716 EPROMs, 0 for 2732s. 

?BLANK I F  7FF ELSE FFF THEN 0 
DO I READEP FF - IF . I 1  NOT " LEAVE THEN LOOP . "  BLANK" CR ; 

?COMPARE - Compare EPROM with Memory 
Arguments: Top-of-Stack is 1 for 2716 EPROMs, 0 €or 2732s. 

Second from toy is the address of the block in memory. 

?COMPARE IF 7FF ELSE FFF THEN 0 
DO I READEP OVER I + C@ - 
IF .I1 NOT LEAVE THEN LOOP DROP .I' EQUAL CR ; 

RDBLK - Read Characters into a Block of Memoiy 
Arguments: Top-of-Stack is the length of tho block 

Second from top is the address of t h e  block. 

50EC RDBLK 
50ED 
50EA 
50EB 
D60187 LtIE 
D29A 
AOEA 
80EC 
EBF5 
3050 

POP WRC Pop Top-of-Stack into working register 
POP WRD pair C/D (Character count) 
POP WRA Pop word underneath TOS i n t o  working 
POP WRB register pair A/B (Address of b l o c k )  
CALL CHARIN Get a character from serial input port 
LD @@WRA,WR9 Store the character using A/B as pointer 
INCW WRA Point A/B to next address 
DECW WRC Decrement character count in C/D 
JR NZ,LHE Repeat loop if character count not zero 
JP VNEXT Exit to next FORTH word 

CREATE RDBLK SMUDGE HERE 2 + , 50EC , 5 0 E D  , 50EA , 5 0 E B  , D6 C ,  
0187 , D29A , AOEA , 80EC , EBF5 , 3050 , 

30 



APPENDIX V. 

ACRONYMS 

ASCII 
BASIC 

BAUD 

EPROM 

FSK 

HEX 
K 

NAHB/RF 

RAM 

American Standard Code for Information Interchange 

Elementary compiler used with microcomputers 

Bits per second 

Electrically programmable, W-light erasable read-only memory 

Frequency Shift: Keying - A method of sending digital data by 

means of audio tones 

Hexidecimal, or base 16 (0,1,2,  . . .  9,A,B,C,D,E,F) 
Thousand 

National Association of Home Builders Research Foundation 

Random access memory 

ROM Read-only memory 

RS232 An Electronic Industries Assn. standard for serial camunication 

VT52 

UART Universal asynchronous receiver/transmitter 

Digital Equipment Gorp. video display terminal Model 52 

31 





ORWLJTM- 1 0 3 6 1  

Internal Distxibueim 

1 .  V .  D .  Baxter 
2 .  K. R. Carr 
3 .  J. E. Christian 

4-13. R. G. Edwards 
14. P. D. Fairchild 
15. W. Fulkerson 
16. M. B. Gettings 
17. R. L. Goeltz 
18. I. G. Harrison 
1 9 .  R. B. Honea 
2 0 .  A. F. Huntley 
21. H. L. Hwang 
2 2 .  M. R .  Ives 
2 3 .  R. 0. Johnson 

3 9 .  

40 * 

41. 

42. 

4 3 .  

44. 

4 5 .  

46-85. 

86-115. 

2 4 .  
2 5 .  
2 6 .  
2 7 .  
28 * 
2 9 .  
30. 
3 1 .  

3 2 - 3 3 .  
34. 

3 5 - 3 6 .  
3 7 .  
38. 

J. 0. Rolb 
R. S .  Loffman 
Sharon McConathy 
H. Perez-Blanco 
C. H. Petrich 
P. H. Shipp 
R. S. Solanki 
S .  S .  Stevens 
Central Research Library 
Document Reference Section 
Laboratory Records 
Laboratory Records - RC 
ORNL Patent Office 

External Distribution 

Office of Assistant Manager for Energy Research and 
Development, Department of Energy, Oak Ridge Operations 
Office, Oak Ridge, TN 37831 

Jaime G. Carbonell, Associate Professor of Computer 
Science, Carnegie-Mellon University, Pittsburgh, PA 15213 

S. Malcolm G i l l i s ,  Dean, Graduate School, Duke Univer- 
sity, 4875  Duke Station, Durham, NC 27706 

Peter Hogarth, P. 0. Box 1 2 3 5 ,  Fairfield, IA 52556 

Fritz Kalhammer, V i c e  President, Electric Power Research 
Institute, P. 0. Box 10412, Palo Alto, CA 9 4 3 0 3  

Roger E. Kasperson, Professor of Government and 
Geography, Graduate School of Geography, Clark Univer- 
sity, Worcester, MA 01610 

Martin Lessen, Consulting Engineer, 1 2  Country Club 
Drive, Rochester, NY 14618 

David MacFadyen, NAHB National Research Center, 400 
Prince Georges Blvd., Upper Marlboro, MD 2 0 7 7 2 - 8 7 3 1  

Technical Information Center, P. 0. Box 6 2 ,  Oak Ridge, 
TN 3 7 8 3 1  

33 




