
.

~ ~

r-icF.?:ec! 1s ai i accou,?; c: r m v i soonsnlr;: by an age'icy of the
United Stares Govn: 1 7 . 3 en! Yeithcr i i ieU nitcd Statcs6ave'nmer! nor ai ly agrnc,
therncf f l G i any of their e,zioloyzcs, ,yak% anv wallailfy expicss or ii-;,pircd or
assumes any legal liability O i ieSpt>tj\ibolm?y for the Zrcuracy completeness or

~o f i ? C C E i S i r d i product or process disclosed OF
not infringn ~ ~ ~ ~ ~ a t e ! y owwd < ;hts Refernice herein

to any specific cot?ii-;,?;@-cial piozjdct procnss or service by trade narlte trademar+
riianufartu%?r or otherw~se iser qot reressarily CoxtitUte or iiiipiy it?
endorsevent. recomlllend3ion or favoring by i i l i : Urited States Govcrnrrrant or
any agency tiicieof T n e VIE"'J -nd opinions of authots expressed he.ein do not
necessarily stat? or reflet-! !hoseof i i i r l l n i t ed S!ates Govcrnrnellt or any agewy
thersOf

ORNL/TM-l04 5 2

Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE EVOLUTION OF THE
MINIMUM DEGREE ORDERING ALGOFUTHM

Alan George

Joseph W. H. Liutt

t

tt

Also a member of the
Departments of Computer Science and Mathematics
The University of Tennessee
Knoxville, Tennessee 3 7996- 1 30 1

Department of Computer Science
York University
North York. Ontario
Canada M3J 1P3

Date Published: May 1987

Research was supported by in part by the Natural Sciences
and Engineering Research Council of Canada under grants
A8111 and A5509. by the Applied Mathematical Sciences
Research Program of the Office of Energy Research, US.
Department of Energy under contract DE-AC05-84QR21400
with Martin Marietta Energy Systems Inc.. by the US. Air
Force Office of Scientific Research under contract AFOSR-
ISSA-85-00013. and by the Science Alliance, a state
supported program a t the University of Tennessee.

I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

Martin Marietta Energy Systems, Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 b 02b2425 7

CONTENTS

Abstract ...

1 . Introduction ...

2 . The Basic Minimum Degree Ordering ...

3 . Development of Improvements to the Minimum Degree Algorithm

4 . Timing Results of Various Improvement Techniques ...

5 . On Tie-Breaking Strategies ..

6 . Odds and Ends ..

7 . Future Research Directions ...

References ..

V

1

2

4

10

12

14

16

17

- v -

The Evolution of the Minimum Degree Ordering
Algorithm

Alan George ?
Mathematical Sciences Section

Engineering Physics and Mathematics Division

and

Department of Computer Science
The University of Tennessee

Knoxville, Tennessee 3 7996- 1301

Joseph WJ2. Liu

Department of Computer Science
York University

North York, Ontario
Canada M3J 1P3

ABSTRACT

Over the past fifteen years, the implementation of the minimum
degree algorithm has received much study, and many important
enhancements have been made to it. In this article, we describe these
various enhancements, trace their historical development, and provide
some experiments showing how very effective they are in improving the
execution time of the algorithm. We also present a shortcoming that
exists in all of the widely used implementations of the algorithm,
namely, that the quality of the ordering provided by the
implementations is surprisingly sensitive to the initial ordering. For
example. changing the input ordering can lead to an increase (or
decrease) of as much as a factor of three in the cost of the subsequent
numerical factorization. This sensitivity is caused by the lack of an
effective tie-breaking strategy. and our experiments illustrate the
importance of developing such a strategy.

- 1 -

1. introduction

Consider the n by n symmetric positive definite system of equations

A x = b ,

where n is large and A is sparse. When A is factored using Cholesky’s method, i t
normally suffers some fill. Since PAPT is also symmetric and positive defiiiite for any
permutation matrix P, we can instead solve the reordered system

(P A P T) (P x) = P b .

The choice of P can have a dramatic effect on the amount of fill that occurs during the
factorization. Thus, it is standard practice to reorder the rows and columns of the
matrix before performing the factorization.

The overall solution of a sparse positive definite system of equations is typically
divided into four distinct independent phases:

(a)

(b)

(c)

(d) Solve (LLT (Px = Pb .

Find an appropriate ordering P for A .
Set up a data structure for L . the Cholesky factor of PAPT.
Numerically factor PAP’ into LL*.

Note that steps (a) and (b) depend only on the structure of A , and are independent of
its numerical values.

The problem of finding a best ordering for A in the sense of minimizing the fill is
computationally intractable: an NP-complete problem [SI. We are therefore obliged to
rely on heuristic algorithms. One of the most effective of these is the minimum degree
algorithm. This algorithm is a symmetric analog of an algorithm proposed by
Markowitz in 1957 for reordering equations arising in linear programming applications
[2]. Loosely speaking. the Markowitz algorithm begins with the given matrix. and a t
each step of Gaussian elimination, row and column permutations are performed so as
to minimize the product of the number of off-diagonal nonzeros in the pivot row and
pivot column. Thus, one minimizes the amount of arithmetic that must be performed
a t each step of Gaussian elimination. This will also tend to minimize the amount of fill
that occurs. Of course such a local minimization strategy will not in general provide a
global minimum for either the arithmetic requirements or fill. Nevertheless. the
strategy has proved to be very effective in reducing arithmetic and fill. The cost of
employing the strategy is almost always far outweighed by the savings in execution
time that accrue. In practice, in order to preserve numerical stability. care must be
taken to avoid using pivot elements that are too small in magnitude. Thus. there is a
trade-off between limiting fill and preserving numerical accuracy. A widely used
modern implementation of Markowitz’s basic strategy, along with many
improvements. is Duff’s MA28 code [l].

Tinney and Walker employed a similar strategy in solving the large sparse
systems arising in the analysis of power systems [41. These problems have symmetric
structure, and do not require interchanges for numerical stability provided that the
pivots are taken from the diagonal of A . Thus, Tinney and Walker employed a
symmetric version of the Markowitz strategy. That is. whenever rows were
interchanged. the corresponding columns were interchanged as well, thus preserving
the symmetric structure of the matrix. Subsequently. Rose [31 developed a graph
theoretic model of the algorithm, and for reasons that will be clear in later parts of
this paper, he renamed Tinney and Walker’s symmetric analog of Markowitz’s original
strategy as the minimum degree algorithm.

- L -

In terms of the matrix A , the minimurn degree algorithm can be described as
follows. Generally, it works only with the structure of A , and simulates in some
manner the rz steps of symmetric Gaussian elimination. At each step. a row and
corresponding column interchange is applied to the part of the matrix remaining to be
factored so that the number of nonzeros in the pivot row and column is minimized.
(Note that since the structure of the matrix is symmetric. the number of nonzeros in
the pivot row and pivot column is the same.) After n steps, the entire factorization
has been simulated, and the order in which the pivot rows and columns were chosen is
the ordering. h important observation which we will focus on later is that ties
usually occur in the choice of the pivot row and column, which implies that the
ordering obtained will depend on how these ties are resolved.

Rose's 1970 doctoral thesis work [24] did much to promote interest in the
minimum degree algorithm, and its efficient implementation has received a great deal. of
attention over the past fifteen years. Researchers a t Harwell. Waterloo and Yale in
particular have devoted much effort in this direction [4, 5 , 7, 9. 12, 13. 16,211. A
number of effective enhancements have been proposed, and are now standard
techniques in most state-of-the-art implementations. One of our objectives in this
article is to trace these developments, and to provide some experimental results
illustrating the extent to which the technology has advanced. A second objective of
our work is to describe and highlight a significant shortcoming that exists in all of the
widely used implementations of the algorithm. Specifically, the quality of the ordering
provided by these implementations is quite sensitive to the initial ordering o f A . This
is a reflection of the fact that the quality of the ordering depends quite strongly on the
way in which ties are resolved, and all of the implementations break ties more or less
arbitrarily. Finding an effective tie-breaking strategy is one of the many interesting
problems related to the algorithm that still remain unsolved.

An outline of the paper is as follows. In section 2 we describe the minimum
degree algorithm in graph theory terms and provide a small example. In section 3 we
trace the development of the various enhancements that have been proposed to reduce
the execution time of the algorithm and section 4 contains some numerical experiments
showing the relative effectiveness of the enhancements. In section 5 we provide some
experiments which illustrate the importance of tie-breaking. Section 6 mentions briefly
some implementation issues. and describes how the implementation might be adapted
to special structures arising in certain applications, such as the finite element method
and least squares problems. Section 8 contains some remarks on future research
directions.

2. The Basic Minimum Degree Ordering

2.1. Description o f the Minimum Degree Algorithm

We assume that the reader is familiar with basic graph theory notions, and the
correspondence between undirected graphs and the structure of symmetric matrices,
See, for example, Chapter 3 of [141. Let G be an undirected graph and v a node of G .
Throughout this paper. we shall use the notation A d j , (v) to refer to the set of nodes
adjacent to v in G . The degree of the node v in G will be denoted by degreeG (v).
which is simply I AdjG (v) I .

The basic minimum degree ordering can be best described in terms of elimination
graphs. Following Rose [25]. we use the notation G, to represent the elimination graph
obtained after the elimination of the node v from the graph G . The graph G, can be
obtained by deleting the node v and its incident edges from G and then adding edges
to make the nodes adjacent to v into a clique.

- 3 -

The basic algorithm is as follows:

Algorithm 2.1: (Basic minimum degree ordering)
begin

G := given symmetric graph ;
while G * @ d o
begin

select a node y of' minimum degree in G and order y next ;
G :=G, ;

end :

e n d .

The above simple formulation of the basic algorithm captures the main idea of
the ordering strategy. Implicitly assumed in this description is a scheme to represent
the elimination graphs and to transform them. This allows the selection of a
minimum degree node in the new elimination graph. Based on the transformation rule,
we note that if a node v is not adjacent to y in G ,

A d j G y (v) = Ad j G (v 1.
However, if v E A d j G (y 1, then we have

Ad]Gy(V = (AdjG (y UAdiG (V) - {v ,y 1 .
Therefore, the degree of a node may change after the elimination graph

transformation due to the deletion of edges incident to y and the possible addition of
new edges joining nodes adjacent to y - In other words, degreeG(v) may be quite
different from degreeG (V I . The following are simple observations on the relation
between degreeGy(v) and degreeG (v >.

Observation 2.1:

Observation 2.2:

Y

If v is not adjacent to y , then

If v is adjacent to y , then

degreecy(v) = degreeG (v).

degreeGy (v 3 degreeG (v - 1 2 degreeG (y - 1 .

Algorithm 2.1 is not completely specified. since a t the node selection stage, there
may be several nodes of minimum degree. These *'ties" must be resolved in some
manner, usually arbitrarily. Figure 2.1 gives two minimum degree orderings by
applying this algorithm to the 5-by-5 regular grid model problem (9-point difference),
where the ties were resolved in different ways. Different orderings can be obtained due
to the freedom in the selection of minimum degree nodes. The example in Figure 2.1 is
designed to illustrate this point.

4 8 1 1 7 3 4 7 21 12 3
20 21 22 16 15 11 16 22 15 8
10 14 23 13 9 20 19 23 18 17
6 18 24 25 5 6 14 24 13 9
2 17 12 19 1 2 10 25 5 1

Figure 2.1: Two minimum degree orderings on a 5-by-5 grid.

- 4 -

Often, the quality of the resulting minimum degree ordering depends crucially on
the "correct" node selection from the set of minimum degree nodes. We use the term
tie-breaking strategy to refer to any scheme that provides a means of choosing a node
from such a set. Some tie-breaking strategies will be discussed in later sections.

2.2. Quality of the Minim

It is easy to see that a minimum degree ordering on a tree structure will be one
that is a perfect ordering (with no fill], and hence a minimum fill ordering. But for
general graphs, a minimum degree ordering may not be a minimum fill ordering. In
[251. Rose provides an example to show this. Indeed, his example is a graph associated
with a perfect elimination matrix; by definition, such matrices can always be ordered
so that they suffer no fill. However, a minimum degree ordering of this example will
create some fill from elimination. Recently. Hempel 1191 gives a graph example where
a minimum degree can generate fill that is more than a constant factor greater than
that given by a minimum fill ordering.

If we consider the k -by-k regular grid problem. a nested dissection ordering of it
[lo] is known to be optimal. It can also be regarded as a minimum degree ordering
with a special way of selecting nodes of minimum degree. In other words, a special
type of minimum degree ordering on the grid problem can be optimal. Unfortunately,
not all minimum degree orderings for the grid are optimal. More will be said about
this later in this paper when we consider tie-breaking strategies.

Degree Ordering

3. Development of Improvements to the Minimum Degree Algorithm

the eliniination graph
It is apparent from the description of Algorithm 3.1 that the transformation of

G := G,,

is central to the implementation of this algorithm. In general, this elimination step
creates fill among nodes adjacent to y . It is therefore necessary to have an efficient
representation of the resulting elimination graph to accommodate additional fill (either
implicitly or explicitly). Moreover, the degrees of nodes adjacent to y may change, so
that a re-calculation of their degrees is required in preparation for the next node
selection step. It has been recognized by researchers that this "degree update" is the
most time consuming step of the entire algorithm.

In this section, we discuss various methods that have been developed to improve
the performance of the basic minimum degree algorithm. They are presented in the
sequence in which they appeared in the literature. and in each instance. we t ry to
attribute the technique to those who first suggested them.

3.1. Mass Elimination

In their study of the minimum degree algorithm on finite element problems,
George and Mclntyre 1161 observe that in the elimination of a node y of minimurn
degree. often there is a subset of nodes adjacent to y that can be eliminated
immediately after y . This happens especially often in later stages of the elimination.
The next theorem contains the theoretical basis of their observation.

Theorem 3.1:
subset

If y is selected as the minimum degree node in the graph 6 , then the

Y = { z E Ad jG (y I degreeGy(z = degree, (y) - 1)

can be selected next (in any order) in the minimum degree algorithm.

- 5 -

Proof:
any node v f y , i t is clear that

We first show that any node z E Y is a node of minimum degree in Gy . For

d degreeG (v) . degreeG (y

Furthermore, by definition of the set Y and observation 2.2, we have

degreeGy(z 1 = degreeG (y 1 - 1

6 degreeG (v - 1 d degreeGy (v .

The theorem then follows by a repeated application of the same argument and the
observation that for any v E Y - { z 1,

degree (Gy)z (v = degreeGy (z - 1 .

Theorem 3.1 allows us to avoid some graph transformations and degree update
steps, since it provides a set of nodes of minimum degree that may be selected next.
Instead of having to perform the transformation G := Gy and the degree update. we
can eliminate nodes in Y u { y 1 simultaneously. This implies that the elimination
graph transformation and degree update need only be performed once for the whole set
instead of I Y u { y 1 I times. This will also save node selection time. We describe how
to identify Y in section 3.2.

To illustrate mass elimination, consider the actual application of the minimum
degree algorithm to the 5-by-5 grid. Figure 3.1 shows an intermediate stage after 14
nodes have been eliminated during the ordering (compared with the left ordering in
Figure 2.1). Nodes marked with ‘I* ‘I have already been eliminated. It is easy to verify
that the node y = 15 has minimum degree of 8 and the node z = 16 satisfy the
condition in Theorem 3.1. Therefore. { y .z 1 can be eliminated together.

* * * * *
20 21 22 14 15
* * 2 3 * *
* 18 24 25 *
* 17 * 19 *

Figure 3.1: An intermediate stage of the minimum degree ordering.

3.2. indistinguishable Nodes

The condition in Theorem 3.1 for mass elimination has 8 simple equivalent
property. As before, let y be a node of minimum degree in G and z E AdjG (y). By
the nature of the elimination graph transformation,

A d j G y (z) = (A d j G (y) U A d j G (z l) - { y . z } .

- 6 -

"only if" part: Let degreeGy(z = degreeG (y - 1. We first show that

A d j ~ (z U { y 1. Assume for contradiction that there exists a node
x E Ad j G (2 - A d j G (y). Then we have

A d j ~ ~ (z

u { s 1 GAdjG (y

(A d j ~ (y hJAdjG (2 1) - { y .Z 1 .
~ (~ d j ~ (y) - { z I) U{n:I.

IIowever. y is selected to be a node of minimum degree so that the two sets must be
the same.

Together with Theorem 3.1. we note that the equivalent property in Theorem 3.2
can be used to identify nodes for mass elimination. We now show that i t can also help
in reducing the number of degree updates. Formally, we say that two nodes u and v
are indistinguishable in G [141 if

t l d j &) U C U I = A ~ ~ ~ (v I U C V I .
Sometimes the set AdjG (u u { u 1 is referred to as the neighborhood set of u (see for
example the book by Golumbic [181). So. two nodes with identical neighborhood sets
are indistinguishable. As shown in [141. this property is preserved under elimination
graph transformation.

Theorem 3.3:
in G,.

If two nodes are indistinguishable in G , they remain indistinguishable

It is obvious that if two nodes are indistinguishable. their degrees must be the
same. Theorem 3.3 says that if two nodes become indistinguishable a t some stage of
elimination. they will have identical neighborhood sets (and hence the same degree)
thereafter. Furthermore. Theorems 3.1 and 3.2 imply that they can be eliminated
together whenever one of them is picked for elimination.

Therefore. as far as the minimum degree algorithm i s concerned. indistinguishable
nodes can be merged together and treated as one. In this way, we need only to
consider one representative from each group of indistinguishable nodes. In the
literature. these representative nodes have been referred to as supernodes.
supervariables 161. and prototype nodes [71.

The advantage of using indistinguishable nodes should be clear. We need to
perform the degree update only on the representative nodes. This reduces the
operating size of the current elimination graph in terms of both nodes and edges.

To illustrate this notion, consider the stage as given in Figure 3.1. The remaining
11 nodes can be divided into 5 groups of indistinguishable nodes, namely:

{lS. 16)
{17. 181
19.251

I20.211
(22, 23,241.

In effect, we are now working on a graph with 5 (super) nodes rather than with 11
nodes.

3.3. Representation of Elimination Graphs

As noted earlier, a compact and eflicient representation of the sequence of
elimination graphs is crucial to the overall performance of the minimum degree
ordering algorithm. The elimination graph transformation "G := G, " involves both
deletion and addition of edges. In other words, the number of edges in the elimination
graph may either increase or decrease depending on how the nodes adjacent to y are
connected. The representational scheme must be able to accommodate such changes.

In 1972, Speelpenning [271 uses a generalized element approach to consider the
elimination process on mesh problems arising from the finite element method. Using
this view, we can interpret each elimination graph as a collection of cliques or
generalized elements. Indeed, the original graph with IE I edges can be regarded as one
with I E I cliques, each consisting of two nodes (or equivalently an edge).

This not only gives a conceptually different view of the elimination process, but
also provides a compact scheme to represent the elimination graphs. The advantage of
this representation in terms of storage is based on the following observations.

Let { K l , K2, . . . , Kq } be the set of cliques for the current graph G . Assume that
y is a node of minimum degree selected for elimination. Let { K s l , . , . , K s t] be the

subset of cliques to which y belongs. Then the elimination graph transformation
amounts to:

1)

2)

the removal of the cliques Ksl, . . . , Kst from {K1, KZ, . . . ,K,):
the addition of the new clique:

K = (Ksl u . * * UKSt 1 - IyJ

into the clique set.

The next theorem is obvious and i t is the basis of the advantage of this
generalized element representation scheme.

t

Theorem 3.4: IK I < lKSl I .
i =1

This theorem says that in using the generalized element approach for the
representation of the sequence of elimination graphs, the amount of storage required
will never exceed the amount needed to represent the original graph. The storage
requirement to carry out the minimum degree algorithm is therefore known
beforehand in spite of the rather dynamic nature of the elimination process. An
economical representation of the structures has an added advantage of reducing
processor time in their manipulations.

The use of the generalized element storage scheme appears in the Harwell code
MA27 [SI. the Waterloo Sparse Matrix Package (SPARSPAK) [151. and the Yale Sparse
Matrix Package (YSMP) [71. This representation technique has been referred! to as a
generalized element model. superelements [6, SI. and the quotient graph model [l2].

- 8 -

Apparently. the developers of YSMP were the first to adopt this approach. Both
the Harwell code and YSMP use linked lists to implement the set of generalized
elements. In the SPARSYAK implementation, linked lists of subarrays are used to take
advantage of the initial data representation of the structure of the given matrix.

We again use the example in Figure 3.1 to illustrate this generalized element
approach. At this point. the elimination graph has four cliques:

(15. 16, 19, 22, 23. 24. 2S}
{ 15, 16, 20, 21, 22)

{17, 18, 20, 21, 22. 23, 24)
(17. 18. 19. 24, 25)

Upon the elimination of the nodes { 1.5, 16} (by mass elimination), it is easy to see that
there will be three cliques left and they are:

[19. 20, 21, 22, 23, 24, 2.5)
(1 7 . 18,20, 21, 22.23,24}

{17. 18, 19, 24. 25)
Notice that the amount of storage required is less than before.

3.4. Incomplete Degree Update

The notion of indistinguishable nodes in section 3.2 can be regarded as an
extension of the condition used for mass elimination. The use of indistinguishable
nodes helps not only a t elimination but also at the time of degree update. By merging
indistinguishable nodes together. we need only to recompute the degrees of the
representatives. Here, we consider yet a further generalization, which was first used in
the YSMP implementation [7]. This technique speeds up the minimum degree
algorithm by avoiding the degree computation for nodes that are known not to be
minimum degree.

Following [7], given two nodes u and v in the graph G , the node v is said to be
outmatched by u if

A direct consequence of this condition is that degreeG (u < degreeG (v 1. More
importantly, this property is preserved under elimination graph transformation [21].

Theorem 3.5: If the node v is outmatched by u in G , it is also outmatched by u in
the graph G, .

Corollary 3.6:
node it can be eliminated before v in the minimum degree ordering algorithm.

If a node v becomes outmatched by u in the elimination process, the

An important consequence of Corollary 3.6 is that if v becomes outmatched by u
at some stage during the elimination, it is not necessary to update the degree of v until
the node u bas been eliminated. In the case of the indistinguishable property, degree
update is saved since some degrees can be deduced from the representatives. Here,
using the outmatched property, redundant degree updates are skipped for those nodes
which will not participate in the next round of minimum degree selection.

Again using the example in Figure 3.1, we note that the nodes in (22.23.24) are
all outmatched by the remaining nodes in { 15,16,17,18.1~,20,21,25}. In other words,
it is unnecessary to recompute the degrees of nodes 22, 23. and 24 until all others have
been eliminated. This is indeed a very powerful technique in improving the
performance of the ordering algorithm.

- 9 -

3.5. Element Absorption

The technique of element absorption was first proposed by Duff and Reid in [6].
This idea can be most easily explained in terms of the generalized element approach
described in section 3.3. Recall that this approach provides a compact representation of
elimination graphs by storing cliques rather than edges. Let {Kl, Kz, . . . , Kq } be the
set of cliques for the current graph G .
Theorem 3.7: If K, ‘ZKt for some s and t , then the graph G can be represented by
the clique set:

{Kp K z , . . . ,KJ - K,
In Theorem 3.7, the clique K, can be viewed as being absorbed by the clique Kt .

The technique of element absorption is to remove any detected clique redundancy in
the representation. Reducing the number of cliques will speed up the ordering process
since less overhead in manipulating the set of cliques is involved.

A good example to illustrate element absorption is the star graph and its variants.
Consider a graph with 8 nodes and its structure is given by the following set of four
cliques:

{l, 5)
(2.5.61

(3. 5 .6 . 7)
(4 .5, 6 , 7.81.

After the elimination of the nodes 1, 2 and 3 (in that order by the minimum degree
algorithm). the technique of element absorption reduces the number of cliques to only
one: namely, (4, 5. 6, 7. 8). The new cliques formed (51. f5.6). and (5.6, 7) after the
elimination of nodes 1. 2 and 3 respectively can all be absorbed into the clique {4, 5. 6,
7, 8) . For larger versions of this example, a great reduction in degree update time can
be achieved.

3.6. Multiple Elimination

The incomplete degree update described in section 3.4 can also be regarded as a
technique using delayed degree update. The enhancement of multiple elimination
proposed by Liu 1211 extends this idea of delaying the degree update. Instead of
performing a degree update step after each minimum degree node selection and
elimination graph transformation, the technique of multiple elimination postpones the
degree update step to a later stage.

The basis for multiple elimination is quite simple. It makes use of the
observation that in the elimination of the node y from the graph G . the structure
associated with nodes not in A d j ~ (y remains unchanged. The idea is to suspend the
degree update for nodes in AdjG (y and select a node with the same degree as y in the
remaining subgraph G - (A d j ~ (y u { y 1 >. This process is repeated until there are no
nodes in the remaining subgraph with degree degreeG (y >. A degree update step is then
performed.

In essence. before each degree update step. an independent set of nodes with
minimum degree is selected. The fact that the set is independent allows the delay of
degree update until the entire set is determined and eliminated. As noted in [21]. this
modification does not always result in a genuine minimum degree ordering, but it very
rarely produces an ordering that is inferior to that provided by the “true” minimum
degree algorithm. Indeed, the quality of the resulting ordering is maintained while the
execution time of the ordering is reduced.

- 10 -

To understand multiple elimination, we consider the 5-by-5 grid in Figure 3.2,
where 8 nodes have been eliminated. As before, nodes marked with "*' have already
been eliminated. At this stage, the minimum degree is 5 . The set (9. 10. 11, 12) forms
an independent set with degree 5. (Note that {15, 17, 19, 20) and (12. 15, 20) are two
other different independent sets with degree 5) . By eliminating them all together
before a degree update helps to reduce the update time. We need to update the degree
of nodes i n

(13. 14, 15. 16. 17, 18, 19, 20, 21, 22. 24, 25)
only once at the elimination of (9. 10, 11, 12}. On the other hand, using the
conventional eliminate-update approach, the nodes in {l5, 16. 17. 18, 19, 20. 21. 25)
would have to be updated twice during the course of eliminating the nodes 9. 10, 11.
12 in four separate steps.

* * 1 1 * *
20 21 22 16 15
10 14 23 13 9
* 18 24 25 *
* 17 12 19 *

Figure 3.2: An intermediate stage of the minimum degree ordering.

3.7. External Degree

In [21]. Liu suggests the use of external degree instead of true degree in the
minimum degree algorithm. In the conventional scheme, the degree used is the number
of adjacent nodes in the current elimination graph. By the external degree of a node.
we mean the number of nodes adjacent to it that are not indistinguishable from itself.

The motivation comes from the underlying reason for the success of the
minimum degree ordering in terms of fill reduction. Eliminating a node of minimum
degree implies the formation of the smallest possible clique due to elimination. Since
we are using the technique of mass elimination (section 3.1). the size of the resulting
clique after mass elimination is the same as the external degree of nodes eliminated by
the mass elimination step. For example, in Figure 3.1, since nodes 15 and 16 are
indistinguishable. the external degree of node 15 is 7 (and its true degree is 8).
Experimental results in [21] show that using external degree rather than true degree
yields a reduction in the number of nonzeros in the factor matrix of 3 to 7 percent for
the grid model problem.

4. Timing Results of Various Improvement Techniques

So far in the literature, there has been no formal analysis cf the time complexity
of the minimum degree ordering algorithm. Such an analysis appears to be very
dificult. and will be further complicated by t h e various enhancements to the basic
scheme that have been described in the previous section. As parrial compensation for
the lack of a theoretical analysis, in this section we provide some timing statistics for
the various improvement techniques. Our objective is to illustrate to the reader the
very substantial gains in efficiency that these enhancements provide. We use the
minimum degree ordering algorithm developed by Liu [21], which is now incorporated
in SPARSPAK [15]. In order to illustrate the effectiveness of the various techniques.
we mask off each improvement strategy in the basic code and obtain timing results.

- 11 -

Off -diagonal
Factor Nonz Minimum Degree Algorithm Version

In all the experiments, the internal data structure to represent elimination graphs
is the quotient graph scheme described in 1121. Fixing the data structure allows us to
gauge the importance of each improvement technique on the algorithm. Using a
different technique for representing the elimination graphs, such as generalized
elements or linked lists, would undoubtedly change the absolute times reported.
However, we do not think the relative ranking of the various techniques, in terms of
their effectiveness in reducing execution time, would be changed significantly.

We choose as our test problem the 180-by-180 regular grid model problem
corresponding to the use of a nine-point difference operator. For this matrix example,
the number of unknowns is 32,400 and the number of off-diagonal nonzercis in the
original matrix is 128,522. We first note that for this particular example, the quality
of the resulting minimum degree ordering using external degree is better than that
with true degree in terms of fill reduction. The numbers of off-diagonal nonzeros in
the Cholesky factors are given by:

Ordering
Time

External Degree 1,180,771
True Degree 1.273.X7

Md#?
kd%Q
Md#3
M d M
Md#5
Md#S

To make a uniform comparison, we used external degree for all the experiments
reported hereafter. In Table 4.1, we have tabulated the number of off-diagonal
nonzeros in the Cholesky factors and the amount of time in CPU seconds on L SUN
3/50 for each version of the minimum degree algorithm. In [Z, page 51 and [3, page
10.51, Duff provides some timing statistics of various minimum degree ordering
implementations between the period 1970 to 1981. Our timing results here are given
in correspondence with each enhancement technique and can be regarded as
supplements to Duff's statistics.

Final minimum degree 1.180.771 43.90
Md#1 without multiple elimination 1,374,837 57.38
Md#2 without element absorption 1,374,837 56.00
Md#3 without incomplete deg update 1.3 74.837 83.26
Md#4 without indistinguishable nodes 1,307.969 183.26
Md#5 without mass elimination 1,307,969 2289.44

Table 4.1: Statistics on various versions of minimum degree algorithm.

It should be emphasized that the effectiveness of each technique in reducing the
ordering time is problem dependent. Here. we have simply used the regular grid as an
example for illustration. The version "Md#l" is tho current version of the minimum
degree ordering routine in SPARSPAK. "Md#6" represents the basic scheme with no
enhancement other than the use of clique representation (section 3.3). That is, it is
almost the same ac the original algorithm as described by Tinney and Walker [28] or
by Rose [251. except that external degrL.e is used. We did not optimize the codes for
versions "Md#%Md-#6" , but rather simply commented out the part associated with the
enhancement in vcAsion "Md#l". We do not believe that such optimization would
change tho numbers in any significant way.

From Takk 4.1, there is an overall reduction of ordering time by a factor of more
than 50. Indeed. the saving has not even included the possible reduction due to the use
of sonx generalized element representation.

- I Z -

Another aspect worth mentioning is the number of off-diagonal nonzeros in the
Cholesky factors. For this example, the final version "MI)#l" produces an ordering
with 1070 fewer nonzeros than that provided by those with some of the enhancements
removed. This suggests that Jiu's multiple elimination technique has an important
effect on the quality of the ordering produced by the algorithm, in addition to reducing
its the execution time. We shall return to this point in the next section.

A final point to note is that the reduction in the number of nonzeros in the factor
matrix of 10% will lead to a much larger relative reduction in the numerical
factorization time. We provide some experiments in the next section to illustrate this
fact.

5. On Tie-Breaking Strategies

5.1. A n Example: Regular Grid

Let A be a matrix associated with the k - b y 4 regular grid. It is known that the
best ordering on A will yield a Cholesky factor with a t least 0 (k log&) nonzeros
[20]. Furthermore, it is shown by George [lo] that a nested dissection ordering on the
grid is one such optimal ordering. Nested dissection can be viewed as a minimum
degree ordering with a perfect tie-breaking strategy for the grid.

On the other hand. it has been a long outstanding question as to how bad a
minimum degree ordering can be for the grid problem. Or, to phrase the question
differently, can the minimum degree algorithm produce an ordering for A for which
the resulting Cholesky factor has more than 0 (k 2 log$ nonzeros (in the order of
magnitude sense)? This problem can be interpreted as a search for an imperfect tie-
breaking strategy for the minimum degree algorithm on the grid. Recently. Berman
and Schnitger have devised one such tie-breaking scheme [%I). yielding an ordering for
which the Cholesky factor is shown to have 0 (k

For the regular grid, there is therefore a wide class of minimum degree orderings,
ranging from the optimal nested dissection ordering to the ordering by Berman and
Schnitger. This shows the significance of choosing an effective tie-breaking strategy for
the minimum degree algorithm. In the next subsection, we further illustrate its
significance by considering a number of existing implementations of the minimum
degree ordering.

nonzeros.

5.2. Current Implementations: Random Tie-breaking

Perhaps the most well known implementations of the minimum degree algorithm
are those found in the Harwell MA27 code [51, the Waterloo SPARSPAK package [15].
and the Yale sparse matrix package (YSMP) [71. They incorporate most of the
enhancements described in section 3. It i s not our objective here to compare the
relative execution speed of these three implementations. Instead, we want to illustrate
the practical importance of having an effective tie-breaking strategy.

In some sense. Liu's multiple elimination technique [21] provides a limited form
of tie-breaking for the minimum degree algorithm. It forces the algorithm to search
for a maximal set of independent minimum degree nodes before a degree update is
performed. Other than this. none of the three implementations (Harwell. SPARSPAK.
YSMP) has incorporated any tie-breaking strategy. The selection of the next minimum
degree node from the candidate set is, in effect. random, since the initial order1:ig
essentially determines the way ties are resolved.

- 1 3 -

Initial Ordering

Order Factor Factor

Time Nonz Opns.

115.2 1,605,697 132.OM

43.9 1,180,771 62.2M

49.0 1.241.967 71.9M

To illustrate this, we again use the 180-by-180 grid problem. A random
permutation is applied to rearrange the rows and columns before passing the matrix to
the minimum degree ordering routine. In other words, the algorithm is ordering a
different form of the same matrix problem. This is repeated ten times and we have
tabulated in Table 5.1 the best and the worst orderings for all three implementations.
For a basis for comparison, we have also included the case when the matrix problem is
presented in a row-by-row initial ordering. In the table, ‘Factor Nonz” is the number
of off-diagonal nonzeros in the resulting Cholesky factor, while “Factor Opns.” is the
number of multiplicative operations to perform the factorization (in millions of
operations).

Best Min Deg Ordering Worst Min Deg Ordering

Order Factor Factor Order Factor Factor
Time Nonz Opns. Time Nonz Opns.

116.2 1,731,133 144.6M 1163 1,821,235 174.9M

58.5 1.~67.324 1 i s . 0 ~ 58.8 1,651,998 139.7M

52.9 i , n n , e 9 5 139.5M 53.3 1.868.010 191.3M

Minimum
Degree
Code

Harwell
Sparspak
YSMP

Ten Random Initial Orderings
Ro w-by -row

Table 5.1: Best and worst minimum degree orderings from
ten runs on the 180-by-180 grid with different initial orderings.

Results in Table 5.1 demonstrate that a random form of tie-breaking (as basically
used by the three implementations) is clearly not enough to ensure a good quality
ordering from a practical standpoint. Indeed, among the three YSMP minimum degree
orderings tabulated, there is a difference of about 50% in terms of factor matrix
nonzeros and over 160% in terms of factorization operation counts. The difference is
even more dramatic among all the orderings in Table 5.1. The worst one requires more
than three times as many arithmetic operations as that required by the best ordering.
Note that they are all variants of the same basic minimum degree algorithm on the
same matrix problem. This illustrates the practical importance of an effective tie-
breaking strategy for the minimum degree algorithm.

It should be emphasized that the ordering time used by the minimum degree
algorithm is negligible when compared to the actual numerical factorization time.
Even a small percentage reduction in factorization operations would easily offset a
relatively large increase in ordering time that might result from adding sophisticated
tie-breaking strategies to the algorithm. To illustrate this, we actually performed the
numerical factorization and triangular solution of the 180-by-180 grid problem using
the best ordering from Table 5.1 (SPARSPAK minimum degree with row-by-row
initial ordering). On a SUN 3/50 the numerical factorization requires 1847.08 CPU
seconds (about 62.2 million arithmetic operations) and the forward and backward
solution requires 78.52 seconds. The ordering time of 43.9 seconds is therefore an
insignificant fraction of the overall cost.

For the sake of comparison. we also solved the same linear system using the
worst minimum degree ordering from SPARSPAK. The numerical factorimtion
required 4529.24 CPU seconds for the 139.7 million operations. This strongly .svggests
that it is important to devise egective tie-breaking strategies for reducing fill (and
operations). The potential pay-off in the subsequent numerical phase can be
tremendous.

- 1 4 -

5.3. Tie-break ing based o n Preordering

The experimental results in section 5.2 suggest that significant gain in terms of
both storage and arithmetic operations can be achieved if more care is exercised in
selecting nodes of minimum degree. One idea is to fix the initial ordering by
rearranging the adjacency structure before passing it to the ordering routine. Of
course. the preordering strategy itself should not be sensitive t o the initial ordering.

Much more research is required to understand the impact of preordering.
However. we shall provide some preliminary experimental results to indicate that this
approach can be promising. Our results will be based on the SPARSPAK minimum
degree ordering routine. From Table 5.1, the row-by-row initial ordering appears to be
better than a random initial ordering on the 180-by-180 grid for SPARSPAK.

'I'his suggests the use of some form of profile ordering as a preordering method.
We used the reverse Cuthill-McKee ordering as implemented in [14] for our purpose.
The overall strategy can then be viewed as follows: - 9

A d A = Pr A P,? 4 P A PT
reverse Cuthill-McKee minimum degree

where P,. is the reverse Cuthill-McKee ordering orkthe given matrix A , and P is the
minimum degree ordering on the permuted matrix A

This initial reordering has a remarkable effect on the 180-by-180 grid problem.
In this case, the resulting minimum degree ordering is the same irrespective of how we
rando tnly permute the original matrix A . The intermediate reverse Cuthill-McKee
ordering removes the randomness in the row/column arrangement before presenting
the matrix to the minimum degree algorithm. For this problem, the number of off-
diagonal nonzeros then becomes 1,205,768 and the number of factorization operation
count is about 67.6 million arithmetic operations (irrespective of how the matrix is
initially ordered). This compares quite favorably even with the best minimum degree
ordering in Table 5.1.

= Pr AP;.

6. Odds and Ends

6.1 Implementational Issues

The actual performance of a minimum degree code depends quite heavily on its
implementation. Here we simply provide a list of relatively important issues that one
encounters during the implementation of the minimum degree algorithm with the
various enhancements as described in section 4:

a) how to represent degrees,

b)

c)

d)
e) how to recompute degrees.

how to implement elimination graphs using the generalized element model,

how to detect and store indistinguishable nodes,

how to detect and store outniatched nodes,

'These design issues are crucial to the overall performance of the ordering
algorithm. Interested readers can consult the Harwell MA27 code, the Waterloo
SPARSPAK and the Yale USMP programs to see how these issues are dealt with in each
of these implementations.

- 15 -

It may be worthwhile to point out one major difference among these three
implementations. Both MA27 and YSMP use linked lists in the representation of the
sequence of elimination graphs for the generalized element model. By Theorem 4.4, the
amount of storage required will never exceed the storage requirement for the linked
list representation of the original given graph. On the other hand, SPARSPAK uses a
quotient graph storage scheme as described in 1121, whereby the ordering is performed
" in-place" within the given adjacency structure representation. Higher overhead in
manipulating the structure is required in exchange for a reduction of approximately
50% in storage requirements.

6.2. Adaptation to Some Applications

The minimum degree algorithm (with the enhancements) is a general purpose
ordering scheme that can be applied to any symmetric matrix structure (or undirected
graph). It is interesting to note that in some situations. it may be advantageous to
tailor the general minimum degree algorithm to specific applications. In this section,
we shall mention two such applications.

Consider computing the least squares solution of the large m by n sparse system
A n X b ,

where m & and A has full rank. It is well known that such a p oblem can be solved

via the orthogonal decomposition of the matrix A into Q , where Q is an

orthogonal matrix and R is upper triangular. The solution to the least square problem
above is known to be equivalent mathematically to solving the normal equations

A T A x = A T b .

PI
Based on this connection. George and Heath [111 provide an overall scheme to

solve the sparse system A x = b . In particular. they suggest solving the equivalent
system:

where P is a minimum degree ordering of the symmetric matrix A T A . This is
motivated by the observation that the factor K is mathematically the same as the
Cholesky factor of the matrix A T A so that using a minimum degree ordering of A T A
will result in a sparse factor R .

To use the minimum degree algorithm in this setting, one can form the structure
of the matrix M = A T A and then apply the ordering algorithm to M. A natural
question is whether one can adapt the algorithm to determine a minimum degree
ordering for M directly from the structure of A We first note that the structure of
each row of A corresponds to a clique in the graph associated with M . Therefore we
can use the generalized element approach t o represent M as a sequence of cliques
consisting of the rows of A . Since this is an intermediate data structure used by the
minimum degree algorithm, one can easily adapt the algorithm by allowing a set of
cliques as the initial graph representation. This will save the extra step of forming the
graph structure of the matrix M = A T A explicitly. Adapting the algorithm so that it
efficiently finds an ordering of M . given A , is also important in the context of solving
sparse indefinite systems using Gaussian elimination with partial pivoting 1171.

A different application is in the numerical solution of sparse linear systems
arising from the finite element method. The structure of the matrix frDm such
systems is governed by the underlying finite element mesh. The nodes associated with
each element form a clique.

(A P) (P T x) zb.

- 16 -

In practice. the matrix structure is often provided in terms of the elements; that
is, i t is given in the form of node membership in each element. Of course, the
adjacency structure of the matrix can be generated based on this element-node
membership information and then passed to the minimum degree ordering. An
alternative is to perform the ordering directly on the element-node information
without forming the adjacency structure.

It is interesting to note that this is exactly the same situation as in the case of the
sparse least squares problem. Consider the structure of the matrix B with each row
corresponding to an element of the finite element mesh and each column to a node.
The structure of each row of R is given by the node membership of the associated
element. Then. i t can be verified that the structure of the finite element matrix is the
same as the structure of R T B . Therefore, a minimum degree ordering of the finite
element matrix can be obtained by performing the ordering on R in the same manner
as the sparse least squares problem.

In the use of higher order
elements. the representation of the finite element matrix structure implicitly by B
usually requires significantly less storage than the explicit adjacency structure
representation. For example. consider the k -by-k grid where each square/element is
associated with 9 variablednodes (with one interior node, one a t each corner, and one
along each side). Using the adjacency structure representation, we need storage
amounting to about 46 k 2 items. On the other hand. the storage requirement for the
structure of B is only 16 k2.

This approach has another important advantage.

7. Future Xesearch Directions

The various enhancements to the basic minimum degree ordering algorithm over
the past fifteen years have made the algorithm a truly practical approximate solution
to the NP-complete minimum fill ordering problem 1291. The ordering time has been
drastically reduced, as our example with an over SO-fold reduction in ordering time in
Table 4.1 illustrates. This makes the ordering time a small fraction of the overall
solution time for a given large sparse problem.

In the authors' opinion, the next significant advance of this algorithm will
probably be the development of effective and practical tie-breaking strategies in the
selection of minimum degree nodes. Given the possible variation in the quality of the
orderings as exemplified by experimental results in Table 5.1, significant reduction in
factorization storage requirement can be attained by having a good tie-breaking
strategy. More importantly, reducing the number of nonzeros in the Cholesky factor
implies an even more substantial reduction in operation counts (and hence factorization
time). Indeed. the potential gain makes i t apparently very worthwhile to invest more
time in the ordering phase to determine a better quality ordering.

In section 6. we have offered a "partial" solution to the tie-breaking problem
based on preordering. The reverse Cuthill-McKee profile ordering is used to pre-order
a matrix before the minimum degree algorithm i s applied. Some success in
"stabilizing" the overall. ordering phase is reported in section 5.

Another promising avenue for tie-breaking strategies is based on the notion of
independent sets. As pointed out in section 5 , Liu's multiple elimination technique
[211 provides a form of tie-breaking by selecting a maximal independent set of nodes
of nninimum degree. An apparently better strategy would be to select a t each stage a
maximum independent set of minimum degree nodes. In view of the NP-completeness
of this maximum independent set problem, we must instead rely on practical
approximate solutions to find a "nearly" maximum independent set from the set of
minimum degree nodes. Some of these ideas are currently under investigation by the
authors.

- 17 -

Another related problem of practical interest is to generate a fill-reducing order-
ing appropriate for parallel elimination. Some recent progress in this area can be found
in [22]. In terms of the minimum degree algorithm, we are interested in finding a suit-
able tie-breaking strategy so that the resulting minimum degree ordering is appropriate
for parallel elimination. nh

We have tried the following strategy. At a given stage of the ordering, let S be
the set of nodes already eliminated. If there are more than one node in the unelim-
inated set with the current minimum degree. we select a node y with the smallest con-
nected component containing y in the subgraph of S u { y). Intuitively, we t ry to
enlarge the smaller components of the subgraph defined by S within the guideline of
the minimum degree algorithm. Experiments on this (and other slight variants of this)
tie-breaking strategy were tried. However. in terms of parallelism, the resulting order-
ings are not significantly different from those reported in [22].

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

I. S. DUFF, “MA28 - A set of FORTRAN subroutines for sparse unsyrnmetric
linear equations,” Technical Report AERE R-8730, Harwell. 1977.

I. S. DUFF, “A sparse future,” in Sparse Matrices end their Uses, ed. I.S. Duff. pp.
1-9. Academic Press, 1981.

I. S. DUFF, “Research directions in sparse matrix computations.” in Studies in
Numerical Analysis, Volume 24, ed. G.H. Golub. pp. 83-139, Math Association of
America, 1984.

I. S. DUFF AND J. K. REID. “A comparison of sparsity orderings for obtaining a
pivotal sequence in Gaussian elimination.” JIMA. vol. 14, pp. 281-291, 1974.

I. S. Dum AND J. K. REID. “MA27 - A set of FORTRAN subroutines for solving
sparse symmetric sets of linear equations,” Report AERE R 10533, Harwell, 1982.

I. S . DUFF AND J. K. REID. “The multifrontal solution of indefinite sparse
symmetric linear systems.” TOMS. vol. 9. pp. 302-325, 1983.

S. C. EISENSTAT. M. C. GURSKY. M. €3. SCHULTZ, AND A. H. SHERMAN, “The Yale
Sparse Matrix Package, I. The symmetric code.” Internat. J . N u m r . Meth. Engrg..

§. C. EISENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, “Applications of an element
model for Gaussian elimination.” in Sparse Matrix Computations. ed. J. R. Bunch
and D. J. Rose, pp. 85-96. Academic Press, 1976.

S. C. EISENSTAT, M. €3. SCHULTZ. AND A. H. SHERMAN. “-Algorithms and data
structures for sparse symmetric Gaussian elimination.” SISSC. vol. 2. pp. 225-
237, 1981.

J. A. GEORGE. “Nested dissection of a regular finite element mesh.” SINUM, vol.

J. A. GEORGE AND M. T. HEATH. “Solution of sparse linear least squares problems
using Givens rotations,” LAA. vol. 34, pp. 69-83, 1980.

J. A. GEORGE AND J. W. H. LIU. “A fast implementation of the minimum degree
algorithm using quotient graphs.” TOMS. vol. 6, pp. 337-358, 1980.

J. A. GEORGE AND J. W. H. LIU. “A minimal storage implementation of the
minimum degree algorithm,” SINUM. vol. 17, pp. 282-299, 1980.

J. A. GEORGE AND J. W. H. LIU. Computer Solution of Large Sparse Positive Definite
Systems, Prentice-Hall Inc.. Englewood Cliffs, N.J.. 1981.

VOI. 18. pp. 1145-1151, 1982.

10, pp. 345-363, 1973.

- 18 -

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. A. GEORGE, J. W. H. LIU. AND E. NG, “User guide for SPARSPAK. Waterloo
Sparse Linear Equations Package,” Res. Rep. CS-78-30 (revised 1980). DCS.
University of Waterloo, Waterloo, Qnt. Canada, 1980.

J. A. GEORGE AND D. MCINTYRE. “On the application of the minimum degree
algorithm to finite element systems.” SINUM, vol. 15, pp. 90-112, 1978.

J. A. GEOKGE AND E. NG. “Symbolic factorization for sparse Gaussian elimination
with partial pivoting,” SISSC. 1987. (to appear)

M. (2. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
1980.

C. HEMPEL, Mirtirnurn degree can miss by more than a constant factor, DCS.
Cornel1 University, 1985. Unpublished manuscript

A. J. HOFEMAN. M. S. MARTIN, AND 1). J. ROSE, “Complexity bounds for regular
finite difference and finite element grids,” SIAM J . Numer. Anal., vol. 10. pp.

J. W. H. LIU. “Modification of the minimum degree algorithm by multiple
elimination.” TOMS, vol. 11, pp. 141-153. 1985.

J. W. H. IXJ. “Reordering sparse matrices for parallel elimination.” Tech. Report
CS-87-01, DGS. York University, 1987.

H. M. MARKOWITZ, “The elimination form of the inverse and its application to
linear programming.” Management Sci., vol. 3 , pp. 255-269. 1957.

D. J. ROSE, “Symmetric elimination on sparse positive definite systems and
potential flow network problem.” Ph.D Thesis, Harvard University. 1970.

D. J. ROSE, “A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations,” in Graph Theory and Computing. ed. R.
Read. pp. 183-217. Academic Press, 1972.

P. BERMAN AND G. SCHNITGER. On the performance of the minimum degree
heuristic for Gaussian elimination, Dept. of Computer Science. The Pennsylvania
State University, 1987. Unpublished manuscript

B. SPEELPENNING, “The generalized element method,” Report UIUCDCS-R-78-946.
DCS. Univ. of Illinois at Urbana-Champaign, 1978.

w. F. TINNEY AND J. w. WALKER, “Direct solutions of sparse network equations
by optimally ordered triangular factorization.” Prm. IEEE. vol. 55. pp. 1801-
1809. 1967.

M. YANNAKAKIS, “Computing the minimum fill-in is NP-complete,” SIAM J . AZg.
C? Disc. Meth., vol. 2, pp. 77-79. 1981.

364-369, 1973.

- 19 -

ORNIJTM-10452

INTERNAL DISTRIBUTION

1.
2.
3.
4.

5-9.
10.

11-12.
13.

14-18.
19.
20.
21.
22.
23.
24.

E. Chu
J. B. Drake
E. L. Frome
G. A. Geist
3. A. George
L. J. Gray
R. F. Harbison
M. T. Heath
3. K. Ingersoll
F. C. Maienschein
T. J. Mitchell
E. C. Ng
G. Ostrouchov
C. H. nomine
S. Thompson

25-29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42-43.

R. C. Ward
M. A. Williams
D. G. Wilson
A. Zucker
Y. W. Dickson (Consultant)
G. 1-1. Golub (Consultant)
R. M. Haralick (Consultant)
D. Steiner (Consultant)
Central Research Library
K-25 Plant Library
ORNL Patent Office
Y-12 Technical Library/

Document Reference Station
Laboratory Records - RC
Laboratory Records Department

EXTlTRNAL DISTRIBUTION

44. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7. Germantown Building. U.S. Department of Energy, Washington, DC
20545

45. Dr. Robert G . Babb. Department of Computer Science and Engineering. Oregon
Graduate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

46. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State
University. University Park, PA 16802

47. Prof. Ake Bjorck. Department of Mathematics, Linkoping University, Linkoping
58183, Sweden

48. Dr. James C. Browne. Department of Computer Sciences. University of Texas,
Austin, TX 78712

49. Dr. Bill L. Buzbee, C-3, Applications Support & Research. Los Alamos National
Laboratory, P.O. Box 1663, Los Alamos, NM 87545

50. Dr. Donald A. Calahan. Department of Electrical and Computer Engineering,
University OF Michigan. Ann Arbor, MI 48109

51. Dr. Tony Chan. Department of Computer Science. Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

52. Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211. Research Triangle
Park, North Carolina 27709

53. Dr. Paul Concus. Mathematics and Computing. Lawrence Berkeley Laboratory,
Berkeley, CA 94720

54. Dr. Jane K. Cullum, IBM T. J. Watson Research Center. P.O. Box 218, Yorktown
Heights, NY 10598

- 20 -

55. Dr. George Cybenko, Department of Computer Science. Tufts University,

56. Dr. George J. Davis, Department of Mathematics, Georgia State University,

57. Dr. Jack J. Dongarra, Mathematics and Computer Science Division, Argonne

58. Dr. Stanley Eisenstat, Department of Computer Science, Yale University. P.0.

59. Dr. IIoward C. Elman. Computer Science Department. University of Maryland,

60. Dr. Albert M. Erisman. Roeing Computer Services, 565 Andover Park West,

61. Dr. Geoffrey C. Fox, Booth Computing Center 158-79. California Institute of

62. Dr. Paul 0. Frederickson. Computing Division, LOS Alamos National Laboratory.

63. Dr. Fred N. Fritsch, I,-300, Mathematics and Statistics Division, Lawrence

64. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State

65. Dr. Dennis B. Gannon. Computer Science Department. Indiana University,

66. Dr. David M. Gay. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

67. Dr. C. William Gear, Computer Science Department, University of Illinois,

68. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council. Building M-50. Room 344. Montreal Road, Ottawa, Ontario, Canada
k l A OR8

69. Prof. Gene H. Golub, Department of Computer Science. Stanford University,

70. Dr. Joseph F. Grcar. Division 8331. Sandia National Laboratories, Livermore. C h

71. Dr. Don E. Heller, Physics and Computer Scienct Department. Shell

72. Dr. Robert E. Huddleston, Computation Department, i nwrence Livermore

73. Dr. Ilse Ipsen. Department o f Computer Science. Yale Uni. a-sity. P.O. Box 2158

74. Dr. Harry Jordan, Department of Electrical and Cc mputer Engineering.

Medford, MA 02155

Atlanta, GA 30303

National Laboratory, 9700 South Cass Avenue, Argonne. IL 60439

Box 2158 Yale Station, New Haven, CT 06520

College Park, MD 20742

Tukwila. WA 98188

Technology. Pasadena, CA 91125

Los Alamos. NM 87545

Livermore National Laboratory. P.O. Box 808, Livermore, CA 94550

University, Raleigh, NC 27650

Bloomington, IN 47405

07974

Urbana. Illinois 61801

Stanford, CA 94305

94550

Development Co.. P.O. Box 481, Houston, TX 77001

National Laboratory. P.O. Box 808. Livermore, CA 94550

Yale Station. New Haven. CT 06520

University o f Colorado, Boulder. CO 80309

- 21 -

75. Dr. Linda Kaufman. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

76. Dr. Robert J. Kee, Applied Mathematics Division 8331. Sandia National

77. Ms. Virginia Klema. Statistics Center. E40-131. MIT, Cambridge. MA 02139

78. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street. Pasadena, CA
91101

79. Dr. Alan J . Laub. Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106

80. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle
Park, North Carolina 27709

81. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences. New
York University, 251 Mercer Street, New York. NY 10012

Vanderbilt University, Nashville, TN 37235

Street, Downsview. Ontario, Canada M3J 1P3

NY 14853

07974

Laboratories, Livermore, CA 94550

82. Dr. Michael R. Leuze, Computer Science Department. Box 1679 Station B,

83. Dr. Joseph Liu, Department of Computer Science, York University. 4700 Keele

84. Dr. Franklin Luk. Electrical Engineering Department, Cornel1 University, Ithaca.

85. Dr. Thomas A. Manteuffel. Computing Division, Los Alamos National

86. Dr. Paul C. Messina, Applied Mathematics Division. Argonne National

87. Dr. Cleve Moler. Intel Scientific Computers, 15201 N.W. Greenbrier Parkway.

88. Dr. Dianne P. OLeary, Computer Science Department, University of Maryland,

89. Maj. C. E. Oliver. Office of the Chief Scientist, Air Force Weapons Laboratory,

90. Dr. James M. Ortega. Department of Applied Mathematics, University of

91. Prof. Chris Paige. Basser Department of Computer Science, Madsen Building F09,

92. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe. A2

93. Prof. Beresford N. Parlett. Department of Mathematics. University of California.

94. Prof. Merrell Patrick, Department of Computer Science, Duke University,

95. Dr. Robert J. Plernmons. Departments of Mathematics and Computer Science,

Laboratory, Los Alamos, NM 87545

Laboratory, Argonne. IL 60439

Beaverton, OR 97006

College Park, MD 20742

Kirtland Air Force Base. Albuquerque. NM 87115

Virginia, Charlottesville. VA 22903

University of Sydney. N.S.W.. Sydney. Australia 2006

85284

Berkeley, CA 94720

Durham, NC 27706

North Carolina State University, Raleigh, NC 27650

- 22 -

96. Dr. John K. Reid, CSS Division. Building 8.9, AERE IIarwell. Didcot, Oxon,
England OX11 ORA

97. Dr. John R. Rice, Computer Science Department, Purdue University. West
Lafayette. IN 47907

98. Dr. Garry Rodrigue. Numerical Mathematics Group, T.awrence Livermore
Laboratory, Livermore, CA 94550

99. Dr. Donald J. Rose, Department of Computer Science. Duke University, Durham,
NC 27706

100. Dr. Ahmed 1-1. Sameh, Computer Science Department. University of Illinois,

101. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research

102. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic

103. Dr. Martin H. Schultz. Department of Computer Science, Yale University, P.O.

104. Dr. David S . Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway,

105. Dr. J,awrence F. Shampine, Numerical Mathematics Division 5642, Sandia

106. Dr. Danny C. Sorensen. Mathematics and Computer Science Division. Argonne

107. Prof. G. W. Stewart. Computer Science Department, University of Maryland.

108. Capt. John 1’. Thomas. Air Force Office of Scientific Research, Building 410,

109. Prof. Charles Van Loan. Department of Computer Science. Cornel1 University.

110. Dr. Robert G. Voigt. ICASE, MS 1 3 2 4 . NASA Langley Research Center,

11 1. Dr. Andrew B. White. Computing Division, Los Alamos National Laboratory,

112. Mr. Patrick H. Worley. Computer Science Department. Stanford University,

113. Dr. Arthur Wouk, A4rmy Research Oflice, P.O. Box 12211. Research Triangle

114. Dr. Margaret Wright. Systems Optimization Laboratory, Operations Research

115. Office of Assistant Manager for Energy Research and Development, Department

Urbana, IT. 61801

Department, Stanford University. Stanford, CA 94305

Institute. Troy, NY 12180

Box 2158 Yale Station, New Haven, c1‘ 06520

Beaverton, OR 97006

National Laboratories, P.O. Box 5800, Albuquerque, NM 871115

National Laboratory. 9700 South Cass Avenue, Argonne. IL 60439

College Park, MD 20742

Bolling Air Force Base, Washington, DC 20332

Ithaca. NY 14853

Hampton, VA 23665

Los Alamos. NM 87545

Stanford, CA 94305

Park, North Carolina 27709

Department, Stanford University, Stanford, CA 94305

of Energy. Oak Ridge Operations Office, Oak Kidge. TN 37830

116-146. Technical Information Center

