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ABSTRACT

This paper reconsiders the problem of determining the optimal
production path for a depletable natural resource. The classical
result of Hotelling is that the resource owner 1s indifferent
between producing and not producing when the net price of the
resource is increasing with the interest rate. However, the sharp
increases and decreases in oil price in the last decade illustrate
that the net price may not always increase with the interest rate.
When the net price is not increasing with the interest rate, the
Pontryagin Maximum Principle can be used to extend the classical
result to a problem with a bang-bang production schedule and to
problems with increasing extraction costs.

ix






1. INTRODUCTION

Since the seminal paper by Hotelling (1931), economists have known
that when the market is in equilibrium, the net price to an owner of a
depletable natural resource must increase with the interest rate. To quote
Solow (1974), "It is hard to overemphasize the importance of this tilt in
the time profile for net price. If the net price were to rise too slowly,
production would be pushed nearer in time and the resource would be
exhausted quickly, precisely because no one would wish to hold resources in
the ground and earn less than the going rate of return. If the net price
were to rise too fast, resource deposits would be an excellent way to hold
wealth, and owners would delay production while they enjoyed supernormal
capital gains."

However, the behavior of the oil market since 1974 illustrates that
the net price of a depletable natural resource can increase faster or
slower than the interest rate. Since 1974, a small group of producers have
caused two sharp increases in o0il price and one sharp decrease. The oil
market has not been in equilibrium and most producers have faced exogenous
prices.

In this paper, we calculate the optimal production path for an owner
of a depletable natural resource for the case where the market is not in
equilibrium and the net price is not increasing with the interest rate. We
shall begin with the case where the extraction costs are constant and
subsequently consider the case where the extraction costs increase with
cumulative consumption. We shall find that the Maximum Principle of
Pontryagin (1962) is a fruitful method for solving the problems. When the
price of the resource is exogenous, the optimal production path is bang-

-bang; that is, the resource owner is either at full production or at zero



production. The key decision for the resource owner is the switch time,
time, when to start or stop production. For our problem, the Hotelling
rule is the switching rule, rather than a forecast of the net price. Our

results are an extension of the work of Clark (1976).



I1. THE BASIC PROBLEM
Consider an owner of a finite stock of a depletable natural resource
who knows the future price (P(t)) for the resource and wishes to maximize
his profits. 1If his extraction costs are C, then his profit is P(t)-C. 1If
the owner uses a discount rate (r) to compare future profits to present
profits, then the objective of the resource owner is to maximize the

discounted value of his profits (J):

T
J -—-I [B(t) - €] q(t) e "F at (1)
0

where q(t) is the production rate for the resource,

We will assume that the production rate is bounded:
D(t) =z q(t) =2 0 , (2)

where D(t) is given and finite. Since the resource is exhaustible, we

assume that the owner's stock of the resource is finite:

T
QT) - j a(t) d& = Q% | 3)
0

The optimization problem for the resource owner is to find a
production rate [q(t)] that satisfies the conditions of Egs. (2) and (3)

and maximizes Eq. (1). We shall call this optimization problem the basic

problem.



We can obtain the solution of the basic problem from first principles.

Let ¢ be the discounted present value of the net price:

8(t) = [P(t) - C] e FF | (4)

Consider the case where § has the values displayed in Fig. 1; th=z is, 4
has two maxima and the first is larger than the second.

When should an owner of a finite stock of a depletable natural
resource sell the resource? He should sell the first unit when § is at a
maximum and he should sell additional units near the maximum until he
depletes his stock. 1If his stock of resource is large enough, he can pro-
duce during both maxima. For the case displayed in Fig. 1, the resource
owney has the following bang-bang decision rule: produce at full capacity
whenever # is greater than K and stop production whenever # is less than K.

For the values of #(t) plotted in Fig. 1, each value of K between the

maximum value of 4 and zero is the solution of the basic problem for a mix

of demand [D(t)] and total stock of the resource [Q*]. If the resource
owner has a small stock, then K should be near the maximum value of ¢. If
the owner has a large stock, then K can be near zero.

The quote from Solow (1974) suggests the following bang-bang produc-
tion rule: If the net price is increasing too slowly, produce now. If the
net price is rising faster than the interest rate, stop production. The
Solow rule concerns the rate of change of the net price, while our rule
concerns the level of the net price. If the net price is always increasing
more slowly than the interest rate, then § is monotonically decreasing and
both rules recommend production at full capacity. For the first maximum in

Fig. 1, Solow would not begin production until after the peak in the curve,
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Fig. 1. The Discounted Present Value of the Net Price for a Depletable
Natural Resource.



while we produce before and after the peak. If there were no limit on the
production rate, we would both produce all of our resource at the peak of
the curve.

Hotelling (1931) derived the equilibrium condition for Eq. (1) without
formally posing an optimization problem. The general solution of Eq. (1)
is bang-bang because the price is exogenous (see Clark [1976]). Most
economists have followed Hotelling (1931) in assuming that the price
depends on the production rate and time. The economic justification for
Eq. (1) is that the resource owner has a small share of the market and
cannot influence the market price. 1If all producers had the same values
for 6, then everyone would produce when ¢ was at a wmaximum and the price
would be driven down. Similarly, the production would be low when § was at
a minimum and the price would be driven up.

Although market equilibrium may require that the net price increase
with the interest rate, the time delays inherent in discovering and
developing a depletable natural resource may prevent the market from ever
reaching equilibrium. For the oil market, the price in 1981 was probably
too high, while the price in 1986 was probably too low.

Because the price is exogenous, the optimum solution to the basic
problem is bang-bang; when the price is right, the resource owner produces
as much as possible. The limit on production [Eq. (2)] is required to
guarantee a finite solution. How realistic is the limit on production?
Most mines or wells have an upper limit on production capacity. 1In most
cases, mines or wells are designed to operate for several years rather than
for days or weeks. In a later section, we will assume that the price

depends on the production rate and time.



We can attempt to solve the basic problem using the Calculus of
Variations [see Sagan (1969)]. Applying the Euler-Lagrange equation to the
problem, the partial derivative of the integrand of Eq. (1) with respect to
g{t) is a constant:

t

[P(t) - C] e F" =K, (5)
where K is a constant. Equation (5) may be rewritten:
P(t) - C =K e . (6)

Equation (6) 1s the fundamental result of Hotelling that the net price
increases with the interest rate.

Equation (6) 1Is a satisfactory solution of Hotelling'’s problem, in
which the price is a function of the production rate. However, Eq. (6) is
not a satisfactory solution to our optimization problem. Equation (6)
places a condition on P(t) [an exogenous input] and it does not help us
determine q(t). To find a bang-bang rule that will determine the

production rate, we will use the Pontryagin Maximum Principle.






I1I. THE PONTRYAGIN MAXIMUM PRINCIPLE

In this section, we will briefly introduce the maximum principle. A

full and rigorous presentation may be found in Pontryagin (1962). Consider

the optimal control problem of finding a control wvector [u(t)] that will

move an object from one point in state space [x(0)] to another point [x(T)]

and minimize a functional (J):
T
0
J = I £ Ix(t),u(t)] 4t . (7))
0

The laws of motion for the object can be written in the form of a system of

differential equations:

i
dx" _ glix,u] |, for i=1,..,n. (8)

dt

Note that the laws of motion and the integrand of the objective function

are autonomous; that is, they do not depend explicitly on time.

To solve the problem, we introduce a system of auxiliary variables [¢]

that satisfy the following equations:

fe-x ¢y, for i=0,1,..,n. 9)
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Using the auxiliary variables, we define a Hamiltonmian function [H] by:

n .
Hip,x,u] = 2 ), flix,u] . (10)
j:

We shall say that u(t) is an admissible control if it is piecewise

continuous for 0 < ¢t < T and its range is in a set U. Let M be the least

upper bound of the Hamiltonian with respect to u:

M[$,x] = sup H[¥,x,u] . (11)
uelU

The Pontrvagin Maximum Principle

let u be an admissible control. Then u is an optimal control if:
1. u maximizes H; that is, H{¢,x,u] = M[#,x], and

2. at the terminal time (T), $o(T) <= 0 and M{¥(T),x(T)] = 0.

Furthermore, P and M[y,x] are constant.

To solve an optimal control problem using the Pontryagin Maximum
Principle, we define the auxiliary variables and find the control that

maximizes the Hamiltonian.
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IV. SOLUTION OF THE BASIC PROBLEM USING THE MAXTMUM PRINCIPLE
For the basic problem, the control variable is the production rate,

q(t). The first state variable [x;] is the cumulative production, Q(t).

The Maximum Principle requires that the integrand of the objective function
be autonomous. To make the integrand autonomous, we introduce time as a

second state wvariable, x,.

To summarize the basic problem, the components of the function f are

given by:

)
f = -(P[x,] - C} u exp[ -rx,] , (12)
1
f =u, and (13)
2
f =1. (14)

Since ¥, 1s a negative constant and the system of auxiliary equations
is linear and homogeneous, we can make a arbitrary choice for %,;
let ¥y = -1. For the basic problem, the Hamiltonian function may be

written:

H[¥,x,u] = -fo +u P, + P, . (15)
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2
The optimal coutrol maximizes the Hamiltonian. Since £ does not depend on

u, the second auxiliary variable [#,] does not influence the solution and

we will ignore it.

The first auxiliary variable satisfies the following equation:

0
dip, ot
— T (16)
dt 9%,

For the basic problem, the extraction costs do not depend on cumulative
production. Thus, the right side of Eq. (16) is zero and the first
auxiliary variable is a constant. Later, we shall allow the extraction
costs to depend on cumulative production.

If we rewrite the Hamiltonian in the original variables and let the

first auxiliary variable equal -K, the Hamiltonian function may be written:

H=¢ g+ ¥, , (17)

where ¢ is defined by:

$(t) ~ [P(t) - ¢] e T -k . (18)

The optimal production rate [gq] maximizes the Hamiltonian function. When ¢
is positive then g is at its upper bound, q=D(t); and when ¢ is negative
then q is at its lower bound, q=0. In the jargon of optimal control

theory, the optimal control is a bang-bang solution.
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When we applied the Euler-Lagrange equat:ion to the basic problem, we
derived the condition that ¢=0. When we apply the Pontryagin Maximum
Principle to the basic problem, we find that ¢=0 is not the solution; it is
the condition for starting or stopping production. The Maximum Principle
solution is much more satisfactory; it does not put a condition on P(t) [an
exogenous input] and it provides a rule for determining the production
rate.

A more comprehensive discussion of the bang-bang solution to the basic
problem and of the application of the Pontryagin Maximum Principle to the

optimal management of renewable and nonrenewable resources may be found in

Clark (1976).
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V. THE GENERAL PROBLEM
In this section, we will apply the Maximum Principle to a more general
problem, for which the extraction cost increases with cumulative production
and the demand depends on price. We will assume that the extraction cost

depends on both cumulative production [Q] and time:

C =¢C[qQ,t] . (19)

The extraction cost depends on time because changes in technology can
reduce production costs.

A basic economic principle is that sales depend on the interplay
between supply and demand. The resource owner offers to sell his resource
at a price and the market determines the quantity of resource that he will
sell:

q = F[P,t] . ' (20)

Both Hotelling (1931) and Stiglitz (1976) have considered the optimum
production strategy for a monopolist. A monopolist controls the price by

setting the level of production:

P = P[q,t] . (21)

If the functions are single valued, an inverse function exists and there is
no mathematical difference between Egs. (20) and (21). Since we started
with q as the control variable, we will continue with q as the control

variable. However, we will consider both cases: competition and monopoly.
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We have modified the integrand of the basic problem and must redefine

0 1 2
the function £ . The functions £ , £ , and the Hamiltonian function are

0
unchanged. For the general problem the function £ 1is given by:

0
f = -{Plu,x,] - C[x{,%,]) u exp[ -rx,] . (22)

Using the original variables and Eq. (16), the first auxiliary variable

satisfies the following equation:

- qet. (23)

If we assume that the partial derivative of the extraction cost with
respect to cumulative production is positive, the first auxiliary variable
increases whenever the production rate is positive. If we assume that the
initial wvalue of #; is ¥,=-K, then the magnitude of y; decreases whenever g

*
is positive. At the terminal time, either %,(T) is zero and Q < Q or

*
¥ (T) is negative and Q = Q

The optimal production rate maximizes the Hamiltonian. To find the
optimal production rate, we differentiate the Hamiltonian with respect to

q; the result is:

(Plq.t] - c[Q,t] + 2% qy "5 = oy, . (24)

dq
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Equation (24) is the solution to the general problem. Given a demand
function {P[q,t]} and a production cost function {C[Q,t]}, Eq. (23) can be

solved to determine y,; and Eq. (24) can be solved to determine the

production rate [q].

Hotelling (1931) used the Euler-Lagrange equation to derive Eq. (24)
for the case of constant extraction costs. When the extraction costs are
constant, Eq. (24) states that the marginal revenue minus the production
cost increases at the interest rate [ see Gordon (1967)]. We are not aware
of any previous derivation of Eq. (23). For the general problem, the price
depends on the production rate and the Euler-Lagrange equation can be used
to solve the problem. The Pontryagin Maximum Principle illuminates the
solution by introducing the auxiliary variables.

Stiglitz (1976) has derived Eq. (24) for the special case of a
constant elasticity of demand and extraction costs that depend on time but

not on cumulative production:

Plq,t] = h(t) q* * , and (25)

clQ,t] = g(t) . (26)

Weinstein and Zeckhauser (1975) have derived a result similar to Eq. (23)
for a discrete time problem with increasing production costs. However,
they do not define the auxiliary variable.

If the Euler-Lagrange equation is applied to the general problem, the

condition for optimality is the equation that results when Eq. (24) is
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differentiated with respect to time and Eg. (23) is used to eliminate the
auxiliary variable. The optimality condition without the auxiliary
variable has been derived for the renewable resource problem by Clark
(1976), Clark and Munro (1975), Berck (1981), and Pindyck (1984).

We can make Eq. (24) more understandable by defining an exhaustible

»

resource owner's scarcity rent [R] by:

R=-¢, e . (27)

We define an objective function [L] by:

L = {P[q,t] - C[Q,t]) - R} q . (28)

If the resource owner chooses a production rate that maximizes L for each
time period, then he will satisfy Eq. (24) and solve the general problem.
In the objective function [L], a rent has been added to the extraction
costs. The rent term summarizes the dynamics of the problem and
incorporates the increases in extraction costs. The rent converts a
muliti-period optimization problem into a series of single period

optimization problems.
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Vi. A LOGIT DEMAND FURCTION
To proceed further, we must define a demand function. We assume that
the owner sells the resource in a market where a competing resource is
offered at price W(t). If the owner’'s price [P(t)] is greater than W, he
will lose market share and vice versa. We consider a simple logit demand

model:
q = D(t) s(t) , (29)

where D(t) is the total demand, and the market share for the resource owner

[s] is given by:

Y
s(t) = T , (30)

P’ + WY

where <y is a parameter. The logit share function [Eq. (30)] has been
widely used in models of energy supply and demand; see Boyd, Phillips, and

Regulinski (1982) and Reister (1983). Our logit demand model could be used
| to simulate whether a country uses domestic or imported oil.

Let o be the price elasticity of demand:

. P dq

q apr

o (3L

Using the definitions of ¢ and R, Eq. (24) may be written:

P{1l+1/0}=C+R. (32)
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For the logit demand function,

o= {(1-s1}. (33)

Define p and ¢ by: p = P/W and ¢ = [C + R]/W. Using the dimensiounless

parameters p and c, Eq. (3Z) may be written:

ec=p(1+1/oc) =G(p). (34)

Given ¢, we would like to find p. Since o is function of p, G(p) is the
inverse function. If we construct a table of G(p) as a function of p, then
we can use the table to determine p as a function of c.

The logit exponent [vy] controls the price elasticity of the demand
model [see Egq. (33)]. In many applications in economics, a price
elasticity of -2 is a large value. However, if y=-2 and the owner’s price
was 10% higher than the competing price, the resource owner would capture
45% of the market. If the customers are choosing the least cost option,
the market share for the more expensive resource would be zero. To reduce
the market share for the expensive resource, we will raise the logit
exponent to y=-40. The functions G(p), s(p), and o(p) are displayed in
Table 1 for y=-40.

If p is less than 0.91, then G(p) is negative. 1If p is greater than
0.92, then G(p) is positive. As p increases from 0.92, G(p) increases,
s(p) decreases, and o(p) becomes more negative. For large values of p,

G(p) approaches p, s(p) approaches zero, and o(p) approaches -40.
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Table 1. The Price-Cost Function and the Market
Shares for the Logit Demand Function.

Gamma== -40.0
p G(p) s(p) a(p)
0.90 ~-0.64 0.99 -0.58
0.91 -0.10 0.98 -0.90
0.92 0.25 0.97 -1.38
0.93 0.48 0.95 -2.08
0.94 0.64 0.92 -3.11
0.95 0.74 0.89 -4.56
0.96 0.81 0.84 ~-6.54
0.97 0.8¢6 0.77 -9.13
0.98 0.90 0.69 -12.33
0.99 0.93 0.60 ~-16.03
1.00 0.95 0.50 -20.00
1.01 0.97 0.40 -23.93
1.02 0.98 0.31 -27.53
1.03 1.00 0.23 -30.61
1.04 1.01 0.17 -33.10
1.05 1.02 0.12 -35.02
1.06 1.03 0.09 -36.46
1.07 1.04 0.06 -37.50
1.08 1.05 0.04 -38.24
1.09 1.06 0.03 -38.77
1.10 1.07 0.02 -39.14

Given the extraction cost, rent, and competing price, we can
calculate ¢ and determine p and s from Table 1. The price ratio [p] is
plotted in Fig. 2, while the market share [s] is plotted in Fig. 3. For
all values of ¢, p is in the neighborhood of 1.0. Thus, the owner’'s price
for the resource is always close to the competing price. If the competing
price declines, the price offered by the owner will decline until c=1. 1If
c is small, p is below 1.0 and the market share is near 100%. Thus, if the
sum of the extraction cost and the rent is less than the competing price,
the optimum strategy is to have a large market share. If ¢ is greater than
1.0, then p is greater than c¢ and the market share is small. If the
competing price falls below the sum of the extraction cost and the rent,

the optimum strategy is to have a small market share.
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Fig. 3. The Market Share (s) as a Function of the Parameter c.
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* i, s
The relationship between the total rescurce [Q ] and the initial value

for ¥; [¥,(0)=-K] must be determined by numerical integration of Eq. (23).

Given the total demand [D], the competing price [W], and the extraction

cost funetion [Q], there will be a range of values for K that determine

*
optimum solutions for various values of Q . In general, both the basic
problem and the general problem with the logit demand function have

bang-bang solutions and the auxiliary variable [v;] controls the starting

and stopping of production.

The solution of the general problem is illustrated in Figs. 4 through
7. TFor the example, the price of the competing resource [W] starts at $40,
declines to $20 in year 10, before increasing to $60 in year 30. Because
the discount rate is 1%, the maximum value for the discounted value of W
occurs at the end of the period; that is, the discounted value of W is $45
in year 30. For the example, the total demand is D = 4 per year and the
maximum production in 30 years is Q = 120. The extraction cost has a
linear dependence on Q: C = 10 + 0.2%Q. As Q increases from 0 to 120, the
cost increases from 10 to 34. For each value of K (the initial value for
the rent), the equations can be solved to determine the rent, production
rate, and discounted profits [J]. By varying K, the maximum value for the
profits can be found.

The solution for K=0 is displayed in Fig. 4. When K=0, the rent is
negative and the resource owner is near full production for the entire
period. For the case displayed in Fig. &4, the cumulative production is
Q=119 and the profits are J=1094.

The solutiom when K=10 is displayed in Fig. 5. For this case, the

resource owner starts near full production; stops production for a few
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Constraint is Greater than 82 (k = 13.8).
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years when the competing price is low; and returns to full production when
the price recovers. By stopping production, the resource owner reduces his
costs and increases his profits in the later period. For this case, the
cumulative production is Q=100 and the profits are J=1312.

The optimum solution (without a resource constraint) is displayed in
Fig. 6. For the optimum solution, K=13.8 and the resource owner stops
production for a longer period, when the price is low. For this case, the
cunulative production is Q=82 and the profits are J=1376. For the optimum
solution without a resource constraint, the rent starts at $13.8 and
decreases to zero when t=30. For the cases shown in Figs. 4 and 5, the

rent is negative when t=30.

The optimum solution when Q*=25 is displayed in Fig. 7. For this
case, K=26.7 and the profits are J=729. Most of the production occurs at
the end of the period, when the discounted value of the competing price is
at a maximum. The rent is large and positive throughout the period.

Equation (24) relates the marginal profits to the first auxiliary
variable. 1If we use a logit demand function, Eq. (24) yields the following
bang-bang decision rule: if extraction cost plus rent is less than the
price of the competing resource, produce at full capacity; otherwise, stop

production.
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VII. THE SOCIAL OPTIMUM
Both Hotelling (1931) and Weinstein and Zeckhauser (1975) consider
the optimal production of a depletable resource when the objective is to
maximize the discounted sum of consumer plus producer surplus. For this

case, the objective function is:

rt

7 - dt . (35)

(o) e Yar |

{ TP[y,t] dy - €[Q,t] q(t) } e
0

The objective function for the social optimum problem is identical to the
objective function for the general problem, except that an integral has
replaced the product of price and quantity. The solution to the social
optimum problem is identical to the solution of the general problem, with

the exception that the price elasticity term disappears from Eq. (24):

r

(Plq,t] - €IQ,t]} e *F = -y, . (36)

When the extraction costs are constant, Eq. (36) is the classic result of
Hotelling that the net price increases with the interest rate. When the

extraction costs are not constant, Eq. (23) determines the evolution of ¥,.

If we assume a logit demand function and introduce the parameters p
and ¢, Eq. (36) may be written p = c¢. When c¢ is small, the socially
optimum value for p is much lower than the optimal value for p for a
resource owner (see Fig. 2). The optimum strategy for a low cost producer
(like Saudi Arabia) is to charge high prices while the social optimum is to

buy Saudi oil at the cost of production.
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VIIX. CONCLUSIONS

In this paper, we have considered the problem of determining the
optimal production path for a depletable natural resource. The classical
result of Hotelling is that when the market is in equilibrium, the net
price paid to the owner of the resource must increase with the interest
rate. We have considered three problems: the basic problem, the general
problem, and the social optimum problem. For the basic problem, the market
is not in equilibrium and the classical solution does not determine the
production rate. For the general problem and the social optimum problem,
the classical solution does work and we have extended the classical
solution to the case of increasing extraction costs.

For the basic problem, we have used the Pontryagin Maximum Principle
to find a bang-bang solution for the production rate. The classical
solution determines the switch points; the times to stop or start
production.

For all three problems, we have found a differential equation that
determines the rent that a resource owner should charge to maximize his
profits. The magnitude of the rent depends on its initial value. The
proper initial wvalue depends on the total resource and the level of demand.

For the general problem with a logit demand function, the classical
solution results in a bang-bang production schedule. Thus, we have found
two cases where the optimal production path for depletable natural

resources is bang-bang.
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