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ABSTRACT

This report presents a methodological approach to the
dynamic allocation of tasks in a man-machine symbiotic system
in the context of dexterous manipulation and teleoperation.
This report addresses a symbiotic system containing two
symbiotic partners which work toward controlling a single
manipulator arm for the execution of a series of sequential
manipulation tasks. It is proposed that an automated task
allocator use knowledge about the constraints/criteria of the
problem, the available resources, the tasks to be performed,
and the environment to dynamically allocate task recommenda-
tions for the man and the machine. The presentation of the
methodology includes discussions concerning the interaction of
the knowledge areas, the flow of control, the necessary con-
munication 1links, and the replanning of the task allocation.
Examples of task allocation are presented to illustrate the
results of this methodology.
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1. INTRODUCTION

During the last few decades, there has been a growing awareness and
belief that automation-related technologies and intelligent machines will
play an increasing role in improving the development and operation of
complex and advanced systems. In this context, research and development
has taken place on a broad range of technologies aimed at achieving
automated systems varying from fully remotely-controlled systems (e.g.
ORNL-CFRP's efforts in advanced teleoperation and servomanipulation) to
fully autonomous intelligent robots (e.g. ORNL-CESAR's work in artificial
intelligence, super-computing, machine vision and advanced control).
Within this large spectrum of technoclogical research, work has recently
been initiated on what is proposed to be a new class of automated systems
which appear promising for improving the productivity, quality, and
safety of operation of advanced systems. This new type of automated
system is referred to as "Man-Machine Symbiosis" and would utilize the
concepts of machine intelligence and remote-control technology to achieve
full man-machine cooperative control and intelligence.4

The ultimate function of such symbiotic systems would be to dynami-
cally optimize the division of work between the man and the machine and
to facilitate their cooperation through shared knowledge, skills, and
experiences., The optimization of the man-machine partnership in both the
electromotive and intellectual domain would be realized by coupling a
dynamic allocation of tasks between the human and the machine with an

embedded system learning capability to allow the machine, an intelligent
robotic system, to learn new tasks through assimilation of experience and

observation of the human.



This report presents a methodological approach to the dynamic
allocation of tasks for a man-machine symbiotic system in a simplified
case of dexterous manipulation and teleoperation. 1In this formulation,
two symbiotic partners are considered: a human teleoperator and an intel~-
ligent robotic system. Both partners work toward controlling a single
manipulator arm for the execution of a series of sequential manipulation
tasks. Section 2 of the report briefly presents the various strategies
that are used in determining appropriate task allocation methodologies,
while the characteristics of the specific man-robot symbiont considered
here are outlined in Section 3. The knowledge bases and level of intel-
ligence needed to dynamically allocate tasks, along with a generalized
task allocation procedure, are presented in Section 4. Examples of task
allocation in the symbiotic system are given in Section 5, and a glossary

of terms used in this paper is given in the Appendix.



2, GENERAL TASK ALLOCATIION STRATEGIES

Before discussing the task allocator developed in this report, a
brief presentation of some basic approaches toward the allocation of
tasks between man and machine is given. The type of methodology used in
determining the allocation of tasks in man-robot symbiosis depends on the
approach to three basic issues:

1) Sequential task vs. Multitask Problems,

2) Static vs. Dynamic Allocation,

3) Explicit vs. Implicit Communication.

First, one must determine whether the problem to be solved consists
of many tasks operating concurrently (multitask problem) or only one task
operating at a time (sequential task problem).8 Multitask problems
require more considerations than sequential task problems, such as
coordination of tasks, monitoring of multiple simultaneous tasks, and the
interaction of tasks. Appropriate classification of the problem type is
necessary for a successful task allocation solution.

Secondly, it must be determined whether the task allocation strategy

should be static or dynamic. <'0-11,12.13

A static allocation approach
assigns a fixed subset of the tasks to each resource at the beginning of
the job execution. The resources perform only their assigned tasks,
never performing any other tasks. Although this type of allocation is
relatively easy to implement, it is fault intolerant. If one resource
failed in performing its task, another resource could not take over the
operation of that task, since it was not initially assigned the task. In

addition, static allocation has the disadvantage of fostering a low

utilization of resources.
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A more flexible allocation strategy is the dynamic approach. In
dynamic task allocation, any resource which is currently free and able to
perform a task could be assigned the next task to be performed. The
determination of which resource is actually assigned the task is based on
the effective constraints of the problem and the current environmental
status. This type of allocation is event-driven and is sensitive to
environmental and constraint changes. Dynamic task allocation reduces
the impact of resource failure and leads to a more effective use of
system resources.

The third issue to be considered in a task allocation strategy is
the type of communication to be used between the human and the automated

task allocator: explicit or implicit communication. !l In implicit, or

model ~based communication, the computer uses a model of the human to
predict what the human is likely to do next.? The computer then attends
to tasks which are likely to be neglected by the human. This type of
communication is typically used when the human performs the majority of
the tasks, with the computer taking over some tasks when the human work-
load becomes too large. This method of communication would not require
the human to take time away from task execution to communicate with the
task allocator. However, this method does require the development of an
appropriate predictive model of human task selection performance.
Unfortunately, this model is usually difficult to build and often results
in an imperfect model of the human. Due to this imperfection, conflicts
may occur when the computer incorrectly guesses the human's next action.
Explicit, or dialogue-based communication, 2 requires the human to
communicate with the task allocator using an input device such as a key-

board, mouse, or lightpen, or by using his voice, buttons, or switches.



This type of communication has the advantage of minimizing misunderstand-
ing in intent between the human and the task allocator, and is relatively
easy to implement. Unfortunately, explicit communication is costly in
terms of taking up more of the human's time, since the human may have to
stop performing tasks to communicate with the task allocator.

Thus, the approach to the issues of sequential vs. multitask prob-
lems, static vs. dynamic allocation, and explicit vs. implicit communica-
tion is critical in determining the basic nature of a task allocator.
The necessary characteristics of the task allocator discussed in this

report are described in the following section.






3. SELECTED STRATEGY FOR A MAN-ROBOT SYMBIOTIC SYSTEM

The man-machine system addressed in this paper consists of two
symbiotic partners, a human teleoperator and an intelligent robot system,
which cooperate to perform a series of sequential manipulation tasks
involving a single manipulator arm. To facilitate the division of work
between the man and the robot, several automated modules are proposed to be
incorporated into the system to perform responsibilities such as task
subdivision, analysis, and allocation. Such a scenario can be depicted as
shown in Fig. 1.

A job planner is responsible for decomposing the overall job to be
performed (such as INSTALL ELECTRICAL EQUIPMENT) into its component lower-
level subtasks (such as FIND WRENCH or GRASP WRENCH), indicating the order
in which the subtasks must be performed. The resulting task decomposition
tree (see Section 4.1.3), is passed to the task allocator, which assigns a
subtask either to the human or to the intelligent controller of the
manipulator. The human or the intelligent robot controller then sends
controlling actions to the manipulator arm for execution of the subtask.
To improve its performance and to increase its range of capabilities, the
intelligent controller of the manipulator arm must ultimately use an
embedded learning system to learn new tasks through assimilation of
experience, observation of the human, and direct instruction.5’6’7

This report is concerned only with the task allocator and its
relationship to the other entities in the man-machine symbiotic system.
This report assumes that a complete description of the tasks to be
performed is provided to the task allocator by either the human or an
automated system. Research is currently being performed on automating the

job planner. This report also does not discuss any details related to the
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Fig. 1. Man-Robot System Scenario.

embedded learning system, which is currently being researched and will be
addressed in future publications.

To determine the characteristics of the task allocator in this
symbiotic system (i1.e., sequential task vs. multitask problem, static vs.
dynamic allocation, explicit vs. implicit communication), one can first

observe that both intelligent resources (the human and the intelligent
controller of the manipulator arm) are using the same medium (the



manipulator arm) to execute the subtasks. The manipulator arm actuator can
receive and respond to commands from a single source at any instant in
time. Consequently, the human and the intelligent robot controller cannot
command the arm simultaneously or independently. In this respect, the
problem to be solved is a seguential task problem. However, it is likely
that while the human or the robot is performing a subtask with the
manipulatqr arm, other actions are occurring in the background., such as
monitoring of the task execution, world modeling, planning, and learning.
This aspect is necessary in order for the symbiotic system to function
effectively. Nevertheless, as a first step, this report will focus on the
sequential task problem of allocating a series of sequential manipulation
subtasks to the man and the machine. Research is currently underway to
extend this methodology to allow the human and/or the robot to perform
additional subtasks which compete for their time while the manipulation
subtasks are being performed.

Secondly, this symbiont system must feature a dynamic (rather than a
static) allocation of tasks, since both resources (the human and the
intelligent controller of the manipulator arm) must be able to perform
subtasks interchangeably as conditions warrant. For instance, new con-
straints in the problem or changing environmental characteristics wmay
require a dynamic reallocation of tasks. In responding to such environ-
mental and constraint changes, the task allocator demonstrates its ability
to be event-driven and to cope with new situations. A reallocation is also
required if the capabilities of the resources change (see Section 4.1.2),
indicating an improvement or degradation in performance by a resource.

Because of these requirements, the problem to be solved requires a dynamic

allocation of tasks.
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Finally, this symbiont system is not a system in which the human
performs all of the subtasks and the robot takes over only when the human
is overloaded. Instead, the system requires that the task allocator assign
the "best" resource to perform each subtask for optimization of the entire
problem. The task allocator must be able to communicate the subtask
assignments to the resources. The human must retain control, however, and
be able to approve or change the subtask allocation. These requirements
mandate that explicit communication be used in the man-machine system.

In summary, the task allocator in this symbiotic system must be able
to recommend a dynamic allocation of sequential manipulation subtasks to
two resources, a human and an intelligent robot controller, responding to
events during the subtask execution which will lead to a reallocation of
subtasks, and using explicit communication to allow the human to approve or
modify the allocation. The remainder of this paper will address the task

allocation problem having these characteristics.
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4. DYNAMIC TASK ALLOCATION METHODOLOGY

4.1. KNOWLEDGE AREAS

The purpose of the task allocator in man-robot symbiosis is to attempt
to dynamically optimize the division of work between the man and the robot.
Since the exact interpretation of "optimal division of work" must be
allowed to vary according to the requirements of each individual problem
scenario, the task allocator must know what constraints and criteria are
placed on the task allocation, what the requirements of the subtasks are,
and information concerning the characteristics of the environment in which
the problem is to be solved. The task allocator must also have information
about the capabilities of the human and the intelligent robot controller to
determine the resource which 1s most appropriate for performing a subtask
in a given scenarioc. The knowledge about these areas can be categorized
into four main knowledge bases which are described in the following

sections.

4.1.1. Constraints/Criteria

The constraints/criteria are determined by a source external to the
task allocator and place performance measures, limitations, restrictions,
and/or regulations on the task allocation problem solution. The intent of
the constraints/criteria is to alter the task allocation strategy to adapt
to differing problem contexts. The task allocator must adhere to these
constraints/criteria in determining the optimal task allocation. These
limitations may prevent the use of certain resources for some subtasks, or

may mandate the use of certain resources for other subtasks.
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Examples of possible constraints/criteria are as follows:
~— minimize time of task completion,
— maximize quality of result,

~- minimize human involvement (e.g. in a hazardous environment or
to prevent boredom or fatigue).

The task allocator must know how to handle any constraint that is
placed on the solution. For example, if the constraint is to minimize the
time of task completion, the task allocator must compute the estimated time
each resource will take to complete a subtask (refer to Sections 4.1.2 and
4.1.3 for further details) and then assign the subtask to the resource
requiring the lesser time. For each application of the task allocator,
certain constraints/criteria are initially in effect, while other
constraints/criteria are ignored. Although the examples given in this
report only deal with situations having one constraint in effect at a time,
this methodology has the potential for being extended to handle combina-
tions of several constraints/criteria for the optimization of the solution.

Once these constraints/criteria are determined for a particular appli-
cation, they remain unchanged throughout the problem solution and execution
until dynamic changes in the environment cause the constraints/criteria for
the problem to be changed. If necessary, the human can also modify the
constraints/criteria of the problem to cause a reallocation of the sub-
tasks. For example, the human could experience fatigue after a long series
of manipulation subtasks and could change the effective constraint from
"minimize time of task completion" to "minimize human involvement”. The
task allocator would then allocate the subtasks by attempting to assign as
few subtasks as possible to the human. In this manner, the task allocator
demonstrates its ability to be dynamic, responding to changes in the

constraints or criteria to reallocate the subtasks.
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4.1.2. Reasopurces

In this report, resources are defined to be intelligent entities (such
as humans or computers) which are available for performing subtasks to
solve a problem, or to achieve a goal. In this report, only two resources
are considered: a human and an intelligent robot controller. Obviously,
the task allocator must have a knowledge of the available resources before
it can begin the job of task allocation. The task allocator must know what
capabllities each of the resources possess, how well the resources use
their capabilities in performing subtasks, how timely the resources use
their capabilities to perform subtasks, and the current status of the
resources (i.e., when each resource will be available to perform subtasks).
The capabilities of the resources are defined in this paper to be either
the abilities the resources have to perform certain physical actions, or
the knowledge the resources have of certain objects. The capabilities can
be defined as needed for particular applications, and could include
physical abilities such as HANIPULATiON or VISION, or knowledge of objects,
such as WRENCH or BOLT.

Each resource can have many capabilities. However, a resource will
probably not have the same level of achievement of each of its capabili-
ties, and it certainly will not exercise each capability with identical
speeds. For example, although a human has capabilities of both COMPUTATION
and VISION, he probably can examine a photograph (using VISION) much easier
and better than he can add a few numbers in his head (using COMPUTATION).
On the other hand, a computer may also have capabilities of COMPUTATION and
VISION, yet it is much more difficult for it to examine a photograph than

it is for it to add a few numbers.
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The knowledge about the capabilities of the resources is initially
given to the task allcocator as input. The actual information stored about
the capabilities of the resources is direcily related to the constraints
which might at some time be present in the problem scenario. For example,
the constraint "minimize time of task completion” requires that "timeliness
of achievement" factors be provided, while the constraint "wmaximize guality
of result" requires that "level of achievement" factors be provided.
Additional constraints placed on the problem may require the storage of
further information on the capabilities of the resources.

Although the knowledge abouf the capabilities is guantified differ-
ently depending upon whether the capability refers to a physical ability or
to a knowledge about amn object, one evaluation number is obtained for each
factor (such as level of achievement and timeliness of achievement) of each
capability. The evaluation numbers are then used to help determine the
appropriate task allocation. If the capability refers to a physical
ability, the ewaluation number indicates the skill with which the ability
is performed, perhaps on a scale from 0 to 10, or from "unacceptable" to
"superior™. If the capability refers to a knowledge about an object, the
evaluation number indicates how complete the knowledge of that object is,
perhaps on a scale from 0 to 10, or from "unknown” to "always known".

Depending on the constraints of the given problem and the subtasks to
be performed, the task allocator can select the suitable resources to
perform the subtasks based on the characteristics of the resources. This
is done by determining what capabilities are required to complete each
subtask, finding the available resources which possess the required
capabilities, and applying the constraints/criteria of the problem to

compute the optimal allocation.
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The task allocator would thus have information as follows for the

resources.

LEVEL OF TIMELINESS OF

RESQURCE CAPABILITY ACHIEVEMENT ACHIEVEMENT AVAILABILITY

Ry

ail 113 t11 ¥ units
als 112 ty2 X units
ain 11 tin y units
as1 129 21 W units
a2 129 t29 X units
agn 1on ton y units
am1l lmi tml w units
amz 1m2 tmz X units
3mn lnn ton y units

For example, information which could be obtained from a table such as

this is

0

as follows:

The human has the capability of VISION, can perform VISION on a
level of 10 (or "superior™) with a "timeliness factor" of 2 (or
"extremely fast"), and is currently available to perform VISION.

The human has the capability of MANIPULATION, can perform
MANIPULATION on a level of 7 (or "fairly good") with a timeliness

factor of 4 (or "fairly fast"), but is not currently available to
perform MANIPULATION. The human will be available to perform

MANIPULATION in 3 time units.



o The computer has the capability to RECOGNIZE WRENCH, can
RECOGNIZE WRENCH on a 1level of 4 ("sometimes known") with a
timeliness factor of 7 ("fairly slow") , and is currently available
to RECOGNIZE WRENCH.

Some important observations can be made in examining this table.
First, a resource can have more than one capability available at a time,
and it can also use more than one capability at a time. The use of more
than one capability at a time should not be confused with the execution of
more than one subtask at a time. The resource will only be performing one
subtask at once, although it may use several capabilities to accomplish
that subtask. For instance, a concurrent computer can use one processor
for the capability VISION and another processor for the capability
COMPUTATION. Likewise, humans can use the capability of VISION while using
the capability of MANIPULATION to hammer a nail. Thus, the use of one
capability of a resource does not necessarily mean that the other
capabilities of that resource are inaccessible.

The second observation from examination of the table is that since
only two resources are considered in this report (a human and a machine),
the above table in an actual application would have only two entries: Rl
and R2. However, the extension to m resources is possible and would allaow
many resources to be considered in the execntion of the seguential
manipulation subtasks.

As the resources execute the subtasks, the level of achievement
factors and the timeliness-of-achievement factors for their capabilities
may change, reflecting new knowledge about the resources. Such changes can
take place in two ways: through a learning scheme and through monitoring

of the resources. The learning scheme (discussed in a companion report)
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allows the robot to learn and improve its capabilities by observing the
human. For example, suppose the subtask to be allocated is FIND WRENCH.
Initially, the robot will not know what a wrench looks like, indicated by a
level of achievement factor of =zero or "unknown" for the capability
RECOGNIZE ®RENCH. The task allocator will therefore assign the subtask to
the human, who is then cobserved by the robot as he performs the task. In
observing the human, the robot learns what a wrench looks like, and its
level of achievement factor is upgraded accordingly. The allocation of the
next subtask requiring the ability to recognize a wrench will take into
account the new capability factors and will possibly result in a new
allocation.

The second method in which the level of achievement factors and the
timeliness of achievement factors can change is through monitoring of the
resources. It is very important that the knowledge of the resources be
consistent with the actual resources themselves. To accomplish this, some
type of monitor must observe and quantify the resource's performance to
determine if there is a proper correlation between the resource and the
knowledge about the resource. 1f not, the resource knowledge base must be
corrected. For example, if the human has a level-of-achievement factor of
7 (or "fairly good") for the capability MANIPULATION, but does not perform
at that level after several hours of work {possibly due to fatigue or
boredom), the factor should be appropriately updated in the knowledge base

for use in future subtask allocations.

4.1.3. Tasks
A job planner must analyze and decompose the job to be performed into

its component tasks, subtasks, and sub-subtasks. The role of the job
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planner can be fulfilled by either the human or an automated job planning
system. The current report does not address the operation of the job
planner and assumes that the task breakdown is available as input to the
task allocator. An automated job planner for the system will be addressed
in a companion publication.

A typical task breakdown tree is shown in Fig. 2a.

JO
/1N
/ \
/ \
/ \
® TASK 1 ® TASK I ® TASK N
/[N
/ \
/ \
/ \
%3 #®B & C < Subtasks; smallest

assignable units

Fig. 2a. Typical Task Breakdown Tree.

The job is the highest-level description of a series of related tasks
to be performed, such as ASSEMBLE MODULE. The job is decomposed into
several tasks, such as INSERT ROD, which must be successfully completed by
the resources in order te soclve a problem, or to achieve a goal. Fach task
can be performed entirely by the human, entirely by the computer, or by the
human and computer in cooperation. FEach task is subdivided as much as
needed until the smallest assignable units, or subtasks, are reached.
These subtasks are the smallest units that can be feasibly assigned to a
resource, For example, a task UNPLUG CABLE could consist of subtasks FIND
CABLE, MOVE TO CABLE, GRASP CABLE, and PULL CABLE. It would be senseless

to assign smaller components of these subtasks to more than one resource.
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The concept of a '"smallest assignable unit" 1is very important since it
represents the smallest subdivision of the elements of a task which corre-
late with the physical mechanics of the actual operation of the symbiotic
resources. The definitions of resources, capabilities, and smallest
assignable units are, in general, system and task domain dependent.

In order to allocate the subtasks, the task allocator must know what
capabilities are required to perform the subtasks and any merit factors
associated with each capability. Due to the considerable differences
between the intelligent robot controller and the human, the capabilities
required for one of these resources to perform a subtask may be very dif-
ferent from those required by the other resource. Because of this, the
subtasks must be further subdivided for each resource down to the elemen-
tal sub-subtasks which can be characterized by one or more capabilities and
merit factors which are independent of the environment or the context of
the problem. An example of the subdivision is shown in Fig. 2b.

The 1list of capabilities required for each subtask is obtained by
traversing the lowest-level nodes (leaves), elemental sub-subtasks, below
the subtask in the task breakdown tree (as shown in Fig. 2b), noting all
the capabilities required for the lowest-level nodes, or elemental sub-
subtasks. This traversal must be performed for each resource, since the
resources have different sub-subtask breakdowns, as shown in Fig. 2b. The
merit factor associated with each capability indicates the importance of
that capability in the successful performance of the elemental sub-subtask,
relative to the other required capabilities. The merit @ factors are
obtained for the capabilities in manner similar to how the list of required
capabilities is obtained ~- by traversing the leaves of the subtask in the

task breakdown tree. If any capability is required by more than one of the
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subtask's elemental sub-subtasks, the merit factors associated with that
capability are combined to result in one merit factor for each capability
required by the subtask. At the beginning of the problem execution, these
merit factors have initial values. However, as the subtasks are performed,
the job planner (not addressed in this report) can alter the merit factors
as necessary after each subtask completion to reflect new knowledge about
the tasks. The task allocator would then derive a new allocation based on

the adjusted merit factors.

For R1:
® Subtask A 4 Subtask; smallest
!/ \ assignable unit
/ \
/ \
/ \
G B H {~—- Elemental
sub~subtasks
For R2:
& Subtask 2 < Subtask; smallest
/A assignable unit
/ \
/ \
/ \
BY \
/\ \
/ \ \
/ \ \
/ \ \
2 X gy 7 (—— Elemental

sub~subtasks

Fig. 2b. Typical Subtask Breakdown Trees.

Thus, the task allocator would have information such as that shown in

Fig. 3 concerning the capabilities required to perform a task.
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R1
> capbl-Hjj.merit-Hy; —> capbl-Hjj,merit-Hig —
Rl

> capbl-Rjj,merit-R;; —> capbl-Ryj,merit-Ryy —
R2 .

R1
> capbl-Hyi,merit-Hpy ~> capbl-Hpp, merit-Hyp —>
s

> capbl-Rgq,merit-Rgq —> capbl-Rjg,merit-Rgs —>
R2 . . .

: R1
[- > capbl-Hyj,merit-Hy; ~> capbl-Hyp,merit-Hyo —
> SN ~—{: R
> capbl-Ryj.merit-Ry; —> capbl-Ryg.merit-Ry; —

R2 R

Fig. 3. Task Knowledge with Corresponding Capabilities and Merit Factors.

Figure 3 shows that task T consists of N subtasks §; through Sy. For
each subtask, the task allocator knows the list of capabilities and merit
factors required by each resource to perform the subtask. For example, to
perform the subtask Sj, the human must possess capabilities "capbl-Hg1",
"capbl-Hj2", and so on, which have merit factors of "merit-H,i", "merit-
Ho2", and so on. The task allocator can then compare the list of
capabilities required for a resource to perform a subtask (the task
information) with the actual capabilities posseséed by the resource (the
resource information) to determine whether the resource is capable of
performing the subtask. After completing these comparisons for both
resources, the task allocator can obtain the optimal subtask alloca?idﬁ by
determining which resource most suitably meets the constraints/ criteria of
the problem, and then assigning the subtask accordingly.

Although this report is addressing the allocation problem requiring

only one subtask to be executed at a time (a sequential-task problem), the
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extension to several machines and multitasking could be possible with this
methodology by incorporating into the task allocator the ability to handle
information such as precedence constraints among the subtasks.

During the execution of the subtasks, environmental changes may occur
which require the Jjob planner to update the list of subtasks to be
performed. The task allocator should recognize these changes and be able
to replan the task allocation appropriately. For example, if the event
WRENCH DROPPED occurred, the subtask sequence would be reconfigured by the
job planner to include the subtask PICK UP WRENCH. The task allocator
should then respond to this event and reallocate the subtasks to reflect
this change. Thus, the task allocation is dynamic, or event-driven -- it

responds to changes in the work environment.

4.1.4. Environment

In order to satisfy the constraints and criteria of the problem, the
task allocator may often need to have access to information about the
environment. The details to be contained in the environmental knowledge
base must include information on what is in the environment, what the
environment looks like, and how the environment behaves. In addition, the
presence of certain environmental conditions may activate certain new
constraints/criteria which the task allocator must address.

The environmental information will also be accessed by the resources
to help them function effectively in their environment. For example, there
may be obstacles to avoid or tools available for use in performing a
subtask. If the robot were told to GET WRENCH, it must know what a wrench

looks like and possibly have an idea of where to find it.
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Of course, the human could conclude many things about the environment
by simply observing it. However, the computer must operate with an
automated representation of its environment. The specific.representation
of the environment is highly dependent on the application and would thus
vary accordingly. Possible representations include frames, rules, scripts,

and nets.

4.2, FLOW OF EXECUTION

The current information about the constraints/criteria, resources,
tasks, and environment will be stored in separate computerized knowledge
bases, and will be shared among all the entities which need the informa-
tion. These knowledge bases will be kept current by the use of sensors
which monitor the respurces, the environment, and the tasks, or they could
be directly updated by the resources. In order for the man-machine
symbiotic system to work effectively, it is important that the knowledge
areas be able to interact. Figure 4 depicts the relationship between the
knowledge areas.

In Fig. 4 the dotted oval indicates the actual environment. The three
double-dotted lines connecting the resource and the resource knowledge, the
environment and the environmental knowledge, and the task and the task
knowledge indicate a close association between the physical entitites
{resource, environment, task) and the knowledge of the entitites. The
information which can be obtained from either the physical entities or from
the knowledge of the entitites should be the same.

Figure 4 shows that the task allocation uses knowledge about the
resources, environment, tasks, and constraints/criteria (links a, b, c, d)

to make a task allocation recommendation. If necessary, the human task
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allocation approver may change this task allocation (link e). {Note that
this human need not necessarily be the same hqman who will perform the
subtasks.) The resource is then assigned a subtask according to the
approved/modified allocation (link f£). As the resource executes the
subtask (link g), the changing subtask status in itself modifies the
environment (link h). Possibly, the resource will notice additional events
or changes in the environment and will update the environmental knowledge
directly (link i). As the environment changes, the constraints/criteria
may need to be changed automatically to reflect the new conditions (link
j)}, or manually by a human who monitors the problem execution (link k).
(Again, this human need noit necessarily be the same human who performs the
subtasks or approves the task allocation.) Additionally, the 1list of
subtasks to be performed might need to be altered because of environmental
modifications (link 1). Using the updated knowledge about the resources,
the environment, the subtasks, and the constraints/criteria, the task

allocator can replan the task allocation as necessary to repeat the cycle.

4.3 COMMUNICATION LINKS NECESSARY IN TASK ALLOCATION

In Fig. 4, it is important to know which of the interconnections
require communication channels and which require only "data lookup”
operations. This information 1is necessary to design appropriate inter-
faces between the various entities in the task allocation scenario.
Typically, the 1links regquiring communication channels are links between
heterogeneous entities (e.g., man vs. computer) rather than homogeneous

entities (e.g. processor B on a concurrent computer vs. processor B on a

concurrent computer). ‘What is referred to here as a "data lookup” opera-

tion is analogous to a computer program reading a data file; both the
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program and the data file usually reside on the same computer or on similar

computers. The data lookup operations are usually less complicated and

The following Tables 1 and 2 categorize these connections:

Table 1. Connections Requiring Communication Channels.

Resources have to be able to update the environmental knowledge hbase
with changes in the environment that they notice. This will allow the
the environmental knowledge base to reflect the current environment
(link i).

Other sensors monitoring the resources, the environment, and the tasks
must be able to update the knowledge about these entities to reflect
the current conditions (double~-dotted lines).

The task allocator has to be able to communicate with the human to
confirm or change the task allocation recommendation. (link e).

The task allocator must be able to communicate with the respurces to
inform them of their subtask assignments (link £).

The human must have access to the constraints/criteria to update this
information as required (link k).

Table 2. Connections Requiring "Data Lookup" Operations.

Task allocator retrieval of computerized resource information (link a.)

Task allocator retrieval of computerized environmental information
(link b.)

Task allocator retrieval of computerized task information (link c.)

Task =allocator retrieval of computerized constraint/criterisa
information (link d.)

Retrieval of computerized environmental information to update
applicable constraints/criteria (link j.)

Retrieval of computerized environmental information to update list of
tasks to be performed (link 1.)

The connections requiring communications channels, as listed in Table

1, can be condensed to twe main areas: maintenance of current knowledge
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bases and communication between the task allocator and the resources. The

following sections address these two areas.

4.3.1. Maintenance of Current Knowledge Bases

The current information about the resources, environment, tasks, and
constraints/criteria will be stored in separate computerized knowledge
bases, and will be shared among all the entities which need the informa~
tion. For instance, the task allocator will use the information to
generate subtask allocations, the resources will access the environmental
information for help in performing the tasks, the sensors will update the
environmental information to reflect environmental changes, and so on. In
order for these interactions to operate properly, it is imperative that the
information in the knowledge bases be current.

These knowledge bases will be kept current by the use of sensors which
monitor the resources, the environment, and the tasks, or they could be
directly updated by the resources. Obviously, the sensors and the
resources must have access to the knowledge bases for these updates to
occur. The exact method used to maintain the databases is application

dependent, requiring different methods for different circumstances.

4.3.2. Communication Between Task Allocator and the Resources

When the task allocator has a task allocation plan ready for approval,
it needs to be able to communicate: with the human to have the allocation
approved. The task allocator must be able to accept modification of the
allocatioi. from the human and be told why the changes are needed. This
communication should be as quick as possible to minimize the overhead

delays in deriving the task allocation. Once the approved allocation is
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derived, the task allocator must clearly and guickly communicate the
definition and scope of the subtask to the resource. This is particularly
important when the task allocator communicates with the human. For
example, if the human knew that the next task to be performed was
UNSCREWBOLT, and the task allocator gave the human the job GRASP WRENCH,
the human might act ahead and begin to place the wrench on the bolt and use
the wrench to unscrew the bolt. It is possible that the task allocator
intended to have the human give the wrench to the robot to continue the
task. Thus, it must be clear to the resource (in particular the human)

exactly what the definition and scope of the subtask is.

4.4, TASK AND CONSTRAINT CHANGES DUE TO ENVIRONMENTAL CHAMNGES

As mentioned previously, changes in the knowledge about the environ-
ment might require an auntomatic change in the list of subtasks to be
performed or in the constraints/criteria of the problem. Although these
changes will be made by a job planner or a monitor which are not addressed
in this paper, it is important to have a concept of how the changes might
gccur, in order to understand the dynamic nature of the task allocator.
How might the task and constraint knowledge bases be updated due to

environmental changes? One good way is to create a set of rules which

detect certain "environmental events" when they occur. These envirommental
events can indicate, for instance, that a subtask is complete, that a
subtask has failed, or that an unexpected occurrence has arisen. The left-
hand side of the rule lists the environmental conditions which must be met
for the rule to fire. The right-hand side of the rule indicates the
environmental event which has occurred. For each event, certain changes in

the subtasks or in the constraints may be required.
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For example,

IF condition-1l, condition-~2, ..., condition-n
THEN event-x.

IF condition-a, condition~b, ..., condition-z
THEN event-y.

IF  event-x

THEN constraint-update-a,
task-update-A.

IF  event-y

THEN constraint-update-~B,
task~-update-B.

(where constraint-update-x and/or task-update-x may be empty)
In this manner, the constraints/criteria and subtasks can be updated

according to the current environmental situation.

4.5. REPLANNING THE TASK ALLOCATION

When should the task allocator replan the task allocation? 1In order
to ascertain the answer, one must first recall the task allocaticn method.
To generate the allocation, the task allocator first examines the list of
subtasks to be performed, determining the capabilities needed for each of
the subtasks. The allocator then matches the capabilities required for the
subtask to the actual capabilities of the resources, selecting the
resources possessing the mandatory capabilities according to the
constraints and criteria of the problem. The task allocation will not

change unless one of the following changes:
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list of subtasks to be performed,
constraints/criteria,
environment,

capabilities of the resources.

jeT o Mo a1

First of all, when the list of subtasks to be performed changes, the
sitbtasks must be reallocated., since any new or changed subtasks on the list
have not yet been assigned. Secondly, when the constraints/criteria of the
problem change, the subtasks must be reassigned, since the entire basis for
the task assignment was rooted in the constraints/criteria of the problem.
Thirdly, when unexpected environmental changes occur, the subtasks must be
reallocated, since the constraints/criteria upon which the subtasks were
allocated may be violated by the unexpected environmental change.
Fourthly, when the capabilities of the resources change, the subtasks must
be reallocated, since the resources currently assigned to the subtasks may
not continue to be the best resources to perform the subtasks.

It is preferable to minimize the number of times the task allocation
has to be replanned, in order to reduce the computational time of the task
allocator and to avoid redundant task planning. To do this, the task
allocator must be able to detect when any of the above conditions "a*
through "d" occurs. Changes in the list of tasks to be performed, in the
constraints/criteria, or in the environment are controlled by events
external to the task allocator; the task allocator cannot be expected to
predict these changes. The task allocator must detect or be informed of
changes in any of these three areas, and then replan the task allocation.

However, the task allocator can be more intelligent in responding to
changes in the capabilities of the resources. Rather than replanning the
entire task allocation whenever any level of achievement or timeliness of
achievement factors change, the task allocator can predict when these

factors might change and how the changes might affect the task allocation.
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An intelligent task allocator can recognize when certain changes in the
capability factors require replanning of the task allocation, and when they
do not. For a given list of tasks to be performed with fixed constraints
in a stable environment, this intelligence can greatly reduce the instances
of task allocation planning, thus saving much valuable time.

How does the task allocator predict when the capabilities of the
resources might change? How does the task allocator know how these changes
might affect the task allocation? ’The answers are greunded in the basic
assumption that the capability factors of a resource cannot change unless
the capability is exercised either by the resource itself or by the
resource learning from observing other resources using the capability.
{For example, a person (a resource) cannot learn to play the piano (a
capability) without précticing on the piano or watching someone else play.]
Based on this assumption, the task allocator can predict when capability
factors of the resources might change, thus determining when replanning is
required. In this manner, the task allocator avoids replanning the
allocation after the completion of each subtask.

The following example is given to illustrate how the task allocator
can use this intelligence to its benefit, reducing the number‘of times the
task allocation must be replanned.

EXAMPLE: Assume that the task allocator must allocate ten subtasks Tl
through T10 to some resources. The subtasks require a total of nine
capabilities 51 through S59. The subtasks have the following capability

requirements, and must be performed in the order listed:
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SUBTASK REQUIRED CAPABILITIES
T1 S1, S2
T2 53, 5S4
T3 S1, S4
T4 55, 82
T5 S6, 57
T6 S3
17 58, 59
T8 59
T9 S1, 82
Ti0 54

The task allocator wants to minimize the number of task replanning
steps which must occur due to changes in the capability factors of the
resources. To do this, the task allocator first observes that the execu-
tion of subtask Tl may result in updated capability factors (i.e., level of
achievement and timeliness of achievement factors) of capabilities S1 and
52 for any of the resources. A change in the capability factors of 51
indicates that the allocation of subtask T3 may change, since it also
requires capability S51. [Likewise, the allocation of subtask T4 may change
due to the execution of subtask Tl, since both subtasks Tl and T4 regquire
capability S52. Continuing in this manner, the task allocator can
determine the earliest step at which no changes in the subtask allocation
will occur due to variations in the resource capability factors. The task
allocator therefore avoids allocating a task which might later have to be

reallocated due to changes in resource capability levels. The following
table shows the earliest steps at which the subtasks can be allocated to

the resources without future changes in the allocation:
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Earliest step at which
subtask can be allocated
Step Subtask without further change

T1
T2
T3
T4
T5
Té
T7
T8
T9
T19

O Wb Wt O
W IO MNOHHNNOO

ot

Thus, at each step, the following subtasks can be assigned:

Step ' Subtasks Assigned

Ti, T2, T5, 17
T4

T3, Te

T10

T9

T8

WO NI U D WO

—

From this table, we see that each subtask is assigned exactly one
time. The task allocator does not have to replan the entire list of
subtasks after the completion of each subtask. In fact, after the
completion of some of the subtasks (T5, T6, T8, T9, and T10), no additional
task allocation is required at all.

If necessary, this task allocation strategy can be modified if it is
preferred that the tentative allocation of all the upcoming subtasks be
generated before any subtasks are executed. With this modification, the

task allocator can allocate all the subtasks before the task execution
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begins (i.e., at step 0), indicating which subtasks are tentative assign-
ments, and which are firm assignments. The task allocator can then proceed
as described above, indicating when the tentative subtask assignments
become firm subtask assignments.

An additional time-saving measure may be taken in some applications if
it is known that certain subtasks will always be executed better by
particular resources. By giving these subtasks a fixed allocation, the
task allocator can ignore these subtasks when computing a task allocation.
This not only speeds the derivation of the task allocation, but also
eliminates the need to update the capability factors of the resources after

they perform these subtasks,
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5. EXAMPLE OF TASK ALLOCATION COMPUTATION
To cbtain a better idea of how information in the knowledge bases is
actually used to dynamically allocate subtasks between man and machine,
consider the task MOVE TO WRENCH AND GRASP. In this example, there are two
resources: a man and a robot. The robot can either control itself, or it
can be remotely controlled by the human. The following sections discuss

the allocation of the subtasks to the man and robot.

5.1. CONSTRAINTS/CRITERIA

In this simple example, we assume that, on occasion, we would like to
minimize the amount of time required to complete the task, and at other
times we would like to maximize the quality of thé result. Our constraints

would therefore be represented as:

In effect?
1. minimize TIME Y or N
2. maximize LEVEL OF ACHIEVEMENT N or‘Y

5.2. RESOURCES

In this example, the resources available to perform the subtasks are a
human and a robot. The capabilities of these resources may vary depending
upon the particular human or robot, but in this example the capabilities,
level of achievement factors, and timeliness of achievement factors are

assigned as follows:

LEVEL OF TIMELINESS OF
RESQURCE  CAPABILITY ACHIEVEMENT ACHIEVEMENT  AVAILABILITY
human Vision 10 ‘ 5 D (available)
Search 8 5 -0
Manipulation 7 9 0
Knowledge of Wrench 9 2 0
robot Vision 5 9 0
Search 6 8 0
Manipulation 9 6 0
Knowledge of Wrench 4 4 0
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In this table, higher LEVEL OF ACHIEVEMENT numbers indicate higher per-
formance in that capability. Lower TIMELINESS OF ACHIEVEMENT numbers

indicate guicker execution of the capability.

5.3. TASKS

In this example, the task to be performed is MOVE TO WRENCH AND GRASP.
This task can be divided into 3 subtasks. one of which has 2 sub-subtasks.
The relationship between the task and subtasks can be represented
symbolically as in Fig. 5, with the subtasks listed from left to right in

the order they are to be performed.

MOVE TO WRENCH (-~~~ main
AND GRASP task
FIND MOVE ARM GRASP (- smallest
¥RENCH I WRENCH assignable
subtasks
PLAN MOVE PERFORM {~~~ sub-
OF ARM MOVE OF ARM subtasks

Fig. 5. Example Task Breakdown.

For the sake of clarity, this example does not break the subtasks into
the elemental sub-subtasks for both the man and the machine. Recall that
the elemental sub-subtasks are those which can be characterized by capa-
bilities and merit factors which are independent of the environment or the

context of the problem. For this example, assume that the capabilities
required by the subtasks for both resources are the same. The subtask FIND

WRENCH involves examining the environment (requires VISION) for the wrench,
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and having a knowledge of what a wrench is. The subtask MOVE ARM involves
planning a route to the wrench (SEARCH and VISION) and performing the move
to the wrench (MANIPULATION and VISION). The subtask GRASP WRENCH involves
having a knowledge of what a wrench is and looking at the wrench (VISION)
while grasping it (MANIPULATION).

Thus, the required capabilities and merit factors for the subtasks can

be assigned in this example as follows:

S KS REQUIRED CAPABILITIES MERIT
FIND WRENCH Vision 0.4
Knowledge of Wrench 0.6
MOVE ARM Search 0.4
Manipulation 0.4
Vision 0.2
GRASP WRENCH Vision 0.2
Manipulation 0.6
Knowledge of Wrench 0.2

In this example, the merit factors have been assigned to each capability to
reflect the percentage of the subtask requiring use of the capability. For
example, the subtask GRASP WRENCH requires use of the capability VISION 20%
of the time, use of the capability MANIPULATION 60% of the time, and use of
the capability KNOWLEDGE OF WRENCH 20% of the time. Although not shown in
this example, the capabilities required for subtask MOVE ARM were obtained
by merging the capabilities required to PLAN MOVE OF ARM and PERFORM MOVE
OF ARM. Similarly, the merit factors for the cépabilities required.by MOVE

ARM were obtained by appropriately combining the merit factors of PLAN MOVE
OF ARM and PERFORM MOVE OF ARM.
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5.4, ENVIRONMENT

Since the task allocator in this example will seek to either minimize
the time of task completion or to maximize the level af achievement, it
does not have the need to directly access the environmental information as
it would if the constraint were to "assign subtasks to human when manipula-
tor is within 6 inches of area x". However, the environmental information
can indirectly affect the task allocation by causing a change in the list
of tasks to be performed or in the constraints/criteria of the problenm.

The intelligent robot controller, however, does need access to the
environmental information to assist it in performing subtasks. A simple
environment for this example would be to have a computerized map of the
room available for the robot's use. This map would correspond to the
important features of what the human would wvisually see in the room. In
this sitvation, the robot would need to know its location in the room,
where the tool shelf is (to locate the wrench), and the location of any
obstacles which may be encountered. Such a map could be as shown in Fig.

6.

W
a
1 tool shelf
repair 1
station
robot

Fig. 6. Example of Simple Environmental Hap.



39

The robot would also need to know where to find a wrench, what it
looks like, and how to use it. An elementary representation of knowledge
about the wrench is as follows:

NAME: WRENCH
STORAGE LOCATION: Tool Shelf
CURRENT LOCATION: Tool Shelf
APPEARANCE:
b
]

c N -

USE: Loosen bolt --
1. Grasp at points a and b, orienting c outward.
2. Fit end at ¢ around bolt.
3. Keeping end ¢ around bolt, rotate wrench counter-clockwise.

0f course, any additional information needed by the intelligent robot
controller to perform svobtasks could be included in the environmental

knowledge base.

5.5. DETERMINING TASK ALLOCATION

Using the above information, it is possible to determine the optimal
task allocation, based on the criteria/constraints in effect. Suppose the
task allocator is instructed to first determine the task allocation using
the criteria "minimize time", and then to determine the task allocation
using the‘criteria "mazimize level of achievement”. The following sections

describe how the task allocator would allocate the subtasks.

5.5.1. Part I -- Minimize Time
Assume the constraint in effect is "minimize TIME", The capa-

bility factor to minimize, therefore, is "TIMELINESS OF ACHIEVEMENT". To
solve this problem, the task allocator examines the list of tasks to be
performed. In this case, the 1list has one member, MOVE TO WRENCH AND

GRASP. From the task knowledge base, the task allocator determines that
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there are 3 subtasks to be assigned: FIND WRENCH, MOVE ARM, and GRASP
WRENCH. The subtask FIND WREMCH requires two capabilities, VISION and
KNOWLEDGE OF WRENCH, with merit factors of 0.4 and 0.6, respectively. From
the resource knowledge base, the task allocator determines that both the
human (R1) and the robot (R2Z) possess the capabilities of VISION and
KNOWLEDGE OF WRENCH. The task allocator must now determine which resource
should be allocated to this subtask, based on the constraint of minimizing
time,

To do this, the task allocator computes relative time factors for both
the human and the robot and then selects the resource with the lowest time
factor. A resource's time factor for a given subtask is computed as:

time factor =

(subtask-merit-for—-capbl-1 * timeliness-of-achvmt-capbl-1)

+ (subtask-merit-for-capbl-2 * timeliness-of-achvmt-capbl-2)

+ .
where "subtask-merit-for-capbl-x" is the merit factor associated with
capability x which is required by the subtask, and "timeliness-of-achvmt-
capbl-x" is the timeliness of achievement factor for capability x of a
resource.

The following tables show the operations the task allocator would

perform to compute the time factors for the human and the robot, using the

resource and task knowledge given in Sections 5.2 and 5.3.

SUBTASK: Find Wrench

RESOURCE: Human

TIME FACTOR: (40% * 5) + (60% * 2) = 3.2 (--~ lowest
RESQURCE: Robot
TIME FACTOR: (40% * 9) + (60% * 4) = 6.0
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SUBTASK: Move Arm

RESOURCE: Human
TIME FACTOR: (40% * 5) + (40% * 9) + (20% * 5)

6.6 {(——= lowest

RESOURCE: Robot
TIME FACTOR: (40% * 8) + (40% * 6) + (20% * 9) = 7.4

SUBTASK: Grasp Wrench

RESOURCE: Human
TIME FACTOR: (20% * 5) + (60% * 9) + (20% * 2) = 6.8

RESOURCE: Robot
TIME FACTOR: (20% * 9) + (60% * &) + (20% * 4)

6.2 <~~~ lowest

Thus, in this example, the human would be assigned the subtask of remotely
controlling the robot to FIND WRENCH and MOVE ARM to the wrench, while the

robot would have the assignment of GRASPing the wrench.

5.5.2. Part Il - Maximize Level of Achievement

Secondly, assume the constraint in effect is "maximize LEVEL OF
ACHIEVEMENT". The variable to maximize, therefore, is "LEVEL OF ACHIEVE-
MENT". The steps to follow in this example are analogous to those in PART
I. Here, the task allocator computes the relative quality factors for both
the human and the robot and then selects the resource with the highest
gquality f£factor. A resource's quality factor for a given subtask is
computed as:

quality'factor =
(subtask-merit-for-capbl-1 * level-of-achvmt-capbl-1)

+ {(subtask-merit-for-capbl-2 * level-of~achvmt-capbl-2)
+ .
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where "subtask-merit-for-capbl-zx" is the same as above and "level-of-
achvmt-capbl-x" is the level of achievement factor for capability x of a
resource.

The following tables show the operations the task allocator
woulder form to compute the quality factors for the human and the robot,

using the resource and task knowledge given in Sections 5.2 and 5.3.

SUBTASK: Find Wrench

RESOURCE: Human
QUALITY FACTOR: (40% * 10) + (60% * 9) = 9.4 (--- highest

RESQURCE: Robot
QUALITY FACTOR: (40% * 5) + (60% * 4)

4.4

SUBTASK: Move Arm

RESOURCE: Human

QUALITY FACTOR: (40% * 8) + (40% * 7) + (20% * 10) = 8 <(-—-
highest

RESOURCE: Robot

QUALITY FACTOR: (40% * 6) + (40% * 9) + (20% * b) =7

SUBTASK: Grasp Wrench

RESQURCE: Human

QUALITY FACTOR: (20% * 10) + (60% * 7) + (20% * 9) = 8 (-~
highest

RESQURCE: Robot

QUALITY FACTOR: (20% * 5) + (60% * 9) + (20% * 4) = 7.2

Thus, in this example, the human would be assigned the entire task,
remotely controlling the robot to FIND THE WRENCH, MOVE ARM to the wrench,
and GRASP THE WRENCH, resulting in the highest guality result as possible.
Obviously, this robot is not yet a good substitute for the human in

performing this task.
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5.6. EXECUTION OF SUBTASKS

After the task allocator has determined the optimal allocation, the
human must optionally approve the task allocation, causing the need for
link e in Fig. 4. For example, the human could be shown a display such as

Fig. 7.

TASK: Move to Wrench and Grasp

Resource = Subtask
Human Find Wrench
Human Move Arm to Wrench

o Plan Move of Arm
o] Perform Move of Arm

Robot Grasp Wrench

ACCEPTABLE? _

Fig. 7. Ezample Task Allocation Recommendation.

Alternatively, the task allocator could audibly communicate the task
allocation plan to the human for verbal approval. If the human disap-
proves of the allocation, the allocation problem can be resolved via a
user-friendly interface. Otherwise, the task allocator will communicate
the assignments to the resources. The human can be informed of his
assignments as above via a video display or audible communication. The
robot can be informed of its tasks via an electronic command.

For the first situation, in which the constraint is to minimize time
(see Section 5.5.1), the human will first perform the subtask FIND WRENCH.
As the human performs the subtask, there must be a method for maintaining
the environmental knowledge base to reflect the current situation. Perhaps

there are external sensors which "watch" the environment for task status



44

and update the knowledge base appropriately. Alternatively, the resources
could explicitly update the environmental knowledge by informing it when
certain events occur, such as #RENCH DROPPED or WRENCH GRASPED. This
method of updating the environmental knowledge reguires link i in Fig. 4.
After the human completes the first subtask, he begins the second subtask
which he is assigned, MOVE TO WRENCH, which consists of sub-subtasks PLAN
MOVE OF ARM and PERFORM MOVE OF ARM. When the human completes this
subtask, the robot will be informed of its task, GRASP WRENCH, and will

proceed to execute that subtask.

5.7. DYNAMIC REPLANNING OF TASK ALLOCATION

As the task execution proceeds, events may occur in the environment
which require the constraints to be modified and/or the list of tasks to be
modified. (This requires that links i, j, and k in Fig. 4 be present.)
Assume that the task allocator has assigned the subtasks according to the
constraint "mazimize quality of result" as described in Section 5.5.2.
Assume that as the human was performing the last subtask (GRASP WRENCH), he
dropped the wrench. This causes an environmental event to occur, as
described in Section 5.4, resulting in a modification of the task list by
the job planner. Suppose the rule concerning this environmental event is
as follows:

IF WRENCH-DROPPED
THEN task-update: NEXT-TASK = PICK_UP_WRENCH

This causes the next task for allocation to be PICK _UP_WRENCH. The task

knowledge would contain the relationship:

PICK_UP_WRENCH

MOVE_TO_WRENCH_AND_GRASP
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which indicates that the task PICK UP WRENCH is a synonym for the task MOVE
TO WRENCH AND GRASP. The task allocator could then refer to the tree shown
in Fig. 5 to determine the smallest assignable subtasks to be allocated,
and then allocate the subtasks as described in Section 5.5 However, assume
in this example that as the human was performing the subtasks as described
in Section 5.6, the robot observed the human's actions. While observing
the human's actions, the robot's learning system was able to greatly
improve its knowledge of a wrench, thus causing a change in the robot's
level of achievement factor for the capability KNOWLEDGE OF WRENCH. The
new information about the resources would then be as follows:

LEVEL OF TIMELINESS OF
RESQURCE CAPABILITY ACHIEVEMENT ACHIEVEMENT  AVAILABILITY

human Vision 10 5 0 (available)
Search 8 5 0
Manipulation 7 9 0
Knowledge of Wrench 9 2 0

robot Vision 5 9 0
Search 6 8 0
Manipulation 9 6 0
Xnowledge of Wrench 9 4 0

To allocate the next task, PICK UP WRENCH, the task allocator would
use this new resource information. Assume that the constraint in effect is
still "maximize quality of result". The task allocator would compute the

guality factor for the human and the robot as before:

SUBTASK: Find Wrench

RESOURCE: Human
QUALITY FACTOR: (40% * 10) + (60% * 9) = 9.4 {(--- highest

RESOURCE: Robot
QUALITY FACTOR: (40% * 5) + (60% * 9) = 7.4
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SUBTASK: Move Arm

RESOURCE: Human
QUALITY FACTOR: (40% * 8) + (40% * 7) + (20% * 10) = § {~--highest

RESOURCE: Robot
QUALITY FACTOR: (40% * 6) + (40% * 9) + (20% * 5) =7

SUBTASK: Grasp Wrench

RESOURCE: Human
QUALITY FACTOR: (20% * 10) + (60% * 7) + (20% * 9) = 8

RESQURCE: Robot
QUALITY FACTOR: (20% * 5) + (60% * 9) + (20% * 9) = 8.2 <(---highest

In this computation, the allocation of the subtask GRASP WRENCH has
changed. Instead of allocating the subtask to the human, the task alle-
cator assigns it to the robot, reflecting the robot’s improved knowledge of
the wrench. Thus, to PICK_UP_WRENCH, the human would FIND WRENCH and MOVE
ARM TO WRENCH, followed by the robot taking control of the manipulator arm
to GRASP WRENCH.

In this manner, the task allocator demonstrates its ability to
dynamically allocate the tasks. It can respond to changes in the
environment, the capabilities of the resources, the list of tasks to be

performed, or the constraints/criteria to be a fully event-driven system.
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6. CONCLUSION

A methodological approach for dynamically allocating tasks to humans
and intelligent machines involved in man-machine symbiotic systems has been
presented. The necessary flow of control, knowledge areas, com-munication
links, and man-machine interfaces have been outlined, and the proposed
architecture has been shown to allow dynamic response and task reallocation
due to changes in the work constraints, physical environment, and
capabilities of the human and the machine, as well as to unanticipated
events and human requests or controls., Major man-machine task allocation
issues such as event-driven dynamics, knowledge updating through observa-
tion and learning, and performance-based work distribution have been
discussed. Examples of task allocation have been presented to illustrate
the results of the conceptual architecture in the context of remote manipu-
lation, focusing on a system involving only two symbiotic partners, a man
and an intelligent controller, sharing control of a single manipulator arm
to accomplish a series of sequential tasks. The methodology, however, has
been shown to be extendable to systems including more than two partners,
multitasking operations, or multi-constraint situations. The architecture
has been designed to be fully compatible with learning schemes and job-
planning methodologies and future work will include the addition of
automated monitoring, automated learning, and job planning modules to the

current systenm.
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APPENDIX -- GLOSSARY

For the purposes of this paper, the terms listed below are given the
following definitions:

Capability ~ either the ability of a resource to perform a certain physical
action, or the knowledge a resocurce has about a certain object.

Elemental Sub-Subtask - a sub-subtask which can be characterized for a
particular resource by one or more capabilities and merit factors which are
independent of the environment or the context of the problen.

Job -~ the highest-level description of a series of related tasks to be
performed.

Merit Factor - indicates the importance of a capability in the successful
performance of a subtask (or elemental sub-subtask), relative to the other
capabilities required by that subtask (or elemental sub-subtask).

Resource - an intelligent entity such as a human or a machine which is
available for performing subtasks to solve a problem, or to achieve a goal.
Smallest Assignable Unit - (see Subtask).

Sub-Subtask ~ a component of a subtask; all of the sub-subtasks of a
subtask must be performed by the same resource.

Subtask (also Smallest Assignable Unit) - the smallest unit of a task which
can be feasibly assigned to a single resource.

Iask - actions which must be successfully completed by the resources in
order to solve a problem, or to achieve a goal.
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